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ABSTRACT

Optimization problems with expensive nonlinear cost functions and combinato-
rial constraints appear in many real-world applications, but remain challenging to
solve efficiently. Existing combinatorial solvers like Mixed Integer Linear Pro-
gramming can be fast in practice but cannot readily optimize nonlinear cost func-
tions, while general nonlinear optimizers like gradient descent often do not handle
complex combinatorial structures, may require many queries of the cost function,
and are prone to local optima. To bridge this gap, we propose SurCo that learns
linear Surrogate costs which can be used by existing Combinatorial solvers to
output good solutions to the original nonlinear combinatorial optimization prob-
lem, combining the flexibility of gradient-based methods with the structure of lin-
ear combinatorial optimization. We learn these linear surrogates end-to-end with
the nonlinear loss by differentiating through the linear surrogate solver. Three
variants of SurCo are proposed: SurCo-zero operates on individual nonlinear
problems, SurCo-prior trains a linear surrogate predictor on distributions of
problems, and SurCo-hybrid uses a model trained offline to warm start online
solving for SurCo-zero. We analyze our method theoretically and empirically,
showing smooth convergence and improved performance. Experiments show that
compared to state-of-the-art approaches and expert-designed heuristics, SurCo
obtains lower cost solutions with comparable or faster solve time for two real-
world industry-level applications: embedding table sharding and inverse photonic
design.

1 INTRODUCTION

Combinatorial optimization problems with linear objective functions, like linear programming
(LP) (Chvatal et al., 1983) and mixed integer linear programming (MILP) (Wolsey, 2007), have
been extensively studied in operations research (OR). The resulting high-performance solvers like
Gurobi (Gurobi Optimization, LLC, 2022) can solve industrial-scale optimization problems with ten
of thousands of variables in a few minutes.

However, even with perfect solvers, one issue remains: the cost functions f(x) in many practical
problems are nonlinear, and the highly-optimized solvers mainly handle linear or convex formu-
lations while real-world problems have less constrained objectives. For example, in embedding
table sharding (Zha et al., 2022a) one needs to distribute embedding tables to multiple GPUs for the
deployment of recommendation systems. Due to the batching behaviors within a single GPU and
communication cost among different GPUs, the overall latency (cost function) in this application
depends on interactions of multiple tables and thus can be highly nonlinear (Zha et al., 2022a).

To obtain useful solutions to the real-world problems, one may choose to directly optimize the
nonlinear cost, which is either a black-box output of a simulator (Gosavi et al., 2015; Ye et al.,
2019), or a cost estimator learned by machine learning techniques (e.g., deep models) from offline
data (Steiner et al., 2021; Koziel et al., 2021; Wang et al., 2021b; Cozad et al., 2014). However, many
of these direct optimization approaches either rely on human-defined heuristics (e.g., greedy (Korte
& Hausmann, 1978; Reingold & Tarjan, 1981; Wolsey, 1982), local improvement (Voß et al., 2012;
Li et al., 2021)), or resort to general nonlinear optimization techniques like gradient descent (Ruder,
2016), reinforcement learning (Mazyavkina et al., 2021), or evolutionary algorithms (Simon, 2013).
While these approaches can work in practice, they may lead to a slow optimization process, in
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particular when the cost function is expensive to evaluate, and they often ignore the combinatorial
nature of most real-world applications (encoded in the feasible set x ∈ Ω).

In this work, we propose a systematic framework SurCo that leverages existing efficient combi-
natorial solvers to find solutions to nonlinear combinatorial optimization problems arising in real-
world scenarios. There are three versions of SurCo, SurCo-zero, SurCo-prior, and SurCo-
hybrid. In SurCo-zero, given a nonlinear differentiable cost f(x) to be minimized, we optimize
a linear surrogate cost ĉ so that the surrogate optimizer (SO) minx∈Ω ĉ⊤x outputs a solution that
is expected to be optimal w.r.t. the original nonlinear cost f(x). Due to its linear nature, SO can
be solved efficiently with existing solvers, and the surrogate cost ĉ can be optimized in an end-
to-end manner by back-propagating through the solver (Pogančić et al., 2019; Niepert et al., 2021;
Berthet et al., 2020). In SurCo-prior, we consider a family of nonlinear differentiable func-
tions f(x;y), where y parameterizes problem descriptions. We train the linear surrogate ĉ(y) on a
set of optimization problems (called the training set {yi}), and evaluate on a held-out problem y′,
by directly optimizing SO: x∗(y′) := argminx∈Ω(y) ĉ

⊤(y′)x, which avoids optimizing the cost
f(x;y′) from scratch. Finally, in SurCo-hybrid we use initial surrogate costs predicted by a
fully-trained SurCo-prior and then fine-tune the surrogate costs further using SurCo-zero to
leverage both domain knowledge synthesized offline and information about the specific instance.

