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Abstract

In Natural Language Generation (NLG) tasks,
for any input, multiple communicative goals are
plausible, and any goal can be put into words,
or produced, in multiple ways. We characterise
the extent to which human production varies
lexically, syntactically, and semantically across
four NLG tasks, connecting human production
variability to aleatoric or data uncertainty. We
then inspect the space of output strings shaped
by a generation system’s predicted probability
distribution and decoding algorithm to probe
its uncertainty. For each test input, we measure
the generator’s calibration to human production
variability. Following this instance-level ap-
proach, we analyse NLG models and decoding
strategies, demonstrating that probing a genera-
tor with multiple samples and, when possible,
multiple references, provides the level of detail
necessary to gain understanding of a model’s
representation of uncertainty.1

1 Introduction

Humans display great variability in language
production, in particular when the context or the
task are open-ended, such as in storytelling or in
dialogue. Given a story prompt, for example, there
are many plausible ways in which different humans
(or a single writer, if asked multiple times) may
tell the story (Fan et al., 2018). We refer to this
phenomenon as production variability. Production
variability in humans has two main sources. First,
when situated in a context, speakers may entertain
variable communicative goals (Searle, 1969; Sacks
et al., 1974; Austin, 1975), and the number and
variety of plausible communicative goals depends
on the production task (Jokinen, 1996). Transla-
tion, for instance, defines the communicative goal
almost unequivocally while a dialogue context
might allow for a wide variety of communicative
goals (expressed, e.g., as a request, an assertion,

∗Equal contribution.
1https://github.com/dmg-illc/nlg-uncertainty-probes

Figure 1: Production variability observed in 5 human
responses vs 10 responses generated by DialoGPT.
The graph presents the distribution of pairwise cosine
distances: generated responses exhibit higher semantic
variability than human responses. The generator’s
semantic uncertainty is too high in this dialogue context.

or a yes-no question). The second source of
variability is the fact that even when context and
communicative goal are fixed, speakers’ linguistic
realisations of the communicative goal may
vary (Levelt, 1993). Both sources of variability
apply to individuals as well as to populations: if an
expert is asked to simplify a complicated sentence
multiple times, they may perform different rewrit-
ing transformations (e.g., paraphrasing, reordering,
or sentence splitting) and produce different
texts (Alva-Manchego et al., 2021); the same is
true if multiple experts are asked to perform a task
(Xu et al., 2015). If we are to regard a Natural
Language Generation (NLG) system (or text gen-
erator) as a good model of human production, it
should capture the variability observed in humans.

Text generators combine two mechanisms: (i) an
underlying statistical model—typically, an autore-
gressive factorisation of the probability of se-
quences, with conditional token probabilities pre-
dicted by a neural network; and (ii) an iterative
decoding algorithm that chains samples from next
token distributions into a complete production. To-
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gether these two mechanisms specify a probabil-
ity distribution over sequences of tokens, which
can be regarded as a representation of the model’s
uncertainty about productions for a given genera-
tion context (see Baan et al. (2023) for a detailed
discussion). In this work, we assess whether this
representation of uncertainty is in compliance with
production variability exhibited by a population
of humans—which in turn, we argue, can be re-
garded as an expression of aleatoric uncertainty,
i.e., irreducible uncertainty due to the stochastic na-
ture of the data generating process (Der Kiureghian
and Ditlevsen, 2009; Hüllermeier and Waegeman,
2021). In other words, we compare the distribution
over productions of a text generator against the dis-
tribution over the productions of a population of
human speakers, given the same context (Figure 1).

Quantifying the closeness in distribution
between a text generator and a human population
is difficult: we only have an iterative view into the
generator’s distribution; the ‘human distribution’ is
an implicit or even hypothetical object; and in both
cases, the sample space is large or even unbounded.
We can, however, compare these two objects via
the samples they produce and assess their statistical
distance—which is what we propose here. For each
individual generation context, we compare scalar
properties of generations (through repeated model
sampling) and human productions (using multi-
reference NLG datasets). In particular, we probe
for lexical, syntactic, and semantic distance be-
tween productions, thus allowing for a quantitative
and interpretable assessment of uncertainty.

We find that the uncertainty of neural text
generators is higher than justified by human
production variability in open-ended tasks, like
story generation and open-domain dialogue;
and that it is lower on more constrained tasks,
like machine translation and text simplification.
Popular decoding algorithms, which bias away
from the distribution of the generator’s underlying
statistical model (e.g., top-k, top-p, or locally
typical, rather than ancestral sampling), have a lim-
ited impact on the generator’s ability to faithfully
represent human variability. We complement our
quantitative assessments with a detailed analysis of
individual generation contexts, which sheds light
on whether a generator has robustly learned to
reproduce degrees and aspects of human variability
plausible for the communicative task.

Beyond the experimental results obtained on our

selection of models and tasks, our work has im-
portant implications for NLG evaluation and data
collection. Multiple samples and, when possible,
multiple references, should be used to assess the
statistical fit of text generators. Our approach, com-
plementary to other types of automatic evaluation,
makes model assessments particularly insightful
and trustworthy because it does not judge a model
only by a single output but also, intuitively, by what
it could have generated—and it does so for each
individual input in the test set. We therefore hope
our framework will be used by the community as
an evaluation criterion for NLG systems, especially
to assess them in more open-ended tasks.

2 Related Work

Automatic approaches to the evaluation of NLG
systems are of high practical importance: they al-
low for model selection at scale and power quality-
aware decoding algorithms (Borgeaud and Emer-
son, 2020; Eikema and Aziz, 2020; Fernandes et al.,
2022; Suzgun et al., 2022). In spite of their known
limitations (Gehrmann et al., 2022), they are a nec-
essary complement to human evaluation (Belz and
Reiter, 2006; van der Lee et al., 2021).

Reference-based evaluation. The most com-
mon way of automatically evaluating text gener-
ators is via metrics that estimate the similarity be-
tween candidate generations and references, such
as BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), COMET (Rei et al., 2020), BLEURT (Sel-
lam et al., 2020), and BertScore (Zhang et al.,
2020a). Reference-based metrics are less suited
for open-ended tasks such as story generation and
dialogue, where a single reference (or even a hand-
ful) cannot be representative of the large space of
plausible communicative goals and realisations.

Reference-free evaluation. A popular, reference-
free alternative is to train evaluation models that
discriminate human from model output (e.g.,
Bruni and Fernández, 2017; Gehrmann et al.,
2019; Hashimoto et al., 2019), score the ap-
propriateness of input-output pairs (e.g., Sinha
et al., 2020; Fomicheva et al., 2020), or model
human judgements directly (e.g., Lowe et al.,
2017; De Mattei et al., 2021; Rei et al., 2021).
Neural language models themselves have been
proposed as evaluators (e.g., Yuan et al., 2021;
Deng et al., 2021) and used to assess generations
along interpretable evaluation dimensions (Zhong



et al., 2022), yet they have been criticised for being
biased (toward models similar to the evaluator) and
thus limited in their ability to evaluate generated
text (Deutsch et al., 2022).

Statistical evaluation. Statistical evaluation
compares model generations to human productions
in distribution through real-valued statistics (e.g.,
Zipf’s coefficient, type-token ratio, length) as
opposed to strings themselves. These statistics
are typically compared marginally, at the corpus
level (Eikema and Aziz, 2020; Meister and
Cotterell, 2021; Pillutla et al., 2021; Pimentel et al.,
2022), supporting general claims about model
performance in relation to humans. More recently,
Barkhof and Aziz (2022) and Deng et al. (2022)
compared statistics at the instance level, supporting
claims about models’ performance in relation to
humans for individual inputs. In this work, we
craft statistics that evaluate generators’ uncertainty
at the instance level against the variability over
sequences observed in multi-reference NLG
datasets. Although evaluating uncertainty is
gaining traction in NLP (e.g., Desai and Durrett,
2020; Glushkova et al., 2021; Baan et al., 2022),
there is relatively little work on sequence-level
uncertainty (Ott et al., 2018; Malinin and Gales,
2020; Aina and Linzen, 2021; Kuhn et al., 2022).

Diversity in NLG. Our analysis is related to
NLG studies on output diversity. Some have
evaluated diversity induced by different models
and NLG decoding strategies—yet do not use
human levels of variability as a target (Wiher
et al., 2022)—or have used human judgements to
evaluate diversity metrics themselves (Tevet and
Berant, 2021; Stasaski and Hearst, 2022). Others
have developed diversity-enhancing objective
functions (Li et al., 2016) and decoding algorithms
(Vijayakumar et al., 2018; Shu et al., 2019; Weir
et al., 2020; Meister et al., 2021). In our study,
where the aim is to evaluate the uncertainty of
NLG systems, we focus on unbiased sampling and
the most widely used decoding algorithms.

