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Abstract

Answering complex, long-context questions re-001
mains a major challenge for large language002
models (LLMs) as it requires effective ques-003
tion clarifications and context retrieval. We004
propose Agentic Long-Context Understand-005
ing (AgenticLU), a framework designed to en-006
hance an LLM’s understanding of such queries007
by integrating targeted self-clarification with008
contextual grounding within an agentic work-009
flow. At the core of AgenticLU is Chain-010
of-Clarifications (CoC), where models refine011
their understanding through self-generated clar-012
ification questions and corresponding contex-013
tual groundings. By scaling inference as a014
tree search where each node represents a CoC015
step, we achieve 97.8% answer recall on Narra-016
tiveQA with a search depth of up to three and a017
branching factor of eight. To amortize the high018
cost of this search process to training, we lever-019
age the preference pairs for each step obtained020
by the CoC workflow and perform two-stage021
model finetuning: (1) supervised finetuning to022
learn effective decomposition strategies, and023
(2) direct preference optimization to enhance024
reasoning quality. This enables AgenticLU025
models to generate clarifications and retrieve026
relevant context effectively and efficiently in a027
single inference pass. Extensive experiments028
across seven long-context tasks demonstrate029
that AgenticLU significantly outperforms state-030
of-the-art prompting methods and specialized031
long-context LLMs, achieving robust multi-hop032
reasoning while sustaining consistent perfor-033
mance as context length grows.034

1 Introduction035

Large language models have achieved notable mile-036

stones in natural language processing, demonstrat-037

ing exceptional performance in tasks such as math-038

ematical reasoning, code generation, and conver-039

sational understanding (OpenAI, 2023; DeepSeek-040

AI, 2025). However, effectively comprehending041

and utilizing long-context inputs remains a major042

challenge. Complex queries often require mod- 043

els to retrieve multiple relevant pieces of informa- 044

tion from extensive contexts and synthesize them 045

coherently. While recent advancements have ex- 046

tended context windows to 128K and even 2M to- 047

kens (Dubey et al., 2024; Touvron et al., 2023; Reid 048

et al., 2024), these models still struggle to fully 049

integrate and reason over large-scale contextual in- 050

formation. Recent studies (Liu et al., 2024; Gao 051

et al., 2024) highlight a fundamental challenge in 052

long-context understanding: the disparity between 053

a model’s nominal context size—the theoretical 054

maximum input length—and its effective context 055

window, the portion of the input the model actively 056

utilizes for reasoning. This gap significantly im- 057

pacts the understanding performance, limiting the 058

model’s ability to fully comprehend and integrate 059

long-context information. 060

We introduce a novel framework AgenticLU to 061

enhance long-context comprehension in LLMs. As 062

illustrated in fig. 1, the core of AgenticLU is Chain- 063

of-Clarifications (CoC), a process where models 064

enhance their understanding by generating clari- 065

fication questions, retrieving relevant information 066

from the long context and answering their own 067

clarification questions based on the gathered evi- 068

dence. Rather than relying on a direct response, 069

CoC helps models refine their reasoning iteratively, 070

resolving uncertainties along the way. We structure 071

the framework into the following two stages. 072

CoC Path Construction. To collect reliable 073

CoC understanding path, we structure data collec- 074

tion as a tree search, where each CoC step repre- 075

sents a node. We leverage extended inference time 076

to determine the effective clarification questions 077

to ask and the relevant evidence to retrieve. With 078

a search depth of three and a branching factor of 079

eight, AgenticLU successfully retrieves 97.8% of 080

the correct answers in NarrativeQA (Kočiský et al., 081

2018), demonstrating its capability to tackle com- 082
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Figure 1: Overview of the AgenticLU pipeline: The model iteratively refines its understanding of long-context
inputs through an agentic workflow. At each step, it raises self-clarifications, retrieves relevant context via the
pointback mechanism, and updates its reasoning trace. The framework integrates CoC Path Construction to generate
diverse reasoning paths, followed by two-stage fine-tuning (SFT and DPO) to enhance long-context understanding.

