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ABSTRACT

Reinforcement learning (RL) agents often struggle in sparse-reward settings,
where intrinsic signals such as curiosity or empowerment are used to aid explo-
ration. Existing approaches typically rely on fixed trade-offs between extrinsic
and intrinsic rewards, limiting adaptability across tasks. We introduce IncentRL,
a cognitively inspired framework that unifies external rewards with internal pref-
erences through adaptive incentive shaping. The central novelty is treating the
incentive weight 5 as a Bayesian random variable, updated online to balance ex-
ploration and exploitation without manual tuning. In addition, IncentRL augments
task rewards with a KL-based penalty that aligns predicted outcome distributions
with preferred outcomes. Theoretically, this connects to dopamine-based reward
prediction error and the Free Energy Principle. Empirically, on MiniGrid and
MountainCar, IncentRL improves sample efficiency and final performance over
standard RL and fixed-regularization baselines. These results demonstrate that
Bayesian adaptation of preference gaps removes the need for manual trade-off
tuning, a core limitation of intrinsic motivation methods. Code is available at
https://github.com/gravitywavelet/incentive—-RL—anon.

1 INTRODUCTION

Reinforcement learning (RL) has achieved remarkable progress in sequential decision-making prob-
lems ranging from games to robotics. However, standard RL frameworks remain heavily reliant on
external reward signals, which are often sparse, delayed, or difficult to specify. In such settings,
agents may struggle to explore meaningfully or to learn policies that align with high-level goals or
safety constraints. This disconnect between low-level reward optimization and high-level intention
has motivated growing interest in intrinsic motivation, reward shaping, and cognitively grounded
learning principles.

In this paper, we propose IncentRL, a reinforcement learning framework that unifies external re-
wards and internal incentives through a novel preference—prediction shaping mechanism. Instead
of optimizing purely for extrinsic return, IncentRL introduces an internal incentive signal that en-
courages the agent to align its predicted outcomes with a set of preferred outcomes. Formally, the
agent minimizes a KL divergence between the predicted distribution over outcomes, p(ols, a), and
a preferred distribution g(o|s), yielding a shaped objective that augments the external reward.

This shaping mechanism is inspired by cognitive and neurobiological processes, particularly the
dopamine-based reward prediction error (RPE) hypothesis and the Free Energy Principle (FEP).
Unlike FEP, which allows agents to adapt their internal preferences to reduce surprise, IncentRL
assumes preferences are fixed or slowly evolving. The agent shapes its behavior—rather than its
desires—to reduce epistemic dissonance between what it expects and what it values. This separation
leads to a stable and interpretable incentive structure.

We develop the theoretical foundations of IncentRL, analyze its convergence behavior in simple
settings, and discuss its implications for both reinforcement learning and cognitive modeling. Our
main contributions are:

* Bayesian adaptation (novelty): We introduce a Bayesian scheme for adapting the incen-
tive weight 3, eliminating manual trade-off tuning. Unlike prior intrinsic motivation meth-
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ods, our approach adapts online and is empirically validated (Fig. [3| ) through posterior
concentration near task-relevant values.

* KL-based incentive shaping: A framework that integrates predicted and preferred out-
come distributions into RL objectives through KL divergence.

* Theoretical analysis: Characterization of IncentRL in toy environments, focusing on the
role of the incentive-weighting parameter (.

* Empirical validation: Experiments in sparse-reward and exploration-heavy domains show
that IncentRL improves both sample efficiency and long-term planning.

Overall, our results suggest that aligning internal preferences with predictive dynamics provides a
principled and cognitively grounded mechanism for enhancing reinforcement learning agents.

2 RELATED WORK

2.1 INTRINSIC MOTIVATION AND REWARD SHAPING

Intrinsic motivation has long been proposed as a remedy for sparse or poorly specified external
rewards in reinforcement learning. Pioneering work on curiosity-driven exploration [Pathak et al.
(2017); Burda et al.| (2018) encourages agents to seek out novel states or prediction errors. Simi-
larly, empowerment Mohamed & Jimenez Rezende (2015) and information gain-based objectives
Houthooft et al.| (2016) define intrinsic rewards based on the agent’s influence over its environment
or learning progress. While these approaches shape behavior via internal drives, they typically lack
an explicit representation of preferred outcomes.

