
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COMADICE: OFFLINE COOPERATIVE MULTI-AGENT
REINFORCEMENT LEARNING WITH STATIONARY DIS-
TRIBUTION SHIFT REGULARIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline reinforcement learning (RL) has garnered significant attention for its ability
to learn effective policies from pre-collected datasets without the need for further
environmental interactions. While promising results have been demonstrated in
single-agent settings, offline multi-agent reinforcement learning (MARL) presents
additional challenges due to the large joint state-action space and the complexity
of multi-agent behaviors. A key issue in offline RL is the distributional shift,
which arises when the target policy being optimized deviates from the behavior
policy that generated the data. This problem is exacerbated in MARL due to the
interdependence between agents’ local policies and the expansive joint state-action
space. Prior approaches have primarily addressed this challenge by incorporating
regularization in the space of either Q-functions or policies. In this work, we
introduce a regularizer in the space of stationary distributions to better handle
distributional shift. Our algorithm, ComaDICE, offers a principled framework for
offline cooperative MARL by incorporating stationary distribution regularization
for the global learning policy, complemented by a carefully structured multi-
agent value decomposition strategy to facilitate multi-agent training. Through
extensive experiments on the multi-agent MuJoCo and StarCraft II benchmarks,
we demonstrate that ComaDICE achieves superior performance compared to state-
of-the-art offline MARL methods across nearly all tasks.

1 INTRODUCTION

Over the years, deep RL has achieved remarkable success in various decision-making tasks (Levine
et al., 2016; Silver et al., 2017; Kalashnikov et al., 2018; Haydari & Yılmaz, 2020). However, a
significant limitation of deep RL is its need for millions of interactions with the environment to gather
experiences for policy improvement. This process can be both costly and risky, especially in real-
world applications like robotics and healthcare. To address this challenge, offline RL has emerged,
enabling policy learning based solely on pre-collected demonstrations (Levine et al., 2020). Despite
this advancement, offline RL faces a critical issue: the distribution shift between the offline dataset and
the learned policy (Kumar et al., 2019). This distribution shift complicates value estimation for unseen
states and actions during policy evaluation, resulting in extrapolation errors where out-of-distribution
(OOD) state-action pairs are assigned unrealistic values (Fujimoto et al., 2018).

To tackle OOD actions, many existing works impose action-level constraints, either implicitly by
regulating the learned value functions or explicitly through distance or divergence penalties (Fujimoto
et al., 2019; Kumar et al., 2019; Wu et al., 2019; Peng et al., 2019; Fujimoto & Gu, 2021; Xu et al.,
2021). Only a few recent studies have addressed both OOD actions and states using state-action-level
behavior constraints (Li et al., 2022; Zhang et al., 2022; Lee et al., 2021; 2022; Mao et al., 2024). In
particular, there is an important line of work on DIstribution Correction Estimation (DICE) (Nachum
& Dai, 2020) that constrains the distance in terms of the joint state-action occupancy measure between
the learning policy and the offline policy. These DICE-based methods have demonstrated impressive
performance results on the D4RL benchmarks (Lee et al., 2021; 2022; Mao et al., 2024).

It is important to note that that all the aforementioned offline RL approaches primarily focus on the
single-agent setting. While multi-agent setting is prevalent in many real-world sequential decision-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

making tasks, offline MARL remains a relatively under-explored area. The multi-agent setting poses
significantly greater challenges due to the large joint state-action space, which expands exponentially
with the number of agents, as well as the inter-dependencies among the local policies of different
agents. As a result, the offline data distribution can become quite sparse in these high-dimensional
joint action spaces, leading to an increased number of OOD state-action pairs and exacerbating
extrapolation errors. A few recent studies have sought to address the negative effects of sparse data
distribution in offline MARL by adapting the well-known centralized training decentralized execution
(CTDE) paradigm from online MARL (Oliehoek et al., 2008; Kraemer & Banerjee, 2016), enabling
data-related regularization at the individual agent level. Notably, some of these works (Pan et al.,
2022; Shao et al., 2024; Wang et al., 2022b) extend popular offline single-agent RL algorithms, such
as CQL (Kumar et al., 2020) and SQL/EQL (Xu et al., 2023), within the CTDE framework.

In our work, we focus on addressing the aforementioned challenges in offline cooperative MARL.
In particular, we follow the DICE approach to address both OOD states and actions, motivated by
remarkable performance of recent DICE-based methods in offline single-agent RL. Similar to previous
works in offline MARL, we adopt the CTDE framework to handle exponential joint state-action
spaces in the multi-agent setting. We remark that extending the DICE approach under this CTDE
framework is not straightforward given the complex objective of DICE that involves the f-divergence
in stationary distribution between the learning joint policy and the behavior policy. Therefore, the
value decomposition in CTDE needs to be carefully designed to ensure the consistency in optimality
between the global and local policies. In particular, we provide the following main contributions:

• We propose ComaDICE, a new offline MARL algorithm that integrates DICE with a carefully
designed value decomposition strategy. In ComaDICE, under the CTDE framework, we
decompose both the global value function νtot and the global advantage functions Atotν ,
rather than using Q-functions as in previous MARL works. This unique factorization
approach allows us to theoretically demonstrate that the global learning objective in DICE
is convex in local values, provided that the mixing network used in the value decomposition
employs non-negative weights and convex activation functions. This significant finding
ensures that our decomposition strategy promotes an efficient and stable training process.

• Building on our decomposition strategy, we demonstrate that finding an optimal global
policy can be divided into multiple sub-problems, each aims to identify a local optimal
policy for an individual agent. We provide a theoretical proof that the global optimal policy
is, in fact, equivalent to the product of the local policies derived from these sub-problems.

• Finally, we conduct extensive experiments to evaluate the performance of our algorithm,
ComaDICE, in complex MARL environments, including: multi-agent StarCraft II (i.e.,
SMACv1 (Samvelyan et al., 2019), SMACv2 (Ellis et al., 2022)) and multi-agent Mu-
joco (de Witt et al., 2020) benchmarks. Our empirical results show that our ComaDICE
outperforms several strong baselines in all these benchmarks.

2 RELATED WORK

Offline Reinforcement Learning (offline RL). Offline RL focuses on learning policies from
pre-collected datasets without any further interactions with the environment (Levine et al., 2020;
Prudencio et al., 2023). A significant challenge in offline RL is the issue of distribution shift,
where unseen actions and states may arise during training and execution, leading to inaccurate
policy evaluations and suboptimal outcomes. Consequently, there is a substantial body of literature
addressing this challenge through various approaches (Prudencio et al., 2023). In particular, some
studies impose explicit or implicit policy constraints to ensure that the learned policy remains close
to the behavioral policy (Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019; Kostrikov et al.,
2021; Peng et al., 2019; Nair et al., 2020; Fujimoto & Gu, 2021; Xu et al., 2021; Cheng et al., 2024; Li
et al., 2023). Others incorporate regularization terms into the learning objectives to mitigate the value
overestimation on OOD actions (Kumar et al., 2020; Kostrikov et al., 2021; Xu et al., 2022c; Niu et al.,
2022; Xu et al., 2023; Wang et al., 2022b). Uncertainty-based offline RL methods seek to balance
conservative approaches with naive off-policy RL techniques, relying on estimates of model, value,
or policy uncertainty (Agarwal et al., 2020; An et al., 2021; Bai et al., 2022). Offline model-based
algorithms focus on conservatively estimating the transition dynamics and reward functions based on
the pre-collected datasets (Kidambi et al., 2020; Yu et al., 2020; Matsushima et al., 2020; Yu et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2021). Some other methods impose action-level regularization through imitation learning techniques
(Xu et al., 2022b; Chen et al., 2020; Zhang et al., 2023; Zheng et al., 2024; Brandfonbrener et al.,
2021; Xu et al., 2022a). Finally, while a majority of previous works target OOD actions only, there
are a few recent works attempt to address both OOD states and actions (Li et al., 2022; Zhang et al.,
2022; Lee et al., 2021; 2022; Sikchi et al., 2023; Mao et al., 2024). Our work on offline MARL follow
the DICE-based approach, as motivated by compelling performance of DICE-based algorithms in
single-agent settings (Lee et al., 2021; 2022; Sikchi et al., 2023; Mao et al., 2024).

Offline Multi-agent Reinforcement Learning (offline MARL). While there is a substantial body
of literature on offline single-agent RL, research on offline MARL remains limited. Offline MARL
faces challenges from both distribution shift—characteristic of offline settings—and the exponentially
large joint action space typical of multi-agent environments. Recent studies have begun to merge
advanced methodologies from both offline RL and MARL to address these challenges (Yang et al.,
2021; Pan et al., 2022; Shao et al., 2024; Wang et al., 2022b) Specifically, these works employ local
policy regularization within the centralized training with decentralized execution (CTDE) framework
to mitigate distribution shift. The CTDE paradigm, well-established in online MARL, facilitates more
efficient and stable learning while allowing agents to operate in a decentralized manner (Oliehoek
et al., 2008; Kraemer & Banerjee, 2016). For instance, Yang et al. (2021) utilize importance sampling
to manage local policy learning on OOD samples. Both works by Pan et al. (2022) and Shao
et al. (2024) are built upon CQL (Kumar et al., 2020), a prominent offline RL algorithm for single-
agent scenarios. Matsunaga et al. (2023) developed AlberDICE, leveraging the Nash equilibrium
solution concept from game theory to iteratively update the best responses of individual agents. Both
AlberDICE and our method, ComaDICE, adopt the DICE framework to address the out-of-distribution
(OOD) issue. However, while AlberDICE proposes learning individual Lagrange multipliers (or
value functions) to obtain occupancy ratios, our ComaDICE algorithm learns a global value function
by mixing local functions, adhering to the well-established CTDE principle. This design enables
ComaDICE to better capture inter-agent relationships and improve credit assignment across local
agents. Finally, OMIGA (Wang et al., 2022b) establishes the equivalence between global and local
value regularization within a policy constraint framework, making it the current state-of-the-art
algorithm in offline MARL. The key difference between ComaDICE and OMIGA lies in their
respective approaches: OMIGA focuses on learning a global Q-function, whereas our algorithm (and
other methods in the DICE family) operates in the occupancy space, aiming to learn the ratio between
the occupancy of the learning policy and the behavior policy.

Beyond this main line of research, some studies formulate offline MARL as a sequence modeling
problem, employing supervised learning techniques to tackle the issue (Meng et al., 2023; Tseng
et al., 2022), while others adhere to decentralized approaches (Jiang & Lu, 2023).

3 PRELIMINARIES

Our work focuses on cooperative multi-agent RL, which can be modeled as a multi-agent Partially Ob-
servable Markov Decision Process (POMDP), defined by the tuple M = ⟨S,A, P, r,Z,O, n,N , γ⟩.
Here, n is number of agents, N = {1, . . . , n} is the set of agents, s ∈ S represents the true state
of the multi-agent environment, and A =

∏
i∈N Ai is the set of joint actions, where Ai is the set

of individual actions available to agent i ∈ N . At each time step, each agent i ∈ {1, 2, . . . , n}
selects an action ai ∈ Ai, forming a joint action a = (a1, a2, . . . , an) ∈ A. The transition dy-
namics P (s′|s, a) : S × A × S → [0, 1] describe the probability of transitioning to the next state
s′ when agents take an action a from the current state s. The discount factor γ ∈ [0, 1) represents
the weight given to future rewards. In a partially observable environment, each agent receives a
local observation si ∈ Oi based on the observation function Zi(s) : S → Oi, and we denote the
joint observation as o = (o1, o2, . . . , on). In cooperative MARL, all agents share a global reward
function r(s, a) : S × A → R. The goal of all agents is to learn a joint policy πππtot = {π1, . . . , πn}
that collectively maximize the expected discounted returns E(o,a)∼πππtot [

∑∞
t=0 γ

tr(st, at)]. In the
offline MARL setting, a pre-collected dataset D is obtained by sampling from a behavior policy
µtot = {µ1, . . . , µn}, and the policy learning is conducted soly based on D, with no interactions with
the environment. We also define the occupancy measure (or stationary distribution) as follows:

ρπππtot(s, a) = (1− γ)
∑∞

t=0
P (st = s, at = a)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

which represents distribution visiting the pair (observation, action) (st, a1) when following the joint
policy πππtot, where s0 ∼ P0, at ∼ πππtot(·|st) and st+1 ∼ P (·|st, at).

4 COMADICE: OFFLINE COOPERATIVE MULTI-AGENT RL WITH
STATIONARY DISTRIBUTION CORRECTION ESTIMATION

We consider an offline cooperative MARL problem where the goal is to optimize the expected
discounted joint reward. In this work, we focus on the DICE objective function Nachum & Dai
(2020); Lee et al. (2021), which incorporates a stationary distribution regularizer to capture the
divergence between the occupancy measures of the learning policy, πππtot, and the behavior policy,
µµµtot, formulated as follows:

maxπππtot
E(s,a)∼ρπππtot [r(s, a)]− αDf (ρπππtot ∥ ρµµµtot) (1)

where Df (ρπππtot ∥ ρµµµtot) = E(s,a)∼ρπππtot

[
f
(
ρπππtot

ρµµµtot

)]
is the f-divergence between the stationary dis-

tribution ρπππtot of the learning policy and ρµµµtot of the behavior policy. In this work, we consider f(·) to
be strictly convex and differentiable. The parameter α controls the trade-off between maximizing the
reward and penalizing deviation from the offline dataset’s distribution (i.e., penalizing distributional
shift). When α = 0, the problem becomes the standard offline MARL, where the objective is to find
a joint policy that maximizes the expected joint reward. On the other hand, when α≫ 1, the problem
shifts towards imitation learning, aiming to closely mimic the behavioral policy.

This DICE-based approach offers the advantage of better capturing the system dynamics inherent in
the offline data. Such stationary distributions, ρπππtot and ρµµµtot , however, are not directly available. We
will discuss how to estimate them in the next subsection.