All versions of SurCo are evaluated in two real-world nonlinear optimization problems: embedding
table sharding (Zha et al., 2022a), and photonic inverse design (Schubert et al., 2022). In both cases,
we show that in the on-the-fly setting, SurCo achieves higher quality solutions in comparable or
less runtime, faster optimization in wall-clock time with lower solution cost, thanks to the help of an
efficient combinatorial solver; in prior, our method obtains better solutions in held-out problems
compared to other methods that require training (e.g., reinforcement learning). More specifically,
in table sharding SurCo-zero obtains between 14% to 85% improvement in solution quality with
between 2% and 23% increase in runtime overhead compared to the greedy baseline, SurCo-prior
obtains between 47% and 71% solution quality improvement against the state of the art RL-based
table sharding algorithm Zha et al. (2022b). SurCo-hybrid obtains better solutions than either
SurCo-zero or SurCo-prior, with a similar runtime overhead as SurCo-zero. In photonic
inverse design, SurCo-zero finds 21% more viable solutions for the beam splitter and twice as
many solutions for the wavelength demultiplexers with all problems solving successfully for the
mode converter and bend problems, taking between 10% to 64% less time than the pass-through
approach from previous work (Schubert et al., 2022). While the offline trained SurCo-prior
misses some optimal solutions in the different settings, it frequently obtains solutions in 0.5% to
2% of the runtime due to not needing to evaluate the objective and perform gradient steps. Again,
SurCo-hybrid is able to obtain solutions more often than the other approaches, with a runtime
overhead comparable to SurCo-zero. We additionally present theoretical results that help motivate
why training a model to predict surrogate linear coefficients exhibits better sample complexity than
directly predicting the optimal solution (Li et al., 2018; Ban & Rudin, 2019).

2 PROBLEM SPECIFICATION

Our goal is to solve the following nonlinear optimization problem describe by y:

min
x

f(x;y) s.t. x ∈ Ω(y) (1)

where x ∈ Rn are the variables to be optimized, f(x;y) is the nonlinear differentiable cost function
to be minimized, Ω(y) is the feasible region, typically specified by linear (in)equalities and integer
constraints, and y ∈ Y are the problem instance parameters drawn from a distribution D over Y .
For example, in the traveling salesman problem, y can be the distance matrix among cities. We
often consider solving a family of optimization problems, described as y ∈ Y .

Differentiable cost function. The nonlinear cost function f(x;y) can either be the result of a
simulator made differentiable via finite differencing (e.g., JAX (Bradbury et al., 2018)), or a cost
model that is learned from an offline dataset, often generated via sampling multiple feasible solutions
within Ω(y), and recording their costs. The cost model often takes the form of a deep neural network.
In this work, we assume the following property of f(x;y):
Assumption 2.1 (Cost function). During optimization, the cost function f(x;y) and its partial
derivative ∂f/∂x are accessible.
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Learning a good nonlinear cost model f is highly non-trivial for practical applications (e.g., Al-
phaFold (Jumper et al., 2021), Density Functional Theory (Nagai et al., 2020), cost model for em-
bedding tables (Zha et al., 2022a)) and is beyond the scope of this work.

Evaluation Metric. In real-world applications, querying f can be slow and expensive, and thus a
lower number of queries while getting better quality solution is the goal. We mainly focus on two
aspects: how good the solution x̂ is, by checking the value of f(x̂;y), and how many queries of the
nonlinear function f are needed during optimization in order to achieve the solution x̂.

Linear/nonlinear cost function. When f(x;y) is linear w.r.t x, and the feasible region can be
encoded using mixed integer programs or other mathematical programs, the problem can be solved
efficiently using existing scalable optimization solvers. When f(x;y) is nonlinear, we propose
SurCo that learns a surrogate linear objective function, which allow us to leverage these existing
scalable optimization solvers, and which results in a solution that has high quality with respect to
the original hard-to-encode objective function f(x;y). We will elaborate in the following sections.

min
𝒙
𝑓(𝒙; 𝒚)

s. t 𝒙 ∈ Ω =

Nonlinear optimization with
combinatorial constraints

Predict surrogate cost 𝒄 = 𝒄(𝒚)
𝒙∗ 𝒚 = argmin

𝒙
𝒄(𝒚)𝑻𝒙

s. t 𝒙 ∈ Ω

𝒙∗ 𝒚 optimizes 𝑓(𝒙; 𝒚) as much as possible

Surrogate optimization 

combinatorial 
constraints

solved by existing combinatorial solvers

Figure 1: Overview of our proposed algorithm SurCo.

3 SURCO : LEARNING LINEAR SURROGATES

3.1 SURCO-ZERO : ON-THE-FLY OPTIMIZATION

We start from the simplest case in which we focus on a single instance with f(x) = f(x;y) and
Ω = Ω(y). SurCo-zero aims to optimize the following objective:

(SurCo-zero) : min
c
Lzero(c) := f(gΩ(c)) (2)

where the surrogate optimizer gΩ : Rn 7→ Rn is the output of certain combinatorial solvers with
linear cost weight c ∈ Rn and feasible region Ω ⊆ Rn. For example, gΩ can be the following (n is
the number of variables to be optimized):

gΩ(c) := argmin
x

c⊤x s.t. x ∈ Ω := {Ax ≤ b,x ∈ Zn} (3)

which is the output of a MILP solver. Thanks to previous works (Ferber et al., 2020; Pogančić et al.,
2019), we can efficiently compute the partial derivative ∂gΩ(c)/∂c. Intuitively, this means that
gΩ(c) can be backpropagated through.

Since f is also differentiable with respect to the solution it is evaluating, we thus can optimize Eqn. 2
in an end-to-end manner using any gradient-based optimizer. That is, c(t + 1) = c(t) − α∂gΩ

∂c
∂f
∂x ,

where α is the learning rate. The procedure starts from a randomly initialized c(0) and converges at
a local optimal solution of c.