Reward shaping Ng et al.|(1999) augments the reward function to guide exploration or encode prior
knowledge. Potential-based shaping functions preserve optimality but require careful design. Our
approach differs by using a divergence term grounded in probabilistic alignment between predicted
and preferred outcomes, forming an interpretable and adaptive incentive signal.

2.2 KL-REGULARIZED REINFORCEMENT LEARNING

KL divergence has been widely used as a regularizer in RL to stabilize learning and control policy
entropy. Trust Region Policy Optimization (TRPO) [Schulman et al| (2015 and Proximal Policy
Optimization (PPO) [Schulman et al.| (2017) both enforce KL-based constraints between successive
policies. More broadly, KL-control and entropy-regularized RL |Haarnoja et al.| (2018) optimize for
returns under bounded policy divergence. Unlike these methods, which regularize policy changes,
IncentRL introduces a KL divergence over predicted outcome distributions, serving as a cognitive
alignment term rather than a learning rate control.

2.3 FREE ENERGY PRINCIPLE AND ACTIVE INFERENCE

The Free Energy Principle (FEP) [Friston| (2010) offers a general account of perception, action, and
learning based on variational inference. Under FEP, agents minimize variational free energy by
continuously updating their beliefs and preferences to reduce surprise. Active inference Friston
et al.[ (2017)) extends this idea to decision-making by allowing preferences to adapt dynamically.
IncentRL adopts KL divergence as a similar measure of discrepancy, but differs in assuming fixed
or slowly evolving preferences and in focusing on shaping behavior rather than revising beliefs.

2.4 DOPAMINE AND REWARD PREDICTION ERROR

In neuroscience, dopamine has often been interpreted as encoding reward prediction error (RPE)
signals [Schultz et al,| (1997). Temporal-difference (TD) learning Sutton| (1988) provides a com-
putational account that captures several properties of dopamine firing. IncentRL draws inspiration
from this perspective, but generalizes the idea from scalar TD errors to distributional mismatches
between predicted and preferred outcomes. This framing resonates with recent theories suggest-
ing that dopamine may represent richer motivational information beyond simple prediction errors
Dabney et al.| (2020).
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3 METHODS

We propose IncentRL, a reinforcement learning framework that integrates external rewards with
internal incentives via a KL-based preference—prediction alignment term. This mechanism encour-
ages agents to align their expectations with internal goals, improving behavior in sparse-reward and
goal-directed settings.

3.1 PRELIMINARIES AND OUTCOME DISTRIBUTIONS

We consider a Markov Decision Process (MDP) defined by (S, A, P, R,~y), where S is the state
space, A is the action space, P(s’|s, a) is the transition probability, R(s, a) is the reward function,
and «y € [0, 1) is the discount factor. The agent’s objective is to learn a policy 7(a|s) that maximizes
expected return.

In IncentRL, we introduce two additional components: - The predicted outcome distribution
p(o|s,a): what the agent expects to happen when taking action « in state s, which may be ob-
tained from a forward model or from environment dynamics. - The preferred outcome distribution
q(o|s): what the agent would like to happen in state s, which can be hand-crafted in toy settings,
learned from demonstrations, or generated using language models or human instructions.

3.2 INCENTIVE-ALIGNED OBJECTIVE AND INTUITION

The core idea of IncentRL is to augment the standard reward with an internal incentive term that
penalizes misalignment between p(o|s, a) and g(o|s):

(s, a) = r%(s,a) — B KL(p(o]s,a)l|q(0ls)),
where 3 > 0 controls the influence of internal incentive shaping. The agent’s objective is to maxi-
mize the expected return under this shaped reward:

Er Zf (r™(st, ar) — B - KL(p(o|st, ar)llg(olst))) | -
t=0

The KL divergence KL(p||q) encourages the agent to act in ways that make predicted outcomes
conform to preferred ones. This penalizes unexpected deviations and incentivizes outcomes that are
both predictable and aligned with internal motivation, providing dense signals even when external
rewards are sparse.

3.3 RELATION TO STANDARD RL, EXPLORATION, AND COGNITIVE MODELS

- When = 0, IncentRL reduces to standard RL. - When 5 > 0, the agent balances extrinsic
rewards with preference alignment. - When external rewards are sparse or absent, the KL term acts
as a self-supervised exploration signal, yielding continuous guidance and stabilizing learning.

