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ABSTRACT

Many time series classification tasks, where labels vary over time, are affected
by label noise that also varies over time. Such noise can cause label quality to
improve, worsen, or periodically change over time. We first propose and formalize
temporal label noise, an unstudied problem for sequential classification of time
series. In this setting, multiple labels are recorded over time while being corrupted
by a time-dependent noise function. We first demonstrate the importance of
modeling the temporal nature of the label noise function and how existing methods
will consistently underperform. We then propose methods to train noise-tolerant
classifiers by estimating the temporal label noise function directly from data. We
show that our methods lead to state-of-the-art performance under diverse types of
temporal label noise on real-world datasets.1

1 INTRODUCTION

Supervised learning datasets often contain incorrect, or noisy, observations of ground truth labels.
Such label noise commonly arises during human annotation [1, 28] when labelers lack expertise
[31, 77], labeling is hard [13, 30, 77], labels are subjective [49, 57, 62], or during automatic annotation
where there are systematic issues like measurement error [32, 52]. These factors, among others, make
label noise prevalent in supervised learning. Label noise is a key vulnerability in supervised learning
[17, 25, 75]. Intuitively, models trained with noisy labels may learn to predict noise – such models
then underperform at test time when attempting to predict the ground truth [26, 42].

Label noise has been studied extensively, producing a stream of works on static prediction tasks
where we predict single outcomes [3, 43, 45, 67]. Many non-static prediction tasks (i.e., time series)
have features and labels that evolve over time. In these cases, it is only natural for label noise to
also evolve over time – label noise can be temporal. This notion of time-varying noise has yet to be
formalized, yet it is found in numerous real-world tasks. For example:

• Human Activity Recognition. Wearable device studies often ask participants to annotate their
activities (e.g., exercise) over time. Participants often mislabel their activities due to recall bias,
time of day, or labeling-at-random for monetized studies [27, 61].

• Self-Reported Outcomes for Mental Health: Mental health studies often collect self-reported
survey data (e.g., depression) over long periods of time. Such self-reporting is known to be biased
[5, 53, 55, 72, 46], as participants are more or less likely to report certain outcomes. For example,
the accuracy of self-reported alcohol consumption is often seasonal [8].

• Clinical Measurement Error: Clinical prediction models often predict outcomes (e.g., mortality) de-
rived from clinician notes in electronic health records. These labels may capture noisier annotations
during busier times – e.g., when a patient is deteriorating [76].

Addressing the problem of temporal label noise is challenging from a technical perspective. Existing
methods for learning under static label noise [48, 50] are not flexible enough to account for noise
rates varying over time – these approaches have no mechanism to capture temporal label noise and
therefore implicitly misspecify the noise model. Additionally, the label noise function, temporal or
otherwise, is often unknown; most datasets lack an indication for which instances or time steps are

1All of our code is available at https://github.com/sujaynagaraj/TemporalLabelNoise
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Figure 1: In time series tasks, label quality can vary over time due to temporal label noise. Existing methods
assume noise can perform poorly as they assume a static noise model over time. We propose that accurate
modeling of temporal label noise can improve performance. We demonstrate this by showing performance
improvements on an activity recognition task where we compare reconstruction error and accuracy between
static and temporal methods subject to 30% temporal label noise across 10 draws (see results for moving
dataset in Appendix D.4 for details).

more likely to be accurate. Another practical limitation is the lack of ground truth data in real-world
noisy datasets.

To address these challenges, we propose objective functions for sequence-to-sequence classification
tasks in the context of time series data. These objectives learn the temporal noise function directly
from time series data with temporally noisy labels. Our methods leverage a temporal loss function that
is robust to temporal label noise. Our algorithms can be used out of the box and allow practitioners
to learn noise-tolerant time series classifiers, even with unknown, temporal label noise. Our main
contributions are:

1. We formalize the problem of learning from noisy labels in temporal settings.

2. We propose a novel loss function for training models that are robust to temporal label noise. On
its own, we show this can already be used to improve prior methods.

3. We develop a suite of methods to learn time series classifiers under temporal label noise. Our
methods can overcome the practical challenges of this regime – i.e., by estimating an unknown
noise function from time series data.

4. We show the consequences of not accounting for temporal label noise by simply using existing
methods for noisy labels – these methods perform poorly under temporal noise. Our results
highlight the necessity of accounting for temporal noise, as our methods lead to more noise-robust
classifiers – temporal or otherwise.

2 RELATED WORK

Our work is motivated by a series of problems that arise in machine learning in healthcare [20, 40, 46].
Existing approaches primarily rely on supervised learning to model changes in latent states over
time [14, 35, 64, 68, 73, 85]. In practice, these underlying latent states can reflect clinical states that
patients can transition in and out of (e.g., sick vs healthy). Existing approaches for this problem
typically rely on modeling sequences with deep neural networks [11, 39, 65] and using attention-
based mechanisms to prioritize relevant segments of data [71]. An understudied problem in this
domain is label noise – what happens when inaccurate labels arise in real-world time series datasets?

The vast majority of work on noisy labels studies label noise in static prediction tasks where we
predict a single outcome and where label noise cannot change over time [3, 43, 45, 67, 47] We
consider how label noise can arise in time series – a prediction task where the noise rates can
change over time. Recent work in this setting focuses on identifying noisy instances in time series,
specifically by exploiting the notion that labels at neighboring time steps are unlikely to be corrupted
together [see e.g., 2, 12]. In contrast, we focus on developing algorithms to train models that are
robust to temporal label noise. With respect to existing work, our approach can account for label noise
in tasks where labels at neighboring time steps are more likely to be corrupted together (e.g., due to
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seasonal fluctuations in annotator error). We develop methods for empirical risk minimization with
noise-robust loss functions [c.f., 21, 38, 43, 48, 74]. Our work establishes the potential to learn from
noisy labels in this setting when we have knowledge of the underlying noise process [c.f., 48, 50],
and when we are able to learn the noise model from noisy data [see e.g., 37, 38, 50, 79, 82, 86].