3 Probing Language Processes for
Production Variability

We interpret language production, by humans or
NLG systems, as captured by a probability distri-
bution over natural language strings (productions),
a random variable Y , given a linguistic context
X = x. The context x can be a source sentence

in translation, a story prompt in story generation,
or more generally the input to a language process.
In turn, a production is a piece of text y such as
a single translation, a story, or more generally the
output of a language process.2

3.1 Production Variability

For any language process, production variability
is fully characterised by a conditional probability
distribution pY |X=x representing uncertainty about
the output Y given input X = x. Intuitively, the
uniform distribution maximises production vari-
ability and the Dirac delta (one-hot) distribution
minimises it. Analysing this distribution is difficult.
Notably, for human language processes, we do not
have an explicit representation of pY |X=x. This
prevents a direct comparison through measures of
statistical divergence, or summaries like entropy.
Through data collection we can, however, draw
conditional samples from the human language pro-
cess (i.e., gather references given a context). On the
other hand, for NLG models, we do have an algo-
rithmic representation of pY |X=x, which is usually
sufficient to enable sampling, but the unbounded
sample space and lack of conditional independence
assumptions make statistical divergence and sum-
maries like entropy intractable.3

Instead, we propose to analyse language
processes through their samples. This in turn
introduces other difficulties, as text is a high-
dimensional, structured, non-numerical data
type. For tractable analysis, we exploit a set
of real-valued and interpretable statistics, or
production probes, to re-express a language
process distribution in terms of how, given an input,
its outputs relate to outputs of another language
process. When both processes are independent
humans performing a task, we obtain a sense of
how plausible human productions relate (or vary
with respect) to other plausible human productions,
along a linguistically interpretable dimension.
When we swap one or both processes for an NLG
model, we obtain tools to analyse how model gener-
ations relate to plausible human productions, thus
assessing a model’s representation of uncertainty
against the variability observed in humans.

2Notation. Random variables are denoted by uppercase let-
ters (e.g., Y ), outcomes are lowercased (e.g., y), and pY |X=x

denotes the probability distribution of Y given X=x.
3In Appendix A, we discuss issues with entropy in more

detail—how it is both difficult to estimate and interpret for
text generators.



(a) Lexical variability (b) Syntactic variability (c) Semantic variability

Figure 2: Human production variability across four NLG tasks. The values on the horizontal axis are single
samples of lexical (unigram), syntactic (POS bigram), or semantic (cosine) distance between two randomly sampled
productions for each input (see Section 3). Re-sampling productions results in nearly identical marginal distributions.
Probability mass on the right side signals high distance and thus high variability, and vice versa.

Specifically, given a context x, two language
processes with distributions pŶ |X=x and pY |X=x,
and a choice of distance metric k(·, ·) ∈ R, our
probe for production variability is a real random
variable k(Ŷ , Y ). This random variable captures
the joint distribution of distance between any
two outputs drawn conditionally from the two
processes. The distribution of the probe k(Ŷ , Y )
is also intractable, but we can estimate it via
simulation by drawing productions from the
processes and assessing the distance metric on
sampled pairs, as illustrated in Figure 1.

Consider analysing the human process (§ 5)
through k(Y, Y ): when multiple realisations of the
output are dissimilar (e.g., given the input ‘How is
your day?’ and outputs ‘Fantastic, thank you!’ and
‘I asked you first’) production variability is high
along the dimension captured by k.

3.2 Production Probes

We instantiate our production probes with three
distance functions. They return values from 0 to 1.
We hope that future work will experiment with
alternative probes that may capture other linguistic
or extra-linguistic levels of analysis.

Lexical: The fraction of distinct n-grams in
two strings, with n∈ [1, 2, 3] (i.e., number of non-
matching n-gram occurrences divided by the total
number of n-grams in both strings).

Syntactic: Analogous to lexical distance but on
part-of-speech tag n-grams.4

Semantic: The cosine distance between the
sentence embeddings of two strings (Reimers and
Gurevych, 2019).5

4From spaCy, en_core_web_md (Honnibal et al., 2020).
5sentence-transformers/all-distilroberta-v1

4 Experimental Setup

4.1 Data and Models
We experiment with four NLG datasets that con-
tain 5+ human references per input instance and
for which we expect humans to display different
degrees of production variability. For each tasks,
we select models that are publicly available, are
reasonably sized, have been used previously on the
task, and are conventionally accepted as suitable for
it.6 All datasets are in English; for translation, the
target language is German. Table 1 (Appendix C)
shows relevant statistics. The reference collection
procedure varies across datasets and we discuss
how this may impact our analysis in the Limita-
tions section.

Machine translation. We use 500 sentences
from the WMT-14 En-De test set (newstest2014;
Bojar et al., 2014), which have been annotated by
Ott et al. (2018) with 10 additional reference trans-
lations produced by as many human translators. As
a generator, we use Helsinki-NLP’s Transformer-
Align model trained on Opus-MT (Tiedemann and
Thottingal, 2020).

Text simplification. We use the 2,000 instances
of the ASSET validation set (Alva-Manchego
et al., 2020). For each source sentence, originally
from the TurkCorpus (Xu et al., 2016), ASSET
includes 10 additional simplifications by as
many crowdsource annotators. On this dataset,
we test Flan-T5-large (Chung et al., 2022), an
instruction-finetuned version of the T5 language
model (Raffel et al., 2020), which we further
finetune on the ASSET training set.

6For text simplification, we did not find any available
trained model, so we used a versatile model like FlanT5.



Storytelling (story generation). We use the 759
instances from the WritingPrompts test set (Fan
et al., 2018) for which at least 5 human references
are available. Prompts and stories are originally
scraped from r/WritingPrompts, a Reddit forum
of stories written by online users in response to
story prompts designed by other users. The number
of stories available per prompt (9.56 ± 7.67) varies
from 5 to 92. We use GPT2-large (Radford et al.,
2018) finetuned on the WritingPrompts training set.

Open-domain dialogue. We use the develop-
ment set of DailyDialog++ (Sai et al., 2020),
which contains 5 additional references for 1,028
conversations from the DailyDialog corpus (Li
et al., 2017). The dialogues are short (less than
8 turns) and cover a broad list of topics; for each
dialogue, 2-3 annotators were asked to generate 1-3
alternative responses.7 For this task, we use the pre-
trained DialoGPT-medium (Zhang et al., 2020b).

4.2 Decoding algorithms

We experiment with five decoding algorithms: un-
biased (ancestral or forward) sampling (Bishop,
2006; Koller and Friedman, 2009), temperature
scaling, top-k sampling (Fan et al., 2018), nucleus
sampling (Holtzman et al., 2019), and locally typ-
ical sampling (Meister et al., 2023). For all de-
coding algorithms, we set the maximum sequence
length to 100 (cf. Table 1, Appendix C).

5 Human Production Variability Across
NLG Tasks

Consider pY |X=x the distribution that describes the
human language process, and define the following
special case for human production variability:

Hk(x) := k(Y, Y ) . (1)

Estimating this probe by drawing pairs of human
productions provides an interpretable view on plau-
sible variability—i.e., aleatoric uncertainty—along
the dimension captured by k. Figure 2 shows
Hk(x) marginalised over inputs for the four NLG
tasks. We use unigram distance for the lexical
probe, POS bigram distance for the syntactic probe,
and cosine distance for the semantic probe. High
distance indicates high variability, and vice versa.

7The DailyDialog++ annotators are also instructed to
avoid short generic responses such as ‘Sure’ and to write,
instead, meaningful responses with at least 8-10 words.

Translation and text simplification. Humans
show low production variability in these two tasks.
While translations of a given source sentence are
more lexically and semantically varied, simplifica-
tions exhibit a higher degree of syntactic variability,
probably as a result of the instructions used during
data collection (writers were asked to use varying
rewriting transformations). Overall, low levels of
variability are to be expected as, in both tasks, con-
tent preservation is part of the communicative goal.

Story generation. Variability in story genera-
tion is strongly dependent on the probe. It is
low at the syntactic level—close to translation and
simplification—while lexical and semantic probes
place this task closer to open-domain dialogue. Sto-
ries generated from a given prompt may vary a lot
in content, but basic syntactic structures and lexi-
cal material are shared. Although this task can be
a priori perceived at least as ‘open-ended’ as dia-
logue, lower levels of variability may result from
contextual factors specific to the WritingPrompts
dataset that we are not explicitly modelling, such as
writers reading stories contributed by other users.