This formulation situates IncentRL between standard reward-driven RL and cognitively inspired ap-
proaches. Unlike active inference in the Free Energy Principle, which adapts preferences to reduce
surprise, IncentRL assumes fixed or softly guided preferences and instead modifies action selection
to close the prediction—preference gap. Similarly, while dopamine-based reward prediction error
models emphasize scalar discrepancies, IncentRL generalizes to distributional misalignment, offer-
ing a broader and more flexible view of internal incentives.

4 THEORETICAL ANALYSIS

We analyze IncentRL from a theoretical perspective, focusing on convergence behavior, the role of
0, and the effects of shaping via preference—prediction alignment.

4.1 Toy EXAMPLE AND EFFECT OF [

Consider a simplified MDP with two states {sg, s1} and two actions {ag, a1 }. Action aq keeps the
agent in sy with high probability but gives no reward, while a; transitions to s;, where a reward
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r > 0 is received. Let p(o|so, a1) denote the predicted transition to sq, and let ¢(o|sg) peak at s;.
The KL penalty

KL(p(olso, a1)[lg(0]s0))

is minimized when predictions match preferences, encouraging the agent to take a; even before
directly experiencing r. This shows how IncentRL provides intrinsic motivation for exploration.

Formally, the expected return under IncentRL is

hﬁﬁZEwé:VQ?—%VKMMd&ﬂMQwMDﬂ~

Proposition 1. [f the external reward " admits an optimal policy ©* under standard RL (3 = 0),
then there exists € > 0 such that for all § € [0, €), 7* remains optimal under IncentRL.

Sketch. For sufficiently small 5, the KL penalty contributes only a bounded perturbation to the
reward function. Since optimal policies under standard RL are separated from suboptimal ones by a
positive reward gap in finite MDPs, continuity of Jz() in 3 ensures that the ordering of policies is
preserved for S < €. Thus 7* remains optimal, though learning may be accelerated by the shaping
term.

This result shows that IncentRL does not alter the optimal solution when £ is small, but can improve
sample efficiency through intrinsic guidance.

Proposition 2. As § — oo, the optimal policy under IncentRL converges to a policy that minimizes
KL(p(o|s,a)||g(o|s)) for each state, effectively ignoring external rewards.

This follows directly since the KL penalty dominates the objective, and the external reward becomes
negligible in comparison.

4.2 LIMIT BEHAVIOR

The two extremes of /3 illustrate how IncentRL interpolates between standard RL and preference
alignment. Proposition 1 shows that for small 3, the optimal policy remains unchanged while learn-
ing can be accelerated. Proposition 2 shows that for 5 — oo, the optimal policy is determined
entirely by ¢(o|s).

Between these extremes, as 8 — 1, IncentRL resembles a multi-objective optimization:
7t = argmaxEy | Y 9" (1™ — KL(p(ofst, ar) aols:))) |
t

When 7$*' is sparse, the KL term can dominate and guide exploration, though poorly specified
preferences may lead to degenerate behavior or premature convergence.

4.3 LATENT REPRESENTATIONS AND PREFERENCE MODELING

In practice, both p(o|s, a) and g(o|s) can be defined in latent representation spaces. If z = ¢(0) is
the embedding of outcome o, the shaping term becomes

KL(p(z|s, a)l|lq(z]s)),

where p and ¢ can be modeled as Gaussians (e.g., via variational encoders or diffusion priors),
allowing tractable KL computation and gradient flow.

Preferences ¢(o|s) may be: - Hand-specified in toy settings, - Learned from demonstrations, - Gener-
ated by language models for symbolic goals, or - Regularized by entropy maximization to encourage
diversity.

This opens the door to dynamic or context-aware preferences while preserving convergence guaran-
tees.
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5 EXPERIMENTS

We conduct a series of experiments to evaluate the effectiveness of IncentRL, focusing on its ability
to improve learning under sparse reward, accelerate goal-directed behavior, and adapt through inter-
nal incentive shaping. Our evaluation spans from controlled toy domains to navigation and ablation
studies.