plex questions that require multi-step reasoning083

over long-context inputs.084

CoC Path Distillation. Once the dataset is col-085

lected from the tree-search process, we train the086

model to generate effective clarifications and con-087

textual groundings in a single pass, eliminating088

the need for scaling at inference time. This is089

achieved by distilling these collected paths into090

LLMs through supervised finetuning (SFT) and di-091

rect preference optimization (DPO) (Rafailov et al.,092

2024), effectively amortizing the computational093

cost from inference to training.094

Our method AgenticLU significantly improves095

model’s long-context understanding capabilities096

without relying on laborious human annotations097

or stronger teacher models for data generation.098

Instead, the base model’s self-generated CoC099

paths enables it to teach itself to process long-100

context inputs more effectively. This approach101

harnesses the model’s inherent long-context capa-102

bilities—previously only accessible through an ad-103

ditional LLM agent—allowing it to independently104

refine its reasoning and retrieval processes. Em-105

pirically, we demonstrate that AgenticLU consis-106

tently boosts performance across a set of question-107

answering tasks up to 128K tokens, outperform-108

ing both prompting-based approaches and other109

long-context-finetuned LLMs. By integrating self-110

clarification and context grounding in an agentic111

manner, we take a step further toward enabling112

LLMs to comprehend long contexts.113

2 Related Work 114

Challenges in Long Context Understanding 115

LLMs struggle with long contexts despite support- 116

ing up to 2M tokens (Dubey et al., 2024; Reid 117

et al., 2024). The “lost-in-the-middle” effect (Liu 118

et al., 2024) and degraded performance on long- 119

range tasks (Li et al., 2023) highlight these issues. 120

To address this, ProLong (Gao et al., 2024) fine- 121

tunes base models on a large, carefully curated 122

long-context corpus. While this approach improves 123

performance on long-range tasks, it comes at a sig- 124

nificant cost, requiring training with an additional 125

40B tokens and long-input sequences. 126

Inference-time Scaling for Long-Context The 127

Self-Taught Reasoner (STaR) framework (Zelik- 128

man et al., 2022) iteratively generates rationales to 129

refine reasoning, with models evaluating answers 130

and finetuning on correct reasoning paths. Wang 131

et al. (2024b) introduced Model-induced Process 132

Supervision (MiPS), automating verifier training 133

by generating multiple completions and assessing 134

accuracy, boosting PaLM 2’s performance on math 135

and coding tasks. Li et al. (2024) proposed an infer- 136

ence scaling pipeline for long-context tasks using 137

Bayes Risk-based sampling and fine-tuning, though 138

their evaluation is limited to shorter contexts (10K 139

tokens) compared to ours (128K tokens). 140

Agentic Workflow for Long-Context Agentic 141

workflows (Yao et al., 2022) enable LLMs to au- 142

tonomously manage tasks by generating internal 143

plans and refining outputs iteratively. The Lon- 144
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gRAG framework (Zhao et al., 2024b) enables145

an LLM and an RAG module to collaborate on146

long-context tasks by breaking down the input into147

smaller segments, processing them individually,148

and integrating the results to form a coherent out-149

put. Chain-of-Agents (CoA) (Zhang et al., 2024b)150

tackles long-context tasks through decomposition151

and multi-agent collaboration. In CoA, the input152

text is divided into segments, each handled by a153

worker agent that processes its assigned portion and154

communicates its findings to the next agent in the155

sequence. Unlike these, our approach employs a156

single LLM that orchestrates its own reasoning and157

retrieval without relying on multiple components.158

By dynamically structuring its process and itera-159

tively refining long-context information, our model160

reduces complexity while maintaining efficiency.161

3 The Context Size Gap162

State-of-the-art LLMs have made strong claims163

about their context lengths, supporting hundreds of164

thousands of input tokens. However, recent stud-165

ies (Gao et al., 2024; Yen et al., 2024; Shang et al.,166

2024) have shown that the effective context size of167

an LLM (the length over which it can reliably per-168

form tasks such as information retrieval and com-169

plex reasoning) often diverges from its claimed, or170

nominal, context length.171

To illustrate this gap, we evaluate Llama3.1-8B-172

Instruct, which supports a 128K-token context, on173

the HotPotQA dataset to test multi-hop QA per-174

formance at various input lengths (8K, 16K, 32K,175

64K, and 128K). We artificially expand the input176

by adding irrelevant context and measure the ac-177

curacy of its answers using GPT-4o as a judge.178

As shown in fig. 2, The model’s performance de-179

grades substantially as increasing context length,180

demonstrating the discrepancy between nominal181

and effective context sizes.182

While expanding nominal context capacity is183

undoubtedly important, we argue that it is not suf-184

ficient for solving all long-context problems. By185

analogy with computer memory, simply having186

more capacity does not guarantee efficient or accu-187

rate computation; one must also manage the “load-188

ing” of relevant information in and out of this mem-189

ory. Therefore, we propose an agentic workflow190

aimed at helping LLMs process and interpret ex-191

tended contexts more intelligently.192

25K 50K 75K 100K 125K
Context Size

40

50

60

QA
 A
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ur
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y

Figure 2: Effective context size is smaller than
nominal context size. Performance of Llama3.1-8B-
Instruct (advertised 128K-token context) on the Hot-
PotQA dataset drops sharply as input length increases
(8K, 16K, 32K, 64K, 128K), illustrating the gap be-
tween nominal and effective context capacities.