4.1 CONSTRAINED OPTIMIZATION IN THE STATIONARY DISTRIBUTION SPACE

We first formulate the learning problem in Eq. 1 as a constrained optimization on the space of ρπππtot :

maxρπππtot E(s,a)∼ρπππtot [r(s, a)]− αDf (ρπππtot ∥ ρµµµtot) (2)

s.t.
∑

a′
ρπππtot(s, a′) = (1− γ)p0(s) + γ

∑
a′,s′

ρπππtot(s′, a′)P (s|a′, s′), ∀s ∈ S. (3)

When f is convex, (2-3) becomes a convex optimization problem, as it involves maximizing a concave
objective function subject to linear constraints. We now consider the Lagrange dual of (2-3):

L(νtot,ρπππtot) = E(s,a)∼ρπππtot [r(s, a)]− αE(s,a)∼ρµµµtot

[
f

(
ρπππtot(s, a)
ρµµµtot(s, a)

)]
−
∑

s
νtot(s)

(∑
a′
ρπππtot(s, a′)− (1− γ)p0(s)− γ

∑
a′,s′

ρπππtot(s′, a′)P (s|a′, s′)
)
, (4)

where νtot(s) is a Lagrange multiplier. Since (2-3) is a convex optimization problem, it is equivalent to
the following minimax problem over the spaces of νtot and ρπππtot : minνtot maxρπππtot {L(νtot, ρπππtot)} .
Furthermore, we observe that L(νtot, ρπππtot) is linear in νtot and concave in ρπππtot , so
the minimax problem has a saddle point, implying: minνtot maxρπππtot {L(νtot, ρπππtot)} =
maxρπππtot minνtot {L(νtot, ρπππtot)} . In a manner analogous to the single-agent case (Lee et al., 2021),
by defining wtotν (s, a) = ρπππtot (s,a)

ρµµµtot (s,a) , the Lagrange dual function can be simplified into the more
compact form (with detailed derivations are in the appendix):

L(νtot, wtot) = (1− γ)Es∼p0 [ν
tot(s)] + E(s,a)∼ρµµµtot

[
−αf

(
wtotν (s, a)

)
+ wtotν (s, a)Atotν (s, a)

]
,

where Atotν is an “advantage function” defined based on νtot as:

Atotν (s, a) = qtot(s, a)− νtot(s), (5)

with qtot(s, a) = r(Z(s), a)+γEs′∼P (·|s,a)[ν
tot(s′)]. It is important to note that νtot(s) and qtot(s, a)

can be interpreted as a value function and a Q function, respectively, arising from the decomposition
of the stationary distribution regularizer. We can now write the learning problem as follows:

minνtot maxwtot≥0 {L(νtot, wtot)}. (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

It can be observed that L(νtot, wtot) is linear in νtot and concave in wtot, which ensures well-
behaved properties in both the νtot- and wtot-spaces. Following the derivations in Lee et al. (2021) ,
a key feature of the above minimax problem is that the inner maximization problem has a closed-
form solution, which greatly simplifies the minimax problem, making it no longer adversarial. We
formalize this result as follows:
Proposition 4.1. The minimax problem in Eq. 6 is equivalent to minνtot

{
L̃(νtot)

}
, where

L̃(νtot) = (1− γ)Es∼p0 [ν
tot(s)] + E(s,a)∼ρµµµtot

[
αf∗

(
Atotν (s, a)

α

)]
.

Here, f∗ is convex conjugate of f , i.e., f∗(y) = supt≥0{ty−f(t)}. Moreover, if νtot is parameterized
by θ, the first-order derivative of L̃(νtot) w.r.t. θ is given as follows:

∇θL̃(νtot) = (1− γ)Es∼p0 [∇θν
tot(s)] + E(s,a)∼ρµµµtot

[
∇θA

tot
ν (s, a)wtot∗ν (s, a)

]
.

where wtot∗ν (s, a) = max{0, f ′−1
(Atotν (s, a)/α)}, with f ′−1(·) is the inverse function of the first-

order derivative of f .

Proposition 4.1 above is a direct extension of the formulations in Lee et al. (2021) developed for the
single-agent setting, differing only in the inclusion of the closed-form expression for the first-order
derivative of the objective function, L̃(νtot).

4.2 VALUE FACTORIZATION

Directly optimizing minνtot {L(νtot, wtot∗ν)} in multi-agent settings is generally impractical due to
the large state and action spaces. Therefore, we follow the idea of value decomposition in the well-
known CTDE framework in cooperative MARL to address this computational challenge. However, it
is not straightforward to extend the DICE approach within this CTDE framework due to the complex
objective of DICE, which involves the f-divergence between the learned joint policy and the behavior
policy in stationary distributions. Thus, it is crucial to carefully design the value decomposition in
CTDE to ensure optimality consistency between the global and local policies.

Specifically, we adopt a factorization approach that decomposes the value function νtot(s)
(or global Lagrange multipliers) into local values using mixing network architectures. Let
ννν(s) = {ν1(s1), . . . , νn(sn)} represent a collection of local “value functions” and let Aννν(s, a) =
{Ai(si, ai), i = 1, ..., n} represent a collection of local advantage functions. The local ad-
vantage functions are computed as Ai(si, ai) = qi(si, ai) − νi(si) for all i ∈ N , where
q(s, a) = {qi(si, ai), i = 1, ..., n} is a vector of local Q functions. To facilitate centralized
learning, we create a mixing network, Mθ, where θ are the learnable weights, that aggregates the
local values to form the global value and advantage functions as follows:

νtot(s, a) = Mθ[ννν(s)], Atotν (s, a) = Mθ[q(s, a)− ννν(s)],

where each network takes the vectors ννν(s) or Aννν(s, a) as inputs and outputs νtot andAtotν , respectively.
Under this architecture, the learning objective becomes:

L̃(ννν, θ) = (1− γ)Es∼p0 [Mθ[ννν(s)]] + E(s,a)∼ρµµµtot

[
αf∗

(
Mθ[q(s, a)− ννν(s)]

α

)]
,

with the observation that Aν(s, a) can be expressed as a linear function of ννν. There are different
ways to construct the mixing network Mθ; previous work often employs a single linear combination
(1-layer network) or a two-layer network with convex activations such as ReLU, ELU, or Maxout. In
the following, we show a general result stating that the learning objective function is convex in ννν,
provided that the mixing network is constructed with nonnegative weights and convex activations.
Theorem 4.2. If the mixing network Mθ[·] is constructed with non-negative weights and convex
activations, then L̃(ννν, θ) is convex in ννν.

Mixing networks with non-negative weights and concave activations (e.g., ELU or ReLU) have been
extensively used in MARL, forming the foundation of several notable state-of-the-art algorithms such
as QMIX (Rashid et al., 2020), QTRAN (Son et al., 2019), and MFIQ (Bui et al., 2024). In particular,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

it has been demonstrated that mixing networks with either negative weights or non-concave activations
result in significantly degraded performance (Bui et al., 2024). Theorem 4.2 shows that L̃(ννν, θ) is
convex in ννν when using any multi-layer feed-forward mixing networks with non-negative weights and
convex activation functions. This finding is highly general and non-trivial, given the nonlinearity and
complexity of both the function (in terms of ννν) and the mixing networks. Previous work has often
focused on single-layer (Wang et al., 2022b) or two-layer mixing structures (Rashid et al., 2020; Bui
et al., 2024), emphasizing that such two-layer networks can approximate any monotonic function
arbitrarily closely as network width approaches infinity (Dugas et al., 2009). In our experiments,
we test two configurations for the mixing network: a linear combination (or 1-layer) and a 2-layer
feed-forward network. While 2-layer mixing structures have shown strong performance in online
MARL (Rashid et al., 2020; Son et al., 2019; Wang et al., 2020), we observe in our offline settings
that the linear combination approach provides more stable results.

4.3 POLICY EXTRACTION

Let ννν∗ be an optimal solution to the training problem with mixing networks, i.e.,

min
ννν,θ

L̃(ννν, θ). (7)

We now need to extract a local and joint policy from this solution. Based on Prop. 4.1, given ννν∗, we
can compute this occupancy ratio as follows: :

wtot∗(s, a) = max

{
0, f ′

−1
(
Mθ[Aννν∗(s, a)]

α

)}
.

The global policy can then be obtained as follows: πππ∗
tot(a|s) = wtot∗(s,a)·ρµµµtot (s,a)∑

a′∈A wtot∗(s,a′)·ρµµµtot (s,a′) . This
computation, however, is not practical since ρµµµtot is generally not available and might not be
accurately estimated in the offline setting. A more practical way to estimate the global policy, πππ∗

tot,
as the result of solving the following weighted behavioral cloning (BC):

max
πππtot∈Πtot

E
(s,a)∼ρπππ

∗
tot

[logπππtot(a|s)] = max
πππtot∈Πtot

E(s,a)∼ρµµµtot [w
tot∗(s, a) logπππtot(a|s)], (8)

where Πtot represents the feasible set of global policies. Here we assume that Πtot contains decom-
posable global policies, i.e., Πtot = {πππtot | ∃πi, ∀i ∈ N such that πππtot(a|s) =

∏
i∈N πi(ai|si)}. In

other words, Πtot consists of global policies that can be expressed as a product of local policies. This
decomposability is highly useful for decentralized learning and has been widely adopted in MARL
(Wang et al., 2022b; Bui et al., 2024; Zhang et al., 2021).

While the above weighted BC appears practical, as (s, a) can be sampled from the offline dataset
generated by ρπππtot , and since wtot∗(s, a) is available from solving 7, it does not directly yield local
policies, which are essential for decentralized execution. To address this, we propose solving the
following weighted BC for each local agent i ∈ N :

maxπi
E(s,a)∼D

[
wtot∗(s, a) log πi(ai|si)

]
. (9)

This local WBC approach has several attractive properties. First, wtot∗(s, a) appears explicitly in the
local policy optimization and is computed from global observations and actions. This enables local
policies to be optimized with global information, ensuring consistency with the credit assignment in
the multi-agent system. Furthermore, as shown in Proposition 4.3 below, the optimization of local
policies through local WBC is highly consistent with the global weighted BC in 8.
Proposition 4.3. Let π∗

i be the optimal solution to the local weighted BC 9. Then π∗
tot(a|s) =∏

i∈N π∗
i (ai|si) is also optimal for the global weighted BC in 8.

Here we note that consistency between global and local policies is a critical aspect of centralized
training with CTDE. Previous MARL approaches typically achieve this by factoring Q or V functions
into local functions and training local policies based on these local functions (Rashid et al., 2020;
Wang et al., 2020; Bui et al., 2024). However, in our case, there are key differences that prevent us
from employing such local values to derive local policies. Specifically, we factorize the Lagrange
multipliers νtot to train the stationary distribution ratiowtot. Although localw values can be extracted
from local νi, these local w values do not represent a local stationary distribution ratio and therefore
cannot be used to recover local policies.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 PRACTICAL ALGORITHM

Let D represent the offline dataset, consisting of sequences of local observations and actions gathered
from a global behavior policy πππtot. To train the value function ννν, we construct a value network
νi(si;ψν) for each local agent i, along with a network for each local Q-function qi(si, ai;ψq), where
ψν and ψq are learnable parameters for the local value and Q-functions. We note that the introduction
and learning of the Q-functions are intended to facilitate the decomposition of the advantage function,
Atotν . In our multi-agent setting, the absence of local rewards makes it difficult to directly compute
local advantage functions. To overcome this challenge, we learn local Q-functions, which are then
used to derive the local advantage functions. Additionally, as explained below, a MSE is optimized to
ensure that the global Q-function and state-value function align properly with the global rewards.

Now, each local advantage function is then calculated as follows: The global value function and
advantage function are subsequently aggregated using two mixing networks with a shared set of
learnable parameters θ:

νtot(s) = Ms
θ[ννν(s;ψν)], Atotν (s, a) = Ms

θ[q(s, a;ψq)− ννν(s;ψν)],
where Ms

θ[·] represents a linear combination of its inputs with non-negative weights, such that
Ms

θ[ννν(s;ψν)] = ννν(s;ψν)⊤W s
θ + bs

θ, where W s
θ and bs

θ are weights of the mixing network.1 It is
important to note that W s

θ and bs
θ are generated by hyper-networks that take the global state s and

the learnable parameters θ as inputs. In this context, we employ the same mixing network Ms
θ to

combine the local values and advantages. However, our framework is flexible enough to allow the
use of two different mixing networks for νtot and Atotν .

In our setting, the relationship between the global Q-function, value, and advantage functions is
described in Eq. 5. Specifically, we have: Atotν (s, a) = r(Z(s), a)+γEs′∼P (·|s,a)[ν

tot(s′)]− νtot(s).
To capture this relationship, we train the Q-function by optimizing the following MSE loss:

minq
∑

(s,a,s′)∼D

(
Atotν (s, a)− r(Z(s), a) + γνtot(s′)− νtot(s)

)2
.

This is equivalent to:

minψq
Lq(ψq) =

∑
(s,a,s′)∼D

(
Ms

θ[q(s, a;ψq)− ννν(s;ψν)]

− r(Z(s), a) + γMs′
θ [ννν(s

′;ψν)]−Ms
θ[ννν(s;ψν)]

)2
. (10)

For the primary loss function used to train the value function, we leverage transitions from the offline
dataset to approximate the objective L̃, resulting in the following loss function for offline training:

L̃(ψν , θ) = (1−γ)Es0∼D[Ms0
θ [ννν(s0;ψν)]]+E(s,a)∼D

[
αf∗
(
Ms

θ[q(s, a;ψq)− ννν(s;ψν)]
α

)]
. (11)

As mentioned, after obtaining (ννν∗, θ∗) by solving minψν ,θ L̃(ψν , θ), we compute the occupancy ratio:

wtot∗ν (s, a) = max
{
0, f ′

−1
(

Ms
θ∗ [ννν

∗(s)]−Ms
θ∗ [q(s,a;ψq)]

α

)}
. To train the local policy πi(ai|si), we

represent it using a policy network πi(ai|si; ηi), where ηi are the learnable parameters. The training
process involves optimizing the following weighted behavioral cloning (BC) objective:

maxηi Lπ(ηi) =
∑

(s,a)∼D
wtot∗ν (s, a) log(πi(ai|si; ηi)). (12)

Our ComaDICE algorithm consists of two primary steps. The first step involves estimating the
occupancy ratio wtot∗ from the offline dataset. The second step focuses on training the local policy
by solving the weighted BC problem using wtot∗. In the first step, we simultaneously update the
Q-functions ψq , the mixing network parameters θ, and the value function ψν , aiming to minimize the
mean squared error (MSE) in Eq. 10 while optimizing the main loss function in Eq. 11.

It is important to note that, in practical POMDP scenarios, the global state s is not directly accessible
during training and is instead represented by the joint observations o from the agents. For notational
convenience, we use the global state s in our formulation; however, in practice, it corresponds to the
joint observation Z(s). Specifically, terms like ρµµµtot(s, a) and νtot(s) actually refer to ρµµµtot(o, a)
and νtot(o), where o = Z(s).

1In our experiments, we use a single-layer mixing network due to its superior performance compared to a
two-layer structure, though our approach is general and can handle any multi-layer feed-forward mixing network.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

6 EXPERIMENTS

6.1 ENVIRONMENTS

We utilize three standard MARL environments: SMACv1 (Samvelyan et al., 2019), SMACv2 (Ellis
et al., 2022), and Multi-Agent MuJoCo (MaMujoco) (de Witt et al., 2020), each offering unique
challenges and configurations for evaluating cooperative MARL algorithms.

SMACv1. SMACv1 is based on Blizzard’s StarCraft II. It uses the StarCraft II API and DeepMind’s
PySC2 to enable agent interactions with the game. SMACv1 focuses on decentralized micromanage-
ment scenarios where each unit is controlled by an RL agent. Tasks like 2c vs 64zg and 5m vs 6m
are labeled hard, while 6h vs 8z and corridor are super hard. The offline dataset, provided by Meng
et al. (2023), was generated using MAPPO-trained agents (Yu et al., 2022).

SMACv2. In comparison to SMACv1, SMACv2 introduces increased randomness and diversity by
randomizing start positions, unit types, and modifying sight and attack ranges. This version includes
tasks such as protoss, terran, and zerg, with instances ranging from 5 vs 5 to 20 vs 23, increasing in
difficulty. Our offline dataset for SMACv2 was generated by running MAPPO for 10 million training
steps and collecting 1,000 trajectories, ensuring medium quality but comprehensive coverage of the
learning process. To the best of our knowledge, we are the first to explore SMACv2 in offline MARL,
whereas most prior work has used this environment in online settings.