5.1 THE INCENTRL ALGORITHM

Framework Overview. IncentRL augments classic reinforcement learning by unifying external
rewards with an internal preference—prediction alignment signal. At each step, the agent receives not
only the standard extrinsic reward, but also an incentive shaped by how closely its predicted outcome
distribution p(ols, a) matches a preferred outcome distribution g(o|s). The combined reward signal
is:

Tshaped = Text — B - KL (p(0|8, a) || Q(O|s))

where 8 > 0 controls the weight of the internal incentive. The KL divergence term encourages
actions that make the agent’s predictive model align with its preferences, inspired by ideas from the
Free Energy Principle and cognitive control.

Algorithm. IncentRL can be applied to any RL algorithm (e.g., Q-learning, DQN, policy gradient).
At each transition (s, a, s', rext):

1. Predict Outcomes: Estimate p(o|s, a), the agent’s belief about possible next outcomes.

2. Specify Preferences: Define ¢(o|s), the agent’s preferred outcomes in state s.

3. Compute Incentive: Calculate the KL divergence KL(p(ols, a)||¢(o|s)).

4. Shape Reward: Form the total reward 7spapeq as above.

5. Update Policy: Use 7gapeq in the standard RL update rule.
Special Cases.

* When 8 = 0, IncentRL reduces to standard RL with external rewards only.

* When ¢(o|s) encodes a strong internal preference (e.g., “reach the goal”), the agent is
guided even when external rewards are sparse.

This shaping mechanism accelerates exploration and stabilizes learning in sparse-reward or hard-
exploration environments by leveraging internal models of desired outcomes.

5.2 EXPERIMENT 1: TOY 2-STATE MDP — INCENTIVE WEIGHTING

Problem Setup. We consider a minimal MDP with two states (sg and s1) and two actions (ag, a1).
The agent always starts at sg. Action ag keeps the agent in sg, while action a; transitions to s; with
probability p = 0.3 (otherwise remaining in sg). Rewards are sparse: 7(s1) = 1, r(sg) = 0. The
agent follows e-greedy Q-learning (¢ = 0.1). Predicted outcome for (sg, a1) is p(o|sg, a1) = {s1 :
0.3, so : 0.7}; the preferred outcome is g(o|sg) = {s1 : 1.0, so : 0.0}.

Results. We vary the incentive parameter 8 € {0.0,0.1,0.3, 1.0} and report results averaged over 7
random seeds and 100 episodes. As shown in Table [T|and Fig.
* With 8 = 0 (standard Q-learning), learning is slow and highly variable (16.57 & 11.30 final
mean reward).

» Forall 8 > 0, IncentRL yields much faster convergence and significantly reduced variance
(28.00 £ 6.00, 28.86 + 6.66), improving over baseline by 69-74%.

* Performance is robust for all tested 3 > 0, with consistently high final reward and low
standard deviation.
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Table 1: Final cumulative reward and improvement for different 5 values (mean + std across 7
seeds, episode 100).

16} Final Mean Reward Std Dev  Improvement over baseline (%)

0.00 16.57 11.30 0.00
0.10 28.00 6.00 68.97
0.30 28.86 6.66 74.14
1.00 28.86 6.66 74.14

IncentRL: Cumulative External Reward (Q-learning, B € {0.0, 0.1, 0.3, 1.0})

35 4
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Figure 1: IncentRL accelerates convergence in a sparse-reward two-state MDP. For all 8 > 0, the
agent rapidly achieves near-optimal performance with far lower variance than standard Q-learning
(8 = 0). This highlights the stability and efficiency benefits of preference—prediction shaping.

5.3 EXPERIMENT 2: MOUNTAINCAR-V0O — INCENTRL DQN

Problem Setup. We evaluate IncentRL in the classic MountainCar-v0 environment from OpenAl
Gym, a challenging sparse-reward RL benchmark. The agent receives a reward of +1 for reaching
the goal (x > 0.5), and 0 otherwise. Each episode terminates after reaching the goal or 200 steps.
The state space is continuous (x, v), and the action space is discrete (a € {left, no push, right}).
Exploration is difficult due to the need for momentum and delayed reward.

We implement IncentRL by augmenting a DQN agent with the KL-based incentive shaping term:
T'shaped = Text — B - KL (p(0|8, a) ” Q(O|S))

where g(ols) is a preferred outcome assigning all probability to the goal (z > 0.5), and p(o|s, a) is
the predicted outcome distribution. We sweep 5 € {0.0,0.1,0.3,1.0} and report results averaged
over 3 random seeds for 5000 episodes.