4 Chain-of-Clarifications Workflow 193

Our approach centers on enhancing long-context 194

comprehension through an iterative, self-refining 195

process that blends inference-time scaling with 196

agentic reasoning. We coin this agentic work- 197

flow Chain-of-Clarifications (CoC). In this section, 198

we detail its key components, including the self- 199

clarification process and the pointback mechanism, 200

as illustrated in fig. 1. 201

Our proposed CoC framework is designed to 202

mitigate the gap between nominal and effective 203

context sizes in large language models. Rather 204

than processing the entire long context and po- 205

tentially multi-hop questions in a single pass, our 206

methodology decomposes the task into a sequence 207

of targeted sub-tasks. At each CoC step, the model 208

autonomously: 209

• Generates clarifying questions by identify- 210

ing areas of the long input that require further 211

elaboration or are prone to misinterpretation. 212

• Pointbacks to relevant context by using a 213

pointback mechanism that highlights critical 214

segments of the context by naming the index 215

of relevant paragraphs. In the data collection 216

phase, this is done by iteratively querying the 217

LLM about the relevance of each paragraph 218

with respect to the question. After training, 219

the model is finetuned to generate the related 220

paragraph indexes directly in a single pass. 221

• Answers clarifying questions by integrating 222

highlighted context into consideration to build 223

a more accurate and contextually grounded 224

understanding of the long document. 225
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• Answers the original question by combining226

all newly gathered clarifications, the model227

attempts to generate a valid answer to the orig-228

inal question.229

It is important to note a key distinction between230

CoC path generation during data collection and the231

actual task deployment of the agentic workflow. In232

the data generation phase, we prompt the LLM to233

iteratively process each chunk of input text along234

with its self-generated clarifying questions, ensur-235

ing accurate retrieval of relevant context. During236

training, rather than relying on repeated inference237

calls, we finetune the model to directly generate238

the indexes of relevant paragraphs using pointback239

examples, effectively amortizing the computational240

cost into training. This enables the model to inter-241

nalize the retrieval process, allowing it to dynami-242

cally synthesize relevant clarifications and contex-243

tual references at inference time without requiring244

extensive additional prompting.245

5 Data Generation & Model Training246

Dataset We use the NarrativeQA (Kočiský et al.,247

2018) dataset to facilitate long-context QA and gen-248

erate agentic workflow traces with 14.7K QA pairs249

in the training set. NarrativeQA is designed for250

reading comprehension over narrative texts, such251

as books and movie scripts, where each example252

includes a full story and a set of corresponding253

QA pairs. This dataset emphasizes deeper rea-254

soning and long-context understanding, as many255

questions require synthesizing information from256

multiple parts of the narrative rather than focusing257

solely on particular local context. Its relatively long258

passages make NarrativeQA particularly suitable259

for testing and refining agentic reasoning in large260

language models, as the answers often depend on261

weaving together details spanning the entire text.262

Base Model Our base model is Llama3.1-263

8B-Instruct (Dubey et al., 2024), an 8-billion-264

parameter instruction-tuned Llama model. This265

model is built on the same transformer architecture266

as Llama3, but with additional fine-tuning data to267

improve its performance on multi-turn dialogue268

and instruction-following tasks.269

5.1 CoC Path Construction270

We employ a test-time scaling approach to gener-271

ate CoC paths. For each question, we construct a272

tree of search paths where each node represents a273

distinct clarification question posed by the LLM.274

Table 1: Statistics of the generated traces dataset used in
finetuning derived from NarrativeQA. We left out 11.9K
traces for validation.

Data #

Num of Traces 107,550
Avg Context Length 67,812
Avg Chosen Response Length 165
Avg Rejected Response Length 164
Total Generation Tokens 17M

In our experiments, we use a branching factor of 275

8 at each depth and select the most promising trace 276

based on an evaluation score that combines: 277

• Semantic similarity, measured by the 278

RougeL (Lin, 2004) score relative to the 279

ground truth. 280

• Discrete correctness, evaluated by a binary 281

verification using GPT4o-mini. 282

In the data construction process, the relevant con- 283

text is found by iteratively querying the LLM about 284

the relevance of all chunked passages. Here we use 285

512 as the chunk size. This process is compute- 286

intensive but only happens in data collection. Af- 287

ter the training, the LLM will directly generate 288

the paragraph numbers of the relevant context as 289

shown in the lower right of fig. 1. 290

For most long-context tasks, a single clarification 291

question suffices because the required reasoning 292

is not highly complex. 92% of the questions in 293

our experiments are resolved correctly with just 294

one round of clarification. More challenging tasks 295

may require multiple rounds of clarification: two 296

rounds resolve 53% of the remaining 8%, and three 297

rounds resolve 35% of the remaining 4%. Because 298

of the exponentially increasing cost—and given 299

that 97.4% of the training questions are already 300

solved—we limit the maximum depth of our infer- 301

ence scaling to 3. 302

The statistics of the collected dataset are shown 303

in table 1. The total number of conditional genera- 304

tion tokens that the LLM trained on is 17M tokens, 305

with input that has an average length of 67K and a 306

max length of 128K tokens. 307

5.2 CoC Path Distillation 308

We employ a two-stage finetuning recipe: Super- 309

vised Fine-Tuning (SFT) followed by Direct Prefer- 310

ence Optimization (DPO) (Rafailov et al., 2024), to 311

convert our base model into a long-context under- 312
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standing agent. The dataset statistics is described313