Open-domain dialogue. We observe the highest
production variability in this task across all probes.
Many output pairs are lexically and syntactically
completely dissimilar, as indicated by the right-
most bin in Figures 2a and 2b. Lexical variability
is even more extreme when looking at bigrams and
trigrams (Figure 7 in Appendix D) suggesting that
while responses rarely share words or phrases, they
still sometimes convey similar meaning (Figure 2c).
Overall, the fact that dialogue appears to be the
most open-ended task can be explained by the wide
variety of communicative goals that can plausibly
follow from a dialogue context and, in part, by the
fact that individual annotators produced multiple
responses for the DailyDialog++ dataset and thus
were able to monitor the diversity of their outputs.

6 Do Neural Text Generators Reproduce
Human Production Variability?

Consider, now, a second language process: a text
generator with distribution pŶ |X=x. We study this
generator’s uncertainty about outputs given an
input x under two lenses. In § 6.1, we study how
outputs vary with respect to one another, which is
analogous to human production variability Hk(x).
We refer to this as the generator’s self-variability:

Mk(x) := k(Ŷ , Ŷ ) . (2)



Figure 3: Distribution of µMk(x) −µHk(x) over instances. Values greater than zero indicate the model overestimates
the variability of the task (higher mean pairwise distance); values below zero indicate variability underestimation.

In § 6.2, instead, we study how model genera-
tions vary with respect to a language process known
to be plausible: a human language process pY |X=x.
We refer to this as cross-variability:

Ck(x) := k(Ŷ , Y ) . (3)

Our expectation is that generators with a good rep-
resentation of aleatoric uncertainty reproduce hu-
man production variability along both axes. As
we employ a distance metric, it may look like we
should regard a model as a good approximation to
the human process whenever Ck(x) concentrates
about small positive values. To some extent this
is the interpretation exploited by most automatic
evaluation metrics (single- or multi-reference). In
this work, we refrain from taking any one human
production as a ‘reference’ to be closely ‘matched’;
rather, we take statistical properties of human pro-
ductions as illustrative of plausible variability and
thus targets to be reproduced. We quantify devia-
tion from plausible human variability by estimating
a notion of statistical divergence.

6.1 The Underlying Statistical Model
In this section, we criticise the underlying statis-
tical model (as a result of parameter estimation
via MLE) using unbiased sampling. As models
observe variability only marginally (multiple refer-
ences are rarely used during training), it is interest-
ing to study if their self-variability is calibrated to
human variability: given individual input instances,
do distances between unbiased model samples dis-
tribute similarly to distances between human pro-
ductions? To distinguish over-estimation from
under-estimation of variability, we report a signed
notion of divergence, µMk(x) − µHk(x). When
Mk(x) and Hk(x) distribute similarly, their mean

Figure 4: Distribution over Wasserstein distances for
GPT-2 in blue: DW1

(Ck(x), Hk(x)). Distribution for a
human control group in orange: DW1(Ĥk(x), Hk(x)).
Semantic probe: k is cosine distance.

difference is low for a given x. Positive differences
imply that models overestimate variability, i.e.,
model samples vary more with respect to one an-
other than human samples do. Negative differences
indicate that models underestimate variability.

Figure 3 shows how mean differences distribute
across each task-specific test set for the models in
Section 4. We use up to 10 human productions
(5 for dialogue) and 10 generations. The first two
rows show that µMk(x)−µHk(x) distributes far be-
low 0 for translation (OpusMT) and somewhat be-
low 0 for simplification (Flan-T5), indicating that
the two models substantially underestimate vari-
ability.8 The opposite is true for dialogue and story
generation: both GPT-2 and DialoGPT moderately
overestimate the open-endedness of these tasks.
We also inspect cross-variability µCk(x)−µHk(x),
finding similar patterns, with slightly better over-

8OpusMT uses label smoothing, which is known to harm
the distribution of unbiased samples along dimensions such as
n-gram and skip-bigram counts (Eikema and Aziz, 2020).



Figure 5: Mean Wasserstein distances DW1
(C(x), H(x)) for (tasks, probe, decoder) tuples. Base models for each

task are described in Section 4. Colour refers to decoding algorithm with various parameter settings (fully reported
in Table 4, Appendix F). Human control group in red.11 Clusters suggest that decoders often have similar effect.
Unbiased sampling is competitive.

all cross-variability calibration for translation and
simplification (Figure 8, Appendix D).

6.2 The Effect of Decoding Algorithms
We now study text generators obtained by varying
the sampling procedure.9 We analyse their rep-
resentation of uncertainty by assessing the diver-
gence between the distribution of generator-human
cross-variability C(x) and human variability H(x).
While µCk(x) − µHk(x) can inform us about the di-
rection of miscalibration, we observe only a hand-
ful of cases where different decoding strategies
yield both under- and over-estimation for the same
model (see Figures 10 and 11 in Appendix D). In-
stead, as we sometimes observe distributions with
multiple modes—causing their difference in means
to paint an incomplete picture—we additionally
report a measure of divergence that is more ro-
bust to such multi-modal distributions: the Wasser-
stein 1-Distance DW1(·, Hk(x)).10 Results for self-
variability M(x) and mean distance can be found
in Appendix D, Figures 9 to 11.

Human control group. The blue curve in Fig-
ure 4 shows how DW1(Ck(x), Hk(x)) distributes
over inputs for unbiased samples from GPT-2 on
story generation. To contextualise this observation

9This leads to a probability distribution whose pmf is hard
if at all possible to characterise, meaning we cannot easily
assess the probability of an outcome under the new distribution.
But we have an explicit sampler for this new distribution,
which is all our analysis tools require.

10Indeed, we find several cases where DW1signals stronger
miscalibration compared to Dµ. For an additional discussion
about DW1 , see Appendix B.

we report a human control group (the orange curve):
this is DW1 measured between two human popula-
tions (i.e., we make two disjoint samples from the
available human productions for each prompt, use
those to estimate Hk(x) and an analogous Ĥk(x),
and compute DW1(Ĥk(x), Hk(x))). We can now
appreciate what is a plausible Wasserstein distance
curve between two human-based processes, and
with that, we can better discern that this particular
system gives good but not perfect representation
to human levels of production variability (note the
overlap between the two distributions). Upon vi-
sual inspection of divergence distributions (like
Figure 4) for different sampling strategies, we find
similar shapes. We exploit this finding and sum-
marise each divergence distribution using its mean.
This is shown in Figure 5, which presents results for
many decoding settings, tasks and probes. The left-
most red dots indicate the human control group.11

We observe that two human groups agree more on
the meaning of translations and simplifications than
on their form, while for story generation the two
groups agree more on surface form and basic struc-
tures and less on the semantic content of the stories.

Results. Overall, Figure 5 shows that most
decoding settings are close to unbiased sampling,
which in turn is in the same ballpark (mean
Wasserstein distance always lower than 0.1) as the
human control. This indicates that text generators

11No control condition is shown for open-domain dialogue
as the five references contained in DailyDialog++ are too few
to create a control group.



capture the space of plausible human productions
well when coupled with most decoding algorithms,
though not as well as another human language
process. Decoding settings form many clusters,
and for all tasks except open-domain dialogue,
unbiased samples best match human variability.
This suggests that, within the limits of decoding
configurations typically considered as appropriate,
different token-level decoding strategies often have
a similar effect on a generator’s ability to reproduce
human production variability along our three
probes. Altogether, these findings inform us about
an often neglected aspect of decoding algorithms,
namely their effect on the model’s representation
of uncertainty (rather than their ability to select
individual high-quality generations).

7 Qualitative Instance-Level Analysis

We now qualitatively analyse individual inputs for
which a generator’s uncertainty is miscalibrated
to human variability—as detected by DW1 . For
each task, we use up to 10 human productions
(5 for dialogue) and 10 generations. Figures
accompanying the examples in this section are
in Appendix E. While it is not a replacement for
more standard NLG evaluation procedures, we
argue that this level of analysis is complementary
and crucial to gain deeper understanding of a
generator’s representation of uncertainty.

Variability underestimation in translation and
simplification. We have seen that in translation
and simplification, generators’ self-variability is
lower than human variability (§ 6.1). We now zoom
in on examples from these two tasks, inspecting
instances that show inadequate model fit on all lin-
guistic levels (i.e., DW1(Mk(x), Hk(x)) is high for
all k). The most severe cases of miscalibration for
OpusMT are all instances of variability underesti-
mation.12 For most of these, generations are virtu-
ally or completely identical, while a few present
slightly higher but still substantially lower vari-
ability than human productions. For example, ten
humans translated the phrase ‘reacted cautiously’
in the English source sentence ‘Several companies
have thus far reacted cautiously when it comes to
hiring’ in six different ways (‘vorsichtig reagiert’,
‘zurückhaltend reagiert’, ‘mit Vorsichtsmaßnahmen

12We select instances with DW1 >0.3 for unigram distance
and DW1 >0.2 for POS bigram and semantic distance. These
thresholds are chosen based on distribution plots of instance-
level distances (see, e.g., Figure 2b).

reagiert’, ‘reagierten mit Zurückhaltung’, ‘mit Vor-
sicht reagiert’, ‘reagierten verhalten’) while all
ten generated samples contain the German phrase
‘vorsichtig reagiert’, signalling that the generator’s
lexical rephrasing abilities do not generalise to this
input instance. For text simplification, we focus on
instances where Flan-T5’s uncertainty is not cali-
brated to human syntactic variability.13 We observe
that simplifications sampled from the generator are
always syntactically more similar to each other than
humans’, indicating that the generator struggles to
capture an important aspect of text simplification:
that many semantically equivalent rewritings are
possible if a text’s syntactic structure is altered.