3 FRAMEWORK

Preliminaries We consider a temporal classification task over C classes and T time steps. Each
instance is characterized by a triplet of sequences over T time steps (x1:T ,y1:T , ỹ1:T ) ∈ X ×
Y × Y where X ⊆ Rd×T represents a multivariate time-series and Y = {1, . . . , C}T represents a
sequence of labels. Here, x1:T , y1:T , and ỹ1:T are sequences of instances, clean labels and noisy
labels, respectively. For example, we can capture settings where x1:T , y1:T are recordings from an
accelerometer with true activity labels, and ỹ1:T represent noisy annotations of activity.

Under temporal label noise, the true label sequence y1:T is unobserved, and we only have access to a
set of n noisy instances D = {(x1:T , ỹ1:T )i}ni=1. We assume that each sequence in D is generated
i.i.d. from a joint distribution Px1:T ,y1:T ,ỹ1:T

, where the label noise process can vary over time. This
distribution obeys two standard assumptions in temporal modeling and label noise [4, 10, 69]:
Assumption 1 (Future Independence). A label at time t depends only on the past sequence of feature
vectors up to t: p(y1:T | x1:T ) =

∏T
t=1 p(yt|x1:t)

Assumption 2 (Feature Independence). The sequence of noisy labels is conditionally independent of
the features given the true labels: ỹ1:t ⊥⊥ x1:t | y1:t for t = 1, . . . , T

These assumptions are relatively straightforward, as they require that the current observation is
independent of future observations and assume a feature-independent noise regime. Assumption 1
allows the joint sequence distribution to factorize as: p(ỹ1:T |x1:T ) =

∏T
t=1 qt(ỹt|x1:t). Here, we

introduce qt, a slight abuse of notation, to denote a probability that is time-dependent. Assumption 2
allows for the noisy label distribution at t to be further decomposed as:

qt(ỹt|x1:t) =
∑
y∈Y

qt(ỹt | yt = y)p(yt = y | x1:t) (1)

3.1 LEARNING FROM TEMPORAL LABEL NOISE

Our goal is to learn a temporal classification model hθ : Rd×t → RC with model parameters θ ∈ Θ
and t ≤ T . Here, hθ(x1:t) returns an estimate of p(yt|x1:t). To infer the label at time step t, hθ takes
as input a sequence of feature vectors up to t, and outputs a sequence of labels by taking the argmax

of the predicted distribution for each time step (see e.g., [4, 69]). We estimate parameters θ̂ for a
model robust to noise, by maximizing the expected accuracy as measured in terms of the clean labels:

θ̂ = argmax
θ∈Θ

Ey1:T |x1:T

T∏
t=1

p(yt = hθ(x1:t) | x1:t)

However, during training time we only have access to sequences of noisy labels. To demonstrate how
we can sidestep this limitation, we first need to introduce a flexible way to model noise rates varying
over time. Existing methods assume that noise is time-invariant (Fig. 1). To relax this assumption,
we capture the temporal nature of noisy labels using a temporal label noise function, in Def. 1.
Definition 1. Given a temporal classification task with C classes and noisy labels, the temporal
label noise function is a matrix-valued functionQ : R+ → [0, 1]C×C that specifies the label noise
distribution at any time t > 0.

We denote the output of the temporal noise function at time t asQt := Q(t). This is a C ×C matrix
whose i, jth entry encodes the flipping probability of observing a noisy label j given clean label i at
time t: qt(ỹt = j | yt = i). We observe thatQt is positive, row-stochastic, and diagonally dominant
– ensuring thatQt encodes a valid probability distribution [38, 50].

Qω denotes a temporal noise function parameterized by a function with parameters ω. This parame-
terization can be constructed to encode essentially any temporal noise function. As shown in Table 1,
we can capture a wide variety of temporal noise using this representation.
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underdiagnosis during the pandemic due to health-
care disruptions [18]

Table 1: Overview of temporal noise functions for time series classification tasks (see Appendix D for other
examples). We show the noise model Q(t) and parameters ω to model q(ỹt = j | yt = i). Practitioners can
account for temporal variation by choosing a parametric class to capture effects and fit parameters from data.

3.2 LOSS CORRECTION

Modeling temporal label noise is the first piece of the puzzle in training time series classifiers robust
to temporal label noise. However, we still need to consider how to leverage these noise models during
empirical risk minimization. It remains unclear if and how existing loss correction techniques work
for time series. Here, we present theoretical results showing that learning is possible in our setting
when we know the true temporal noise functionQ(t). We include proofs in Appendix A.

We begin by treating the noisy posterior as the matrix-vector product of a noise transition matrix and
a clean class posterior Eq. (1). To this effect, we define the forward temporal loss:

Definition 2. Given a temporal classification task over T time steps, a noise function Q(t), and
a proper composite loss function ℓt [58], the forward temporal loss of a model hθ on an instance
(ỹ1:T ,x1:T ) is:

−→
ℓ seq(ỹ1:T ,x1:T ,hθ) :=

T∑
t=1

ℓt(ỹt,Q
⊤
t hθ(x1:t))

An intriguing property of the forward temporal loss is that its minimizer over the noisy labels
maximizes the likelihood of the data over the clean labels. This suggests that the forward temporal
loss is robust to label noise:

Proposition 1. A classifier that minimizes the empirical forward temporal loss over the noisy labels
maximizes the empirical likelihood of the data over the clean labels.

argmin
θ∈Θ

Eỹ1:T ,x1:T

−→
ℓ seq(ỹ1:T ,x1:T ,hθ) = argmin

θ∈Θ

T∑
t=1

Ey1:t,x1:tℓt(yt,hθ(x1:t))

Proposition 1 implies that we can train on the noisy distribution and learn a noise-tolerant classifier
in expectation.