in table 1, with input length up to 128K tokens.314

Supervised Fine-Tuning In the first phase, we315

finetune Llama3.1-8B-Instruct using the generated316

CoC paths. Each training example includes (1) the317

full context from NarrativeQA, (2) the question,318

and (3) the step-by-step reasoning trace leading to319

the final answer. By exposing the model to these320

traces, we encourage it to internalize multi-step321

reasoning strategies and context grounding for the322

long-context inputs. The SFT stage uses a stan-323

dard cross-entropy loss on the next-token predic-324

tion task, ensuring the model learns how to produce325

consistent and complete reasoning sequences.326

Direct Preference Optimization In the second327

phase, we apply Direct Preference Optimization328

to further refine the model’s output quality. To329

create preference pairs, we sample incorrect work-330

flow traces as negative examples with using GPT4o-331

mini as the judge for answer correctness from the332

test-time scaling. DPO explicitly optimizes the333

model to generate higher-ranked responses more334

frequently, thus aligning the agent’s outputs with335

desirable characteristics, such as clarity, correct-336

ness, and coherence. This stage ensures that even337

among valid reasoning paths, the model learns to338

prioritize the most instructive reasoning.339

The details for the two-phase training are listed340

in appendix A.341

6 Evaluation342

In this section, we assess our method AgenticLU343

using a suite of evaluation tasks drawn from the344

HELMET long-context benchmark (Yen et al.,345

2024). Our experiments focus on testing models’346

ability to retain, process, and reason over extended347

contexts ranging from 8K to 128K tokens.348

6.1 Tasks and Metrics349

We evaluate our models and baselines on the350

Helmet (Yen et al., 2024) long-context evalua-351

tion benchmark’s retrieval-augmented generation352

(RAG) and long-range QA (LongQA) tasks ranging353

from 8K, 16K, 32K, 64K, to 128K.354

We use GPT-4o as the judge for answer cor-355

rectness, with the prompt template shown in ap-356

pendix E. We report accuracies for all datasets.357

The RAG test suite includes: (1) Hot-358

potQA (Yang et al., 2018), a multi-hop reason-359

ing dataset over Wikipedia; (2) Natural Ques-360

tions (Kwiatkowski et al., 2019), real user queries361

with Wikipedia-based short and long answers; (3) 362

TriviaQA (Joshi et al., 2017), a large-scale trivia 363

dataset with question-answer pairs linked to evi- 364

dence documents; (4) PopQA (Mallen et al., 2022), 365

a dataset testing model memorization with fact- 366

based questions from popular culture. 367

The LongQA test suite includes: (1) Narra- 368

tiveQA (Kočiský et al., 2018), a reading compre- 369

hension dataset with Wikipedia summaries and 370

story-based Q&A; (2) InfiniteBench QA (Zhang 371

et al., 2024a), a long-range QA benchmark re- 372

quiring reasoning over extended contexts; (3) 373

InfiniteBench Multiple-Choice (Zhang et al., 374

2024a), a multiple-choice variant of the previous 375

evaluating reading comprehension over long docu- 376

ments. 377

For the four RAG tasks, each question is put 378

alongside a set of relevant contexts, and the over- 379

all input length is increased by appending irrele- 380

vant context. Consequently, these tasks become 381

strictly more difficult as the context window ex- 382

pands. In contrast, for the three LongQA tasks, the 383

relevant context may not appear in the truncated 384

input (the first 8K, 16K, or 128K tokens). Hence, 385

performance might improve at longer input lengths 386

simply because the necessary information becomes 387

available only after including more tokens. 388

6.2 Baselines 389

We compare AgenticLU against a diverse set of 390

strong baselines representing different approaches 391

for handling long-context tasks. Our comparisons 392

include two main categories. 393

Under prompting methods we consider tech- 394

niques that require no additional model training. 395

In particular, we evaluate (a) the chain-of-thought 396

approach (Kojima et al., 2022), which encour- 397

ages models to decompose complex questions 398

into intermediate reasoning steps; (b) fact-and- 399

reflection prompting (Zhao et al., 2024c), which 400

iteratively verifies and refines factual claims to 401

enhance consistency; (c) plan-and-solve prompt- 402

ing (Wang et al., 2023), where the model first out- 403

lines a high-level plan before sequentially execut- 404

ing it to address structured reasoning tasks; and 405

(d) LongRAG (Zhao et al., 2024a) where a hybrid 406

RAG system is used to retrieve relevant context to 407

generate global summaries and local details 1. 408

In the fine-tuning category, we focus on models 409

1Note that LongRAG provided finetuned models as well.
But the SFT-ed Llama3-8B only supports 8K context length.
Thus we did not include it in our comparison.
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Table 2: Performance difference of AgenticLU and its base, Llama3.1-8B-Instruct (δ =AgenticLU-8B minus
Llama3.1-8B), on long context (the 128K tasks) and short-context benchmarks (6 regular tasks including ARC,
GSM8K, and MMLU), the details of the short-context performance can be found in appendix B. Scores represent
accuracy, with AgenticLU demonstrating significantly improved performance across long-context tasks with minimal
effect on regular task performance.