MaMujoco. MaMujoco serves as a benchmark for continuous cooperative multi-agent robotic
control. Derived from the single-agent MuJoCo control suite in OpenAI Gym (Brockman et al.,
2016), it presents scenarios where multiple agents within a single robot must collaborate to achieve
tasks. The tasks include Hopper-v2, Ant-v2, and HalfCheetah-v2, with instances labeled as expert,
medium, medium-replay, and medium-expert. The offline dataset was created by (Wang et al., 2022b)
using the HAPPO method (Wang et al., 2022a).

6.2 BASELINES

We consider the following baselines, which represent either standard or state-of-the-art (SOTA)
methods for offline MARL: (i) BC (Behavioral Cloning); (ii) BCQ (Batch-Constrained Q-learning)
(Fujimoto et al., 2019) – an offline RL algorithm that constrains the policy to actions similar to
those in the dataset to reduce distributional shift, adapted for offline MARL settings; (iii) CQL
(Conservative Q-Learning) (Kumar et al., 2020) – a method that stabilizes offline Q-learning by
penalizing out-of-distribution actions, ensuring conservative value estimates; (iv) ICQ (Implicit
Constraint Q-learning) (Yang et al., 2021) – an approach using importance sampling to manage out-
of-distribution actions in multi-agent settings; (v) OMAR (Offline MARL with Actor Rectification)
(Pan et al., 2022) – a method combining CQL with optimization techniques to ensure the global
validity of local regularizations, promoting cooperative behavior; (vi) OMIGA (Offline MARL with
Implicit Global-to-Local Value Regularization) (Wang et al., 2022b) – a SOTA method that transforms
global regularizations into implicit local ones, optimizing local policies with global insights; (vii)
OptDICE - a naive extension of the OptDICE algorithm Lee et al. (2021) to multi-agent settings
where the global value function are directly learned without value factorization; and (viii) AlberDICE
Matsunaga et al. (2023) - an offline MARL algorithm which also leverages the DICE framework to
address the OOD.

We used experimental results contributed by the authors of OMIGA (Wang et al., 2022b) as our
baselines. They provided both the results and source code for all the baseline methods. This source
code was also employed to run these baselines for the SMACv2 environment. All hyperparameters
were kept at their default settings, and each experiment was conducted with five different random
seeds to ensure robustness and reproducibility of the results.

6.3 MAIN COMPARISON

We now present a comprehensive evaluation of our proposed algorithm, ComaDICE, against several
baseline methods in offline MARL. The baselines selected for comparison include both standard and
SOTA approaches, providing a robust benchmark to assess the effectiveness of ComaDICE.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Instances BC BCQ CQL ICQ OMAR OMIGA OptDICE AlberDICE ComaDICE
(ours)

2c vs 64zg
poor 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.6 ± 1.3

medium 1.9 ± 1.5 2.5 ± 3.6 2.5 ± 3.6 1.9 ± 1.5 1.2 ± 1.5 6.2 ± 5.6 1.0 ± 1.5 1.6 ± 1.6 8.8 ± 7.0
good 31.2 ± 9.9 35.6 ± 8.8 44.4 ± 13.0 28.7 ± 4.6 28.7 ± 9.1 40.6 ± 9.5 37.5 ± 3.1 42.2 ± 6.4 55.0 ± 1.5

5m vs 6m
poor 2.5 ± 1.3 1.2 ± 1.5 1.2 ± 1.5 1.2 ± 1.5 0.6 ± 1.2 6.9 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 4.4 ± 4.2

medium 1.9 ± 1.5 1.2 ± 1.5 2.5 ± 1.2 1.2 ± 1.5 0.6 ± 1.2 2.5 ± 3.1 0.0 ± 0.0 3.1 ± 0.0 7.5 ± 2.5
good 2.5 ± 2.3 1.9 ± 2.5 1.9 ± 1.5 3.8 ± 2.3 3.8 ± 1.2 6.9 ± 1.2 7.3 ± 3.9 3.9 ± 1.4 8.1 ± 3.2

6h vs 8z
poor 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 1.5 1.9 ± 3.8

medium 1.9 ± 1.5 1.9 ± 1.5 1.9 ± 1.5 2.5 ± 1.2 1.9 ± 1.5 1.2 ± 1.5 0.0 ± 0.0 2.3 ± 2.6 3.1 ± 2.0
good 8.8 ± 1.2 8.8 ± 3.6 7.5 ± 1.5 9.4 ± 2.0 0.6 ± 1.3 5.6 ± 3.6 0.0 ± 0.0 0.0 ± 0.0 11.2 ± 5.4

corridor
poor 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.6 ± 1.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.6 ± 1.3

medium 15.0 ± 2.3 23.1 ± 1.5 14.4 ± 1.5 22.5 ± 3.1 11.9 ± 2.3 23.8 ± 5.1 19.8 ± 2.9 9.4 ± 6.8 27.3 ± 3.4
good 30.6 ± 4.1 42.5 ± 6.4 5.6 ± 1.2 42.5 ± 6.4 3.1 ± 0.0 41.9 ± 6.4 39.6 ± 5.3 43.1 ± 6.4 48.8 ± 2.5

Table 1: Comparison of average winrates for ComaDICE and baselines on SMACv1 tasks.

Instances BC BCQ CQL ICQ OMAR OMIGA OptDICE AlberDICE ComaDICE
(ours)

Protoss

5 vs 5 36.9±8.7 16.2±2.3 10.0±4.1 36.9±9.1 21.2±4.1 33.1±5.4 10.8±1.2 12.6±0.9 46.2±6.1
10 vs 10 36.2±10.6 9.4±5.6 26.2±7.6 28.1±6.6 13.8±7.0 40.0±10.7 9.5±0.8 11.8±0.9 50.6±8.7
10 vs 11 19.4±4.6 10.0±4.1 10.6±5.4 12.5±4.4 12.5±3.4 16.2±6.1 10.0±0.5 9.8±0.3 20.0±4.2
20 vs 20 37.5±4.4 6.2±2.0 11.9±4.1 32.5±8.1 23.8±2.5 36.2±5.1 10.0±2.0 10.1±0.6 47.5±7.8
20 vs 23 13.8±1.5 1.2±1.5 0.0±0.0 12.5±5.6 11.2±7.8 12.5±8.1 8.1±1.4 8.8±0.8 13.8±5.8

Terran

5 vs 5 30.0±4.2 12.5±6.2 9.4±7.9 23.1±5.8 14.4±4.7 28.1±4.4 6.4±1.1 8.1±1.4 30.6±8.2
10 vs 10 29.4±5.8 6.9±6.1 9.4±5.6 16.9±5.8 15.0±4.6 29.4±3.2 6.0±1.6 8.2±1.0 32.5±5.8
10 vs 11 16.2±3.6 3.8±4.6 7.5±6.4 5.0±4.2 9.4±5.6 12.5±5.2 4.8±1.2 6.2±0.9 19.4±5.4
20 vs 20 26.2±10.4 5.0±3.2 10.6±4.2 15.6±3.4 7.5±7.3 21.9±4.4 6.3±1.8 5.9±1.2 29.4±3.8
20 vs 23 4.4±4.2 0.0±0.0 0.0±0.0 7.5±6.1 5.0±4.2 4.4±2.5 4.4±0.7 3.9±0.8 9.4±5.2

Zerg

5 vs 5 26.9±10.0 14.4±4.2 14.4±5.8 18.8±7.1 13.8±6.1 21.9±5.9 8.2±1.8 9.5±0.8 31.2±7.7
10 vs 10 25.0±2.8 5.6±4.6 5.6±4.6 15.6±7.4 19.4±2.3 23.8±6.4 7.8±1.0 8.5±0.3 33.8±11.8
10 vs 11 13.8±4.7 9.4±5.2 6.2±4.4 10.6±6.7 10.6±3.8 13.8±6.7 7.2±0.7 9.1±0.5 19.4±3.6
20 vs 20 8.1±1.5 2.5±1.2 1.2±1.5 10.0±7.8 12.5±4.4 10.0±2.3 7.3±0.7 8.3±0.5 9.4±6.2
20 vs 23 7.5±3.2 0.6±1.3 1.2±1.5 7.5±3.2 3.8±2.3 4.4±4.2 7.1±1.2 8.8±0.5 11.2±4.2

Table 2: Comparison of win rates for ComaDICE and baselines across SMACv2 tasks.

Instances BCQ CQL ICQ OMIGA OptDICE AlberDICE ComaDICE
(ours)

Hopper

expert 77.9 ± 58.0 159.1 ± 313.8 754.7 ± 806.3 859.6 ± 709.5 655.9 ± 120.1 844.6 ± 556.5 2827.7 ± 62.9
medium 44.6 ± 20.6 401.3 ± 199.9 501.8 ± 14.0 1189.3 ± 544.3 204.1 ± 41.9 216.9 ± 35.3 822.6 ± 66.2
m-replay 26.5 ± 24.0 31.4 ± 15.2 195.4 ± 103.6 774.2 ± 494.3 257.8 ± 55.3 419.2 ± 243.5 906.3 ± 242.1
m-expert 54.3 ± 23.7 64.8 ± 123.3 355.4 ± 373.9 709.0 ± 595.7 400.9 ± 132.5 515.1 ± 303.4 1362.4 ± 522.9

Ant

expert 1317.7 ± 286.3 1042.4 ± 2021.6 2050.0 ± 11.9 2055.5 ± 1.6 1717.2 ± 27.0 1896.8 ± 33.7 2056.9 ± 5.9
medium 1059.6 ± 91.2 533.9 ± 1766.4 1412.4 ± 10.9 1418.4 ± 5.4 1199.0 ± 26.8 1304.3 ± 2.6 1425.0 ± 2.9
m-replay 950.8 ± 48.8 234.6 ± 1618.3 1016.7 ± 53.5 1105.1 ± 88.9 869.4 ± 62.6 1042.8 ± 80.8 1122.9 ± 61.0
m-expert 1020.9 ± 242.7 800.2 ± 1621.5 1590.2 ± 85.6 1720.3 ± 110.6 1293.2 ± 183.1 1780.0 ± 23.6 1813.9 ± 68.4

Half
Cheetah

expert 2992.7 ± 629.7 1189.5 ± 1034.5 2955.9 ± 459.2 3383.6 ± 552.7 2601.6 ± 461.9 3356.4 ± 546.9 4082.9 ± 45.7
medium 2590.5 ± 1110.4 1011.3 ± 1016.9 2549.3 ± 96.3 3608.1 ± 237.4 305.3 ± 946.8 522.4 ± 315.5 2664.7 ± 54.2
m-replay -333.6 ± 152.1 1998.7 ± 693.9 1922.4 ± 612.9 2504.7 ± 83.5 -912.9 ± 1363.9 440.0 ± 528.0 2855.0 ± 242.2
m-expert 3543.7 ± 780.9 1194.2 ± 1081.0 2834.0 ± 420.3 2948.5 ± 518.9 -2485.8 ± 2338.4 2288.2 ± 759.5 3889.7 ± 81.6

Table 3: Average returns for ComaDICE and baselines on MaMuJoCo benchmarks.

Our evaluation focuses on two primary metrics: returns and winrates. Returns are the average
rewards accumulated by the agents across multiple trials, providing a measure of policy effectiveness.
Winrates, applicable in competitive environments such as SMACv1 and SMACv2, indicate the
success rate of agents against opponents, reflecting the algorithm’s robustness in adversarial settings.

The experimental results, summarized in Tables 1-3, demonstrate that ComaDICE consistently
achieves superior performance compared to baseline methods across a range of scenarios. Notably,
ComaDICE excels in complex tasks, highlighting its ability to effectively manage distributional shifts
in challenging environments.

6.4 ABLATION STUDY - IMPACT OF THE REGULARIZATION PARAMETER ALPHA

We investigate how varying the regularization parameter alpha (α) affects the performance of our
ComaDICE algorithm. The parameter α is crucial for balancing the trade-off between maximizing
rewards and penalizing deviations from the offline dataset’s distribution. We conducted experiments

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.010.1 1 10 100

20%

40%

60%

protoss
0.010.1 1 10 100

20%

40%

60%

terran
0.010.1 1 10 100

20%

40%

60%

zerg
0.01 0.1 1 10 100

0

2k

Hopper
0.01 0.1 1 10 100

0

2k

Ant
0.01 0.1 1 10 100

0

2k

HalfCheetah

Figure 1: Impact of regularization parameter α on performance in different environments.

with α values ranging from {0.01, 0.1, 1, 10, 100}, evaluating performance using average winrates
across all the SMACv2 tasks and average returns across all the MaMujoco tasks. These results,
illustrated in Figure 1, highlight the sensitivity of ComaDICE to different α values. In particular, we
observe that ComaDICE achieves optimal performance when α is around 10, suggesting that the
stationary distribution regularizer plays a essential role in the success of our algorithm.

In our appendix, we provide additional ablation studies to analyze the performance of our algorithm
using different forms of f-divergence functions, as well as comparisons between 1-layer and 2-layer
mixing network structures. The appendix also includes proofs of the theoretical claims made in the
main paper, details of our experimental settings, and other experimental information.

7 CONCLUSION, FUTURE WORK AND BROADER IMPACTS

Conclusion. In this paper, we propose ComaDICE, a principled framework for offline MARL. Our
algorithm incorporates a stationary distribution shift regularizer into the standard MARL objective to
address the conventional distribution shift issue in offline RL. To facilitate training within a CTDE
framework, we decompose both the global value and advantage functions using a mixing network.
We demonstrate that, under our mixing architecture, the main objective function is concave in the
value function, which is crucial for ensuring stable and efficient training. The results of this training
are then utilized to derive local policies through a weighted BC approach, ensuring consistency
between global and local policy optimization. Extensive experiments on SOTA benchmark tasks,
including SMACv2, show that ComaDICE outperforms other baseline methods.

Limitations and Future Work: There are some limitations that are not addressed within the scope of
this paper. For instance, we focus solely on cooperative learning, leaving open the question of how the
approach would perform in cooperative-competitive settings. Extending ComaDICE to such scenarios
would require considerable effort and is an interesting direction for future research. Additionally,
in our training objective, the DICE term is designed to reduce the divergence between the learning
policy and the behavior policy. As a result, the performance of the algorithm is heavily dependent
on the quality of the behavior policy. Although this reliance may be unavoidable, future research
should focus on mitigating the influence of the behavior policy on training outcomes. Furthermore,
our algorithm, like other baselines, still requires a large amount of data to achieve desirable learning
outcomes. Improving sample efficiency would be another valuable area for future research.

Broader Impacts: The development of an offline MARL algorithm using a stationary distribution
shift regularizer could lead to improved performance in tasks where real-time interaction is costly, such
as robotics, autonomous driving, and healthcare. It could also promote safer exploration and wider
adoption of offline learning in high-stakes environments. On the negative side, since the algorithm
relies heavily on the behavior policy, if the behavior policy is flawed or biased, the performance of the
learnt policy could also suffer. This could reinforce preexisting biases or suboptimal behaviors in real-
world applications. Moreover, like any AI technology, there is a risk of the algorithm being applied
in unintended or harmful ways, such as in surveillance or military applications, where multi-agent
systems could be used to manipulate environments or people without adequate oversight.

ETHICAL STATEMENT

Our work introduces ComaDICE, a framework for offline MARL, aimed at improving training
stability and policy optimization in complex multi-agent environments. While this research has
significant potential for positive applications, particularly in domains such as autonomous systems,

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

resource management, and multi-agent simulations, it is crucial to address the ethical implications
and risks associated with this technology.