4 METHODOLOGY

Our results in the previous section show that we can train models that are robust to label noise.
However, the temporal noise functionQ is not available to the practitioner and must be learned from
data. Our algorithm seeks to first learn this function from noisy data then account for noise using
Def. 2. This strategy can be applied in multiple ways. In what follows, we propose a method where
we jointly learn the temporal noise function and the model. We also present extensions for different
use-cases in Section 4.3 and discuss how to choose between methods in Section 4.4
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4.1 FORMULATION

We start with a method that simultaneously learns a time series classifier and temporal noise function.
Given a noisy dataset, we learn these elements by solving the following optimization problem
∀t ∈ [1, T ]:

min
ω,θ

Vol(Qω(t))

s.t. Qω(t)
⊤hθ(x1:t) = p(ỹt | x1:t)

(2)

Eq. (2) is designed to return a faithful representation of the noise function ω̂ by imposing the minimum-
volume simplex assumption [38], and a noise-tolerant temporal classifier θ̂ by minimizing the forward
temporal loss in Def. 2.

Here, the objective minimizes the volume of the noise matrix, denoted as Vol(Qt). This returns a
matrixQt, at each time step, that obeys the minimum-volume simplex assumption, which is a standard
condition used to ensure identifiability of label noise in static tasks [see e.g., 38, 83]. In practice, this
assumption ensures that Qt encloses the noisy conditional data distribution at time t: p(ỹt | x1:t).
Containment ensures that the estimated noise matrix could have generated each point in the noisy
dataset – i.e., so that the corresponding noisy probabilities p(ỹt | x1:t) obey Eq. (1). Our use of this
assumption guarantees the identifiability ofQt when the posterior distribution is sufficiently-scattered
over the unit simplex [see also 38, for details].

4.2 ESTIMATION PROCEDURE

The formulation above applies to any generic matrix-valued function according to Def. 1 with
parameters ω. Because time series classification tasks can admit many types of temporal label noise
functions (Table 1), we must ensure ω has sufficient representational capacity to handle many noise
functions. Therefore in practice, we instantiate our solution as a fully connected neural network with
parameters ω,Qω(·) : R→ [0, 1]C×C , adjusted to meet Def. 1 (see Appendix D.3 for implementation
details). We can now model any temporal label noise function owing to the universal approximation
properties of neural networks.

Provided the function space Θ defines autoregressive models of the form p(yt|x1:t) (e.g., RNNs,
Transformers, etc.), we can solve Eq. (2) using an augmented Lagrangian method for equality-
constrained optimization problems [6]:

L(θ, ω) = 1

T

T∑
t=1

[
∥Qω(t)∥F + λRt(θ, ω) +

c

2
|Rt(θ, ω)|2

]
(3)

Here: ∥Qω(t)∥F denotes the Frobenius norm of Qω(t), which acts as a convex surrogate for
Vol(Qω(t)) [7]. Likewise, Rt(θ, ω) = 1

n

∑n
i=1 ℓt(ỹt,i,Qω(t)

⊤hθ(x1:t,i)) denotes the violation of
the equality constraint for each t = 1 . . . T . λ ∈ R+ is the Lagrange multiplier and c > 0 is a
penalty parameter. Both these terms are initially set to a default value of 1, we gradually increase
the penalty parameter until the constraint holds and λ converges to the Lagrangian multiplier for the
optimization problem Eq. (2) [6]. This approach recovers the best-fit parameters to the optimization
problem in Eq. (2). We call this approach Continuous Estimation and provide additional details on
our implementation in Appendix B.

4.3 ALTERNATIVE APPROACHES

We describe two alternative approaches that extend existing label noise methods to temporal settings
and may be valuable to use in tasks where we cannot assume continuity or have access to additional
information.

Discontinuous Estimation Another approach is to assume that there is no temporal relationship
between eachQt across time and treat each time step independently. This approach is well suited for
tasks where time steps are unevenly spaced (e.g., some clinical data involves labels collected over
years or at different frequencies [56]). We can address such tasks through an estimation procedure
where we learn a model that achieves the same objective without assuming continuity. In contrast to

5



Published as a conference paper at ICLR 2025

Eq. (3), this approach Q̂t is parameterized with a separate set of trainable real-valued weights, fitting
the parameters at each time step using the data from that time step. This approach can be generalized
to extend any state-of-the-art technique for noise transition matrix estimation in the static setting (e.g.,
Li et al. [38], Yong et al. [83], etc.).

Plug-In Estimation It is also advantageous to have a simple, plug-in estimator of the temporal
noise function. Plug-in estimators are model-agnostic, can flexibly be deployed to other models, and
can be efficient to estimate. We can construct a plug-in estimator of temporal label noise using anchor
points, instances whose labels are known to be correct. Empirical estimates of the class probabilities
of anchor points can be used to estimate the noise function. This estimate can then be plugged into
Def. 2 to train a noise-tolerant time series classifier. Formally, in a temporal setting, anchor points
[41, 50, 79] are instances that maximize the probability of belonging to class i at time step t:

x̄it = argmax
xt

p(ỹt = i | x1:t) (4)

Since p(yt = i | x̄i1:t) ≈ 1 for the clean label, we can express each entry of the label noise matrix as:

Q̂(t)i,j = p(ỹt = j | x̄i1:t) (5)

We construct a plug-in estimate of Q̂(t) using a two-step approach: we identify anchor points for
each class and time step t = 1, . . . , T and replace each entry of Q̂(t) with the empirical estimate
defined in Eq. (5) This is a generalization of the approach of Patrini et al. [50] developed for static
prediction tasks.

4.4 DISCUSSION

All three methods in Section 4.2 and 4.3 improve performance in temporal classification tasks by
accounting for temporal label noise (see e.g., Fig. 1 and Section 5). However, they each have their
strengths and limitations. Here we provide guidance for users to choose between methods:

• Continuous estimation imposes continuity across time steps – assuming that nearby points likely
have similar noise levels i.e., Q̂(t) ≈ Q̂(t+ 1). This assumption can improve reconstruction in
tasks with multiple time steps by reducing the effective number of model parameters. Conversely,
it may also lead to misspecification in settings that exhibit discontinuity.