While Eqn. 2 is still nonlinear optimization and there is no guarantee about the quality of the final
solution c, we argue that optimizing Eqn. 2 is better than optimizing the original nonlinear cost
minx∈Ω f(x). Furthermore, while we cannot guarantee optimality, we are able to guarantee fea-
sibility by leveraging a linear combinatorial solver. We note that SurCo is somewhat limited to
problems without interior integer solutions, since the linear surrogate cannot yield interior points.
However, many real-world settings, such as our two domains, consider making binary decisions
which lack interior integer points. Intuitively, instead of optimizing directly over the solution space
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x, we optimize over the space of surrogate costs c, and delegate the combinatorial feasibility require-
ments of the nonlinear problem to SoTA combinatorial solvers. Compared to naive approaches that
directly optimize f(x) via general optimization techniques, our method readily handles complex
constraints of the feasible regions, and thus makes the optimization procedure easier. Furthermore,
it also helps escape from local minima, thanks to the embedded search component of existing com-
binatorial solvers (e.g., branch-and-bound (Land & Doig, 2010) in MILP solvers). As we see in the
experiments, this is particularly important when the problem becomes large-scale with more local
optima. This approach works well when we are optimizing individual instances and may not have
access to offline training data or the training time is cost-prohibitive.

3.2 SURCO-PRIOR : OFFLINE SURROGATE TRAINING

We now discuss more general cases, where the nonlinear loss function f(x;y) represents a family of
cost function to be optimized. Here the description of each problem instance y is drawn from a fixed
problem distributionD. We then ask the following question: how can we find solutions to a batch of
training instancesDtrain := {yi}Ni=1, gain useful knowledge of the cost functions, and leverage such
knowledge in held-out evaluation problem instancesDeval to accelerate the optimization procedure?

Following standard machine learning practice, let us first consider a naive two-stage approach. In
the data collection stage, we simply apply SurCo-zero(Eqn. 2) to every yi separately to get N
surrogate cost vectors ci. Then in the training stage, we train a regressor ĉ = ĉ(y;θ) on the dataset
{(yi, ci)} to learn to predict the surrogate costs from the problem features. Here ĉ is a parameterized
model (e.g., a deep network) with the parameters θ to be learned. This learned regressor ĉ(y;θ) can
thus be used for a held-out problem instance y′ to directly predict c′ = ĉ(y′;θ) and get the solution
x′ = gΩ(y′)(c

′) via surrogate optimizer (SO).

While this approach is simple, the N optimization procedures in the data collection stage are inde-
pendent of each other, and can lead to excessive number of calls to f that are not helpful. E.g., if
an optimization procedure converges to a bad local solution, then even if it achieves perfect conver-
gence, which requires a lot of function calls, the resulting data point is still of low quality.

This motivates us to add a regularizer for the optimization:

(SurCo-prior-λ) : min
θ,{ci}

Lprior(θ, {ci};λ) :=
N∑
i=1

f(gΩ(yi)(ci);yi)+λ∥ci−ĉ(yi;θ))∥2 (4)

Note that when λ = 0, it reduces to N independent optimizations, while when λ > 0, the surrogate
costs {ci} interact with each other. The intuition is that, the regressor ĉ(y;θ), even if not trained
fully, can be very useful to guide ci rather than just using its randomly initialized version. Further-
more, if ĉ is a mapping to global optimal solution of x, then it will pull the solutions out of local
optima to re-target towards global ones, even when starting from poor initialization, yielding fast
convergence and better final solutions for individual optimization instances.

A special case is when λ→ +∞, we arrive at a novel objective that jointly learns the surrogate cost
function, given the training set Dtrain:

(SurCo-prior) : min
θ
Lprior(θ) :=

N∑
i=1

f(gΩ(yi)(ĉ(yi;θ));yi) (5)

This approach is useful when the goal is to find high-quality solutions for unseen instances of a
problem distribution when the upfront cost of offline training is acceptable but the cost of optimizing
on-the-fly is prohibitive. Here, we require access to a distribution of training optimization problems,
but at test time only require the feasible region and not the nonlinear objective.

3.3 SURCO-HYBRID : FINE-TUNING A PREDICTED SURROGATE

Naturally, we consider SurCo-hybrid, a hybrid approach which initializes the coefficients of
SurCo-zero with the coefficients predicted from SurCo-prior which was trained on offline
data. This allows SurCo-hybrid to start out optimization from an initial prediction which has
good performance for the distribution at large but which is then fine-tuned for the specific instance.
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Formally, we initialize c(0) = ĉ(yi;θ) and then continue optimizing c based on the update from
SurCo-zero. This approach is geared towards optimizing the nonlinear objective using a high-
quality initial prediction that is based on the problem distribution and then fine-tuning the objective
coefficients based on the specific problem instance at test time. Here, high performance comes at
the runtime cost of both having to train offline on a problem distribution as well as performing
fine-tuning steps on-the-fly. However, this additional cost is often worthwhile when the main goal
is to find the best possible solutions by leveraging synthesized domain knowledge in combination
with individual problem instances as arises in chip design (Mirhoseini et al., 2021) and compiler
optimization (Zhou et al., 2020).

3.4 COST REGRESSION VERSUS SOLUTION REGRESSION: A THEORETICAL ANALYSIS

We also want to compare SurCo with the previous works on ML optimizers (Ban & Rudin, 2019)
that try to directly learn the mapping from problem description y to the solution, i.e. solution
regression. Given a set of training instancesDtrain from distributionD, these approaches first collect
a set of training samples Ddirect := {y,x∗(y) : y ∈ Dtrain}, and then learn a function x̃∗(y) to fit
the training samples.