Model Short Avg HotpotQA Natural Questions TriviaQA PopQA NarrativeQA InfiniQA InfiniChoice Long Avg

Llama3.1-8B 62.3 40.0 56.1 80.6 56.1 38.0 48.0 55.0 53.4
AgenticLU (δ) -0.6 +31.1 +21.7 +7.7 +9.4 +18.0 +2.0 +13.0 +14.7
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Figure 3: Main results on 7 long-context tasks across context lengths from 8K to 128K. Our AgenticLU-8B
(dotted orange) achieves significant improvements on all tasks over our base model Llama3.1-8B (solid orange).
We also compare with the prompting methods (Step-by-Step, Plan-and-Solve, Fact-and-Reflect, LongRAG) and the
state-of-the-art ProLong-8B model. AgenticLU-8B consistently maintains strong performance across most tasks
and context lengths.

that have been specifically adapted for extended410

context data. For a substantial comparison, we411

employ Prolong-8B-512K (Gao et al., 2024)—a412

model based on the Llama3 8B architecture that has413

been further trained on an additional 40B tokens of414

long-context data.415

6.3 Main Results 416

The performance of AgenticLU and baseline mod- 417

els is shown in fig. 3. 418

Self-clarification significantly improves multi- 419

hop reasoning. AgenticLU-8B consistently sur- 420

passes other methods in HotpotQA. By itera- 421

tively refining its understanding, resolving ambigu- 422
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ities, and verifying intermediate steps, the model423

achieves higher accuracy, particularly as context424

length increases.425

Robust performance across diverse datasets.426

Unlike baseline models, AgenticLU-8B maintains427

consistently strong performance across RAG and428

LongQA benchmarks, demonstrating its ability to429

adapt effectively to different long-context tasks.430

Reduced performance degradation with longer431

contexts. While most models experience signif-432

icant accuracy drops as context length increases,433

AgenticLU-8B remains stable. Its self-clarification434

and pointback mechanisms effectively filter noise435

from irrelevant information, allowing the model to436

extract and prioritize essential evidence.437

Fine-tuning vs. prompting trade-offs. While438

structured prompting techniques like plan-and-439

solve improve short-context reasoning, they strug-440

gle with extreme context lengths (e.g., 128K to-441

kens). In contrast, AgenticLU-8B, through targeted442

finetuning with self-clarification and pointback,443

maintains robust long-context reasoning without re-444

lying on complex prompting strategies. Although445

ProLong-8B, another finetuned model, achieves446

strong results, it comes with significantly higher447

training costs. AgenticLU-8B, by contrast, is more448

data-efficient and generalizes better to novel tasks,449

making it a more practical and effective solution450

for long-context reasoning.451

Overall, these results underscore the effective-452

ness of AgenticLU-8B in tackling long-context un-453

derstanding challenges. The integration of self-454

clarification plays a crucial role in improving455

grounding, reasoning, and comprehension in long-456

context settings.457

6.4 Performance on Short-Context Tasks458

To demonstrate that our fine-tuning process pre-459

serves the model’s general capabilities while en-460

hancing long-context understanding, we evalu-461

ated the finetuned model on a diverse set of462

standard benchmarks. These include elemen-463

tary and advanced reasoning tasks ARC Easy464

and ARC Challenge (Clark et al., 2018), mathe-465

matical problem-solving GSM8K (Cobbe et al.,466

2021), MathQA (Amini et al., 2019), and broad467

knowledge assessment MMLU (Hendrycks et al.,468

2021b,a), MMLU-Pro (Wang et al., 2024a).469

We report the average performance across short-470

context tasks in table 2, and each individual task471

Table 3: We evaluate the performance of adding addi-
tional self-clarification and contextual grounding rounds
at inference time. The gain from self-clarification is
close to optimal at the initial round.