• Discontinuous estimation can handle discontinuous temporal noise processes – assuming the
noise levels of nearby points are independent of one another. This approach requires fitting more
parameters, which scales according to T . This can lead to computational challenges and overfitting,
especially for long sequences.

• Plug-In estimation has a simpler optimization problem. This is useful in that we can use separate
datasets to estimate the noise model and to train the classifier. In practice, the main challenges in
this approach stem from verifying the existence of anchor points [79].

5 EXPERIMENTS

We benchmark our methods on a collection of temporal classification tasks from real-world applica-
tions. Our goal is to evaluate methods in terms of robustness to temporal label noise, and characterize
when it is important to consider temporal variation in label noise. We include additional details on
setup and results in Appendix D and code to reproduce our results on GitHub.

5.1 SETUP

We work with four real-world datasets from healthcare. Each dataset reflects binary classification
tasks over a complex feature space, with labeled examples across multiple time steps, where the
labels are likely to exhibit label noise. The tasks include:

1. moving: human activity recognition task where we detect movement states (e.g., walking vs.
sitting) using temporal accelerometer data in adults [59].

2. senior: similar human activity recognition task as above but in senior citizens [44]

6
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3. sleeping: sleep state detection (e.g., light sleep vs. REM) task using continuous EEG data [22]

4. blinking: eye movement (open vs. closed) detection task using continuous EEG data [60]
from continuous EEG data.

We consider a semi-synthetic setup where we treat labels in the training sample as ground truth labels
and create noisy labels by corrupting them with a noise function for different noise rates. This setup
reflects a standard approach used to benchmark algorithms for learning under label noise [see e.g.,
48, 50]. We consider six different label noise functions:

• Linear: noise rates linearly fall over time.
• Decay: noise rates decay exponentially over time.
• Growth: noise rates rapidly rise over time.
• Periodic: noise rates vary in a seasonal fashion.
• Mixed: noise rates for yt = 0 grow and noise rates for yt = 1 fall over time.
• Static: noise rates are constant over time.

We present two sample noise functions in Fig. 2, and a complete list in Fig. 4 in Appendix D.

We split each dataset into a noisy training sample (80%, used to train the models and correct for
label noise) and a clean test sample (20%, used to compute unbiased estimates of out-of-sample
performance).

We train time series classifiers on the aforementioned datasets using the three techniques described in
Section 4: Continuous, Discontinuous, and Plug-In. We compare these models to baseline models
that ignore label noise (Ignore) to loss-tolerant methods that assume a static noise model across time
steps: Anchor [41, 50, 79] and VolMinNet [38].

We evaluate each model in terms of the following metrics:

• Test Accuracy measures how well each method performs on held-out test data with clean labels.
• Approximation Error characterizes how well each method learns the temporal noise function, using

the Error(Qt, Q̂t) :=
1
T

∑T
t=1 ∥Qt − Q̂t∥ between the trueQt and estimated Q̂t for all t.

5.2 RESULTS

We summarize our results for two temporal noise functions in Table 2 and Table 3. We evaluate the
performance of methods across different noise models and attribute the gains to our ability to capture
the underlying temporal noise function in Fig. 2. We include additional results for other noise models
and for multi-class classification tasks in Appendix D.4. In what follows we discuss key results.

On the Performance Gains of Modeling Temporal Noise First, we show clear value in accounting
for temporal label noise. Table 2 shows the performance of each method on all four datasets. We

True
Continuous

Discontinuous

Plug-In

Discontinuous
Continuous
True
Plug-In

Periodic Mixed

Figure 2: Comparison of the ground truth unseen temporal noise function Q(t) and its estimate Q̂(t) from each
Temporal method on the moving data. We show the noise rate for the negative class only for clarity. We show
results for Periodic and Mixed noise regimes. As shown, our Temporal methods can learn the true label noise
function across different noise patterns. The resulting noise models have lower reconstruction error and are
superior to static approaches.
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Static Temporal

Dataset Metric Ignore Anchor VolMinNet Plug-In Discontinuous Continuous

moving [59]
n = 192, d = 14, T = 50

Test Error 29.4 ± 1.7% 20.9 ± 2.6% 14.9 ± 2.7% 20.0 ± 1.8% 15.9 ± 2.7% 4.2 ± 2.2%
Approx. Error – 42.4 ± 3.4% 35.3 ± 0.8% 36.8 ± 1.7% 32.6 ± 0.5% 10.3 ± 3.9%

senior [44]
n = 444, d = 6, T = 100

Test Error 22.7 ± 1.7% 20.7 ± .01% 19.0 ± 0.7% 18.8 ± 1.1% 13.6 ± 1.2% 11.0 ± 0.3%
Approx. Error – 35.9 ± 2.5% 36.3 ± 0.4% 26.9 ± 1.2% 21.7 ± 0.2% 6.4 ± 0.8%

blinking [60]
n = 299, d = 14, T = 50

Test Error 34.1 ± 2.0% 34.1 ± 2.3% 29.6 ± 2.2% 29.6 ± 2.8% 29.9 ± 3.0% 29.6 ± 2.3%
Approx. Error – 35.3 ± 0.8% 35.2 ± 0.7% 19.6 ± 1.1% 26.6 ± 0.9% 14.9 ± 2.3%

sleeping [22]
n = 964, d = 7, T = 100

Test Error 28.7 ± 0.8% 24.9 ± 1.1% 26.8 ± 1.4% 20.4 ± 1.8% 19.6 ± 0.8% 16.3 ± 0.4%
Approx. Error – 34.3 ± 1.8% 41.8 ± 0.1% 19.1 ± 3.5% 22.4 ± 0.2% 4.9 ± 0.5%

Table 2: Model performance and approximation error for all methods and datasets when labels are corrupted
using a Mixed noise function (average 30% label noise across all time steps, one class with decreasing noise rate,
one class with increasing noise rate). We report the clean test error (%) and mean approximation error of Q̂(t)
± st.dev over 10 runs. The best-performing methods are highlighted in Green. Continuous outperforms all
baselines.