The deployment of reinforcement learning systems in real-world, multi-agent settings raises con-
cerns about unintended behaviors, especially in safety-critical domains. If the policies learned by
ComaDICE are applied without proper testing and validation, they may lead to undesirable or harmful
outcomes, especially in areas such as autonomous driving, healthcare, or robotics. Additionally,
bias in the training data or simulation environments could result in suboptimal policies that unfairly
impact certain agents or populations, potentially leading to ethical concerns regarding fairness and
transparency.

To mitigate these risks, we emphasize the need for extensive testing and validation of policies
generated using ComaDICE, particularly in real-world environments where the consequences of
errors could be severe. It is also essential to ensure that the datasets and simulations used in training
are representative, unbiased, and carefully curated. We encourage practitioners to use human oversight
and collaborate with domain experts to ensure that ComaDICE is applied responsibly, particularly in
high-stakes settings.

REPRODUCIBILITY STATEMENT

In order to facilitate reproducibility, we have submitted the source code for ComaDICE, along with
the datasets utilized to produce the experimental results presented in this paper (all these will be made
publicly available if the paper gets accepted). Additionally, in the appendix, we provide details of
our algorithm, including key implementation steps and details needed to replicate the results. The
hyper-parameter settings for all experiments are also included to ensure that others can reproduce the
findings under the same experimental conditions. We invite the research community to explore and
apply the ComaDICE framework in various environments to further validate and expand upon the
results reported in this work.

REFERENCES

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International conference on machine learning, pp. 104–114. PMLR,
2020.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran
Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. arXiv
preprint arXiv:2202.11566, 2022.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-policy
evaluation. Advances in neural information processing systems, 34:4933–4946, 2021.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016. URL http://arxiv.org/abs/1606.01540.

The Viet Bui, Tien Mai, and Thanh Hong Nguyen. Inverse factorized q-learning for cooperative
multi-agent imitation learning. Advances in Neural Information Processing Systems, 38, 2024.

Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, and Keith Ross. Bail: Best-
action imitation learning for batch deep reinforcement learning. Advances in Neural Information
Processing Systems, 33:18353–18363, 2020.

Peng Cheng, Xianyuan Zhan, Wenjia Zhang, Youfang Lin, Han Wang, Li Jiang, et al. Look beneath
the surface: Exploiting fundamental symmetry for sample-efficient offline rl. Advances in Neural
Information Processing Systems, 36, 2024.

11

http://arxiv.org/abs/1606.01540

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Christian Schroeder de Witt, Bei Peng, Pierre-Alexandre Kamienny, Philip Torr, Wendelin Böhmer,
and Shimon Whiteson. Deep multi-agent reinforcement learning for decentralized continuous
cooperative control. arXiv preprint arXiv:2003.06709, 19, 2020.

Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporating
functional knowledge in neural networks. Journal of Machine Learning Research, 10(6), 2009.

Benjamin Ellis, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan, Jakob N Fo-
erster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative multi-agent
reinforcement learning. arXiv preprint arXiv:2212.07489, 2022.

Wei Fu, Chao Yu, Zelai Xu, Jiaqi Yang, and Yi Wu. Revisiting some common practices in cooperative
multi-agent reinforcement learning. In Proceedings of the 39th International Conference on
Machine Learning, pp. 6863–6877. PMLR, 2022.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Ammar Haydari and Yasin Yılmaz. Deep reinforcement learning for intelligent transportation systems:
A survey. IEEE Transactions on Intelligent Transportation Systems, 23(1):11–32, 2020.

Jiechuan Jiang and Zongqing Lu. Offline decentralized multi-agent reinforcement learning. In ECAI,
pp. 1148–1155, 2023.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforcement
learning for vision-based robotic manipulation. In Conference on robot learning, pp. 651–673.
PMLR, 2018.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810–21823, 2020.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning, pp.
5774–5783. PMLR, 2021.

Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learning as a rehearsal for
decentralized planning. Neurocomputing, 190:82–94, 2016.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Jongmin Lee, Wonseok Jeon, Byungjun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline
policy optimization via stationary distribution correction estimation. In International Conference
on Machine Learning, pp. 6120–6130. PMLR, 2021.

Jongmin Lee, Cosmin Paduraru, Daniel J Mankowitz, Nicolas Heess, Doina Precup, Kee-Eung Kim,
and Arthur Guez. Coptidice: Offline constrained reinforcement learning via stationary distribution
correction estimation. arXiv preprint arXiv:2204.08957, 2022.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. Journal of Machine Learning Research, 17(39):1–40, 2016.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Jianxiong Li, Xiao Hu, Haoran Xu, Jingjing Liu, Xianyuan Zhan, and Ya-Qin Zhang. Proto: Iterative
policy regularized offline-to-online reinforcement learning. arXiv preprint arXiv:2305.15669,
2023.

Jinning Li, Chen Tang, Masayoshi Tomizuka, and Wei Zhan. Dealing with the unknown: Pessimistic
offline reinforcement learning. In Conference on Robot Learning, pp. 1455–1464. PMLR, 2022.

Liyuan Mao, Haoran Xu, Weinan Zhang, and Xianyuan Zhan. Odice: Revealing the mystery of
distribution correction estimation via orthogonal-gradient update. arXiv preprint arXiv:2402.00348,
2024.

Daiki E Matsunaga, Jongmin Lee, Jaeseok Yoon, Stefanos Leonardos, Pieter Abbeel, and Kee-Eung
Kim. Alberdice: addressing out-of-distribution joint actions in offline multi-agent rl via alternating
stationary distribution correction estimation. Advances in Neural Information Processing Systems,
36:72648–72678, 2023.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. arXiv preprint
arXiv:2006.03647, 2020.

Linghui Meng, Muning Wen, Chenyang Le, Xiyun Li, Dengpeng Xing, Weinan Zhang, Ying
Wen, Haifeng Zhang, Jun Wang, Yaodong Yang, et al. Offline pre-trained multi-agent decision
transformer. Machine Intelligence Research, 20(2):233–248, 2023.

Ofir Nachum and Bo Dai. Reinforcement learning via fenchel-rockafellar duality. arXiv preprint
arXiv:2001.01866, 2020.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Haoyi Niu, Yiwen Qiu, Ming Li, Guyue Zhou, Jianming Hu, Xianyuan Zhan, et al. When to trust
your simulator: Dynamics-aware hybrid offline-and-online reinforcement learning. Advances in
Neural Information Processing Systems, 35:36599–36612, 2022.

Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate q-value functions
for decentralized pomdps. Journal of Artificial Intelligence Research, 32:289–353, 2008.

Ling Pan, Longbo Huang, Tengyu Ma, and Huazhe Xu. Plan better amid conservatism: Offline
multi-agent reinforcement learning with actor rectification. In International conference on machine
learning, pp. 17221–17237. PMLR, 2022.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on offline
reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on Neural
Networks and Learning Systems, 2023.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. The Journal of Machine Learning Research, 21(1):7234–7284, 2020.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Jianzhun Shao, Yun Qu, Chen Chen, Hongchang Zhang, and Xiangyang Ji. Counterfactual conserva-
tive q learning for offline multi-agent reinforcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Harshit Sikchi, Amy Zhang, and Scott Niekum. Imitation from arbitrary experience: A dual
unification of reinforcement and imitation learning methods. In Workshop on Reincarnating
Reinforcement Learning at ICLR 2023, 2023.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning to
factorize with transformation for cooperative multi-agent reinforcement learning. In International
conference on machine learning, pp. 5887–5896. PMLR, 2019.

Wei-Cheng Tseng, Tsun-Hsuan Johnson Wang, Yen-Chen Lin, and Phillip Isola. Offline multi-agent
reinforcement learning with knowledge distillation. Advances in Neural Information Processing
Systems, 35:226–237, 2022.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020.

Jun Wang, Yaodong Yang, and Zongqing Wang. Trust region policy optimization in multi-agent
reinforcement learning. arXiv preprint arXiv:2109.11251, 2022a.

Xiangsen Wang, Haoran Xu, Yinan Zheng, and Xianyuan Zhan. Offline multi-agent reinforcement
learning with implicit global-to-local value regularization. Advances in Neural Information
Processing Systems, 36, 2022b.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Haoran Xu, Xianyuan Zhan, Jianxiong Li, and Honglei Yin. Offline reinforcement learning with soft
behavior regularization. arXiv preprint arXiv:2110.07395, 2021.

Haoran Xu, Li Jiang, Li Jianxiong, and Xianyuan Zhan. A policy-guided imitation approach for
offline reinforcement learning. Advances in Neural Information Processing Systems, 35:4085–4098,
2022a.

Haoran Xu, Xianyuan Zhan, Honglei Yin, and Huiling Qin. Discriminator-weighted offline imitation
learning from suboptimal demonstrations. In Proceedings of the 39th International Conference on
Machine Learning, pp. 24725–24742, 2022b.

Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized q-learning for safe offline rein-
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 8753–8760, 2022c.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and
Xianyuan Zhan. Offline rl with no ood actions: In-sample learning via implicit value regularization.
arXiv preprint arXiv:2303.15810, 2023.

Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
reinforcement learning. Advances in Neural Information Processing Systems, 34:10299–10312,
2021.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in neural information
processing systems, 34:28954–28967, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hongchang Zhang, Jianzhun Shao, Yuhang Jiang, Shuncheng He, Guanwen Zhang, and Xiangyang
Ji. State deviation correction for offline reinforcement learning. In Proceedings of the AAAI
conference on artificial intelligence, volume 36, pp. 9022–9030, 2022.

Qin Zhang, Linrui Zhang, Haoran Xu, Li Shen, Bowen Wang, Yongzhe Chang, Xueqian Wang,
Bo Yuan, and Dacheng Tao. Saformer: A conditional sequence modeling approach to offline safe
reinforcement learning. arXiv preprint arXiv:2301.12203, 2023.

Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. Fop: Factorizing
optimal joint policy of maximum-entropy multi-agent reinforcement learning. In International
conference on machine learning, pp. 12491–12500. PMLR, 2021.

Yinan Zheng, Jianxiong Li, Dongjie Yu, Yujie Yang, Shengbo Eben Li, Xianyuan Zhan, and Jingjing
Liu. Safe offline reinforcement learning with feasibility-guided diffusion model. arXiv preprint
arXiv:2401.10700, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDIX
Our appendix includes the following:

• Proofs of the theoretical claims presented in the main paper.
• Details of our experimental settings.
• Detailed numerical results from the ablation study investigating the impact of α on Co-

maDICE’s performance.
• An ablation study assessing ComaDICE’s performance with different forms of f-divergence

functions.
• An ablation study comparing ComaDICE’s performance using 1-layer versus 2-layer mixing

networks.

CONTENTS

A Missing Proofs 17

A.1 Proof of Proposition 4.1 . 17

A.2 Proof of Theorem 4.2 . 18

A.3 Proof of Proposition 4.3 . 19

B Additional Details 21

B.1 Factorization Aspect of the Learning Objective in ComaDICE 21

B.2 Offline Multi-Agent Datasets . 22

B.3 Implementation Details . 22

B.4 Additional Experimental Details . 24

B.5 Ablation Study: Different Values of Alpha . 26

B.6 Ablation Study: Different Forms of f-divergence 28

B.7 Ablation Study: Different Types of Mixer Network 33

B.8 ComaDICE on the Penalty XOR Game . 36

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A MISSING PROOFS

A.1 PROOF OF PROPOSITION 4.1

Proposition. The minimax problem in 6 is equivalent to minνtot

{
L̃(νtot)

}
, where

L̃(νtot) = (1− γ)Es∼p0 [ν
tot(s)] + E(s,a)∼ρµµµtot

[
αf∗

(
Atotν (s, a)

α

)]
.

where f∗ is convex conjugate of f , i.e., f∗(y) = supt≥0{ty − f(t)}. Moreover, if νtot is parameter-
ized by θ, the first order derivative of L̃(νtot) w.r.t. θ is given as

∇θL̃(νtot) = (1− γ)Es∼p0 [∇θν
tot(s)] + E(s,a)∼ρµµµtot

[
∇θA

tot
ν (s, a)wtot∗ν (s, a)

]
.

where wtot∗ν (s, a) = max{0, f ′−1
(Atotν (s, a)/α)}, where f ′−1(·) is the inverse function of the first-

order derivative of f .

Proof. The first part of the proof, concerning the closed-form formulation for L̃(νtot), follows
directly from the single-agent OptDICE paper (Lee et al., 2021). While straightforward, we include it
here for the sake of completeness. Our novelty begins with the derivation of the formulation for the
first-order derivative of the loss function, ∇θL̃(νtot).
We write the Lagrange dual function as:

L(νtot,ρπππtot) = E(s,a)∼ρπππtot [r(s, a)]− αE(s,a)∼ρµµµtot

[
f

(
ρπππtot(s, a)
ρµµµtot(s, a)

)]

−
∑

s

νtot(s)

∑
a′
ρπππtot(s, a′)− (1− γ)p0(s)− γ

∑
a′,s′

ρπππtot(s′, a′)P (s|a′, s′)

=
∑

s

νtot(s)(1− γ)p0(s)− αE(s,a)∼ρµµµtot

[
f

(
ρπππtot(s, a)
ρµµµtot(s, a)

)]
+
∑
s,a

ρµµµtot(s, a)
(
r(s, a) + γEs′∼P (·|s,a)ν

tot(s′)− νtot(s)
)

= (1− γ)Es∼p0 [ν
tot(s)] + E(s,a)∼ρµµµtot

[
−αf

(
wtotν (s, a)

)
+ wtotν (s, a)Atotν (s, a)

]
, (13)

where wtotν (s, a) = ρπππtot (s,a)
ρµµµtot (s,a) . We now see that, for each (s, a), each component −αf (wtotν (s, a)) +

wtotν (s, a)Atotν (s, a) is maximized at:

max
wtot≥0

−αf
(
wtotν (s, a)

)
+ wtotν (s, a)Atotν (s, a) = f∗

(
Atotν (s, a)

α

)
,

where f∗ is the (variant) convex conjugate of the convex function f . We then obtain:

max
wtot≥0

L(νtot, wtot) = L̃(νtot) = (1− γ)Es∼p0 [ν
tot(s)] + E(s,a)∼ρµµµtot

[
αf∗

(
Atotν (s, a)

α

)]
.

Moreover, consider the maximization problem maxwtot≥0 T (w
tot(s, a)) = −αf (wtotν (s, a)) +

wtotν (s, a)Atotν (s, a). Taking its first-order derivative w.r.t wtot(s, a) yields:

−αf ′(wtot(s, a)) +Atotν (s, a).

So, if f ′−1
(
Atot

ν (s,a)
α

)
≥ 0, then wtot∗(s, a) = f ′−1

(
Atot

ν (s,a)
α

)
≥ 0 is optimal for the maxi-

mization problem. Otherwise, if f ′−1
(
Atot

ν (s,a)
α

)
< 0, we see that T (wtot(s, a)) is increasing

when wtot(s, a) ≤ f ′−1
(
Atot

ν (s,a)
α

)
and decreasing when wtot(s, a) ≥ f ′−1

(
Atot

ν (s,a)
α

)
, imply-

ing that the maximization problem has an optimal solution at wtot∗(s, a) = 0. So, putting all
together, wtot∗ν (s, a) = max{0, f ′−1

(Atotν (s, a)/α)} is optimal for the maximization problem
maxwtot≥0 T (w

tot(s, a)).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

To get derivatives of L̃(νtot), we note that, for any y ∈ R, ∇f∗(y) = t∗, where y∗ = argmaxt≥0(ty−
f(t)). Thus, the first-order derivative of f∗

(
Atot

ν (s,a)
α

)
can be computed as:

∇θf
∗
(
Atotν (s, a)

α

)
=

∇θA
tot
ν (s, a)
α

wtot
∗
(s, a),

which implies:

∇θL̃(νtot) = (1− γ)Es∼p0 [∇θν
tot(s)] + E(s,a)∼ρµµµtot

[
∇θA

tot
ν (s, a)wtot∗ν (s, a)

]
,

we complete the proof.