Model HotpotQA NaturalQ PopQA TriviaQA Avg

Llama-3.1-8B 40.0 56.1 56.1 80.6 58.2
AgenticLU-8B 71.1 77.8 65.5 88.3 75.7

(w/ 2 rounds) 71.1 76.7 67.2 91.7 76.7
(w/ 3 rounds) 75.5 78.8 68.3 91.1 78.4

result can be found in appendix B. We find that 472

the short-context performance is well preserved, 473

demonstrating that AgenticLU’s core reasoning and 474

problem-solving abilities remain strong and are not 475

compromised by the significant improvements to 476

its long-context understanding powers. 477

7 Analyses & Ablation Studies 478

In this section, we take a closer look at how each 479

part of our approach affects long-context under- 480

standing and retrieval. Specifically, we study three 481

main questions: (1) Can the finetuned system bene- 482

fit from multi-round CoC? (2) Does adding clarifi- 483

cations and pointing back to the original document 484

help the model understand and utilize the context 485

more accurately? (3) How much additional com- 486

pute overhead does AgenticLU add to the process? 487

7.1 How many rounds of CoC are needed? 488

Setup. We add additional rounds of reasoning in 489

the evaluation and see if the LLM can benefit from 490

multi-rounds of reasoning at test-time. 491

Analysis. The results, presented in Table 3, indi- 492

cate that additional rounds of agentic reasoning do 493

provide performance improvements. 494

This suggests that while significant benefits of 495

self-clarification are achieved in the first round, ad- 496

ditional rounds still contribute to further improve- 497

ments. One possible explanation is the nature of 498

our dataset: approximately 92% of the questions 499

are resolved within a single round of clarification. 500

However, for the remaining cases, extended reason- 501

ing allows the model to refine its understanding, 502

leading to measurable gains in performance with 503

more clarification and reasoning. 504

7.2 Do Self-Clarifications and Pointback Help 505

in Long-Context Understanding? 506

Setup. To evaluate the impact of each compo- 507

nent in our agentic workflow, we compare the 508

full AgenticLU-8B model against two variants: 509

7



Table 4: We test the agentic workflow with AgenticLU-
8B when taking out the self-clarification steps and the
contextual grounding (pointback) step. The tasks are
with 128K context length.

Model HotpotQA NaturalQ PopQA TriviaQA Avg

Llama-3.1-8B 40.0 56.1 56.1 80.6 58.2
AgenticLU-8B 71.1 77.8 65.5 88.3 75.7

(w/o Clarification) 57.8 56.7 55.5 78.3 62.1
(w/o Pointback) 53.3 59.4 52.7 83.3 62.2

Table 5: Performance Overhead Comparison between
direct answering baseline and AgenticLU.