Variability overestimation in dialogue. Ac-
cording to our estimates of human variability
(§ 5), dialogue is the most open-ended task on all
linguistic levels. We have hypothesised that this is
due to the large variety of communicative act types
plausible given any dialogue context. We have
also seen that DialoGPT generally overestimates
production variability (§ 6.1)—Figure 1 is one such
example. Now we further inspect instances where
cross-variability is miscalibrated with respect to
human outputs.14 We find that the generator’s bad
fit can be due to very short and generic responses
(e.g., ‘Well...’, ‘haha’, ‘Ahem’, ‘Well done!’), but
is more often due to the presence of fluent yet
very diverse and often inadequate samples. For
such instances, not only is the generator’s cross-
variability miscalibrated—self-variability, too, is
overestimated on all linguistic levels. In particular,
the generator’s poor calibration to lexical and
syntactic variability is related to its inability to
choose the correct dialogue acts (or favouring an
excessive variety of dialogue acts). In an example
instance where the last dialogue turn goes ‘I’ve
got a business call that I really need to take’,
humans all reply with short affirmative responses
(‘Okay! Please.’, ‘Well! Go on.’, ‘Sure, why
not!’, ‘Sure! Go ahead.’, ‘Yes! Sure.’) while the
model’s responses are mostly lengthy statements,
sometimes not particularly coherent ones (e.g.,
‘You don’t need a business call. You need a friend’).

Variability in lack of situational grounding.
We have observed that human-written stories in
the WritingPrompts dataset show lower variability
than human dialogue responses, and hypothesised

13DW1(Mk(x), Hk(x))>0.2; k is POS bigram distance.
14DW1(Ck(x), Hk(x)) > 0.2 for all k in {unigram dis-

tance, POS bigram distance, cosine distance}.



Figure 6: Example of poor cross-variability calibration for GPT-2 with typical sampling on story generation.

that this may be in part due to contextual pressures
that constrain variability (§ 5). We now analyse
instances flagged by our probe as cases of badly
calibrated semantic cross-variability for GPT-2.15

For one of these, the prompt refers to a portion
of the situational context the model does not have
access to (‘all top level comments in this prompt
take place in the same world, so make them all fit
together’). Because they are conditioned on and
reuse that context, human stories are quite similar
to each other; generations, instead, show much
higher pairwise distance both when sampled jointly
with the human productions (see Figure 6) and
with themselves. The lack of relevant situational
grounding makes the model more uncertain than
it should be for this instance.

8 Conclusion

Variability is an intrinsic property of human lan-
guage production. Text generators, if they are to
be considered as good statistical models of human
written production, should exhibit plausible levels
of variability. However, in NLG, the widespread
practice is (i) collecting only one ‘reference’ pro-
duction for each input and (ii) evaluating only a
single generation. To appreciate the impact of
this incongruity empirically, we analyse multiple-
reference datasets for four NLG tasks, and show
that each task has its own plausible levels of lex-
ical, syntactic, and semantic variability. We con-
nect production variability to aleatoric uncertainty,
the irreducible uncertainty of the language produc-
tion process, and evaluate neural text generators in
terms of whether their representation of uncertainty
is calibrated to the levels of variability observed

15DW1(Ck(x), Hk(x)) > 0.3; k is cosine distance.

in humans. We find that NLG models overesti-
mate production variability in open-ended tasks
and underestimate it in more constrained tasks, and
that most popular decoding algorithms all have a
similar, limited effect on the generators’ ability to
reproduce human variability.

We advocate for more widespread usage of
instance-level probing of NLG systems as a way
to evaluate their statistical fit, not just along the
dimensions we cover in this study but with respect
to any other quality of interest. This approach
contrasts with corpus-level analyses of NLG
systems (e.g., Pillutla et al., 2021; Meister and
Cotterell, 2021; Pimentel et al., 2022) and thanks
to its greater interpretability, it builds trust in the
ability of generators to reproduce human-like
statistics when situated in specific linguistic
contexts rather than ‘globally’, over a possibly
heterogeneous corpus. In the future, we plan to
devise new ways of improving the calibration of
models’ uncertainty (Zhao et al., 2022; Zhang et al.,
2022), e.g., steering generators with sequence-level
decoding algorithms (Eikema and Aziz, 2022),
and to investigate the relation between uncertainty
and perceived generation quality (e.g., Kuhn et al.,
2022): while we use human levels of variability as
a target, desirable levels of variability may deviate
from human statistics for specific applications.

Future work should also study production vari-
ability as a function of a more complex notion of
discourse context (Giulianelli and Fernández, 2021;
Giulianelli et al., 2023) and attempt to disentangle
uncertainty over communicative goals and realisa-
tions (Stasaski and Hearst, 2023). This is an impor-
tant avenue not only toward more practically useful
generators but also toward reliable computational
models of language production.



Limitations

Our analysis relies on multiple-reference datasets,
which are scarce for NLG tasks. Even though,
for single-reference datasets, we cannot perform a
similar instance-level analysis, this fact does not
entail that the observations we make do not apply
to such datasets—we might simply not have the
data to expose them.

Impact of data collection. The way in which
multiple references are gathered may impact the
variability in productions. For example, asking
a single annotator to produce several distinct ref-
erences might artificially increase the diversity of
responses. Conversely, asking several independent
annotators might decrease diversity for they may
resort to similar responses that quckly come to
mind (or, in fact, the opposite if they interpret the
linguistic context differently). To summarise, there
are two levels of uncertainty in human production
data: one is on the individual level, the other is on
the population level. In this work, we do not distin-
guish these two, although the analysis tools that we
propose allow for it. For example, one could col-
lect human productions from one individual (e.g.,
for personalisation) or from sub-populations (e.g.
to improve fit for underrepresented communities).

Other quality dimensions. It is possible that a
model fits various statistical properties of the hu-
man process (under Mk(x), under Ck(x), and for
various choices of k) meanwhile none of its prob-
able responses are humanly-accepted as a whole.
This is why we shall think of our tools as statisti-
cal probes. We indeed find interesting instances
that show good fit in terms of our distance probes
but whose outputs may be perceived as inadequate.
Manual inspection reveals that a marriage proposal
in one of the dialogues (Figure 16 in the Appendix)
is followed by a few incoherent model responses
(e.g.., ‘Thank you. It’s not a question of the strength
or weakness of the plot. I think it all falls within my
capacity.’), some dispreferred ones (‘If you want
to have a hug?’; see Levinson, 1983), and some
with negative affect (‘I don’t need your love. I
know where you are coming from and I trust you
will do the same.’). Exhaustively defining all as-
pects of perceived quality (or human-likeness) is a
strenuous endeavour which is highly dependent on
the use case of the generation system. Our probes
can be replaced with (possibly asymmetric) qual-
ity metrics which capture aspects (e.g., affective

content, toxicity, or readability) that are considered
relevant for any given application.
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A A Note on Entropy

Entropy is an information-theoretic concept that is
often used to summarise uncertainty about a ran-
dom variable. As useful as it may be in various
contexts, entropy is not itself a complete charac-
terisation of uncertainty (e.g., two different distri-
butions may have the same entropy, yet represent
different uncertainty about their respective random
variables). As we discuss in § 3.1, uncertainty
about a random variable is fully represented by its
underlying probability distribution (Halpern, 2017,
Chapter 2).