A.2 PROOF OF THEOREM 4.2

Theorem. Assume the mixing network Mθ[·] is constructed with non-negative weights and convex
activations, then L̃(ννν, θ) is convex in ννν.

Proof. We first introduce the following lemma, which is essential to validate the convexity of L̃(ννν, θ).
Lemma A.1. If the mixing network are multi-level feed-forward, constructed with non-negative
weights and convex activations, then Mθ[ννν(s)] and Mθ[q(s, a)− ννν(s)] are convex in ννν

Proof. To simplify the proof, we first prove a general result stating that if Mθ[X] is a multi-level
feed-forward network with non-negative weights and convex activations, then Mθ[X] is convex in X.
To start, we note that any N -layer feed-forward network with input X can be defined recursively as

F 0(X) = X (14)

Fn(X) = σn
(
Fn−1(X)

)
×Wn + bn, n = 1, . . . , N, (15)

where σn is a set of activation functions applied to each element of vector Fn−1(X), and Wn and bn
are the weights and biases, respectively, at layer n. Therefore, we will prove the result by induction,
i.e., Fn(X) is convex and non-decreasing in X for n = 0, Here we note that Fn(X) is a vector,
so when we say “Fn(X) is convex and non-decreasing in X,” it means each element of Fn(X) is
convex and non-decreasing in X.

We first see that the claim indeed holds for n = 0. Now let us assume that Fn−1(X) is convex
and non-decreasing in X; we will prove that Fn(X) is also convex and non-decreasing in X. The
non-decreasing property can be easily verified as we can see, given two vectors X and X′ such that
X ≥ X′ (element-wise comparison), we have the following chain of inequalities:

Fn−1(X)
(a)

≥ Fn−1(X′)

σn(Fn−1(X))
(b)

≥ σn(Fn−1(X′))

σn(Fn−1(X))×Wn + bn
(c)

≥ σn(Fn−1(X′))×Wn + bn,

where (a) is due to the induction assumption that Fn−1(X) is non-decreasing in X, (b) is because σn
is also non-decreasing, and (c) is because the weights Wn are non-negative.

To verify the convexity of Fn(X), we will show that for any X,X′, and any scalar α ∈ (0, 1), the
following holds:

αFn(X) + (1− α)Fn(X) ≥ Fn(αX + (1− α)X′) (16)
To this end, we write:

αFn(X) + (1− α)Fn(X′) =
(
ασn(Fn−1(X)) + (1− α)σn(Fn−1(X′))

)
×Wn + bn

(d)

≥
(
σn
(
αFn−1(X) + (1− α)Fn−1(X′)

))
×Wn + bn

(e)

≥
(
σn
(
Fn−1(αX + (1− α)X′)

))
×Wn + bn

= Fn(αX + (1− α)X′).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where (d) is due to the assumption that activation functions σn are convex and Wn ≥ 0, and (e) is
because αFn−1(X) + (1− α)Fn−1(X′) ≥ Fn−1(αX + (1− α)X′) (because Fn−1(X) is convex
in X, by the induction assumption), and the activation functions σn are non-decreasing and Wn ≥ 0.
So, we have:

αFn(X) + (1− α)Fn(X′) ≥ Fn(αX + (1− α)X′).

implying that Fn(X) is convex in X. We then complete the induction proof and conclude that Fn(X)
is convex and non-decreasing in X for any n = 0, . . . , N .

From the result above, since both ννν(s) and q(s, a) − ννν(s) are linear in ννν, it follows that Mθ[ννν(s)]
and Mθ[q(s, a)− ννν(s)] are convex with respect to ννν.

We are now ready to prove the convexity of L̃(ννν, θ) with respect to ννν. Directly verifying the
convexity of this function is challenging, as it involves some complicated components such as
f∗
(

Mθ[q(s,a)−ννν(s)]
α

)
, which is difficult to analyze. However, we recall that:

L̃(ννν, θ) = max
wtot≥0

L(ννν, θ, wtot),

where

L(ννν, θ, wtot) = (1− γ)Es∼p0 [Mθ[ννν(s)]]
+ E(s,a)∼ρµµµtot

[
−αf

(
wtotν (s, a)

)
+ wtotν (s, a)Mθ[q(s, a)− ννν(s)]

]
.

From Lemma A.1, we know that Mθ[ννν(s)] and Mθ[q(s, a)−ννν(s)] are convex in ννν, thus L(ννν, θ, wtot)
is also convex in ννν. We now follow the standard approach to verify the convexity of L̃(ννν, θ) as
follows. Let ννν1 and ννν2 be two feasible value functions. Given any β ∈ (0, 1), we will prove that:

βL̃(ννν1, θ) + (1− β)L̃(ννν2, θ) ≥ L̃(βννν1 + (1− β)ννν2, θ). (17)

To see why this should hold, we recall that L(ννν, θ, wtot) is convex in ννν and L̃(ννν, θ) =
maxwtot≥0 L(ννν, θ, wtot), leading to the following chain of inequalities:

βL̃(ννν1, θ) + (1− β)L̃(ννν2, θ) = βmax
wtot

L(ννν1, θ, wtot) + (1− β)max
wtot

L(ννν2, θ, wtot)

≥ max
wtot

{
βL(ννν1, θ, wtot) + (1− β)L(ννν2, θ, wtot)

}
≥ max

wtot

{
L(βννν1 + (1− β)ννν2, θ, wtot)

}
= L̃(βννν1 + (1− β)ννν2, θ).

The last inequality directly confirms Eq. 17, implying the convexity of L̃(ννν, θ) in ννν, as desired.

A.3 PROOF OF PROPOSITION 4.3

Proposition. Let π∗
i be the optimal solution to the local weighted BC 9. Then π∗

tot(a|s) =∏
i∈N π∗

i (ai|si) is also optimal for the global weighted BC problem 8.

Proof. To prove that π∗
tot(a|s) =

∏
i∈N π∗

i (ai|si) is optimal for the global WBC problem 8, we
need to verify that

E(s,a)∼ρµµµtot

[
wtot∗(s, a) logπππtot(a|s)

]
≤ E(s,a)∼ρµµµtot

[
wtot∗(s, a) logπππ∗

tot(a|s)
]

for any global policy πππtot ∈ Πtot.

Since πππtot is decomposable, there exist local policies πi such that

πππtot(a|s) =
∏
i∈N

πi(ai|si).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

As a result, we have the following inequalities:

E(s,a)∼ρµµµtot

[
wtot∗(s, a) logπππtot(a|s)

]
= E(s,a)∼ρµµµtot

[
wtot∗(s, a)

∑
i∈N

log πi(ai|si)

]
=
∑
i∈N

E(s,a)∼ρµµµtot

[
wtot∗(s, a) log πi(ai|si)

]
≤
∑
i∈N

max
π′
i

E(s,a)∼ρµµµtot

[
wtot∗(s, a) log π′

i(ai|si)
]

=
∑
i∈N

E(s,a)∼ρµµµtot

[
wtot∗(s, a) log π∗

i (ai|si)
]

= E(s,a)∼ρµµµtot

[
wtot∗(s, a) logπππ∗

tot(a|s)
]
,

which directly implies that πππ∗
tot is optimal for the global WBC problem 8.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B ADDITIONAL DETAILS

B.1 FACTORIZATION ASPECT OF THE LEARNING OBJECTIVE IN COMADICE

In this section, we delve into the main learning objective function of ComaDICE to explore its
factorization aspect. Specifically, we show that, under certain conditions on the mixing network
and the f-divergence function, optimizing the objective function L̃ is approximately equivalent to
optimizing factorized occupancy ratios.

To see this, let us consider the main learning objective with mixing networks:

L̃(ννν, θ) = (1− γ)Es∼p0 [Mθ[ννν(s)]] + E(s,a)∼ρµµµtot

[
αf∗

(
Mθ[q(s, a)− ννν(s)]

α

)]
,

where Mθ is the mixing network.

Assume that the mixing structure is linear in its inputs, i.e.,

Mθ(ννν(s)) =
∑
i

βiνi(si), Mθ[q(s, a)− ννν(s)] =
∑
i

βi(qi(si, ai)− νi(si)),

where βi are non-negative weights of the mixing network. Moreover, assume that the f-divergence
function is chi-square. Under these assumptions, the learning objective can be written as:

L̃(ννν, θ) =
∑
i

βi(1− γ)Esi∼pi0 [νi(si)] +
∑
i

E(si,ai)∼ρµµµtot

[
αf∗

(∑
i

βi
qi(si, ai)− νi(si)

α

)]
,

(a)
≈
∑
i

βiLi(νi),

where

Li(νi) = βi(1− γ)Esi∼pi0 [νi(si)] + E(si,ai)∼ρµµµtot

[
αf∗

(
qi(si, ai)− νi(si)

α

)]
.

Here, the approximation holds because the mixing network is linear in νi, and the f-divergence is
chi-square, where (f ′χ2)−1(x) = x+ 1.

We now see that minimizing the local function Li(νi) is equivalent to:

maxπi E(si,ai)∼ρπi [ri(si, ai)]− αDf (ρπi ∥ ρµi) ,

which is essentially solving the OptDICE learning problem for each individual agent.

Thus, the above discussion implies that optimizing the main objective function L̃ of ComaDICE,
under the setting of a linear mixing network and chi-square divergence, is approximately equivalent to
optimizing factorized policies. This further implies the global-local consistency property mentioned
in the main paper. It is also worth noting that the setting of a linear mixing network and chi-square
divergence is exactly what we employ in our experiments, yielding the best performance compared to
the variants.

When using a two-layer mixing network, the equivalence becomes harder to achieve. However, since
the mixing network in our setting consists of non-negative weights, minimizing the global training
objective L̃ is expected to behave similarly to minimizing each local function L̃i, partially indicating
the global-local consistency and the factorization aspect of ComaDICE.

In comparison with other DICE-based approaches such as AlberDICE and OptDICE, ComaDICE
takes a distinctive approach by learning a global occupancy ratio and employing a factorization
method to decompose the global learning variables into local ones, leveraging local information. This
design captures the contribution of each local agent to the global objective, enabling ComaDICE to
effectively model the interconnections between agents. Furthermore, during the policy extraction
phase, local policies are optimized using a shared global occupancy ratio, which incorporates aspects
of credit assignment across agents—an important feature not present in AlberDICE.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.2 OFFLINE MULTI-AGENT DATASETS

Instances Trajectories Samples Agents State Obs Action Average
dim dim dim returns

2c vs 64zg
poor 0.3K 21.7K 2 675 478 70 8.9±1.0

medium 1.0K 75.9K 2 675 478 70 13.0±1.4
good 1.0K 118.4K 2 675 478 70 19.9±1.3

5m vs 6m
poor 1.0K 113.7K 5 156 124 12 8.5±1.2

medium 1.0K 138.6K 5 156 124 12 11.0±0.6
good 1.0K 138.7K 5 156 124 12 20.0±0.0

6h vs 8z
poor 1.0K 145.5K 6 213 172 14 9.1±0.8

medium 1.0K 177.1K 6 213 172 14 12.0±1.3
good 1.0K 228.2K 6 213 172 14 17.8±2.1

corridor
poor 1.0K 307.6K 6 435 346 30 4.9±1.7

medium 1.0K 756.1K 6 435 346 30 13.1±1.3
good 1.0K 601.0K 6 435 346 30 19.9±1.0

Protoss

5 vs 5 1.0K 60.8K 5 130 92 11 16.8±6.3
10 vs 10 1.0K 68.3K 10 310 182 16 15.7±5.2
10 vs 11 1.0K 62.9K 10 327 191 17 15.3±5.7
20 vs 20 1.0K 76.7K 20 820 362 26 16.2±4.7
20 vs 23 1.0K 65.0K 20 901 389 29 14.0±4.5

Terran

5 vs 5 1.0K 47.6K 5 120 82 11 15.2±7.2
10 vs 10 1.0K 56.4K 10 290 162 16 14.7±6.2
10 vs 11 1.0K 52.5K 10 306 170 17 12.1±5.7
20 vs 20 1.0K 63.0K 20 780 322 26 14.0±6.0
20 vs 23 1.0K 51.3K 20 858 346 29 11.7±5.7

Zerg

5 vs 5 1.0K 27.5K 5 120 82 11 10.4±5.0
10 vs 10 1.0K 31.9K 10 290 162 16 14.7±6.0
10 vs 11 1.0K 30.9K 10 306 170 17 12.0±5.1
20 vs 20 1.0K 35.4K 20 780 322 26 12.3±4.2
20 vs 23 1.0K 32.8K 20 858 346 29 10.8±4.0

Hopper

expert 1.5K 999K 3 42 14 1 2452.0±1097.9
medium 4.0K 915K 3 42 14 1 723.6±211.7
m-replay 4.2K 1311K 3 42 14 1 746.4±671.9
m-expert 5.5K 1914K 3 42 14 1 1190.6±973.4

Ant

expert 1.0K 1000K 2 226 113 4 2055.1±22.1
medium 1.0K 1000K 2 226 113 4 1418.7±37.0
m-replay 1.8K 1750K 2 226 113 4 1029.5±141.3
m-expert 2.0K 2000K 2 226 113 4 1736.9±319.6

Half
Cheetah

expert 1.0K 1000K 6 138 23 1 2785.1±1053.1
medium 1.0K 1000K 6 138 23 1 1425.7±520.1
m-replay 1.0K 1000K 6 138 23 1 655.8±590.4
m-expert 2.0K 2000K 6 138 23 1 2105.4±1073.2

Table 4: Overview of datasets used in experiments, including details of trajectories, samples, agent
counts, and state, observation, and action space dimensions across SMACv1, SMACv2, and MaMu-
joco environments, with average returns indicating performance levels.

B.3 IMPLEMENTATION DETAILS

Our experiments were implemented using PyTorch and executed in parallel on a single NVIDIA®
H100 NVL Tensor Core GPU. Our study required running a large number of sub-tasks, specifically
1,365 in total (i.e., 39 instances across 7 algorithms with 5 different random seeds each).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Algorithm 1 ComaDICE: Offline Cooperative MARL with Stationary DIstribution Correction
Estimation

1: Input: Parameters θ, ψq, ψν , ηi and the corresponding learning rates λθ, λψq
, λψν

, λη, respec-
tively. Offline data D.

2: Output: Local optimized polices πi.
3: # Training the occupancy ratio wtot∗
4: for a certain number of training steps do
5: ψq = ψq − λψq

∇ψq
L(ψq) # Update Q-function towards the MSE in 10

6: θ = θ − λθ∇θL̃(ψν , θ) # Update θ to minimize the loss in 11
7: ψν = ψν − λψν∇ψν L̃(ψν , θ) # Update ψν to minimize the loss in 11
8: end for
9: # Training local policy

10: for a certain number of training steps do
11: ηi = ηi + λη∇ηiLπ(ηi) # Update the local policy by optimizing 12
12: end for
13: Return πi(ai|oi; ηi), i = 1, ..., n

Agent
Network

Agent
Network

Mixing Network

...