Metric Baseline AgenticLU

Runtime Overhead 100% 101.93%
Avg Tokens Generated in One Round 76.28 1205.38

one without the self-clarification step and another510

without the contextual grounding (pointback) step.511

We use the four RAG datasets with 128K context512

length as the evaluation benchmark, and compare513

the performance alongside the original model.514

Analysis. Table 4 shows the results on four QA515

benchmarks with a 128K context length. Removing516

self-clarification leads to an absolute performance517

drop of at least 10 points across most tasks (e.g.,518

from 71.1% to 57.8% on HotpotQA), confirming519

that the model benefits from clarifying its own un-520

certainties when the context is long. Meanwhile,521

omitting pointback yields degenerate results, indi-522

cating that pinpointing relevant information at each523

stage is crucial for long-context QA. Overall, these524

findings highlight the importance of both clarifica-525

tions and context-grounding to maximize retrieval526

accuracy and robustness in lengthy documents.527

7.3 How much additional compute cost does528

AgenticLU impose in generation?529

Since additional generation steps are introduced530

in the QA process, we assess the overhead in in-531

ference time. Naïvely, long-context inference and532

multi-round conversations could significantly am-533

plify compute costs. However, by leveraging prefix534

caching to store computed KV caches, the addi-535

tional cost scales linearly with the number of newly536

generated tokens rather than exponentially.537

To quantify this overhead, we conduct a runtime538

evaluation on 100 queries with a 128K context size.539

The results, summarized in table 5, demonstrate540

that the additional computational overhead remains541

minimal when using prefix caching.542

8 Conclusion 543

In this work, we introduce Agentic Long-Context 544

Understanding (AgenticLU), a framework de- 545

signed to enhance large language models’ ability to 546

process and reason over long-context inputs with 547

self-generated data. By incorporating an agentic 548

workflow (CoC) that dynamically refines model 549

reasoning through self-clarifications and contex- 550

tual grounding, AgenticLU significantly improves 551

LLM’s long context understanding capabilities. 552

Through a combination of trace data collec- 553

tion and two-stage post-training, our approach en- 554

ables models to autonomously explore multiple 555

reasoning paths, distill the most effective clarifi- 556

cation strategies, and improve their understanding 557

of lengthy documents. Extensive evaluations on 558

long-context benchmarks demonstrate that Agen- 559

ticLU outperforms existing prompting techniques 560

and finetuned baselines, maintaining strong per- 561

formance across context lengths up to 128K to- 562

kens. Additionally, ablation studies confirm that 563

self-clarification and pointback mechanisms play 564

a crucial role in improving retrieval and reasoning 565

over long-contexts. 566

Limitations 567

Despite its effectiveness in long-context reason- 568

ing, AgenticLU has notable limitations. One key 569

drawback is its inability to autonomously deter- 570

mine when to stop multi-round reasoning. While 571

additional rounds of self-clarification can improve 572

performance, the model follows a fixed number of 573

reasoning steps rather than dynamically assessing 574

when further refinement is necessary. This can lead 575

to inefficiencies, where the model either stops too 576

early, missing potential improvements, or continues 577

reasoning unnecessarily, expending computational 578

resources without significant gains. 579

Developing a fully agentic mechanism remains 580

an open challenge. Ideally, the model should assess 581

its confidence in an intermediate response and de- 582

cide whether further clarification is needed. Future 583

work should explore approaches that enable Agen- 584

ticLU to regulate its reasoning depth dynamically, 585

optimizing both efficiency and performance. 586
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and table 7. 801

B Short Context Performance 802

As shown in table 8, we evaluate the short- 803
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Table 6: Hyperparameters for SFT.

Hyperparameter Value

Learning Rate 5e-7
Learning Rate Schedule Cosine Annealing
Optimizer Adam
β1 0.9
β2 0.95
Training dtype bf16
Batch Size 128
Max Length 131,072

Table 7: Hyperparameters for DPO.

Hyperparameter Value

Learning Rate 5e-7
Learning Rate Schedule Cosine Annealing
Optimizer Adam
β1 0.9
β2 0.95
Training dtype bf16
Batch Size 128
β 0.1
Max Length 131,072

the base model Llama3.1-8B-Instruct on short-807

context benchmarks, demonstrating that Agenti-808

cLU preserves the original short-context ability809

while greatly enhancing long-context performance.810

C Detailed Results on Seven Benchmark811

Tasks812

As shown in table 9, table 10, table 11, table 12, ta-813

ble 13, table 14 and table 15, we evaluate the814

long-context performance across seven tasks: Hot-815

potQA, Natural Questions, TriviaQA, PopQA, Nar-816

rativeQA, InfiniteBench QA and InfiniteBench817

Multiple-Choice. AgenticLU provides significant818

improvement for all tasks, especially for those that819

require multi-hop reasoning such as HotPotQA.820

D Chain-of-Clarifications Workflow821

The input was first processed into chunks and822

grouped with paragraph tags. We list the exam-823

ple prompts used in AgenticLU workflow below.824

In training, we sampled 100 variations of the same825

prompt text and use them randomly to avoid train-826

ing collapse.827

Chain-of-Clarifications Workflow Prompts

[System Prompt]
You are an AI assistant specialized
in long context reasoning. Analyze
information thoroughly while maintaining
clarity and focus. Track the full context
of conversations, building connections
between concepts and flagging when context
review is needed. Break down complex
problems into components, showing your
reasoning steps and stating key assumptions.
Structure your responses with clear
headers and periodic summaries. Present
evidence for your conclusions, acknowledge
uncertainties, and request clarification
when needed. Keep your analysis organized,
explicit, and focused on addressing the
core question.
[Long-Context Input]
<para 1> [chunk 1] </para 1> <para 2> [chunk
2] </para 2> ... {Question}
[Self Clarification - Raise Question]
In order to answer this question, ask one
question about what you want to know in
order to better answer it.
[Contextual Grounding - Pointback]
Help me find relevant context to answer the
previous clarifying question.
[Self Clarification - Answer Question]
Based on the relevant context, answer the
previous clarifying question.
[Answer the Original Question]
Now, let’s answer the final question. Be
concise in your answer.

828

E Evaluation Template 829

We use GPT-4o (OpenAI, 2023) to judge if the 830

model’s answer is correct. The specific prompt 831

template with the structured output class is shown 832

below. 833

'''
Please verify the following answer:

Question: {question}
Ground Truth Answers: {ground_truth}
Predicted Answer: {answer}

Your task is to determine whether the predicted
answer correctly matches the ground truth.
Focus on overall correctness and provide a
detailed explanation in the following
format:

↪→
↪→
↪→
↪→
'''

class VerificationResult:
explanation: str # Justification
confidence: float # Confidence score in

the range [0,1]↪→
correct_answer: bool # True if the

prediction is correct, otherwise False↪→

11



Table 8: Performance comparison of AgenticLU and Llama3.1-8B-Instruct on short-context benchmarks. Scores
represent accuracy percentages, with AgenticLU demonstrating matching results across tasks.