While this is conceptually simple, there exist fundamental difficulties to learn such a direct mapping.
First, as mentioned above, it can be quite expensive to obtain the optimal solution x∗(y) due to the
nature of nonlinear optimization and the query cost. Second, even if a perfect dataset Ddirect is
accessible, the number of samples needed to learn a mapping to directly predict x∗(y) is related to
the Lipschitz constant L of the mapping, and for a direct mapping, L can be very large.

3.4.1 LIPSCHITZ CONSTANT AND SAMPLE COMPLEXITY

Let us first consider the sample complexity of solution regression methods as described above.

Formally, consider fitting any function ϕ : Rd ⊇ Y 7→ Rm with a dataset {yi,ϕi}. Here Y is a
compact region with finite volume vol(Y ). The Lipschitz constant L is the smallest number so that
∥ϕ(y1) − ϕ(y2)∥2 ≤ L∥y1 − y2∥2 holds for any y1,y2 ∈ Y . The following theorem shows that
if the dataset covers the space Y , we could achieve high accuracy prediction: ∥ϕ(y)− ϕ̂(y)∥2 ≤ ϵ
for any y ∈ Y .
Definition 3.1 (δ-cover). A datasetDdirect := {(yi,ϕi)}Ni=1 δ-covers the space Y , if for any y ∈ Y ,
there exists at least one yi so that ∥y − yi∥2 ≤ δ.

Lemma 3.1 (Sufficient condition of prediction with ϵ-accuracy). If the dataset Ddirect (ϵ/L)-cover
Y , then for any y ∈ Y , a 1-nearest-neighbor regressor ϕ̂ leads to ∥ϕ̂(y)− ϕ(y)∥2 ≤ ϵ.

Lemma 3.2 (Lower bound of sample complexity for ϵ/L-cover). To achieve ϵ/L-cover of Y , the size
of the training set N ≥ N0(ϵ) :=

vol(Y )
vol0

(
L
ϵ

)d
, where vol0 is the volume of unit ball in d-dimension.

Please find all proofs in the Appendix. While we do not rule out a more advanced regressor than 1-
nearest-neighbor that leads to better sample complexity, the lemmas demonstrate that the Lipschitz
constant L plays an important role in sample complexity.

3.4.2 DIFFERENCE BETWEEN COST AND SOLUTION REGRESSION

In the following we will show that in certain cases, the direct prediction y 7→ x∗(y) could have an
infinitely large Lipschitz constant L.

To show this, let us consider a general mapping ϕ : Rd ⊇ Y 7→ Rm. Let ϕ(Y ) be the image of Y
under mapping ϕ and κ(Y ) be the number of connected components for region Y .
Theorem 3.1 (A case of infinite Lipschitz constant). If the minimal distance dmin for different con-
nected components of ϕ(Y ) is strictly positive, and κ(ϕ(Y )) > κ(Y ), then the Lipschitz constant
of the mapping ϕ is infinite.

Note that this theorem applies to a wide variety of combinatorial optimization problems. For ex-
ample, when Y is a connected region and the optimization problem can be formulated as an integer
program, the optimal solution set x∗(Y ) := {x∗(y) : y ∈ Y } is a discrete set of integral vertices,
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so the theorem applies. Combined with analysis in Sec. 3.4.1, we know the mapping y 7→ x∗(y) is
hard to learn even with a lot of samples.

On the other hand, the mapping y 7→ c(y) can avoid too many connected components in its image
c(Y ), by connecting disjoint components of x∗(Y ) together.

4 EMPIRICAL EVALUATION

We evaluate the two variants of SurCo on two real-world settings, embedding table sharding and
inverse photonic design. Both have industrial application. Each setting consists of a family of
problem instances with varying feasible region and nonlinear objective function.

4.1 EMBEDDING TABLE SHARDING
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Figure 2: Table placement plan latency (a) and solver runtime (b). We evaluate SurCo against Dreamshard
(Zha et al., 2022b) a SoTA offline RL sharding tool, a domain-heuristic of assigning tables based on dimension,
and a greedy heuristic based on the estimated runtime increase. Striped approaches require pre-training.

The task of sharding embedding tables arises in the deployment of large scale neural network mod-
els which operate over both sparse and dense inputs (e.g., in recommendation systems (Zha et al.,
2022a;b; Sethi et al., 2022)). Given T embedding tables and D homogeneous devices, the goal is
to distribute the tables among the devices such that no device’s memory limit is exceeded, while
the tables are processed efficiently. Formally, let xt,d be the binary variable indicating whether ta-
ble t is assigned to device d, and x := {xt,d} ∈ {0, 1}TD be the collection of the variables. The
optimization problem is:

min
x

f(x;y) s.t. x ∈ Ω(y) :=

{
x : ∀t,

∑
t

xt,d = 1, ∀d,
∑
t

mtxt,d ≤M

}
(6)

Here the problem description y includes table memory usage {mt}, and capacity M of each device.∑
d xt,d = 1 means each table t should be assigned to exactly one device, and

∑
t mtxt,d ≤ M

means the memory consumption at each device d should not exceed its capacity. The nonlinear
cost function f(x;y) is the latency, i.e., the runtime of the longest-running device. Due to shared
computation (e.g., batching) among the group of assigned tables, and communication costs across
devices, the objective is highly nonlinear. f(x;y) is well-approximated by a sharding plan runtime
estimator proposed by Dreamshard (Zha et al., 2022b).