Consider a discrete random variable X with dis-
tribution pX and probability mass function (pmf)
pX(x). Define the surprisal of an outcome X = x
as the quantity − log pX(x). Then, Shannon en-
tropy (or just entropy for short) is defined as the
surprisal of X taken in expectation under pX
(MacKay, 2003). Due to the unbounded sample
space and lack of conditional independence as-
sumptions, entropy is intractable to compute for
neural text generators. In some cases a Monte
Carlo (MC) estimate of entropy can be formed
with a reasonable amount of computation. For ex-
ample, consider an autoregressive language model
that assigns probability f(x; θ) to a complete se-
quence x using a neural network with parameters
θ (e.g., an LSTM or Transformer). When we use
ancestral sampling (Bishop, 2006) to decode from
this model obtaining a sample x(s), the surprisal
of x(s) is directly available via − log f(x; θ), and
the sample mean − 1

S

∑S
s=1 log f(x

(s); θ) for S an-
cestral samples forms an unbiased MC estimate
for the entropy of X . In most cases, however, the
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generator’s pmf is unknown and the surprisal of an
outcome is not available. That is the case, for exam-
ple, whenever we employ decoding algorithms that
bias away from the underlying distribution of the
autoregressive LM—top-p, top-k, typical sampling
are all good examples. The resulting pmf is then
hard (or impossible) to characterise.

Furthermore, as much as Shannon entropy can be
interpreted in its own information-theoretic terms,
it is not immediately obvious how it can inform an
analyst interested in the generator’s faithfulness to
human production variability. That said, the analyst
may be interested in knowing, for example, that the
entropy of the generator is similar to that of the
‘human distribution’ regardless of their ability to
assign any useful interpretation to entropy proper.
While we accept some analyst out there may be
curious about that question, we refrain from per-
forming such an analysis ourselves because (a) MC
estimation is not available for most of the popular
decoders we wanted to analyse, and (b) estimating
the entropy of the human distribution requires a
faithful model of it (that is, we need a perfectly
faithful text generator to play the role of a ‘gold
standard’).

B A Note on the Wasserstein 1-Distance

The Wasserstein 1-Distance W1(·, ·) quantifies
a notion of distance between two probability
measures and is particularly convenient for it can
be estimated using Dirac deltas (samples from
those measures; Peyré et al., 2019) more easily
than alternatives such as Kolmogorov–Smirnov
and total variation distance (which require binning
the measurements into empirical cdfs/pdfs).
W1(Mk(x), Hk(x)) and W1(Ck(x), Hk(x)) have
an interpretation in terms of ‘mass’ (in units of k)
that has to be moved, on average, to transform one
set of samples into another.

C Data Statistics

Table 1 shows relevant statistics for the four
multiple-reference datasets presented in § 4.

D Additional Figures

Figure 7 shows human production variability over
lexical and syntactic unigrams, bigrams, and tri-
grams (complementing Figure 2 in the main paper).
Figure 8 shows the distribution of µCk(x) − µHk(x)

over instances for our four tasks (complementing
Figure 3 in the main paper). Figures 9 to 11 show

mean divergences across tasks, probes, and decod-
ing algorithms (complementing Figure 5 in the
main paper).

E Examples Discussed in the Qualitative
Instance-Level Analysis

Figures 12-16 show examples of model fitness for
the instances discussed in § 7.

F Decoding Configurations

Tables 2 to 5 show mean divergences for all the
analysed decoding strategies, in terms of Wasser-
stein 1-Distance as well as mean distance.



Machine Translation Text Simplification Story Generation Open-Domain Dialogue

MEAN ± STD MED. RANGE MEAN ± STD MED. RANGE MEAN ± STD MED. RANGE MEAN ± STD MED. RANGE

In
pu

t

Words 23.34 ± 11.35 22 3-67 22.26 ± 8.92 21 7-57 25.40 ± 14.18 24 1-68 47.62 ± 30.37 40 5-311
Tokens 25.79 ± 12.91 23 4-81 28.00 ± 11.68 26 7-78 26.49 ± 14.68 24 1-70 48.94 ± 31.52 40 5-326

Sentences 1.01 ± 0.09 1 1-2 1.02 ± 0.14 1 1-2 1.75 ± 0.93 2 1-6 5.49 ± 2.82 5 1-22
Words in sent. 23.15 ± 11.37 22 2-67 21.80 ± 9.11 20 1-57 14.48 ± 7.89 14 1-50 8.67 ± 5.20 8 1-50

Tokens in sent. 25.58 ± 12.90 23 2-81 27.42 ± 11.88 25 1-78 15.12 ± 8.13 14 1-51 8.93 ± 5.39 8 1-50

O
ut

pu
t

Words 21.96 ± 10.99 20 2-66 19.57 ± 8.29 18 4-62 659.72 ± 450.46 540 101-2681 10.61 ± 4.85 10 2-46
Tokens 27.28 ± 14.09 25 5-86 24.22 ± 10.65 22 5-91 696.66 ± 476.93 570 104-2961 10.84 ± 5.01 10 2-53

Sentences 1.06 ± 0.25 1 1-4 1.33 ± 0.56 1 1-5 47.76 ± 35.44 38 1-308 1.32 ± 0.52 1 1-5
Words in sent. 20.67 ± 10.86 19 1-66 14.70 ± 6.71 13 1-59 13.81 ± 9.59 12 1-722 8.06 ± 4.32 7 1-36

Tokens in sent. 25.69 ± 13.92 23 1-86 18.19 ± 8.78 16 1-91 14.63 ± 10.22 12 1-722 8.24 ± 4.45 8 2-37

Table 1: Length statistics. Number of tokens obtained with the tokenisers of the language models used for generation.

(a) Lexical (bigram) variability (b) Lexical (trigram) variability

(c) Syntactic (POS unigram) variability (d) Syntactic (POS trigram) variability

Figure 7: Human production variability across four NLG tasks (the remaining settings not reported in the main
paper). The values on the x-axis are single samples of lexical or syntactic distance between two productions for
each input (see Section 3). Probability mass on the right side signals high distance and thus high variability, and
vice versa. A large spread indicates that production variability varies widely across inputs, and as such that a task
does not define a specific level of variability.



Figure 8: Distribution of µCk(x) − µHk(x) over instances. Values greater than zero indicate the model overestimates
the variability of the task (higher mean pairwise distance); values below zero indicate variability underestimation.

Figure 9: Mean Wasserstein distances DW1
(M(x), H(x)) for (tasks, probe, decoding algorithm) tuples. Base

models for each task are described in Section 4. Tuples that share colour have different decoding parameters. Human
control group in red; except for dialogue, where 5 references are too few to create a control group.

Figure 10: Mean of distances µM(x) − µH(x) for (tasks, probe, decoding algorithm) tuples across test sets. Base
models for each task are described in Section 4. Tuples that share colour have different decoding parameters. Human
control group in red; except for dialogue, where 5 references are too few to create a control group.



Figure 11: Mean of distances µC(x) − µH(x) for (tasks, probe, decoding algorithm) tuples across test sets. Base
models for each task are described in Section 4. Tuples that share colour have different decoding parameters. Human
control group in red; except for dialogue, where 5 references are too few to create a control group.

Figure 12: Example 1 of bad fitness (DW1(Mk(x), Hk(x))) to human variability for the Opus MT model.

Figure 13: Example 2 of bad fitness (DW1
(Mk(x), Hk(x))) to human variability for the Opus MT model.



Figure 14: Example of good fitness (DW1
(Mk(x), Hk(x))) to human variability for the Opus MT model.

Figure 15: Example of bad fitness (DW1(Ck(x), Hk(x))) for DialoGPT-medium.

Figure 16: Example of good fitness (DW1
(Ck(x), Hk(x))) for DialoGPT-medium.



Table 2: Mean DW1(M(x), H(x)) results for different
decoder settings.