Static Temporal

Dataset Metric Ignore Anchor VolMinNet Plug-In Discontinuous Continuous

moving [59]
n = 192, d = 14, T = 50

Test Error 24.0 ± 5.1% 18.0 ± 3.6% 13.5 ± 6.0% 18.5 ± 4.3% 14.0 ± 5.7% 1.7 ± 0.6%
Approx. Error – 49.9 ± 4.7% 43.5 ± 3.0% 48.1 ± 4.4 33.5 ± 5.0% 9.1 ± 1.6%

senior [44]
n = 444, d = 6, T = 100

Test Error 22.5 ± 2.2% 20.1 ± 1.5% 16.4 ± 2.9% 19.9 ± 1.3% 14.1 ± 2.6% 10.6 ± 0.7%
Approx. Error – 47.3 ± 4.0% 42.4 ± 3.9% 46.9 ± 3.9% 20.5 ± 2.1% 9.7 ± 2.7%

blinking [60]
n = 299, d = 14, T = 50

Test Error 37.4 ± 3.1% 35.8 ± 2.7% 33.2 ± 2.8% 35.8 ± 2.3% 32.0 ± 2.9% 30.4 ± 3.1%
Approx. Error – 49.3 ± 4.2% 42.4 ± 3.9% 46.4 ± 4.4% 24.7 ± 3.3% 10.5 ± 3.3%

sleeping [22]
n = 964, d = 7, T = 100

Test Error 23.3 ± 3.1% 22.8 ± 2.7% 22.4 ± 3.0% 22.1 ± 2.0% 20.1 ± 3.5% 15.2 ± 0.8%
Approx. Error – 44.9 ± 4.0% 42.6 ± 4.1% 43.9 ± 4.3% 19.1 ± 1.8% 8.8 ± 2.6%

Table 3: Model performance and approximation error for all methods and datasets when labels are corrupted
using the Periodic noise function (average 30% label noise across all time steps). We report the clean test error
(%) and mean approximation error of Q̂(t) ± st.dev over 10 runs. The best-performing methods are highlighted
in green. Continuous outperforms all baselines.

find that the temporal methods are consistently more accurate than their non-temporal counterparts,
highlighting the importance of modeling temporal noise. For example, Plug-In is a temporal extension
of Anchor, and we see that Plug-In outperforms Anchor in most settings. For example, on moving,
the temporal method reduces the test error by over 10% compared to the nearest-performing static
counterpart. This shows that our methods are robust to label noise despite being trained on data
that is 30% corrupted with noisy labels, with no prior knowledge of the noise. This can have
important consequences – e.g., in healthcare, where the noise is unknown and accurate models
support life-or-death decisions.

Among the temporal methods, Continuous achieves the best performance in comparison to Plug-In
and Discontinuous. Continuous’ superiority is even clearer when compared to the static methods.
Comparing the results for Table 2 (which assumes a Mixed noise model) and Table 3 (which assumes
a Periodic noise model), we can see that these results hold across multiple types of temporal label
noise. Fig. 2 demonstrates the ability of our methods to accurately reconstruct the underlying label
noise. More importantly, the benefit of Continuous becomes more evident as the amount of noise
increases in the data. In all these cases, we observe that temporal methods are consistently more
robust to both temporal and static label noise. Overall, these findings suggest that we can improve
performance by explicitly modeling how noise varies across time instead of assuming it is distributed
uniformly in time.

On Learning the Temporal Noise Function Our results show that the performance increases hand
in hand with our ability to estimate the noise model. In particular, we observe that low values of
reconstruction consistently lead to low values of error rates.

We note that Continuous has the best reconstruction error (Approx. Error) on all datasets (Table 2). We
qualitatively compare estimated noise functions and the ground truth for Continuous, Discontinuous,
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and other baselines in Fig. 2. We use a DNN to model Q, which consistently estimates the noise
function with lower mean absolute error across different families of noise functions. Appendix D.4
has extended results on all other datasets (including multi-class).

On the Risk of Misspecification As shown in Section 3.2, our ability to learn under temporal
label noise depends on our ability to correctly specify the temporal noise process. However, existing
Q-estimators assume static, time-invariant label noise – which means that they will always fail to
capture the correct noise function when it is temporal. In Fig. 5 (Appendix D), we validate this
experimentally by showing how a model that assumes static noise compares to the forward temporal
loss model learned using the true temporal noise function (see Appendix D.4 for other results). Our
results highlight that there is no downside to modeling temporal effects. As shown, performance
does not change when the temporal noise process is truly static. In contrast, performance drops
when temporal effects exist. Using our temporal approaches they can relax this assumption to admit
different types of temporal label noise. There is no cost to doing so, as our methods are competitive
even if the noise model is truly static.

6 DEMONSTRATION ON STRESS DETECTION

We now demonstrate the viability of our approach on a real-world time series application where
we have both clean and noisy labels. We focus on the task of stress detection, which is a common
feature in modern smartwatches [9, 19] and is increasingly used to support interventions to mitigate
clinical burnout [23, 29, 15]. Although many models use self-reported stress labels, these labels are
subject to temporal label noise which arises from subjectivity, forgetfulness, and seasonal patterns in
self-reported outcomes [53]. Given these effects, objective physiological measures (e.g., heart rate
variability, temperature, etc.) are the standard for measuring stress and guiding interventions.