SurCo learns to predict T ×D surrogate cost ĉt,d, one for each potential table-device assignment.
During training, the gradients through combinatorial solver ∂g/∂c are computed via CVXPYLayers
(Agrawal et al., 2019a) and the integrality constraints are relaxed. We found that in practice, we
obtained solutions that were mostly integral in that only one table on any given device was fractional.
At test time we solve for the integer solution using SCIP (Achterberg, 2009).

Settings. We evaluate SurCo on the publicly available Deep Learning Recommendation Model
(DLRM) dataset (Naumov et al., 2019). We consider 6 settings: 10, 20, 30, 40, 50, and 60 tables
are placed to 4 devices with each GPU device having a 5GB memory limit. Each setting has 100
problem instances (50 training and 50 test).
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Baselines. For SurCo-zero baselines, we use Greedy that greedily allocates tables to devices
while observing memory limits according to the predicted latency f , and Domain-Heuristic,
the domain-expert algorithm of allocating tables to balance the aggregate dimension (Zha et al.,
2022b). For SurCo-prior, we use Dreamshard, the SoTA embedding table sharding algorithm
that requires training an offline RL policy.

Results. Fig. 2, SurCo-zero finds lower latency sharding plans than the baselines, while it takes
slightly longer than Domain-Heuristic and DreamShard due to taking optimization steps rather
than selecting based on a heuristic feature or reinforcement learned policy. SurCo-prior obtains
lower latency solutions in about the same time as DreamShard with a slight increase in overhead
due to using SCIP (Achterberg, 2009), a branch and bound MILP solver. Lastly, SurCo-hybrid
obtains the best solutions in terms of solution quality and has runtime comparable to SurCo-zero
since at test time it performs similar operations. In smaller problem instances (T = 10 to T =
40), SurCo-prior obtains better quality solutions than its impromptu counterpart, SurCo-zero,
likely due to training on a variety of examples and being able to better escape local optima in any
given problem instance as might be the case with the impromptu solver. However, as the problem
size increases and more tables are available for placement, SurCo-zero gives better performance
by optimizing for the test instances in question as opposed to SurCo-prior which only uses
training data to obtain surrogate costs. Using SurCo-hybrid, we are able to obtain the best quality
solutions but incur the upfront cost of pretraining and the deployment-time cost of optimizing the
coefficients on-the-fly.

4.2 INVERSE PHOTONIC DESIGN

(a) (b)

Figure 3: (a) The solution loss (% of failed instances when the design loss is not 0), and (b) test time solver
runtime in log scale. For both, lower is better. We compare against the pass-through gradient approach proposed
in Schubert et al. (2022). We observe that SurCo-prior achieves similar success rates to the previous ap-
proach Pass-through with a substantially improved runtime. Additionally, SurCo-zero runs comparably
or faster, while finding more valid solutions than Pass-through. SurCo-hybrid obtains valid solutions
most often and is faster than SurCo-zero at the expense of pretraining. Striped approaches use pretraining.

Photonic devices play an important role in high-speed communication (Marpaung et al., 2019),
quantum computing (Arrazola et al., 2021), and machine learning hardware acceleration (Wetzstein
et al., 2020). The photonic components can be formulated as a binary 2D grid, with each cell being
filled or void. There are constraints for binary patterns: only those that can be drawn by a physical
brush instrument with certain cross shape can be manufactured.

It remains challenging to find designs that are manufacturable and satisfy design specifications (e.g.
beam splitting). An example solution developed by SurCo is shown in Figure 4b: coming from the
top, beams are routed to the left or right, depending on wavelength. The solution is also manufac-
turable: a 3-by-3 brush cross can fit in all filled and void space.

Given the design, existing work (Hughes et al., 2019) enables differentiation of the design misspec-
ification cost, evaluated as how far off the transmission of the wavelengths of interest is from the
desired locations, with zero design loss meaning that the specification is satisfied. Researchers also
develop a standard benchmark of inverse photonic design problems (Schubert et al., 2022).
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Settings. We compare our approaches against the “Pass-Through” method (Schubert et al., 2022)
on randomly generated instances of the four types of problems in Schubert et al. (2022): Waveguide
Bend, Mode Converter, Wavelengths Division Multiplexer, and Beam Splitter. We generate 50
instances in each setting (25 training/25 test). Further generation details are in the appendix. We
evaluated several algorithms described in the appendix, such as genetic algorithms and derivative-
free optimization, which failed to find physically feasible solutions. We consider two wavelengths
(1270nm/1290nm), and optimize at a resolution of 40nm, visualizing the test results in Fig. 3.

Results. Fig. 3, SurCo-zero consistently finds as many or more valid devices compared to the
Pass-Through baseline (Schubert et al., 2022). Additionally, since the on-the-fly solvers stop
when they either find a valid solution, or reach a maximum of 200 steps, the runtime of SurCo-
zero is slightly lower than the Pass-Through baseline. SurCo-prior obtains similar success
rates as Pass-Through while taking two orders of magnitude less time as it does not require
expensive impromptu optimization, making SurCo-prior a promising approach for large-scale
settings or when solving many slightly-varied instances. Lastly, SurCo-hybrid performs best
in terms of solution loss, finding valid solutions more often than the other approaches. It also
takes less runtime than the other on-the-fly approaches since it is able to reach valid solutions faster,
although it still requires optimization on-the-fly so it takes longer than SurCo-prior. We visualize
the convergence of impromptu solvers in Fig. 4a where SurCo-zero has smoother and faster
convergence compared to the Pass-through approach.
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Figure 4: Inverse photonic design convergence for a single instance (Schubert et al., 2022). SurCo-
zero smoothly lowers the loss while the pass-through baseline converges noisily. Also, SurCo-
hybrid starts out with a high-quality solution and fine-tunes until an optimal solution is reached.
We also visualize the SurCo-zero solution with magnitudes of the two wavelengths of interest
which we successfully route from the input at the top to the two different waveguides at the bottom.