Linear

Linear

...

...

+

Hyper Network

Update Update

Mixing Network

Update

Figure 2: Our ComaDICE model architecture.

The offline datasets for each instance are substantial, reaching sizes of up to 7.4 GB. To manage this,
we developed a preprocessing step designed to optimize data handling and improve computational
efficiency. This process involves reading all transitions from each dataset and combining individual
trajectory files into a single large NumPy object that contains batches of trajectories. In this step,
we define the data type for each element, such as states (float32), actions (int64), and dones (bool),
ensuring consistent and efficient data storage. The processed data is then saved into a compressed
NumPy file, which significantly boosts computing performance.

Despite these optimizations, loading the entire dataset still requires a large amount of RAM. By
leveraging parallel processing and efficient data management strategies, we effectively managed the
extensive computational and memory demands of our experiments. This approach allowed us to
handle the large-scale data and complex computations necessary for our study.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

B.3.1 HYPER-PARAMETERS

Hyperparameter Value
Optimizer Adam
Learning rate (Q-value and policy networks) 1× 10−4

Tau (τ) 0.005
Gamma (γ) 0.99
Batch size 128
Agent hidden dimension 256
Mixer hidden dimension 64
Number of seeds 5
Number of episodes per evaluation step 32
Number of evaluation steps 100
Lambda scale (λ) 1.0
Alpha (α) 10
f-divergence soft-χ2

Table 5: Hyperparameters for our algorithm

In our study, we developed two versions of our algorithm: a continuous version for MaMujoco
using Gaussian distributions (torch.distributions.Normal), and a discrete version for SMACv1 and
SMACv2 using Categorical distributions (torch.distributions.Categorical). In the discrete setting,
action probabilities are computed using softmax over available actions only, ensuring zero probability
for unavailable actions, which enhances the accuracy of log likelihood calculations. Key hyperparam-
eters are listed on the Table 5. Experiments were conducted with 5 seeds, 32 episodes per evaluation
step, and 100 evaluation steps.

B.4 ADDITIONAL EXPERIMENTAL DETAILS

We evaluate the performance of our ComaDICE algorithm using two key metrics: mean and standard
deviation (std) of returns and winrates. Returns measure the average rewards accumulated by
agents, calculated across five random seeds to ensure robustness, while winrates, applicable only to
competitive environments like SMACv1 and SMACv2, indicate the success rate against other agents.
For cooperative settings such as MaMujoco, winrates are not applicable. We also include figures
showing evaluation curves, highlighting how each method’s performance evolves during training
with offline datasets. These metrics and visualizations provide a comprehensive overview of our
algorithm’s effectiveness and consistency in various MARL tasks.

B.4.1 RETURNS

Tables 6, 7, 8, 9, and 10 present the returns from our experimental results across the SMACv1,
SMACv2, and Multi-Agent MuJoCo environments, highlighting the performance of our proposed
algorithm, ComaDICE, alongside baseline methods such as BC, BCQ, CQL, ICQ, OMAR, OMIGA,
OptDICE and AlberDICE. Our results demonstrate that ComaDICE consistently achieves superior
returns, particularly excelling in more complex difficulty tasks. Figures 3, 4, and 5 illustrate the
learning curves for these algorithms, showing that ComaDICE not only outperforms other algorithms
in terms of mean returns but also exhibits lower standard deviation, indicating robust and stable
performance. This suggests that ComaDICE effectively handles distributional shifts in offline settings.
These findings underscore our algorithm’s adaptability and effectiveness in diverse multi-agent
coordination scenarios, setting a new benchmark in offline MARL.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Instances BC BCQ CQL ICQ OMAR OMIGA OptDICE AlberDICE ComaDICE

2c vs 64zg
poor 11.6 ± 0.4 12.5 ± 0.2 10.8 ± 0.5 12.6 ± 0.2 11.3 ± 0.5 13.0 ± 0.7 10.8 ± 0.4 11.0 ± 0.2 12.1 ± 0.5

medium 13.4 ± 1.9 15.6 ± 0.4 12.8 ± 1.6 15.6 ± 0.6 10.2 ± 0.2 16.0 ± 0.2 11.2 ± 0.8 15.2 ± 0.5 16.3 ± 0.7
good 17.9 ± 1.3 19.1 ± 0.3 18.5 ± 1.0 18.8 ± 0.2 17.3 ± 0.8 19.1 ± 0.3 14.9 ± 1.2 17.9 ± 0.6 20.3 ± 0.1

5m vs 6m
poor 7.0 ± 0.5 7.6 ± 0.4 7.4 ± 0.1 7.3 ± 0.2 7.3 ± 0.4 7.5 ± 0.2 7.1 ± 0.2 5.7 ± 1.2 8.1 ± 0.5

medium 7.0 ± 0.8 7.6 ± 0.1 7.8 ± 0.1 7.8 ± 0.3 7.1 ± 0.5 7.9 ± 0.6 5.9 ± 1.3 7.7 ± 0.4 8.7 ± 0.4
good 7.0 ± 0.5 7.8 ± 0.1 8.1 ± 0.2 7.9 ± 0.3 7.4 ± 0.6 8.3 ± 0.4 5.8 ± 1.5 6.5 ± 0.6 8.7 ± 0.5

6h vs 8z
poor 8.6 ± 0.8 10.8 ± 0.2 10.8 ± 0.5 10.6 ± 0.1 10.6 ± 0.2 11.3 ± 0.2 9.8 ± 0.3 10.6 ± 0.3 11.4 ± 0.6

medium 9.5 ± 0.3 11.8 ± 0.2 11.3 ± 0.3 11.1 ± 0.3 10.4 ± 0.2 12.2 ± 0.2 10.8 ± 0.6 12.3 ± 0.4 12.8 ± 0.2
good 10.0 ± 1.7 12.2 ± 0.2 10.4 ± 0.2 11.8 ± 0.1 9.9 ± 0.3 12.5 ± 0.2 9.1 ± 0.7 10.0 ± 0.3 13.1 ± 0.5

corridor
poor 2.9 ± 0.6 4.5 ± 0.9 4.1 ± 0.6 4.5 ± 0.3 4.3 ± 0.5 5.6 ± 0.3 6.3 ± 0.5 5.0 ± 0.5 6.4 ± 0.5

medium 7.4 ± 0.8 10.8 ± 0.9 7.0 ± 0.7 11.3 ± 1.6 7.3 ± 0.7 11.7 ± 1.3 11.2 ± 0.7 9.3 ± 0.3 12.9 ± 0.6
good 10.8 ± 2.6 15.2 ± 1.2 5.2 ± 0.8 15.5 ± 1.1 6.7 ± 0.7 15.9 ± 0.9 13.4 ± 2.1 14.4 ± 1.2 18.0 ± 0.1

Table 6: Comparison of average returns for ComaDICE and baselines on SMACv1 benchmarks.

Figure 3: Evaluation of SMACv1 tasks comparing the returns achieved by ComaDICE and baselines.

Instances BC BCQ CQL ICQ OMAR OMIGA OptDICE AlberDICE ComaDICE (ours)

Protoss

5 vs 5 13.2 ± 0.7 6.8 ± 1.6 9.3 ± 1.6 10.7 ± 1.2 8.9 ± 0.8 14.3 ± 1.4 10.8 ± 1.2 12.6 ± 0.9 14.4 ± 1.1
10 vs 10 12.0 ± 1.9 7.7 ± 1.3 11.3 ± 0.9 10.4 ± 1.6 8.8 ± 0.6 14.2 ± 1.5 9.5 ± 0.8 11.8 ± 0.9 14.6 ± 1.8
10 vs 11 11.2 ± 0.5 5.2 ± 1.4 7.9 ± 0.8 10.3 ± 0.7 8.0 ± 0.3 12.1 ± 0.5 10.0 ± 0.5 9.8 ± 0.3 13.2 ± 0.9
20 vs 20 13.1 ± 0.5 4.8 ± 0.6 10.5 ± 0.9 11.8 ± 0.5 9.1 ± 0.5 14.0 ± 0.9 10.0 ± 2.0 10.1 ± 0.6 14.8 ± 1.0
20 vs 23 11.2 ± 0.5 3.5 ± 0.6 5.6 ± 0.7 10.2 ± 0.7 7.4 ± 0.7 13.0 ± 1.1 8.1 ± 1.4 8.8 ± 0.8 13.3 ± 0.9

Terran

5 vs 5 10.8 ± 1.4 6.4 ± 1.1 6.5 ± 0.9 6.8 ± 0.6 6.9 ± 0.6 10.5 ± 1.2 6.4 ± 1.1 8.1 ± 1.4 10.7 ± 1.5
10 vs 10 10.3 ± 0.3 4.6 ± 0.4 6.8 ± 0.6 8.7 ± 1.4 7.6 ± 1.0 10.1 ± 0.6 6.0 ± 1.6 8.2 ± 1.0 11.8 ± 0.9
10 vs 11 9.0 ± 0.7 3.6 ± 1.1 5.5 ± 0.2 5.5 ± 0.9 5.9 ± 0.7 8.8 ± 1.4 4.8 ± 1.2 6.2 ± 0.9 9.4 ± 0.9
20 vs 20 10.8 ± 0.8 3.9 ± 0.6 4.3 ± 0.6 8.3 ± 0.3 7.3 ± 0.4 10.5 ± 0.7 6.3 ± 1.8 5.9 ± 1.2 11.8 ± 0.5
20 vs 23 7.2 ± 1.0 1.2 ± 1.0 1.6 ± 0.2 5.3 ± 0.5 5.1 ± 0.3 7.9 ± 0.6 4.4 ± 0.7 3.9 ± 0.8 8.2 ± 0.7

Zerg

5 vs 5 10.5 ± 2.2 6.6 ± 0.2 6.7 ± 0.5 6.5 ± 0.9 7.7 ± 0.9 8.9 ± 1.1 8.2 ± 1.8 9.5 ± 0.8 10.7 ± 2.0
10 vs 10 11.0 ± 0.8 7.3 ± 1.0 7.2 ± 0.3 7.7 ± 1.1 7.5 ± 0.8 11.8 ± 1.6 7.8 ± 1.0 8.5 ± 0.3 11.5 ± 1.0
10 vs 11 9.2 ± 1.1 7.6 ± 0.9 6.7 ± 0.4 6.8 ± 1.0 6.5 ± 1.0 9.5 ± 1.2 7.2 ± 0.7 9.1 ± 0.5 11.0 ± 0.9
20 vs 20 9.3 ± 0.5 3.7 ± 0.4 4.7 ± 0.3 6.9 ± 0.5 6.9 ± 0.8 9.2 ± 0.5 7.3 ± 0.7 8.3 ± 0.5 9.4 ± 1.2
20 vs 23 8.5 ± 0.7 3.3 ± 0.3 4.1 ± 0.6 6.9 ± 0.5 5.7 ± 0.4 9.8 ± 0.6 7.1 ± 1.2 8.8 ± 0.5 10.5 ± 0.8

Table 7: Comparison of average returns for ComaDICE and baselines on SMACv2 tasks.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 4: Evaluation of SMACv2 tasks comparing the returns achieved by ComaDICE and baselines.

Method Hopper-v2
expert medium medium-replay medium-expert

BC 209.8±191.1 511.9±7.4 133.3±53.5 155.3±111.5
BCQ 77.9±58.0 44.6±20.6 26.5±24.0 54.3±23.7
CQL 159.1±313.8 401.3±199.9 31.4±15.2 64.8±123.3
ICQ 754.7±806.3 501.8±14.0 195.4±103.6 355.4±373.9

OMAR 2.4±1.5 21.3±24.9 3.3±3.2 1.4±0.9
OMIGA 859.6±709.5 1189.3±544.3 774.2±494.3 709.0±595.7
OptDICE 655.9±120.1 204.1±41.9 257.8±55.3 400.9±132.5

AlberDICE 844.6±556.5 216.9±35.3 419.2±243.5 515.1±303.4
ComaDICE (ours) 2827.7±62.9 822.6±66.2 906.3±242.1 1362.4±522.9

Table 8: Comparison of average returns on Hopper-v2 of MaMujoco benchmarks.

B.4.2 WINRATES

In this section, we analyze the winrates of our ComaDICE algorithm across various multi-agent
reinforcement learning scenarios. Winrates are crucial in competitive environments like SMACv1
and SMACv2, as they measure the algorithm’s success against other agents. Our results demonstrate
that ComaDICE consistently achieves higher winrates compared to baseline methods. Notably,
ComaDICE performs well across both simple and complex tasks, reflecting its robustness and
adaptability. As shown in Tables 1 and 2, as well as Figures 6 and 7, ComaDICE not only excels
in average winrates but also exhibits lower variance, indicating stable performance across different
trials. These findings highlight ComaDICE’s ability to effectively manage distributional shifts and
the OOD issue.

B.5 ABLATION STUDY: DIFFERENT VALUES OF ALPHA

We provide more experimental details for ablation study assessing the impact of varying the regular-
ization parameter alpha (α) on the performance of our ComaDICE.

B.5.1 RETURNS

Our results, in Tables 11, 12, and 13, show that the performance of ComaDICE is sensitive to
the choice of α. Lower values of α tend to prioritize imitation learning, leading to suboptimal
performance in terms of returns, whereas higher values facilitate better adaptation to the offline data,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Method Ant-v2
expert medium medium-replay medium-expert

BC 2046.3±6.2 1421.1±7.9 994.0±20.3 1561.7±64.8
BCQ 1317.7±286.3 1059.6±91.2 950.8±48.8 1020.9±242.7
CQL 1042.4±2021.6 533.9±1766.4 234.6±1618.3 800.2±1621.5
ICQ 2050.0±11.9 1412.4±10.9 1016.7±53.5 1590.2±85.6

OMAR 312.5±297.5 -1710.0±1589.0 -2014.2±844.7 -2992.8±7.0
OMIGA 2055.5±1.6 1418.4±5.4 1105.1±88.9 1720.3±110.6
OptDICE 1717.2±27.0 1199.0±26.8 869.4±62.6 1293.2±183.1

AlberDICE 1896.8±33.7 1304.3±2.6 1042.8±80.8 1780.0±23.6
ComaDICE (ours) 2056.9±5.9 1425.0±2.9 1122.9±61.0 1813.9±68.4

Table 9: Comparison of average returns on Ant-v2 of MaMujoco benchmarks.

Method HalfCheetah-v2
expert medium medium-replay medium-expert

BC 3251.2±386.8 2280.3±178.2 1886.2±390.8 2451.9±783.0
BCQ 2992.7±629.7 2590.5±1110.4 -333.6±152.1 3543.7±780.9
CQL 1189.5±1034.5 1011.3±1016.9 1998.7±693.9 1194.2±1081.0
ICQ 2955.9±459.2 2549.3±96.3 1922.4±612.9 2834.0±420.3

OMAR -206.7±161.1 -265.7±147.0 -235.4±154.9 -253.8±63.9
OMIGA 3383.6±552.7 3608.1±237.4 2504.7±83.5 2948.5±518.9
OptDICE 2601.6±461.9 305.3±946.8 -912.9±1363.9 -2485.8±2338.4

AlberDICE 3356.4±546.9 522.4±315.5 440.0±528.0 2288.2±759.5
ComaDICE (ours) 4082.9±45.7 2664.7±54.2 2855.0±242.2 3889.7±81.6

Table 10: Comparison of average returns on HalfCheetah-v2 of MaMujoco benchmarks.

achieving superior returns. Notably, an α value of 10 consistently yielded the best results across most
tasks, indicating an optimal balance between exploration and exploitation in offline settings. This
ablation study underscores the importance of selecting an appropriate α to enhance the algorithm’s
robustness and effectiveness in handling distributional shifts in offline multi-agent reinforcement
learning scenarios.