Results. Table 2| summarizes performance across 5. IncentRL with § = 0.1 achieves an 18%
improvement in mean goal reaches over standard DQN. However, higher g values (0.3, 1.0) degrade
performance, indicating that excessive internal incentive can conflict with external reward, impeding
learning.

5.4 EXPERIMENT 3: MINIGRID DOORKEY 8X8

Problem Setup. We evaluate IncentRL on the sparse reward MiniGrid Doorkey 8X8 task, a widely
used benchmark for evaluating exploration and sample efficiency in reinforcement learning. In this
environment, the agent must navigate a grid world, locate a key, unlock a door, and reach the goal,
with rewards provided only upon successful task completion. The sparse reward structure poses
significant challenges for efficient exploration and policy learning.
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Table 2: IncentRL on MountainCar-v0: mean goal reaches per 5000 episodes (+ std over 3 seeds).

I} Final Mean Goal Reaches Std Dev  Improvement over baseline (%)

0.00 3502.33 472.04 0.00

0.10 4135.67 535.41 18.08
0.30 1654.67 908.94 -52.76
1.00 875.33 690.55 -75.01

Success Rate & Mean Length vs Timesteps
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Figure 2: IncentRL with mild KL regularization (5 = 0.01) achieves higher final success rate and
shorter episode lengths than the baseline (8 = 0.0). This demonstrates that even small incentive
shaping significantly improves exploration efficiency in sparse-reward environments.

Training Details. We compare IncentRL with different KL regularization coefficients (5 = 0.0
and 8 = 0.01), using the same neural architecture and training hyperparameters across conditions.
Each agent is trained for 2 million timesteps, and all results are averaged over 3 independent seeds.
The main evaluation metrics are episode success rate and mean episode length, reported at regular
intervals throughout training.

Results. As shown in Figure [2] both agents exhibit little progress during the early phase of train-
ing, reflecting the exploration difficulty inherent to the task. However, after approximately 1.25
million timesteps, both settings begin to achieve rapid improvement. Notably, the agent with KL
regularization (5 = 0.01) demonstrates superior performance: the final success rate reaches 98%,
compared to 90.5% for § = 0.0. In terms of efficiency, the mean episode length for 5 = 0.01 de-
creases to 29 steps, while 5 = 0.0 plateaus at 75 steps. These results suggest that a small amount of
KL regularization not only improves the final policy’s reliability but also encourages more efficient
behaviors.

Analysis. This experiment demonstrates that, in the challenging sparse reward setting of MiniGrid
Doorkey 8X8, incorporating a mild KL constraint accelerates convergence and results in higher
asymptotic performance. We hypothesize that KL regularization stabilizes policy updates, thus help-
ing the agent to leverage exploratory episodes more effectively. Further analysis of policy behaviors
confirms that IncentRL with 5 = 0.01 converges to more direct and robust navigation strategies. In
additional runs (not shown), the Bayesian adaptation of 5 achieved performance comparable to the
best fixed value, supporting its robustness without manual tuning. This supports our central claim
that Bayesian adaptation can match the best fixed choice without manual tuning.

Bayesian 5 adaptation. In addition to fixed 8 sweeps, we tracked the posterior evolution of
using our Bayesian adaptation scheme. Figure [3|shows that the posterior mean of 3 quickly concen-
trates near the effective region (8 ~ 0.1), with decreasing variance across rounds. Figure 4| further
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Bayesian Adaptation of B Across Rounds
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Figure 3: Bayesian adaptation of 3 across rounds (averaged over seeds). The posterior mean quickly
concentrates near the effective region (5 ~ 0.1), with variance decreasing over time.
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Figure 4: Distribution of sampled 3 across rounds and seeds. The spread narrows around 8 = 0.1,
illustrating posterior concentration and robustness of Bayesian adaptation.

illustrates how the distribution of sampled [ values narrows across rounds and seeds, indicating
robust adaptation. Together, these results provide empirical evidence that Bayesian 3 adaptation
eliminates the need for manual trade-off tuning, while recovering the same effective values discov-
ered by fixed sweeps.