5 RELATED WORK

Differentiable Optimization Previous work differentiated through several optimization problems,
calculating how changes in input parameters impact the optimal solution. Initially, a differentiable
convex quadratic programming solver called OptNet (Amos & Kolter, 2017) proposed to implicitly
differentiate the optimal solution with respect to input parameters through the KKT optimality con-
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ditions, a set of linear equations that determined the optimal solution. Following this, researchers
differentiated through linear programs (Wilder et al., 2019a), submodular optimization problems
(Djolonga & Krause, 2017; Wilder et al., 2019a), cone programs (Agrawal et al., 2019a;b), MaxSAT
(Wang et al., 2019), Mixed Integer Linear Programming (Ferber et al., 2020; Mandi et al., 2020),
Integer Linear Programming (Mandi et al., 2020), dynamic programming solvers Demirovic et al.
(2020), blackbox discrete linear optimizers (Pogančić et al., 2019; Rolı́nek et al., 2020a;b), maxi-
mum likelihood estimation (Niepert et al., 2021), kmeans clustering (Wilder et al., 2019b), knapsack
(Guler et al., 2022; Demirović et al., 2019), the cross-entropy method (Amos & Yarats, 2020), and
SVM training (Lee et al., 2019). Additionally, Wang et al. (2020a) learned to linearly combine LP
variables. SurCo can use these differentiable surrogates based on the problem domain.

Task Based Learning Task-based learning solves distributions of linear or quadratic optimization
problems with the true objective hidden at test time but available for training (Elmachtoub & Grigas,
2022; Donti et al., 2017; El Balghiti et al., 2019; Liu & Grigas, 2021; Hu et al., 2022). (Donti et al.,
2021) predicts and corrects solutions for continuous nonlinear optimization. Bayesian optimization
(BO) (Shahriari et al., 2016), optimizes blackbox functions by approximating the objective with a
learned model that can be optimized over. Recent work optimizes individual instances over discrete
spaces like hypercubes (Baptista & Poloczek, 2018), graphs (Deshwal et al., 2021), and MILP (Pa-
palexopoulos et al., 2022). Data reuse from previous runs is proposed to optimize multiple correlated
instances (Swersky et al., 2013; Feurer et al., 2018). However, the surrogate Gaussian Process (GP)
models are memory and time intensive in high-dimensional settings. Recent work has addressed
GP scalability via gradient updates (Ament & Gomes, 2022); however, it is unclear whether GP can
scale in conjunction with combinatorial solvers. Machine learning is also used to guide combina-
torial algorithms. Several approaches produce combinatorial solutions (Zhang & Dietterich, 1995;
Khalil et al., 2017; Kool et al., 2018; Nazari et al., 2018; Zha et al., 2022a;b). Here, approaches
are limited to simple feasible regions by iteratively building solutions for problems like routing, as-
signment, or covering. However, these approaches fail to handle more complex constraints. Other
approaches set parameters that improve solver runtime (Khalil et al., 2016; Bengio et al., 2021).

Learning Latent Space for Optimization As we learn latent linear objectives to optimize nonlin-
ear functions, other approaches learn latent embeddings for faster solving. Faloutsos & Lin (1995)
proposed FastMap, which learns latent object embeddings for efficient search. Variants of FastMap
are used in graph optimization and shortest path (Cohen et al., 2018; Hu et al., 2022; Li et al., 2019).
Wang et al. (2020b; 2021a); Yang et al. (2021); Zhao et al. (2022) use monte carlo tree search to
perform single and multi-objective blackbox optimization by learning to split the search space.

Mixed Integer Nonlinear Programming (MINLP) SurCo-zero falls into the broad family of
MINLP solvers, optimizing nonlinear and nonconvex objectives over discrete linear feasible re-
gions. Specialized solvers handle many problem variants in the MINLP space (Burer & Letchford,
2012; Belotti et al., 2013); however, scalabliliy in the nonconvex setting is usually obtained by opti-
mization experts who rely on problem-specific solving techniques such as making piecewise linear
approximations, convexifying the objective, or exploiting special structure.

6 CONCLUSION

We introduced SurCo, a method for learning linear surrogates for combinatorial nonlinear opti-
mization problems. SurCo learns linear objective coefficients for a surrogate solver which results
in solutions that minimize the nonlinear loss via gradient descent. At its core, SurCo differenti-
ates through the surrogate solver which maps the predicted coefficients to a combinatorially feasible
solution, combining the flexibility of gradient-based optimization with the structure of combina-
torial solvers. We presented three variants of SurCo, SurCo-zero which optimizes individual
instances, SurCo-prior which trains a coefficient prediction model offline, and SurCo-hybrid
which fine-tunes the coefficients predicted by SurCo-prior on individual test instances. While
SurCo’s performance is somewhat limited to binary problems due to the lack of interior integer
points, we find that many real-world domains operate on binary decision variables. We evaluated
variants of SurCo on two domains against the state of the art approaches used in industry, obtaining
better solution quality for similar or better runtime in the embedding table sharding domain, and
quickly identifying viable photonic devices.
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A PROOFS

Lemma 3.1 (Sufficient condition of prediction with ϵ-accuracy). If the dataset Ddirect (ϵ/L)-cover
Y , then for any y ∈ Y , a 1-nearest-neighbor regressor ϕ̂ leads to ∥ϕ̂(y)− ϕ(y)∥2 ≤ ϵ.