Instances α = 0.01 α = 0.1 α = 1 α = 10 α = 100

2c vs 64zg
poor 10.6±0.5 11.1±0.4 11.1±0.1 12.1±0.5 11.8±0.2

medium 9.6±0.5 13.1±0.8 12.5±2.4 16.3±0.7 16.0±0.3
good 11.1±1.4 9.6±2.7 17.4±0.5 20.3±0.1 19.9±0.1

5m vs 6m
poor 5.7±0.1 5.1±0.3 7.1±0.7 8.1±0.5 7.7±0.3

medium 5.6±0.1 5.3±0.2 7.8±0.8 8.7±0.4 8.5±0.7
good 5.7±0.1 5.7±0.2 7.8±0.5 8.7±0.5 8.8±0.8

6h vs 8z
poor 8.5±0.2 9.6±0.3 10.0±0.3 11.4±0.6 10.7±0.4

medium 8.5±0.6 10.5±0.8 10.7±0.5 12.8±0.2 12.3±0.3
good 7.9±0.1 9.5±0.6 11.3±0.6 13.1±0.5 12.8±0.4

corridor
poor 2.1±0.4 3.7±1.0 6.1±0.8 6.4±0.5 5.0±1.1

medium 1.7±1.0 2.2±1.7 11.3±0.3 12.9±0.6 13.3±0.1
good 4.7±2.4 3.8±5.0 15.7±0.3 18.0±0.1 17.4±0.1

Table 11: Impact of alpha on returns for ComaDICE and baselines in SMACv1.

B.5.2 WINRATES

In the A.4.2 section of the appendix, we investigate the impact of varying α on winrates across
different multi-agent reinforcement learning environments. We observe that an intermediate α
value of 10 consistently yields optimal results, suggesting it strikes an effective balance between
conservative policy adherence and exploration of the offline dataset. This section underscores the

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 5: Evaluation of MaMujoco tasks comparing the returns achieved by ComaDICE and baselines.

Figure 6: Evaluation of SMACv1 tasks comparing the winrates achieved by ComaDICE and baselines.

importance of fine-tuning α to enhance the robustness and efficacy of the ComaDICE algorithm in
managing distributional shifts within competitive multi-agent settings.

B.6 ABLATION STUDY: DIFFERENT FORMS OF F-DIVERGENCE

We conduct an ablation study to examine the effects of different functions of f -divergence on
the performance of our ComaDICE algorithm across various multi-agent reinforcement learning
environments. The study specifically evaluates three types of f -divergence: Kullback-Leibler (KL),
χ2, and Soft-χ2 .

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 7: Evaluation of SMACv2 tasks comparing the winrates achieved by ComaDICE and baselines.

Instances α = 0.01 α = 0.1 α = 1 α = 10 α = 100

Protoss

5 vs 5 12.2±1.0 13.1±1.3 13.2±1.1 14.4±1.1 14.0±2.0
10 vs 10 12.8±0.9 14.0±0.8 13.4±1.2 14.6±1.8 14.1±1.3
10 vs 11 9.9±1.1 11.1±0.8 11.3±1.2 13.2±0.9 12.2±1.1
20 vs 20 10.3±0.5 11.1±1.0 12.2±0.9 14.8±1.0 13.2±0.4
20 vs 23 8.0±2.3 11.2±1.2 11.7±0.6 13.3±0.9 13.2±0.5

Terran

5 vs 5 11.1±1.8 10.1±1.2 9.0±1.0 10.7±1.5 12.6±1.9
10 vs 10 8.5±0.8 10.3±0.7 10.4±1.1 11.8±0.9 11.8±1.7
10 vs 11 7.5±0.7 8.6±2.1 8.5±1.6 9.4±0.9 9.6±0.9
20 vs 20 6.2±1.1 6.4±1.7 9.1±0.7 11.8±0.5 9.3±0.6
20 vs 23 5.5±1.1 6.5±1.6 6.5±0.8 8.2±0.7 8.2±0.4

Zerg

5 vs 5 7.9±0.6 9.3±0.9 10.5±1.4 10.7±2.0 10.4±1.2
10 vs 10 10.9±1.5 11.4±1.5 11.8±0.7 11.5±1.0 10.9±2.2
10 vs 11 10.1±2.5 9.1±1.2 10.0±1.2 11.0±0.9 9.8±0.8
20 vs 20 8.0±0.5 9.2±1.3 9.2±1.0 9.4±1.2 10.5±0.9
20 vs 23 9.1±1.1 10.0±0.7 10.4±0.6 10.5±0.8 10.1±0.7

Table 12: Impact of alpha on returns for ComaDICE and baselines in SMACv2.

KL-Divergence: This is a well-known measure of how one probability distribution diverges from a
second, expected probability distribution. It is defined as:

fKL(x) = x log x− x+ 1

The corresponding inverse derivative, which is used in optimization, is:
(f ′KL)

−1(x) = exp(x− 1)

KL-divergence can lead to numerical instability due to the exponential function, especially when the
values become large.

χ2-Divergence: This divergence measures the difference between two probability distributions by
considering the square of the differences. It is expressed as:

fχ2(x) =
1

2
(x− 1)2

The inverse derivative is:
(f ′χ2)−1(x) = x+ 1

While this function avoids the exponential instability seen in KL-divergence, it may suffer from zero
gradients for negative values, which can slow down or halt training.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Instances α = 0.01 α = 0.1 α = 1 α = 10 α = 100

Hopper

expert 147.3±67.9 107.9±65.5 545.7±820.6 2827.7±62.9 2690.7±58.6
medium 149.6±96.8 107.5±66.9 244.7±267.5 822.6±66.2 807.5±122.2
m-replay 165.6±104.1 109.6±38.7 155.6±61.6 906.3±242.1 186.5±16.8
m-expert 119.1±77.1 95.6±69.5 58.8±26.1 1362.4±522.9 1358.4±595.1

Ant

expert 1016.4±196.5 1179.0±273.7 1927.7±174.1 2056.9±5.9 1950.0±3.3
medium 907.3±32.2 1000.0±90.4 1424.3±3.1 1425.0±2.9 1354.6±2.5
m-replay 969.1±21.9 978.4±39.6 944.6±28.9 1122.9±61.0 1072.1±41.4
m-expert 915.8±364.1 1132.9±282.2 738.5±250.2 1813.9±68.4 1559.6±86.8

Half
Cheetah

expert 1068.9±635.2 935.2±905.9 3637.0±80.9 4082.9±45.7 3843.7±149.4
medium 575.9±724.8 445.2±403.9 2690.0±92.4 2664.7±54.2 2523.4±59.0
m-replay 412.3±310.5 233.5±270.1 861.6±173.5 2855.0±242.2 2557.4±241.5
m-expert -107.5±298.1 -275.9±544.5 1136.9±1608.3 3889.7±81.6 3605.6±70.4

Table 13: Impact of alpha on returns for ComaDICE and baselines in MaMujoco.

0.01 0.1 1 10 100

5

10

15

20

2c vs 64zg
0.01 0.1 1 10 100

5

10

15

20

5m vs 6m
0.01 0.1 1 10 100

5

10

15

20

6h vs 8z
0.01 0.1 1 10 100

5

10

15

20

corridor

0.01 0.1 1 10 100

5

10

15

Protoss

0.01 0.1 1 10 100

5

10

15

Terran
0.01 0.1 1 10 100

5

10

15

Zerg
0.01 0.1 1 10 100

0

2k

Hopper
0.01 0.1 1 10 100

0

2k

Ant
0.01 0.1 1 10 100

0

2k

HalfCheetah

Figure 8: Impact of alpha on returns for ComaDICE and baselines.

Soft-χ2 Divergence: This function combines the forms of KL and χ2 divergences to mitigate both
numerical instability and the dying gradient problem. It is defined piecewise as:

fSoft-χ2(x) =

{
x log x− x+ 1 if 0 < x < 1
1
2 (x− 1)2 if x ≥ 1

The inverse derivative is:

(f ′Soft-χ2)−1(x) =

{
exp(x) if x < 0

x+ 1 if x ≥ 0

This choice provides a stable optimization process by maintaining non-zero gradients and avoiding
large exponential values, making it suitable for reinforcement learning tasks.

We assess their impact on both returns and winrates in environments such as SMACv1, SMACv2, and
MaMujoco. Our results, detailed in Tables 16-20, reveal that the choice of f -divergence function sig-
nificantly influences the algorithm’s effectiveness. For instance, the Soft-χ2 divergence consistently
yields superior returns and competitive winrates across most scenarios, suggesting its robustness in
managing distributional shifts in offline settings. Conversely, while Soft-χ2 divergence also performs
well, particularly in environments with higher complexity, KL divergence shows varying results,
indicating its sensitivity to specific task dynamics. This comprehensive analysis underscores the
importance of selecting an appropriate f -divergence function to optimize ComaDICE’s performance
in diverse multi-agent reinforcement learning contexts.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Instances α = 0.01 α = 0.1 α = 1 α = 10 α = 100

2c vs 64zg
poor 0.0±0.0 0.0±0.0 0.0±0.0 0.6±1.3 0.6±1.3

medium 0.0±0.0 1.9±3.8 5.0±5.1 8.8±7.0 8.8±4.6
good 0.6±1.2 0.0±0.0 40.6±4.0 55.0±1.5 51.9±1.5

5m vs 6m
poor 0.0±0.0 0.0±0.0 4.4±4.7 4.4±4.2 1.9±1.5

medium 0.0±0.0 0.0±0.0 8.1±6.4 7.5±2.5 7.5±3.8
good 0.0±0.0 0.0±0.0 6.2±4.4 8.1±3.2 10.0±6.1

6h vs 8z
poor 0.0±0.0 0.0±0.0 1.9±3.8 1.9±3.8 0.6±1.3

medium 0.0±0.0 0.6±1.3 1.9±1.5 3.1±2.0 3.1±2.0
good 0.0±0.0 0.0±0.0 7.5±5.8 11.2±5.4 7.5±7.3

corridor
poor 0.0±0.0 0.6±1.2 0.0±0.0 0.6±1.3 1.2±1.5

medium 0.0±0.0 0.0±0.0 30.0±5.1 27.3±3.4 34.4±2.8
good 0.0±0.0 4.4±8.8 48.8±4.7 48.8±2.5 49.4±3.6

Table 14: Impact of alpha on winrates for ComaDICE and baselines in SMACv1.

Instances α = 0.01 α = 0.1 α = 1 α = 10 α = 100

Protoss

5 vs 5 20.6±10.0 31.9±6.1 50.0±2.8 46.2±6.1 46.2±8.5
10 vs 10 19.4±6.1 25.0±3.4 45.0±11.1 50.6±8.7 51.2±7.6
10 vs 11 0.0±0.0 6.2±9.7 18.8±8.1 20.0±4.2 29.4±8.3
20 vs 20 1.2±1.5 8.8±7.8 28.1±8.6 47.5±7.8 40.6±6.2
20 vs 23 0.0±0.0 1.9±2.5 9.4±6.6 13.8±5.8 17.5±5.1

Terran

5 vs 5 25.6±4.6 22.5±7.2 30.6±4.1 30.6±8.2 41.2±4.6
10 vs 10 15.0±8.7 28.7±7.2 33.8±9.4 32.5±5.8 43.8±7.1
10 vs 11 3.8±2.3 13.8±9.2 14.4±9.2 19.4±5.4 16.2±10.3
20 vs 20 0.6±1.2 2.5±3.6 18.8±2.0 29.4±3.8 21.9±3.4
20 vs 23 0.6±1.3 2.5±3.6 2.5±3.6 9.4±5.2 6.2±2.0

Zerg

5 vs 5 10.0±4.6 20.0±5.8 28.7±4.6 31.2±7.7 25.0±8.6
10 vs 10 13.8±9.0 20.6±8.3 29.4±9.0 33.8±11.8 31.9±6.7
10 vs 11 9.4±9.5 12.5±6.8 16.9±3.2 19.4±3.6 17.5±9.2
20 vs 20 0.0±0.0 1.9±1.5 6.9±6.1 9.4±6.2 12.5±4.0
20 vs 23 1.2±1.5 3.8±2.3 12.5±4.0 11.2±4.2 11.9±6.1

Table 15: Impact of alpha on winrates for ComaDICE and baselines in SMACv2.

0.010.1 1 10 100

20%

40%

2c vs 64zg
0.010.1 1 10 100

20%

40%

5m vs 6m
0.010.1 1 10 100

20%

40%

6h vs 8z
0.010.1 1 10 100

20%

40%

corridor

0.010.1 1 10 100

20%

40%

60%

protoss
0.010.1 1 10 100

20%

40%

60%

terran
0.010.1 1 10 100

20%

40%

60%

zerg

Figure 9: Impact of alpha on winrates for ComaDICE and baselines.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

B.6.1 RETURNS

Instances fχ2(x) fKL(x) fSoft-χ2(x)

2c vs 64zg
poor 11.6±0.2 11.1±0.3 12.1±0.5

medium 16.1±0.6 15.7±0.3 16.3±0.7
good 19.7±0.1 19.3±0.1 20.3±0.1

5m vs 6m
poor 7.8±0.4 7.5±0.5 8.1±0.5

medium 8.1±0.5 7.7±0.4 8.7±0.4
good 8.7±0.6 8.1±0.4 8.7±0.5

6h vs 8z
poor 10.5±0.3 10.0±0.2 11.4±0.6

medium 12.9±0.4 12.4±0.5 12.8±0.2
good 12.7±0.4 12.4±0.5 13.1±0.5

corridor
poor 6.5±0.5 6.1±0.4 6.4±0.5

medium 12.7±0.7 12.0±0.7 12.9±0.6
good 17.3±0.1 16.9±0.1 18.0±0.1

Table 16: Impact of f -divergence on returns for ComaDICE and baselines in SMACv1.

Instances fχ2(x) fKL(x) fSoft-χ2(x)

Protoss

5 vs 5 14.6±0.5 13.6±0.9 14.4±1.1
10 vs 10 14.7±1.3 13.7±1.6 14.6±1.8
10 vs 11 12.8±1.0 11.4±1.7 13.2±0.9
20 vs 20 12.7±0.3 13.1±0.7 14.8±1.0
20 vs 23 12.4±0.9 12.5±0.7 13.3±0.9

Terran

5 vs 5 11.1±1.2 12.7±2.0 10.7±1.5
10 vs 10 9.8±0.9 10.7±1.3 11.8±0.9
10 vs 11 8.9±0.8 8.9±1.0 9.4±0.9
20 vs 20 10.5±0.5 10.2±0.7 11.8±0.5
20 vs 23 8.2±0.4 7.4±0.7 8.2±0.7

Zerg

5 vs 5 10.0±0.8 9.6±1.5 10.7±2.0
10 vs 10 12.4±1.2 10.3±1.1 11.5±1.0
10 vs 11 8.9±0.4 9.1±1.1 11.0±0.9
20 vs 20 9.0±0.8 9.0±0.6 9.4±1.2
20 vs 23 10.2±1.0 9.3±0.8 10.5±0.8

Table 17: Impact of f -divergence on returns for ComaDICE and baselines in SMACv2.