Setup Our goal is to learn a time series classifier using the noisy labels (i.e., self-reported stress
labels) that will generalize the clean labels (i.e., a physiological indicator of stress). We use a
dataset from Goodday [24] monitoring stress in healthcare workers using physiological measures and
self-reported measures. The dataset contains n = 289 unique individuals over T = 50 days. Each
sequence has d = 9 features. Here, the noisy label is: ỹi,t = 1 if person i self-reports stress on day
t. The clean label is yi,t = 1 if the objective physiological measure of stress for person i indicates
stress on day t. We train sequential classifiers to predict stress over time. Our setup is identical to
the one in Section 5, except that our training labels reflect real-world noisy labels and we have clean
labels representing the ground truth stress.
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Figure 3: Temporal effects in label noise in a real-world stress detection task. We show noise rates when
individuals are stressed (left) and not stressed (right). True noise rate is the average disagreement rates between
clean and noisy labels over time. We can see clear, temporal label noise patterns – our temporal label noise
methods do a superior job of approximating it.

Results We report our results in Fig. 3 and Table 4. In Fig. 3, the black line indicates the average
disagreement rates between the noisy self-reported label of stress and the clean physiological label
over time. We can see clear temporal patterns in label noise, where participants under-report stress in
a seasonal manner.

Our results are consistent with those in Section 5.2. In particular, we find that accounting for
temporal label noise improves both training and test accuracy (Table 4). These results also highlight
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Noise Estimation Model Performance

Method What It Represents Approx. Error Train Error Test Error

Ignore ignoring label noise completely 17.6 ± 0.0% 31.0 ± 0.3% 31.1 ± 4.3%

Static static label noise correction per time step 16.4 ± 1.1% 31.0 ± 0.3% 29.5 ± 4.0%

Discontinuous temporal label noise correction with discontinuity 11.4 ± 0.8% 27.1 ± 0.7% 26.0 ± 2.5%

Continuous temporal label noise correction imposing continuity 9.7 ± 1.3% 21.1 ± 0.5% 25.5 ± 1.7%

Table 4: Noise rate estimation error and model performance for stress detection. We train sequential classifiers to
predict stress using the training setup in Section 5. We report results for four methods to highlight the mechanism
driving performance improvements through an ablation study. We show the approximation error noise rates
(left); and the clear label error rate on the training sample (middle) and test sample (right) All values correspond
to the mean 10-CV estimates ± st.dev.

the mechanism for these effects. Specifically, we see that lower approximation error leads to
lower training error (via noise correction) and lower training error leads to lower test error (via
generalization). In this case, all model classes are the same and the gains in Continuous are driven by
its ability to learn the underlying temporal noise function in a joint optimization procedure.

Discussion This demonstration shows the effectiveness of our methods in regimes without synthetic
noise injection. We identified clean and noisy labels in this dataset using physiological measures and
self-reports, respectively. In this scenario, temporal label noise represents the time-dependent process
that models the discrepancy between these labels.

7 CONCLUDING REMARKS

Temporal label noise is an under-explored problem facing many real-world time series tasks. In
such tasks, we must predict a sequence of labels, each of which can be subject to label noise whose
distribution can change over time. Our work shows that existing methods for label noise substantially
underperform when the distribution of label noise changes over time. As we show, we can achieve
improved performance by accounting for temporal label noise. Given that this noise function is
unknown, we also highlight the viability of learning the noise model from data. Finally, we perform
a demonstration on a real-world source of temporal label noise – self-reported labels in digital
health studies. In this setting, our methods continue to outperform methods that ignore such noise.
Overall, temporal label noise presents a challenge in modeling time series – our paper underscores
the necessity of explicitly modeling and accounting for temporal noise to achieve reliable and robust
time series classification.

Limitations We assume that all time series in a dataset have the same underlying label noise
function. This may not be true as different annotators can introduce differing noise patterns. We
can potentially relax this assumption by considering models that represent differences across annota-
tors [see e.g., 63, 36, 70]. Additionally, we work with stationary time series, where the predictive
distribution is stable over time. Though this is a standard assumption in time series work [see e.g.,
80, 81, 78, 84], it is a limitation that can be addressed. For example, our loss-correction technique
can be extended with learning theory from the study of non-stationary time series [33, 34]. Finally,
the lack of time series datasets with both noisy and clean labels are few and far between. Without
clean labels, it is difficult to verify that the temporal noise function learned is accurate or verify that a
model trained on noisy labels generalizes to clean labels. We hope this paper will inspire the curation
of more time series datasets containing both sets of labels.
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Supplementary Materials

A PROOFS

In what follows, we use vector notation for completeness and clarity of exposition. We describe key
quantities and notation that we use in Table 5. We will also use Assumption 1 and Assumption 2 to
factor the noisy label distribution as follows:

p(ỹ1:T | x1:T ) =

⊤∏
t=1

qt(ỹt | x1:t). (6)

Notation Description

p(yt | x1:t) :=
[
p(yt = c | x1:t)

]⊤
c=1:C

Vector of probabilities for each label value, for the clean
label distribution p(yt | x1:t) ∈ RC×1

p(ỹt | x1:t) :=
[
p(yt = c | x1:t)

]⊤
c=1:C

Vector of probabilities for each possible label value, for
the noisy label distribution p(ỹt | x1:t) ∈ RC×1

hθ(x1:t) = pθ(yt | x1:t = x1:t) Classifier that predicts label distribution at t given preced-
ing observations Rd×t → RC

hθ(x1:t) = ψ
−1(gθ(x1:t)) When hθ is a deep network, gθ is the final logits, and

ψ : ∆C−1 → RC represents an invertible link function
(e.g., softmax)

Qt :=
[
qt(ỹt = k | yt = j)

]
j,k

The temporal noise matrix at time t: Qt ∈ RC×C

ℓt(yt,hθ(x1:t)) = − log pθ(yt = yt | x1:t = x1:t) Loss at t: Y × RC → R

ℓψ,t(yt,hθ(x1:t)) = ℓt(yt,ψ
−1hθ(x1:t)) A composite loss function using a link function ψ