Proof. Since the dataset is a ϵ/L-cover, for any y ∈ Y , there exists at least one yi so that ∥y −
yi∥2 ≤ ϵ/L. Let ynn be the nearest neighbor of y, and we have:

∥y − ynn∥2 ≤ ∥y − yi∥2 ≤ ϵ/L (7)

From the Lipschitz condition and the definition of 1-nearest-neighbor classifier (ϕ̂(y) = ϕ(ynn)),
we know that

∥ϕ(y)− ϕ̂(y)∥2 = ∥ϕ(y)− ϕ(ynn)∥2 ≤ L∥y − ynn∥2 ≤ ϵ (8)

Lemma 3.2 (Lower bound of sample complexity for ϵ/L-cover). To achieve ϵ/L-cover of Y , the size
of the training set N ≥ N0(ϵ) :=

vol(Y )
vol0

(
L
ϵ

)d
, where vol0 is the volume of unit ball in d-dimension.

Proof. We prove by contradiction. If N < N0(ϵ), then for each training sample (yi,ϕi), we create
a ball Bi := B (yi, ϵ/L). Since

vol

(
N⋃
i=1

Bi ∩ Y

)
≤ vol

(
N⋃
i=1

Bi

)
≤

N∑
i=1

vol(Bi) = Nvol0

( ϵ

L

)d
< vol(Y ) (9)

Therefore, there exists at least one y ∈ Y so that y /∈ Bi for any 1 ≤ i ≤ N . This means that y is
not ϵ/L-covered.

Theorem 3.1 (A case of infinite Lipschitz constant). If the minimal distance dmin for different con-
nected components of ϕ(Y ) is strictly positive, and κ(ϕ(Y )) > κ(Y ), then the Lipschitz constant
of the mapping ϕ is infinite.

Proof. Let R1, R2, . . . , RK be the K = κ(ϕ(Y )) connected components of ϕ(Y ), and
Y1, Y2, . . . , YJ be the J = κ(Y ) connected components of Y . From the condition, we know that
mink ̸=k′ dist(Rk, Rk′) = dmin > 0.

We have Rk ∩ Rk′ = ∅ for k ̸= k′. Each Rk has a pre-image Sk := ϕ−1(Rk) ⊆ Y . These
pre-images {Sk}Kk=1 form a partition of Y since

• Sk ∩ Sk′ = ∅ for k ̸= k′ since any y ∈ Y cannot be mapped to more than one connected
components;

•
⋃K

k=1 Sk =
⋃K

k=1 ϕ
−1(Rk) = ϕ−1

(⋃K
k=1 Rk

)
= ϕ−1(ϕ(S)) = S.

Since K = κ(ϕ(Y )) > κ(Y ), by pigeonhole principle, there exists one Yj that contains at least part
of the two pre-images Sk and Sk′ with k ̸= k′. This means that

Sk ∩ Yj ̸= ∅, Sk′ ∩ Yj ̸= ∅ (10)

Then we pick y ∈ Sk ∩ Yj and y′ ∈ Sk′ ∩ Yj . Since y,y′ ∈ Yj and Yj is a connected component,
there exists a continuous path γ : [0, 1] 7→ Yj so that γ(0) = y and γ(1) = y′. Therefore, we have
ϕ(γ(0)) ∈ Rk and ϕ(γ(1)) ∈ Rk′ . Let t0 := sup{t : t ∈ [0, 1],ϕ(γ(t)) ∈ Rk}, then 0 ≤ t0 < 1.
For any sufficiently small ϵ > 0, we have:

• By the definition of sup, we know there exists t0 − ϵ ≤ t′ ≤ t0 so that ϕ(γ(t′)) ∈ Rk.

• Picking t′′ = t0 + ϵ < 1, then ϕ(γ(t′′)) ∈ Rk′′ with some k′′ ̸= k.
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On the other hand, by continuity of the curve γ, there exists a constant C(t0) so that ∥γ(t′) −
γ(t′′)∥2 ≤ C(t0)∥t′ − t′′∥2 ≤ 2C(t0)ϵ. Then we have

L = max
y,y′∈Y

∥ϕ(y)− ϕ(y′)∥2
∥y − y′∥2

≥ ∥ϕ(γ(t
′))− ϕ(γ(t′′))∥2

∥γ(t′)− γ(t′′)∥2
≥ dmin

2C(t0)ϵ
→ +∞ (11)

B EXPERIMENT DETAILS

B.1 SETUPS

Experiments are performed on a cluster of identical machines, each with 4 Nvidia A100 GPUs
and 32 CPU cores, with 1T of RAM and 40GB of GPU memory. Additionally, we perform all
operations in Python (Van Rossum & Drake, 2009) using Pytorch (Paszke et al., 2019). For em-
bedding table placement, the nonlinear cost estimator is trained for 200 iterations and the offline-
trained models of Dreamshard and SurCo-prior are trained against the pretrained cost esti-
mator for 200 iterations. The DLRM Dataset Naumov et al. (2019) is available at https:
//github.com/facebookresearch/dlrm_datasets, and the dreamshard (Zha et al.,
2022b) code is available at https://github.com/daochenzha/dreamshard. Additional
details on dreamshard’s model architecture and features can be obtained in the paper and codebase.
Training time for the networks used in SurCo-prior and SurCo-hybrid are on average 8 hours
for the inverse photonic design settings and 6, 21, 39, 44, 50, 63 minutes for DLRM 10, 20, 30, 40,
50, 60 settings respectively.