Model Probe Mean DW1(M(x), H(x)) Task

flanT5_large_finetuned-ancestral-val Unigram distance 0.075174 Simplification
flanT5_large_finetuned-nucleus_09-val Unigram distance 0.114867 Simplification
flanT5_large_finetuned-nucleus_095-val Unigram distance 0.098536 Simplification
flanT5_large_finetuned-typical_02-val Unigram distance 0.217127 Simplification
flanT5_large_finetuned-typical_095-val Unigram distance 0.098259 Simplification
human_control Unigram distance 0.042863 Simplification
flanT5_large_finetuned-ancestral-val POS bigram distance 0.089668 Simplification
flanT5_large_finetuned-nucleus_09-val POS bigram distance 0.124259 Simplification
flanT5_large_finetuned-nucleus_095-val POS bigram distance 0.108829 Simplification
flanT5_large_finetuned-typical_02-val POS bigram distance 0.244697 Simplification
flanT5_large_finetuned-typical_095-val POS bigram distance 0.108139 Simplification
human_control POS bigram distance 0.050427 Simplification
flanT5_large_finetuned-ancestral-val Cosine distance 0.044924 Simplification
flanT5_large_finetuned-nucleus_09-val Cosine distance 0.056711 Simplification
flanT5_large_finetuned-nucleus_095-val Cosine distance 0.051341 Simplification
flanT5_large_finetuned-typical_02-val Cosine distance 0.096548 Simplification
flanT5_large_finetuned-typical_095-val Cosine distance 0.051276 Simplification
human_control Cosine distance 0.025631 Simplification
opus-ancestral Unigram distance 0.250246 Translation
opus-nucleus_085 Unigram distance 0.268903 Translation
opus-nucleus_09 Unigram distance 0.262719 Translation
opus-temperature05 Unigram distance 0.213019 Translation
opus-temperature075 Unigram distance 0.282174 Translation
opus-top_k_30 Unigram distance 0.255974 Translation
opus-top_k_40 Unigram distance 0.251440 Translation
human_control Unigram distance 0.043193 Translation
opus-ancestral POS bigram distance 0.155366 Translation
opus-nucleus_085 POS bigram distance 0.170862 Translation
opus-nucleus_09 POS bigram distance 0.165579 Translation
opus-temperature05 POS bigram distance 0.159474 Translation
opus-temperature075 POS bigram distance 0.181173 Translation
opus-top_k_30 POS bigram distance 0.159928 Translation
opus-top_k_40 POS bigram distance 0.155916 Translation
human_control POS bigram distance 0.035402 Translation
opus-ancestral Cosine distance 0.130312 Translation
opus-nucleus_085 Cosine distance 0.140748 Translation
opus-nucleus_09 Cosine distance 0.137961 Translation
opus-temperature05 Cosine distance 0.141920 Translation
opus-temperature075 Cosine distance 0.148178 Translation
opus-top_k_30 Cosine distance 0.133588 Translation
opus-top_k_40 Cosine distance 0.131818 Translation
human_control Cosine distance 0.027646 Translation
gpt2_large_finetuned-ancestral-test Unigram distance 0.074878 Story Generation
gpt2_large_finetuned-nucleus_09-test Unigram distance 0.089306 Story Generation
gpt2_large_finetuned-nucleus_095-test Unigram distance 0.082663 Story Generation
gpt2_large_finetuned-temperature05-test Unigram distance 0.158670 Story Generation
gpt2_large_finetuned-typical_02-test Unigram distance 0.089595 Story Generation
human_control Unigram distance 0.026115 Story Generation
gpt2_large_finetuned-ancestral-test POS bigram distance 0.107836 Story Generation
gpt2_large_finetuned-nucleus_09-test POS bigram distance 0.112113 Story Generation
gpt2_large_finetuned-nucleus_095-test POS bigram distance 0.112662 Story Generation
gpt2_large_finetuned-temperature05-test POS bigram distance 0.190448 Story Generation
gpt2_large_finetuned-typical_02-test POS bigram distance 0.097114 Story Generation
human_control POS bigram distance 0.030801 Story Generation
gpt2_large_finetuned-ancestral-test Cosine distance 0.095689 Story Generation
gpt2_large_finetuned-nucleus_09-test Cosine distance 0.101362 Story Generation
gpt2_large_finetuned-nucleus_095-test Cosine distance 0.098502 Story Generation
gpt2_large_finetuned-temperature05-test Cosine distance 0.142114 Story Generation
gpt2_large_finetuned-typical_02-test Cosine distance 0.110264 Story Generation
human_control Cosine distance 0.050663 Story Generation
dialogpt_large-ancestral-dev Unigram distance 0.094768 Open-Domain Dialogue
human_control Unigram distance NaN Open-Domain Dialogue
dialogpt_large-nucleus_09-dev Unigram distance 0.091718 Open-Domain Dialogue
dialogpt_large-nucleus_095-dev Unigram distance 0.091948 Open-Domain Dialogue
dialogpt_large-top_k_30-dev Unigram distance 0.091910 Open-Domain Dialogue
dialogpt_large-top_k_40-dev Unigram distance 0.093984 Open-Domain Dialogue
dialogpt_large-typical_02-dev Unigram distance 0.100279 Open-Domain Dialogue
dialogpt_large-typical_095-dev Unigram distance 0.094912 Open-Domain Dialogue
dialogpt_large-ancestral-dev POS bigram distance 0.106077 Open-Domain Dialogue
human_control POS bigram distance NaN Open-Domain Dialogue
dialogpt_large-nucleus_09-dev POS bigram distance 0.108866 Open-Domain Dialogue
dialogpt_large-nucleus_095-dev POS bigram distance 0.106057 Open-Domain Dialogue
dialogpt_large-top_k_30-dev POS bigram distance 0.107674 Open-Domain Dialogue
dialogpt_large-top_k_40-dev POS bigram distance 0.107663 Open-Domain Dialogue
dialogpt_large-typical_02-dev POS bigram distance 0.116369 Open-Domain Dialogue
dialogpt_large-typical_095-dev POS bigram distance 0.108587 Open-Domain Dialogue
dialogpt_large-ancestral-dev Cosine distance 0.112896 Open-Domain Dialogue
human_control Cosine distance NaN Open-Domain Dialogue
dialogpt_large-nucleus_09-dev Cosine distance 0.112480 Open-Domain Dialogue
dialogpt_large-nucleus_095-dev Cosine distance 0.111765 Open-Domain Dialogue
dialogpt_large-top_k_30-dev Cosine distance 0.111521 Open-Domain Dialogue
dialogpt_large-top_k_40-dev Cosine distance 0.113160 Open-Domain Dialogue
dialogpt_large-typical_02-dev Cosine distance 0.113362 Open-Domain Dialogue
dialogpt_large-typical_095-dev Cosine distance 0.110345 Open-Domain Dialogue