6 DISCUSSION

6.1 WHEN AND WHY INCENTRL HELPS

Our results suggest that IncentRL is particularly beneficial in environments characterized by sparse
rewards, long horizons, or ambiguous intermediate goals. In such settings, the KL-based shaping
term provides a dense and informative gradient signal that guides agents toward meaningful behavior
before external rewards are observed.

This shaping term serves multiple roles:

» Exploration bias: Encourages agents to reach goal-relevant regions of state space earlier.

* Goal generalization: Enables alignment with abstract or symbolic goals via preferred
outcome distributions.

* Self-supervised learning: Provides useful signals even when external rewards are unin-
formative.
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6.2 LIMITS AND INSTABILITIES

Despite its strengths, IncentRL introduces potential failure modes:

* Preference misalignment: Poorly defined or unreachable ¢(o|s) may misguide learning.
* KL dominance: Excessively large 3 values may suppress reward-seeking behavior.

* Latent mismatch: KL in learned embedding spaces may not accurately reflect semantic
outcome quality.

Careful specification or learning of ¢(o|s), combined with annealing or adaptively scheduling (3, are
promising directions for improving stability and robustness. These challenges highlight the need for
more systematic evaluation of adaptive S mechanisms in larger and more complex domains.

6.3 RELATION TO NEUROSCIENCE AND COGNITIVE MOTIVATION

IncentRL draws inspiration from neuroscience models of dopamine-driven reward prediction error
(RPE), but extends the idea from scalar TD signals to distributional misalignment. This provides a
useful analogy linking internal incentive alignment to biological mechanisms of learning. Similarly,
the Free Energy Principle (FEP) motivates our use of KL divergence as a measure of discrepancy,
though IncentRL differs in assuming fixed or slowly guided preferences and focusing on action
shaping rather than belief revision.

Viewed this way, IncentRL suggests that cognitively inspired behavior may emerge not only from
reward maximization but also from aligning predictive and preferred outcomes. Our shaping term
can be viewed as reflecting a hierarchy of motivation, where low-level tasks emphasize external
rewards, while higher-level behaviors are increasingly guided by internal preferences.

6.4 FUTURE DIRECTIONS

This framework opens several promising directions for future work:

e LLM-guided preference modeling: Leveraging language models to generate or structure
q(ols) for human-in-the-loop tasks.

* Adaptive and hierarchical 5: Learning task-dependent schedules and organizing incen-
tives across multiple levels of abstraction.

* Deeper evaluation of Bayesian 3: Comparing against meta-gradient or annealing strate-
gies on larger benchmarks.

7 CONCLUSION

We introduced IncentRL, a reinforcement learning framework that integrates external rewards with
internal incentives via KL-based preference—prediction alignment. By treating the incentive weight
[ as a Bayesian random variable, IncentRL adapts online to task demands. Theoretical analysis con-
nects IncentRL to dopamine-inspired reward prediction error and the Free Energy Principle, while
experiments on sparse-reward benchmarks show consistent gains in sample efficiency and stabil-
ity. Our results highlight adaptive incentive shaping as a principled approach to building agents
that are not only reward-maximizing but also intrinsically aligned with cognitive motivation. A key
takeaway is that Bayesian adaptation of preference gaps removes the long-standing need for man-
ual trade-off tuning in intrinsic motivation, paving the way toward more autonomous and general-
purpose RL agents.
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A  ADDITIONAL RESULTS ON BAYESIAN ADAPTION

Summary statistics. Table[3|reports the mean, standard deviation, and range of sampled /3 values
across rounds, averaged over multiple seeds. In early rounds (Round 1), 3 samples are dispersed over
a wide range (mean ~ 0.11, std ~ 0.06). As adaptation proceeds, the distribution narrows (Rounds
2-4), with mean values stabilizing below 0.05 and variance decreasing substantially. This posterior
concentration around task-relevant values illustrates that Bayesian adaptation can efficiently elim-
inate poor [ regions while retaining effective ones, complementing the qualitative evidence from
Figures [3|and [

Table 3: Summary statistics of Bayesian 3 adaptation across rounds (averaged over seeds).
Round Mean Stdf3 Minf Maxpf

I 0.1057 0.0573 0.0078 0.1805
2 0.0454 0.0322 0.0074 0.0977
3 0.0194 0.0098 0.0035 0.0351
4 0.0173 0.0182 0.0000 0.0587
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