ℓt(hθ(x1:t)) =
[
ℓt(c,hθ(x1:t))

]⊤
c=1:C

Vector of NLL losses for each possible value of the ground
truth RC → RC

−→
ℓ t,ψ(c,hθ(x1:t)) = ℓt(c,Q

⊤
t ·ψ

−1(gθ)) Forward loss for class c

−→
ℓ seq,ψ(y1:T ,hθ(x1:t)) =

∑T
t=1

−→
ℓ t,ψ(c,hθ(x1:t)) Sequence forward loss

Table 5: Quantities and definitions used for the following proof

Proof of Proposition 1

Proof. Our goal is to show:

argmin
θ

Eỹ1:T ,x1:T

−→
ℓ seq,ψ(y1:T , gθ(x1:T )) = argmin

θ

⊤∑
t=1

Ey1:t,x1:tℓt,ϕ(y1:T , gθ(x1:T )).

First, note that:
−→
ℓ t,ψ(yt,hθ(x1:t)) = ℓt(yt,Q

⊤
t ψ

−1(gθ(x1:t))) (7)
= ℓϕt,t(yt, gθ(x1:t)), (8)

where ϕ−1
t = ψ−1 ◦Q⊤

t . Thus, ϕt : ∆
C−1 → RC is invertible, and is thus a proper composite loss

[58].

Thus, as shown in Patrini et al. [50]:

16



Published as a conference paper at ICLR 2025

argmin
θ

Eỹt,x1:t
ℓϕ,t(yt, gθ(x1:t)) = argmin

θ
Eỹt|x1:t

ℓϕt,t(yt, gθ(x1:t)) (9)

= ϕt(p(ỹt | x1:t)) (property of proper composite losses)

= ψ((Q−1
t )⊤p(ỹt | x1:t))) (10)

= ψ(p(yt | x1:t)) (11)

The above holds for the minimizer at a single time step, not the sequence as a whole. To find the
minimizer of the loss over the entire sequence:

argmin
θ

Ex1:T ,ỹ1:T

−→
ℓ seq,ψ(ỹ1:T , gθ(x1:T )) = argmin

θ
Eỹ1:T |x1:T

−→
ℓ seq,ψ(ỹ1:T , gθ(x1:T )) (12)

= argmin
θ

Eỹ1:T |x1:T

⊤∑
t=1

−→
ℓ t,ψ(ỹt, gθ(x1:t)) (13)

= argmin
θ

⊤∑
t=1

Eỹ1:T |x1:T

−→
ℓ t,ψ(ỹt, gθ(x1:t)) (14)

= argmin
θ

⊤∑
t=1

Eỹt|x1:t

−→
ℓ t,ψ(ỹt, gθ(x1:t)) (15)

= argmin
θ

⊤∑
t=1

Eỹt|x1:t
ℓt,ϕ(ỹt, gθ(x1:t)) (16)

As the minimizer of the sum will be the function that minimizes each element of the
sum, then argminθ Eỹ1:T ,x1:T

−→
ℓ seq,ψ(y1:T , gθ(x1:T )) = ψ(p(y1:T | x1:T )). Note that the

argminθ
∑⊤
t=1 Ey1:t,x1:tℓt,ϕ(y1:T , gθ(x1:T )) = ψ(p(y1:T | x1:T )), because the minimizer

of the NLL is the data distribution. Thus, argminθ Eỹ1:T ,x1:T

−→
ℓ seq,ψ(y1:T , gθ(x1:T )) =

argminθ
∑⊤
t=1 Ey1:t,x1:t

ℓt,ϕ(y1:T , gθ(x1:T )).

B CONTINUOUS LEARNING ALGORITHM

We summarize the augmented lagrangian approach to solving the continuous objective in Algorithm 1

Algorithm 1 Continuous Learning Algorithm

Input: Noisy Training Dataset D, hyperparameters γ and η
Output: Model θ, Temporal Noise Function ω
c← 1 and λ← 1
for k = 1, 2, 3, . . . , do

θk, ωk = argminθ,ω L(θ, ω) ▷ Computed with SGD using the Adam optimizer
λ← λ+ c ∗Rt(θk, ωk) ▷ Update Lagrange multiplier
if k > 0 and Rt(θ

k, ωk) > γRt(θ
k−1, ωk−1) then

c← ηc
else

c← c
end if
if Rt(θk, ωk) == 0 then

break
end if

end for
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For all experiments we set λ = 1,c = 1, γ = 2, and η = 2. k and the maximum number of SGD
iterations are set to 15 and 10, respectively. This is to ensure that the total number of epochs is 150,
which is the max number of epochs used for all experiments.

C PLUG-IN PROCEDURE

1. Fit a probabilistic classifier to predict noisy labels from the observed data.

2. For each class y ∈ Y and time t ∈ [1 . . . T ]:

i Identify anchor points for class y: x̄jt = argmaxxt
p(ỹt = y | x1:t).

ii Set Q̂(t)y,y′ as the probability of classifier predicting class y′ at time t given x̄jt .

D SUPPORTING MATERIAL FOR EXPERIMENTAL RESULTS

In what follows, we describe details for reproducing the experiments shown in the paper. Our code is
available on GitHub.