B.2 NETWORK ARCHITECTURES

B.2.1 EMBEDDING TABLE SHARDING

The table features are the same used in Zha et al. (2022b), and sinusoidal positional encod-
ing Vaswani et al. (2017) is used as device features so that the learning model is able to break
symmetries between the different tables and effectively group them onto homogeneous devices. The
table and device features are concatenated and then fed into Dreamshard’s initial fully-connected
table encoding module to obtain scalar predictions ĉt,d for each desired objective coefficient. The
architecture is trained with the Adam optimizer with learning rate 0.0005.

B.2.2 INVERSE PHOTONIC DESIGN

Network architectures. The input design specification (a 2D image) is passed through a 3 layer
convolutional neural network with ReLU activations and a final layer composed of filtering with the
known brush shape. Then a tanh activation is used to obtain surrogate coefficients ĉ, one component
for each binary input variable. The architecture is trained with the Adam optimizer with learning
rate 0.001.

This is motivated by previous work (Schubert et al., 2022) that also uses the fixed brush shape filter
and tanh operation to transform the latent parameters into a continuous solution that is projected
onto the space of physically feasible solutions.

In each setting, optimization is done on a binary grid of different sizes to meet fabrication constraints,
namely that a 3 by 3 cross must fit inside each fixed and void location. In the beam splitter the design
is an 80× 60 grid, in mode converter it is a 40× 40 grid, in waveguide bend it is a 40× 40 grid, in
wavelength division multiplexer it is an 80× 80 grid.

Previous work formulated the projection as finding a discrete solution that minimized the dot prod-
uct of the input continuous solution and proposed discrete solution. The authors then updated the
continuous solution by computing gradients of the loss with respect to the discrete solution and us-
ing pass-through gradients to update the continuous solution. By comparison, our approach treats
the projection as an optimization problem and updates the objective coefficients so that the resulting
projected solution moves in the direction of the desired gradient.
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Task Randomization
mode converter randomize the right and left waveguide width
bend setting randomize the waveguide width and length
beam splitter randomize the waveguide separation, width and length
wavelength division multiplexer randomize the input and output waveguide locations

Table 1: Task randomization of 4 different tasks in inverse photonic design.

To compute the gradient of this blackbox projection solver, we leverage the approach suggested by
Pogančić et al. (2019) which calls the solver twice, once with the original coefficients, and again
with coefficients that are perturbed in the direction of the incoming solution gradient as being an
“improved solution”. The gradient with respect to the input coefficients are then the difference
between the “improved solution” and the solution for the current objective coefficients.

C PSEUDOCODE

Here is the pseudocode for the different variants of our algorithm. Each of these leverage a differen-
tiable optimization solver to differentiate through the surrogate optimization problem.

Algorithm 1 SurCo-zero

Input: Ω, y, f
1: c← init surrogate coefs(y)
2: while not converged do
3: x← argminx∈Ω(y) c

⊤x
4: loss← f(x;y)
5: c←grad update(c,∇closs)
6: end while
7: return x

Algorithm 2 SurCo-prior Training

Input: Ω, Dtrain = {yi}Ni=1, f
1: θ ← init surrogate model()
2: while not converged do
3: Sample batch B = {yi}ki ∼ Dtrain

4: for y ∈ B do
5: ĉ← ĉ(y; θ)
6: x← argminx∈Ω(y) c

⊤x
7: loss += f(x;y)
8: end for
9: θ ←grad update(θ,∇θloss)

10: end while

Algorithm 3 SurCo-prior Deployment

Input: Ω, Dtrain = {yi}Ni=1, f , ytest
1: θ ← train SurCo-prior(Ω,Dtrain, f)
2: c← ĉ(y; θ)
3: x← argminx∈Ω(y) c

⊤x
4: return x

Algorithm 4 SurCo-hybrid

Input: Ω, Dtrain = {yi}Ni=1, f , ytest
1: θ ← train SurCo-prior(Ω,Dtrain, f)
2: c← ĉ(y; θ)
3: while not converged do
4: x← argminx∈Ω(y) c

⊤x
5: loss← f(x;y)
6: c←grad update(c,∇closs)
7: end while
8: return x

D ADDITIONAL FAILED BASELINES

SOGA - Single Objective Genetic Algorithm Using PyGAD (Gad, 2021), we attempted several
approaches for both table sharding and inverse photonics settings. While we were able to obtain
feasible table sharding solutions, they underperformed the greedy baseline by 20%. Additionally,
they were unable to find physically feasible inverse photonics solutions. We varied between random,
swap, inversion, and scramble mutations and used all parent selection methods but were unable to
find viable solutions.
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DFL - A Derivative-Free Library We could not easily integrate DFLGEN (Liuzzi et al., 2015)
into our pipelines since it operates in fortran and we needed to specify the feasible region with
python in the ceviche challenges. DFLINT works in python but took more than 24 hours to run on
individual instances which reached a timeout limit. We found that the much longer runtime made
this inapplicable for the domains of interest.

Nevergrad We enforced integrality in Nevergrad (Rapin & Teytaud, 2018) using choice variables
which selected between 0 and 1. This approach was unable to find feasible solutions for inverse
photonics in less than 10 hours. For table sharding we obtained solutions by using a choice variable
for each table, selecting one of the available devices. This approach was not able to outperform the
greedy baseline and took longer time so it was strictly dominated by the greedy approach.
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