Model ARC Easy ARC Challenge GSM8k MathQA MMLU MMLU Pro Avg

Llama3.1-8B 84.80 59.64 80.13 42.88 68.72 37.71 62.31
AgenticLU-8B 83.96 58.36 80.51 41.74 68.38 37.51 61.74

HotpotQA
Model 8K 16K 32K 64K 128K

Llama3.1-8B 63.3 56.7 61.1 47.8 40.0
Llama3.1-8B+step-by-step 60.0 66.7 56.7 58.9 56.7
Llama3.1-8B+plan&solve 71.1 66.7 72.2 62.2 50.0
Llama3.1-8B+fact&reflect 58.9 58.9 62.2 61.1 48.9
ProLong-8B 62.2 65.6 57.8 53.3 58.9
Llama3.1-8B+LongRAG 61.1 58.9 73.3 56.7 57.8
AgenticLU-8B 81.1 75.6 78.9 75.6 71.1

Table 9: Long-context performance on HotpotQA.

Nature Questions
Model 8K 16K 32K 64K 128K

Llama3.1-8B 71.7 69.4 70.6 73.9 56.1
Llama3.1-8B+step-by-step 66.7 66.1 58.9 55.6 38.9
Llama3.1-8B+plan&solve 67.8 71.7 66.7 62.2 50.6
Llama3.1-8B+fact&reflect 63.3 63.3 61.7 59.4 40.0
ProLong-8B 83.3 82.2 83.9 90.0 77.8
Llama3.1-8B+LongRAG 65.6 76.1 79.4 77.2 73.9
AgenticLU-8B 91.7 91.1 85.0 85.0 77.8

Table 10: Long-context performance on Nature Ques-
tions.

TriviaQA
Model 8K 16K 32K 64K 128K

Llama3.1-8B 82.8 86.7 85.6 81.1 80.6
Llama3.1-8B+step-by-step 84.4 86.1 90.0 82.2 57.2
Llama3.1-8B+plan&solve 78.9 88.3 89.4 87.2 86.7
Llama3.1-8B+fact&reflect 87.8 83.9 84.4 86.7 84.4
ProLong-8B 71.1 88.3 78.9 82.8 78.3
Llama3.1-8B+LongRAG 77.2 79.4 83.9 83.9 83.3
AgenticLU-8B 88.3 92.2 91.1 93.3 88.3

Table 11: Long-context performance on TriviaQA.

PopQA
Model 8K 16K 32K 64K 128K

Llama3.1-8B 61.1 62.8 57.2 58.3 56.1
Llama3.1-8B+step-by-step 61.7 58.9 55.0 58.9 60.6
Llama3.1-8B+plan&solve 62.2 63.3 58.9 55.0 61.1
Llama3.1-8B+fact&reflect 65.0 64.4 58.9 53.3 65.0
ProLong-8B 67.8 68.3 70.0 64.4 65.6
Llama3.1-8B+LongRAG 47.8 54.4 54.4 57.2 50.6
AgenticLU-8B 82.2 82.2 78.3 76.7 65.6

Table 12: Long-context performance on PopQA.

NarrativeQA
Model 8K 16K 32K 64K 128K

Llama3.1-8B 15.0 19.0 27.0 35.0 38.0
Llama3.1-8B+step-by-step 23.0 30.0 36.0 51.0 43.0
Llama3.1-8B+plan&solve 22.0 25.0 38.0 41.0 39.0
Llama3.1-8B+fact&reflect 18.0 35.0 37.0 42.0 46.0
ProLong-8B 18.0 27.0 28.0 38.0 42.0
Llama3.1-8B+LongRAG 23.3 23.3 50.0 50.0 46.7
AgenticLU-8B 27.0 35.0 41.0 49.0 56.0

Table 13: Long-context performance on NarrativeQA.

InfbenchQA
Model 8K 16K 32K 64K 128K

Llama3.1-8B 17.0 31.0 36.0 40.0 48.0
Llama3.1-8B+step-by-step 21.0 36.0 36.0 45.0 43.0
Llama3.1-8B+plan&solve 17.0 26.0 32.0 41.0 40.0
Llama3.1-8B+fact&reflect 19.0 30.0 40.0 42.0 37.0
ProLong-8B 16.0 31.0 29.0 31.0 45.0
Llama3.1-8B+LongRAG 16.7 23.3 36.7 43.3 36.7
AgenticLU-8B 25.0 39.0 42.0 47.0 50.0

Table 14: Long-context performance on InfbenchQA.

InfbenchChoice
Model 8K 16K 32K 64K 128K

Llama3.1-8B 9.0 12.0 24.0 39.0 55.0
Llama3.1-8B+step-by-step 15.0 13.0 41.0 41.0 44.0
Llama3.1-8B+plan&solve 27.0 15.0 48.0 55.0 58.0
Llama3.1-8B+fact&reflect 20.0 14.0 38.0 51.0 56.0
ProLong-8B 22.0 27.0 37.0 48.0 58.0
Llama3.1-8B+LongRAG 16.7 30.0 43.3 53.3 63.3
AgenticLU-8B 45.0 46.0 47.0 64.0 68.0

Table 15: Long-context performance on Infbench-
Choice.
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