Table 3: Mean Dµ(M(x), H(x)) for different decoder
settings

Model Probe Mean Dµ(M(x), H(x)) Task

flanT5_large_finetuned-ancestral-val Unigram distance -0.041574 Simplification
flanT5_large_finetuned-nucleus_09-val Unigram distance -0.107347 Simplification
flanT5_large_finetuned-nucleus_095-val Unigram distance -0.085751 Simplification
flanT5_large_finetuned-typical_02-val Unigram distance -0.214236 Simplification
flanT5_large_finetuned-typical_095-val Unigram distance -0.084748 Simplification
human_control Unigram distance -0.004613 Simplification
flanT5_large_finetuned-ancestral-val POS bigram distance -0.048417 Simplification
flanT5_large_finetuned-nucleus_09-val POS bigram distance -0.111659 Simplification
flanT5_large_finetuned-nucleus_095-val POS bigram distance -0.089422 Simplification
flanT5_large_finetuned-typical_02-val POS bigram distance -0.240776 Simplification
flanT5_large_finetuned-typical_095-val POS bigram distance -0.087786 Simplification
human_control POS bigram distance -0.004535 Simplification
flanT5_large_finetuned-ancestral-val Cosine distance -0.016843 Simplification
flanT5_large_finetuned-nucleus_09-val Cosine distance -0.049492 Simplification
flanT5_large_finetuned-nucleus_095-val Cosine distance -0.040255 Simplification
flanT5_large_finetuned-typical_02-val Cosine distance -0.094252 Simplification
flanT5_large_finetuned-typical_095-val Cosine distance -0.040386 Simplification
human_control Cosine distance -0.005045 Simplification
opus-ancestral Unigram distance -0.249243 Translation
opus-nucleus_085 Unigram distance -0.268126 Translation
opus-nucleus_09 Unigram distance -0.261954 Translation
opus-temperature05 Unigram distance -0.180041 Translation
opus-temperature075 Unigram distance -0.281996 Translation
opus-top_k_30 Unigram distance -0.255388 Translation
opus-top_k_40 Unigram distance -0.250243 Translation
human_control Unigram distance 0.023181 Translation
opus-ancestral POS bigram distance -0.151919 Translation
opus-nucleus_085 POS bigram distance -0.169243 Translation
opus-nucleus_09 POS bigram distance -0.162130 Translation
opus-temperature05 POS bigram distance -0.152725 Translation
opus-temperature075 POS bigram distance -0.179065 Translation
opus-top_k_30 POS bigram distance -0.157629 Translation
opus-top_k_40 POS bigram distance -0.153329 Translation
human_control POS bigram distance 0.009030 Translation
opus-ancestral Cosine distance -0.129037 Translation
opus-nucleus_085 Cosine distance -0.139889 Translation
opus-nucleus_09 Cosine distance -0.136995 Translation
opus-temperature05 Cosine distance -0.034734 Translation
opus-temperature075 Cosine distance -0.147533 Translation
opus-top_k_30 Cosine distance -0.132567 Translation
opus-top_k_40 Cosine distance -0.130491 Translation
human_control Cosine distance 0.009674 Translation
gpt2_large_finetuned-ancestral-test Unigram distance -0.001277 Story Generation
gpt2_large_finetuned-nucleus_09-test Unigram distance -0.023124 Story Generation
gpt2_large_finetuned-nucleus_095-test Unigram distance -0.011460 Story Generation
gpt2_large_finetuned-temperature05-test Unigram distance -0.043398 Story Generation
gpt2_large_finetuned-typical_02-test Unigram distance -0.042259 Story Generation
human_control Unigram distance -0.000588 Story Generation
gpt2_large_finetuned-ancestral-test POS bigram distance 0.069409 Story Generation
gpt2_large_finetuned-nucleus_09-test POS bigram distance 0.065952 Story Generation
gpt2_large_finetuned-nucleus_095-test POS bigram distance 0.068751 Story Generation
gpt2_large_finetuned-temperature05-test POS bigram distance 0.136734 Story Generation
gpt2_large_finetuned-typical_02-test POS bigram distance 0.033082 Story Generation
human_control POS bigram distance -0.001439 Story Generation
gpt2_large_finetuned-ancestral-test Cosine distance 0.003763 Story Generation
gpt2_large_finetuned-nucleus_09-test Cosine distance -0.015119 Story Generation
gpt2_large_finetuned-nucleus_095-test Cosine distance -0.004399 Story Generation
gpt2_large_finetuned-temperature05-test Cosine distance -0.068208 Story Generation
gpt2_large_finetuned-typical_02-test Cosine distance -0.038362 Story Generation
human_control Cosine distance -0.000839 Story Generation
dialogpt_large-ancestral-dev Unigram distance 0.059756 Open-Domain Dialogue
human_control Unigram distance NaN Open-Domain Dialogue
dialogpt_large-nucleus_09-dev Unigram distance 0.039885 Open-Domain Dialogue
dialogpt_large-nucleus_095-dev Unigram distance 0.051588 Open-Domain Dialogue
dialogpt_large-top_k_30-dev Unigram distance 0.049452 Open-Domain Dialogue
dialogpt_large-top_k_40-dev Unigram distance 0.055738 Open-Domain Dialogue
dialogpt_large-typical_02-dev Unigram distance 0.028369 Open-Domain Dialogue
dialogpt_large-typical_095-dev Unigram distance 0.051247 Open-Domain Dialogue
dialogpt_large-ancestral-dev POS bigram distance 0.040850 Open-Domain Dialogue
human_control POS bigram distance NaN Open-Domain Dialogue
dialogpt_large-nucleus_09-dev POS bigram distance 0.026282 Open-Domain Dialogue
dialogpt_large-nucleus_095-dev POS bigram distance 0.034128 Open-Domain Dialogue
dialogpt_large-top_k_30-dev POS bigram distance 0.031613 Open-Domain Dialogue
dialogpt_large-top_k_40-dev POS bigram distance 0.036636 Open-Domain Dialogue
dialogpt_large-typical_02-dev POS bigram distance 0.007331 Open-Domain Dialogue
dialogpt_large-typical_095-dev POS bigram distance 0.035866 Open-Domain Dialogue
dialogpt_large-ancestral-dev Cosine distance 0.064680 Open-Domain Dialogue
human_control Cosine distance NaN Open-Domain Dialogue
dialogpt_large-nucleus_09-dev Cosine distance 0.045279 Open-Domain Dialogue
dialogpt_large-nucleus_095-dev Cosine distance 0.055085 Open-Domain Dialogue
dialogpt_large-top_k_30-dev Cosine distance 0.052337 Open-Domain Dialogue
dialogpt_large-top_k_40-dev Cosine distance 0.058887 Open-Domain Dialogue
dialogpt_large-typical_02-dev Cosine distance 0.016471 Open-Domain Dialogue
dialogpt_large-typical_095-dev Cosine distance 0.054787 Open-Domain Dialogue



Table 4: Mean DW1(C(x), H(x)) results for multiple
decoding settings.

Model Probe Mean DW1(C(x), H(x)) Task

flanT5_large_finetuned-ancestral-val Unigram distance 0.047961 Simplification
flanT5_large_finetuned-nucleus_09-val Unigram distance 0.059546 Simplification
flanT5_large_finetuned-nucleus_095-val Unigram distance 0.054702 Simplification
flanT5_large_finetuned-typical_02-val Unigram distance 0.068984 Simplification
flanT5_large_finetuned-typical_095-val Unigram distance 0.054952 Simplification
human_control Unigram distance 0.042863 Simplification
flanT5_large_finetuned-ancestral-val POS bigram distance 0.056443 Simplification
flanT5_large_finetuned-nucleus_09-val POS bigram distance 0.065849 Simplification
flanT5_large_finetuned-nucleus_095-val POS bigram distance 0.061433 Simplification
flanT5_large_finetuned-typical_02-val POS bigram distance 0.078297 Simplification
flanT5_large_finetuned-typical_095-val POS bigram distance 0.061684 Simplification
human_control POS bigram distance 0.050427 Simplification
flanT5_large_finetuned-ancestral-val Cosine distance 0.027983 Simplification
flanT5_large_finetuned-nucleus_09-val Cosine distance 0.030626 Simplification
flanT5_large_finetuned-nucleus_095-val Cosine distance 0.029443 Simplification
flanT5_large_finetuned-typical_02-val Cosine distance 0.036008 Simplification
flanT5_large_finetuned-typical_095-val Cosine distance 0.029270 Simplification
human_control Cosine distance 0.025631 Simplification
opus-ancestral Unigram distance 0.067614 Translation
opus-nucleus_085 Unigram distance 0.069170 Translation
opus-nucleus_09 Unigram distance 0.068676 Translation
opus-temperature05 Unigram distance 0.125683 Translation
opus-temperature075 Unigram distance 0.070435 Translation
opus-top_k_30 Unigram distance 0.068002 Translation
opus-top_k_40 Unigram distance 0.066907 Translation
human_control Unigram distance 0.043193 Translation
opus-ancestral POS bigram distance 0.055636 Translation
opus-nucleus_085 POS bigram distance 0.057639 Translation
opus-nucleus_09 POS bigram distance 0.056588 Translation
opus-temperature05 POS bigram distance 0.064878 Translation
opus-temperature075 POS bigram distance 0.058195 Translation
opus-top_k_30 POS bigram distance 0.056383 Translation
opus-top_k_40 POS bigram distance 0.055540 Translation
human_control POS bigram distance 0.035402 Translation
opus-ancestral Cosine distance 0.043123 Translation
opus-nucleus_085 Cosine distance 0.043951 Translation
opus-nucleus_09 Cosine distance 0.043713 Translation
opus-temperature05 Cosine distance 0.112590 Translation
opus-temperature075 Cosine distance 0.045421 Translation
opus-top_k_30 Cosine distance 0.043264 Translation
opus-top_k_40 Cosine distance 0.042813 Translation
human_control Cosine distance 0.027646 Translation
gpt2_large_finetuned-ancestral-test Unigram distance 0.052815 Story Generation
gpt2_large_finetuned-nucleus_09-test Unigram distance 0.052926 Story Generation
gpt2_large_finetuned-nucleus_095-test Unigram distance 0.053015 Story Generation
gpt2_large_finetuned-temperature05-test Unigram distance 0.087166 Story Generation
gpt2_large_finetuned-typical_02-test Unigram distance 0.050375 Story Generation
human_control Unigram distance 0.026115 Story Generation
gpt2_large_finetuned-ancestral-test POS bigram distance 0.082493 Story Generation
gpt2_large_finetuned-nucleus_09-test POS bigram distance 0.088013 Story Generation
gpt2_large_finetuned-nucleus_095-test POS bigram distance 0.085413 Story Generation
gpt2_large_finetuned-temperature05-test POS bigram distance 0.180557 Story Generation
gpt2_large_finetuned-typical_02-test POS bigram distance 0.078543 Story Generation
human_control POS bigram distance 0.030801 Story Generation
gpt2_large_finetuned-ancestral-test Cosine distance 0.078816 Story Generation
gpt2_large_finetuned-nucleus_09-test Cosine distance 0.077738 Story Generation
gpt2_large_finetuned-nucleus_095-test Cosine distance 0.078084 Story Generation
gpt2_large_finetuned-temperature05-test Cosine distance 0.087292 Story Generation
gpt2_large_finetuned-typical_02-test Cosine distance 0.078043 Story Generation
human_control Cosine distance 0.050663 Story Generation
dialogpt_large-ancestral-dev Unigram distance 0.082540 Open-Domain Dialogue
human_control Unigram distance NaN Open-Domain Dialogue
dialogpt_large-nucleus_09-dev Unigram distance 0.078856 Open-Domain Dialogue
dialogpt_large-nucleus_095-dev Unigram distance 0.080944 Open-Domain Dialogue
dialogpt_large-top_k_30-dev Unigram distance 0.081368 Open-Domain Dialogue
dialogpt_large-top_k_40-dev Unigram distance 0.082693 Open-Domain Dialogue
dialogpt_large-typical_02-dev Unigram distance 0.090923 Open-Domain Dialogue
dialogpt_large-typical_095-dev Unigram distance 0.081366 Open-Domain Dialogue
dialogpt_large-ancestral-dev POS bigram distance 0.085033 Open-Domain Dialogue
human_control POS bigram distance NaN Open-Domain Dialogue
dialogpt_large-nucleus_09-dev POS bigram distance 0.085009 Open-Domain Dialogue
dialogpt_large-nucleus_095-dev POS bigram distance 0.084188 Open-Domain Dialogue
dialogpt_large-top_k_30-dev POS bigram distance 0.084248 Open-Domain Dialogue
dialogpt_large-top_k_40-dev POS bigram distance 0.083804 Open-Domain Dialogue
dialogpt_large-typical_02-dev POS bigram distance 0.088119 Open-Domain Dialogue
dialogpt_large-typical_095-dev POS bigram distance 0.085461 Open-Domain Dialogue
dialogpt_large-ancestral-dev Cosine distance 0.097410 Open-Domain Dialogue
human_control Cosine distance NaN Open-Domain Dialogue
dialogpt_large-nucleus_09-dev Cosine distance 0.094412 Open-Domain Dialogue
dialogpt_large-nucleus_095-dev Cosine distance 0.096555 Open-Domain Dialogue
dialogpt_large-top_k_30-dev Cosine distance 0.095628 Open-Domain Dialogue
dialogpt_large-top_k_40-dev Cosine distance 0.096752 Open-Domain Dialogue
dialogpt_large-typical_02-dev Cosine distance 0.095108 Open-Domain Dialogue
dialogpt_large-typical_095-dev Cosine distance 0.095468 Open-Domain Dialogue