D.1 DATASET DETAILS

Dataset Classification Task n d T

blinking [60] Eye Open vs Eye Closed 299 14 50

sleeping [22] Sleep vs Awake 964 7 100

moving [59] Walking vs Not Walking 192 9 50

senior [44] Walking vs Not Walking 444 6 100

Table 6: Datasets used in the experiments. Classification tasks, number of samples (n), dimensionality at each
time step (d), and sequence length (T ) are shown.

moving from UC Irvine [59] consists of inertial sensor readings of 30 adult subjects performing
activities of daily living. The sensor signals are already preprocessed and a vector of features at each
time step are provided. We apply z-score normalization at the participant-level, then split the dataset
into subsequences of a fixed size 50. We use a batchsize of 64.

senior from UC Irvine [44] consists of inertial sensor readings of 18 elderly subjects performing
activities of daily living. The sensor signals are already preprocessed and a vector of features at each
time step are provided. We apply z-score normalization at the participant-level, then split the dataset
into subsequences of a fixed size 100. We use a batchsize of 256.

sleeping from Physionet [22] consists of EEG data measured from 197 different whole nights of
sleep observation, including awake periods at the start, end, and intermittently. We apply z-score
normalization at the whole night-level. Then downsample the data to have features and labels each
minute, as EEG data is sampled at 100Hz and labels are sampled at 1Hz. We then split the data into
subsequences of a fixed size 100. We use a batchsize of 512.

blinking from UC Irvine [60] consists of data measured from one continuous participant tasked
with opening and closing their eyes while wearing a headset to measure their EEG data . We apply
z-score normalization for the entire sequence, remove outliers (>5 SD away from mean), and split
into subsequences of a fixed size 50. We use a batchsize of 128.

synthetic We generate data for binary and multiclass classification with n = 1000 samples and
d = 50 features over T = 100 time steps. We generate the class labels and obvservations for each
time step using a Hidden Markov Model (HMM). The transition matrix generating the markov chain
is uniform ensuring an equal likelihood of any state at any given time. We corrupted them using
multidimensional (50) Gaussian emissions. The mean of the gaussian for state/class c is set to c
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with variance 1.5 (i.e. class 1 has mean 1 and variance 1.5). The high-dimensionality and overlap in
feature-space between classes makes this a sufficiently difficult task, especially under label noise. We
use a batchsize of 256

D.2 NOISE INJECTION AND NOISE REGIMES

We create noise labels for each dataset by applying one of the six temporal noise functions shown in
Fig. 4. We choose functions to capture different functional forms, assumptions on time-variance, and
class-dependence.
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Figure 4: Temporal label noise function Q(t) used in the experiments. We present six examples for binary
classification task (from top-left clockwise): static, decay periodic, mixed, linear, growth. Each plot shows the
off-diagonal entries of various parameterized forms of Q(t).
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D.3 DETAILS ON TRAINING ALGORITHMS

GRU the GRU r : Rd×Z→ RC×Z produces an output vector such that the output of r(xt, zt−1)
is our model for hθ(x1:t), and a hidden state zt ∈ Z that summarizes x1:t. We use a softmax
activation on the output vector of the GRU to make it a valid parameterization of pθ(yt | x1:t). The
GRU has a single hidden layer with a 32 dimension hidden state.

Continuous Continuous uses an additional fully-connected neural network with 10 hidden layers
that outputs a C ∗ C-dimensional vector to represent each entry of a flattened Q̂t. To ensure the
output of this network is valid for Def. 1, we reshape the prediction to be C × C, apply a row-wise
softmax function, add this to the identity matrix to ensure diagonal dominance, then rescale the rows
to be row-stochastic. These operations are all differentiable, ensuring we can optimize this network
with standard backpropagation.

VolMinNet and Discontinuous We do a similar parameterization for VolMinNet and Discontinuous,
using a set of differentiable weights to represent the entries ofQt rather than a neural network.

Anchor and Plug-In Patrini et al. [50] show that in practice taking the 97th percentile anchor
points rather than the maximum yield better results, so we use that same approach in our experiments.
They also describe a two-stage approach: 1) estimate the anchor points after a warmup period 2) use
the anchor points to train the classifier with forward corrected loss. We set the warmup period to 25
epochs.

Hyperparameters We train each model for 150 epochs using the adam optimizer with default
parameters and a learning rate of 0.01. We train all models using the same set of hyperparameters for
experiment, set the batch size manually for each dataset, and avoid hyperparameter tuning to avoid
label leakages. For VolMinNet, Discontinuous, and Continuous we use adam optimizer with default
parameters and a learning rate of 0.01 to optimize each respective Q̂t-estimation technique. λ was set
to 1e− 4 for VolMinNet and Discontinuous for all experiments following the setup of Li et al. [38].
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D.4 ADDITIONAL RESULTS

D.4.1 STATIC APPROXIMATION

Here we study the performance of forward temporal loss where we know the noise functionQ(t) –
that is, even if we could perfectly estimate the noise process – and where we have a static estimate of
Q(t) (the average over time). We find that even if the noise process is perfectly estimated, accounting
for temporal noise outperforms a static estimate.
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Figure 5: Comparing performance of models trained with forward temporal loss vs no noise correction on
synth with varying degrees of temporal label noise using either the true temporal noise function (Temporal) or
the average temporal noise function (Static). Error bars are st. dev. over 10 runs.
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D.4.2 MULTICLASS CLASSIFICATION
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Figure 6: Comparison of clean test set Accuracy (%) for synth across varying degrees of temporal label noise
comparing all methods for 3-class classification. Error bars are st. dev. over 10 runs.
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Figure 7: Comparison of noisy function reconstruction Mean Absolute Error (MAE) for synth across varying
degrees of temporal label noise comparing all methods for 3-class classification. Error bars are st. dev. over 10
runs.
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Figure 8: Comparison of clean test set Accuracy (%) for sleeping across varying degrees of temporal label
noise comparing all methods for 3-class classification. Error bars are st. dev. over 10 runs.
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Figure 9: Comparison of noisy function reconstruction Mean Absolute Error (MAE) for sleeping across
varying degrees of temporal label noise comparing all methods for 3-class classification. Error bars are st. dev.
over 10 runs.
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Figure 10: Comparison of clean test set Accuracy (%) for moving across varying degrees of temporal label
noise comparing all methods for 4-class classification. Error bars are st. dev. over 10 runs.
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Figure 11: Comparison of noisy function reconstruction Mean Absolute Error (MAE) for har across varying
degrees of temporal label noise comparing all methods for 4-class classification. Error bars are st. dev. over 10
runs.
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