Instances fχ2(x) fKL(x) fSoft-χ2(x)

Hopper

expert 2625.0±191.3 2018.7±972.0 2827.7±62.9
medium 794.4±69.2 295.5±227.1 822.6±66.2
m-replay 221.3±58.0 129.9±55.0 906.3±242.1
m-expert 1294.1±520.4 105.5±103.9 1362.4±522.9

Ant

expert 1945.2±2.8 1884.1±27.8 2056.9±5.9
medium 1359.2±3.2 1346.2±49.8 1425.0±2.9
m-replay 1111.1±57.8 987.5±33.9 1122.9±61.0
m-expert 1655.9±42.8 1182.5±405.1 1813.9±68.4

Half
Cheetah

expert 3860.6±91.5 3830.0±88.8 4082.9±45.7
medium 2532.3±81.9 2347.8±171.8 2664.7±54.2
m-replay 2729.9±241.5 1258.5±1015.4 2855.0±242.2
m-expert 3665.2±74.0 3601.0±155.6 3889.7±81.6

Table 18: Impact of f -divergence on returns for ComaDICE and baselines in MaMujoco.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

B.6.2 WINRATES

Instances fχ2(x) fKL(x) fSoft-χ2(x)

2c vs 64zg
poor 0.0±0.0 0.0±0.0 0.6±1.3

medium 13.1±4.6 10.6±3.8 8.8±7.0
good 55.6±3.1 54.4±1.5 55.0±1.5

5m vs 6m
poor 3.8±3.1 3.8±3.6 4.4±4.2

medium 6.2±2.8 5.0±3.8 7.5±2.5
good 8.8±3.6 6.9±3.1 8.1±3.2

6h vs 8z
poor 0.0±0.0 0.0±0.0 1.9±3.8

medium 5.0±2.5 5.0±3.8 3.1±2.0
good 9.4±4.4 9.4±2.0 11.2±5.4

corridor
poor 1.2±1.5 1.2±1.5 0.6±1.3

medium 31.2±6.2 28.1±5.9 27.3±3.4
good 49.4±5.4 48.1±1.5 48.8±2.5

Table 19: Impact of f -divergence on winrates for ComaDICE and baselines in SMACv1.

Instances fχ2(x) fKL(x) fSoft-χ2(x)

Protoss

5 vs 5 52.5±4.1 46.2±7.2 46.2±6.1
10 vs 10 48.1±7.6 55.0±9.8 50.6±8.7
10 vs 11 22.5±8.7 20.6±6.1 20.0±4.2
20 vs 20 38.1±2.3 41.2±7.8 47.5±7.8
20 vs 23 16.9±4.2 15.0±3.6 13.8±5.8

Terran

5 vs 5 41.2±7.2 38.8±10.6 30.6±8.2
10 vs 10 30.6±4.1 36.2±10.8 32.5±5.8
10 vs 11 15.6±11.5 15.0±7.5 19.4±5.4
20 vs 20 33.8±6.4 28.7±11.8 29.4±3.8
20 vs 23 5.6±4.1 8.1±4.2 9.4±5.2

Zerg

5 vs 5 29.4±9.0 33.1±13.3 31.2±7.7
10 vs 10 31.2±7.7 26.2±5.1 33.8±11.8
10 vs 11 11.2±1.5 16.2±7.2 19.4±3.6
20 vs 20 7.5±3.2 11.2±7.0 9.4±6.2
20 vs 23 10.6±3.2 10.0±2.3 11.2±4.2

Table 20: Impact of f -divergence on winrates for ComaDICE and baselines in SMACv2.

B.7 ABLATION STUDY: DIFFERENT TYPES OF MIXER NETWORK

In this section, we explore the impact of using different types of mixer networks within the ComaDICE
algorithm. We introduce two settings for the mixer network within the ComaDICE algorithm: 1-layer
and 2-layer settings. The mixer network plays a crucial role in aggregating local value functions into a
global value function, which is essential for effective policy optimization in multi-agent reinforcement
learning (MARL) settings. By examining various mixer network architectures, we aim to understand
how these configurations affect the performance and stability of the ComaDICE algorithm. The
comparisons are presented in Tables 21-25, reporting both average returns and win rates. The results
clearly show that the 1-layer configuration outperforms the 2-layer configuration, delivering more
stable training outcomes across nearly all tasks. This finding contrasts with many prior online MARL
studies (Rashid et al., 2020; Son et al., 2019; Wang et al., 2020), which could be attributed to
overfitting issues in the offline learning setting.

Since mixing networks are effective in capturing the interdependencies between local values and
policies—reflecting credit assignment across local agents—the observed instability with the 2-
layer mixing network suggests that this configuration may be too complex to effectively model
the relationships between local agent policies in offline settings, leading to overfitting. While the

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

performance of the 2-layer mixing network might improve with more offline data, increasing the
dataset size could overload storage capacity, making training computationally infeasible.

B.7.1 RETURNS

Instances ComaDICE (ours)
1-layer 2-layer

2c vs 64zg
poor 12.1±0.5 11.5±0.9

medium 16.3±0.7 11.2±0.8
good 20.3±0.1 9.0±2.2

5m vs 6m
poor 8.1±0.5 3.8±1.1

medium 8.7±0.4 0.8±0.3
good 8.7±0.5 7.7±0.1

6h vs 8z
poor 11.4±0.6 10.3±0.3

medium 12.8±0.2 9.1±0.6
good 13.1±0.5 8.3±0.5

corridor
poor 6.4±0.5 1.5±0.7

medium 12.9±0.6 3.9±1.7
good 18.0±0.1 2.6±2.3

Table 21: Average returns for ComaDICE and baselines on SMACv1 with different mixer settings.

Instances ComaDICE (ours)
1-layer 2-layer

Protoss

5 vs 5 14.4±1.1 10.5±1.4
10 vs 10 14.6±1.8 11.2±1.6
10 vs 11 13.2±0.9 9.5±0.4
20 vs 20 14.8±1.0 9.5±0.9
20 vs 23 13.3±0.9 7.1±2.2

Terran

5 vs 5 10.7±1.5 8.3±0.8
10 vs 10 11.8±0.9 8.8±1.1
10 vs 11 9.4±0.9 6.4±1.2
20 vs 20 11.8±0.5 7.8±0.9
20 vs 23 8.2±0.7 6.6±0.9

Zerg

5 vs 5 10.7±2.0 7.8±1.1
10 vs 10 11.5±1.0 9.7±0.6
10 vs 11 11.0±0.9 7.9±0.7
20 vs 20 9.4±1.2 7.8±0.6
20 vs 23 10.5±0.8 8.0±0.5

Table 22: Average returns for ComaDICE and baselines on SMACv2 with different mixer settings.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Instances ComaDICE (ours)
1-layer 2-layer

Hopper

expert 2827.7±62.9 483.7±349.7
medium 822.6±66.2 648.4±245.9
m-replay 906.3±242.1 441.9±260.8
m-expert 1362.4±522.9 402.3±288.2

Ant

expert 2056.9±5.9 1583.0±160.4
medium 1425.0±2.9 1198.9±53.9
m-replay 1122.9±61.0 1041.8±38.4
m-expert 1813.9±68.4 1426.6±171.4

Half
Cheetah

expert 4082.9±45.7 2159.4±658.0
medium 2664.7±54.2 2026.7±244.3
m-replay 2855.0±242.2 1299.2±196.1
m-expert 3889.7±81.6 1336.3±381.9

Table 23: Average returns for ComaDICE and baselines on MaMujoco with different mixer settings.

B.7.2 WINRATES

Instances ComaDICE (ours)
1-layer 2-layer

2c vs 64zg
poor 0.6±1.3 0.0±0.0

medium 8.8±7.0 3.8±3.6
good 55.0±1.5 19.4±5.0

5m vs 6m
poor 4.4±4.2 3.1±0.0

medium 7.5±2.5 1.2±1.5
good 8.1±3.2 3.1±0.0

6h vs 8z
poor 1.9±3.8 0.0±0.0

medium 3.1±2.0 0.0±0.0
good 11.2±5.4 1.9±2.5

corridor
poor 0.6±1.3 0.0±0.0

medium 27.3±3.4 11.2±2.5
good 48.8±2.5 23.1±8.1

Table 24: Average winrates for ComaDICE and baselines on SMACv1 with different mixer settings.

Instances ComaDICE (ours)
1-layer 2-layer

Protoss

5 vs 5 46.2±6.1 31.9±3.6
10 vs 10 50.6±8.7 32.5±5.8
10 vs 11 20.0±4.2 10.6±7.3
20 vs 20 47.5±7.8 21.9±4.0
20 vs 23 13.8±5.8 6.9±5.4

Terran

5 vs 5 30.6±8.2 25.6±4.6
10 vs 10 32.5±5.8 28.1±3.4
10 vs 11 19.4±5.4 12.5±4.0
20 vs 20 29.4±3.8 11.2±3.2
20 vs 23 9.4±5.2 3.1±2.0

Zerg

5 vs 5 31.2±7.7 20.6±4.7
10 vs 10 33.8±11.8 21.2±7.2
10 vs 11 19.4±3.6 13.1±4.1
20 vs 20 9.4±6.2 5.6±1.3
20 vs 23 11.2±4.2 3.1±3.4

Table 25: Average winrates for ComaDICE and baselines on SMACv2 with different mixer settings.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

B.8 COMADICE ON THE PENALTY XOR GAME

We discuss how ComaDICE addresses the Penalty XOR Game, a benchmark task previously consid-
ered in the AlberDICE paper (Matsunaga et al., 2023; Fu et al., 2022).

Overview of the Penalty XOR Game. The Penalty XOR Game is a commonly used benchmark
in multi-agent cooperative reinforcement learning, designed to evaluate the agents’ ability to learn
coordinated policies. In this game, two agents interact with a shared environment defined by a
global state consisting of two binary features. Each agent selects a binary action, and the reward
is determined by the relationship between their actions and the global state (as illustrated in Figure
10). This game highlights key challenges in multi-agent learning, such as credit assignment and
coordination, as agents must infer the XOR-like reward logic from their experiences while aligning
their actions to optimize joint behavior. This benchmark is particularly valuable for testing algorithms’
capabilities in capturing inter-agent dependencies and handling sparse, state-dependent rewards.

Figure 10: The Penalty XOR Game environment.

Experimental Setup. Following the setup in AlberDICE, we construct four datasets with increasing
complexity: 1. (a) {AB} 2. (b) {AB, BA} 3. (c) {AA, AB, BA} 4. (d) {AA, AB, BA, BB}

Results. The optimal policy values returned by ComaDICE after a few epochs of training are
presented in Table 26. Our results show that ComaDICE successfully learns the optimal policy across
all four datasets. Compared to the results reported in the AlberDICE paper (Matsunaga et al., 2023),
ComaDICE achieves similar policy values while outperforming other baselines considered in that
study.

(a) A B

A 0.00 1.00

B 0.00 0.00

(b) A B

A 0.00 1.00

B 0.00 0.00

(c) A B

A 0.00 1.00

B 0.00 0.00

(d) A B

A 0.00 1.00

B 0.00 0.00

Table 26: Policy values after convergence returned by ComaDICE.

We now delve into the toy example to explain how ComaDICE achieves optimal policy values
by balancing the maximization of global reward and the minimization of divergence between the
occupancy of the learning policy and the behavior policy.

Consider the dataset {AB}, where the observation yields a high reward (i.e., 1). When optimizing
the global policy with this dataset, ComaDICE seeks a policy that maximizes the reward across the
dataset while aligning with the behavioral policy represented by {AB}. Consequently, it returns a
global optimal policy (in the form of an occupancy ratio) that assigns the highest possible probabilities
to the joint action {AB}. Subsequently, the weighted behavior cloning (BC) step learns decentralized
policies that also assign the highest possible probabilities to the joint action {AB}, producing the
desired optimal policy observed in our experiments.

For the dataset {AB,BA}, ComaDICE returns a global policy ensuring that the first player always
chooses A and the second always chooses B. To understand why this occurs, note that ComaDICE’s
learning objective consists of two terms: one aims to maximize the global reward, and the other
minimizes the divergence between the learned policy and the dataset. When the dataset includes
{AB,BA}, the occupancy-matching term favors a policy that assigns (uniformly) positive prob-
abilities to both joint actions {AB} and {BA}. However, since ComaDICE learns decentralized
policies, assigning significantly positive probabilities to both joint actions {AB} and {BA} implies
that both players would take both actions A and B with significant probabilities, leading to a lower

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

expected global reward. In other words, exactly matching the dataset distribution would result in
suboptimal reward. To optimize the overall objective, ComaDICE assigns the highest probability to
one of the joint actions, {AB} or {BA}. In our experiments, it assigned the highest probability to
{AB}, achieving a better balance between reward maximization and divergence minimization. This
explains why ComaDICE converges to this optimal policy.

The other datasets can be explained similarly. For example, with the dataset {AA,AB,BA}, the
second term of the objective favors a policy that assigns equal probabilities (1/3) to these three joint
actions. However, this would imply that both players take both actions A and B with non-zero and
significant probabilities, resulting in lower accumulated rewards. To balance reward maximization
and dataset alignment, ComaDICE returns an optimal policy ensuring that the first player always
chooses A and the second always chooses B.

In comparison with OptDICE, both our experiments and those reported in the AlberDICE paper
demonstrate that OptDICE fails to return optimal policy values even when provided with an optimal
dataset, e.g., when the dataset is {AB,BA}. This is despite the fact that both OptDICE and
ComaDICE aim to balance maximizing the joint reward and matching the data distribution. Here, we
provide an intuitive explanation for why this occurs.

First, we note that while ComaDICE learns the global objective function over decentralized and
factorized policies, OptDICE learns only the global policy by directly solving the original objective
function. In this context, when the dataset is {AB,BA}, OptDICE learns a global policy that assigns
uniform probabilities to both joint actions {AB} and {BA}. However, when extracting local policies,
OptDICE will return local policies that make both the first and second players choose actions A and
B with probabilities of 0.25, as shown in Table 27, which is indeed suboptimal.

(b) A B

A 0.25 0.25

B 0.25 0.25

Table 27: Policy values returned by OptDICE with dataset (b).

37

	Introduction
	Related Work
	Preliminaries
	ComaDICE: Offline Cooperative Multi-Agent RL with Stationary Distribution Correction Estimation
	Constrained Optimization in the Stationary Distribution Space
	Value Factorization
	Policy Extraction

	Practical Algorithm
	Experiments
	Environments
	Baselines
	Main Comparison
	Ablation Study - Impact of the Regularization Parameter Alpha

	Conclusion, Future Work and Broader Impacts
	Missing Proofs
	Proof of Proposition 4.1
	Proof of Theorem 4.2
	Proof of Proposition 4.3

	Additional Details
	magentaFactorization Aspect of the Learning Objective in ComaDICE
	Offline Multi-Agent Datasets
	Implementation Details
	Additional Experimental Details
	Ablation Study: Different Values of Alpha
	Ablation Study: Different Forms of f-divergence
	Ablation Study: Different Types of Mixer Network
	magentaComaDICE on the Penalty XOR Game