Table 5: Mean Dµ(C(x), H(x))) results for different
decoder parameter settings.

Model Probe Mean Dµ(C(x), H(x))) Task

flanT5_large_finetuned-ancestral-val Unigram distance -0.019180 Simplification
flanT5_large_finetuned-nucleus_09-val Unigram distance -0.047746 Simplification
flanT5_large_finetuned-nucleus_095-val Unigram distance -0.039108 Simplification
flanT5_large_finetuned-typical_02-val Unigram distance -0.047960 Simplification
flanT5_large_finetuned-typical_095-val Unigram distance -0.038222 Simplification
human_control Unigram distance -0.004613 Simplification
flanT5_large_finetuned-ancestral-val POS bigram distance -0.024071 Simplification
flanT5_large_finetuned-nucleus_09-val POS bigram distance -0.050534 Simplification
flanT5_large_finetuned-nucleus_095-val POS bigram distance -0.041670 Simplification
flanT5_large_finetuned-typical_02-val POS bigram distance -0.050770 Simplification
flanT5_large_finetuned-typical_095-val POS bigram distance -0.040591 Simplification
human_control POS bigram distance -0.004535 Simplification
flanT5_large_finetuned-ancestral-val Cosine distance -0.007191 Simplification
flanT5_large_finetuned-nucleus_09-val Cosine distance -0.021733 Simplification
flanT5_large_finetuned-nucleus_095-val Cosine distance -0.018084 Simplification
flanT5_large_finetuned-typical_02-val Cosine distance -0.022718 Simplification
flanT5_large_finetuned-typical_095-val Cosine distance -0.017714 Simplification
human_control Cosine distance -0.005045 Simplification
opus-ancestral Unigram distance -0.031401 Translation
opus-nucleus_085 Unigram distance -0.032499 Translation
opus-nucleus_09 Unigram distance -0.032062 Translation
opus-temperature05 Unigram distance 0.060986 Translation
opus-temperature075 Unigram distance -0.028734 Translation
opus-top_k_30 Unigram distance -0.031515 Translation
opus-top_k_40 Unigram distance -0.031321 Translation
human_control Unigram distance 0.023181 Translation
opus-ancestral POS bigram distance -0.010164 Translation
opus-nucleus_085 POS bigram distance -0.011306 Translation
opus-nucleus_09 POS bigram distance -0.010588 Translation
opus-temperature05 POS bigram distance 0.007351 Translation
opus-temperature075 POS bigram distance -0.009418 Translation
opus-top_k_30 POS bigram distance -0.010525 Translation
opus-top_k_40 POS bigram distance -0.010689 Translation
human_control POS bigram distance 0.009030 Translation
opus-ancestral Cosine distance -0.014492 Translation
opus-nucleus_085 Cosine distance -0.015246 Translation
opus-nucleus_09 Cosine distance -0.015266 Translation
opus-temperature05 Cosine distance 0.076953 Translation
opus-temperature075 Cosine distance -0.013291 Translation
opus-top_k_30 Cosine distance -0.014714 Translation
opus-top_k_40 Cosine distance -0.014507 Translation
human_control Cosine distance 0.009674 Translation
gpt2_large_finetuned-ancestral-test Unigram distance 0.034652 Story Generation
gpt2_large_finetuned-nucleus_09-test Unigram distance 0.029568 Story Generation
gpt2_large_finetuned-nucleus_095-test Unigram distance 0.031654 Story Generation
gpt2_large_finetuned-temperature05-test Unigram distance 0.068008 Story Generation
gpt2_large_finetuned-typical_02-test Unigram distance 0.023071 Story Generation
human_control Unigram distance -0.000588 Story Generation
gpt2_large_finetuned-ancestral-test POS bigram distance 0.066966 Story Generation
gpt2_large_finetuned-nucleus_09-test POS bigram distance 0.073412 Story Generation
gpt2_large_finetuned-nucleus_095-test POS bigram distance 0.069038 Story Generation
gpt2_large_finetuned-temperature05-test POS bigram distance 0.175454 Story Generation
gpt2_large_finetuned-typical_02-test POS bigram distance 0.058097 Story Generation
human_control POS bigram distance -0.001439 Story Generation
gpt2_large_finetuned-ancestral-test Cosine distance 0.050337 Story Generation
gpt2_large_finetuned-nucleus_09-test Cosine distance 0.047109 Story Generation
gpt2_large_finetuned-nucleus_095-test Cosine distance 0.048778 Story Generation
gpt2_large_finetuned-temperature05-test Cosine distance 0.060529 Story Generation
gpt2_large_finetuned-typical_02-test Cosine distance 0.045444 Story Generation
human_control Cosine distance -0.000839 Story Generation
dialogpt_large-ancestral-dev Unigram distance 0.067089 Open-Domain Dialogue
human_control Unigram distance NaN Open-Domain Dialogue
dialogpt_large-nucleus_09-dev Unigram distance 0.059751 Open-Domain Dialogue
dialogpt_large-nucleus_095-dev Unigram distance 0.063929 Open-Domain Dialogue
dialogpt_large-top_k_30-dev Unigram distance 0.064058 Open-Domain Dialogue
dialogpt_large-top_k_40-dev Unigram distance 0.065997 Open-Domain Dialogue
dialogpt_large-typical_02-dev Unigram distance 0.077755 Open-Domain Dialogue
dialogpt_large-typical_095-dev Unigram distance 0.064922 Open-Domain Dialogue
dialogpt_large-ancestral-dev POS bigram distance 0.050752 Open-Domain Dialogue
human_control POS bigram distance NaN Open-Domain Dialogue
dialogpt_large-nucleus_09-dev POS bigram distance 0.045903 Open-Domain Dialogue
dialogpt_large-nucleus_095-dev POS bigram distance 0.047880 Open-Domain Dialogue
dialogpt_large-top_k_30-dev POS bigram distance 0.046732 Open-Domain Dialogue
dialogpt_large-top_k_40-dev POS bigram distance 0.049299 Open-Domain Dialogue
dialogpt_large-typical_02-dev POS bigram distance 0.052058 Open-Domain Dialogue
dialogpt_large-typical_095-dev POS bigram distance 0.049841 Open-Domain Dialogue
dialogpt_large-ancestral-dev Cosine distance 0.078752 Open-Domain Dialogue
human_control Cosine distance NaN Open-Domain Dialogue
dialogpt_large-nucleus_09-dev Cosine distance 0.070942 Open-Domain Dialogue
dialogpt_large-nucleus_095-dev Cosine distance 0.075569 Open-Domain Dialogue
dialogpt_large-top_k_30-dev Cosine distance 0.073973 Open-Domain Dialogue
dialogpt_large-top_k_40-dev Cosine distance 0.076133 Open-Domain Dialogue
dialogpt_large-typical_02-dev Cosine distance 0.073281 Open-Domain Dialogue
dialogpt_large-typical_095-dev Cosine distance 0.074061 Open-Domain Dialogue


