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Abstract

Remote sensing images present unique challenges to image analysis due to the
extensive geographic coverage, hardware limitations, and misaligned multi-scale
images. This paper revisits the classical multi-scale representation learning prob-
lem but under the general framework of self-supervised learning for remote sensing
image understanding. We present Cross-Scale MAE, a self-supervised model
built upon the Masked Auto-Encoder (MAE). During pre-training, Cross-Scale
MAE employs scale augmentation techniques and enforces cross-scale consistency
constraints through both contrastive and generative losses to ensure consistent
and meaningful representations well-suited for a wide range of downstream tasks.
Further, our implementation leverages the xFormers library to accelerate network
pre-training on a single GPU while maintaining the quality of learned represen-
tations. Experimental evaluations demonstrate that Cross-Scale MAE exhibits
superior performance compared to standard MAE and other state-of-the-art remote
sensing MAE methods.

1 Introduction

Remote sensing image understanding has been reaping the benefits of recent advances in computer
vision while at the same time posing unique challenges. First, remote sensing imagery usually covers
the Earth’s surface extensively for Earth observation purposes [52} 43| 31]]. Compared to the vast
area the images cover, even a large amount of training samples would become sparse. Furthermore,
generating a set of representative training samples is challenging, especially in less-explored regions.
Hence, self-supervised learning (SSL) becomes a viable solution since no training data is required for
representation learning purposes. A recently published paper [46] provides a comprehensive review
of SSL in remote sensing.

The second challenge arises from the inherent hardware limitations of remote sensing devices,
where one can only expect to acquire images of high resolution in the spatial, spectral, or temporal
domain, but not all. These devices usually sacrifice spatial resolution to gain spectral and/or temporal
resolution for different functional and/or material analyses of the Earth’s surface. Ground Sample
Distance (GSD) measures the spatial resolution, denoting the physical distance between two adjacent
pixels. For example, Landsat-8 [45] has 8 spectral bands at 30 m GSD; Sentinel-2 [[17] has 4 bands at
10 m, 6 bands at 20 m, and 3 bands at 60 m GSD; and WorldView-3 [29] has 8 multi-spectral bands
at 1.24 m GSD. These multi-scale images, although imaging the same site, might not be aligned at
all, and the alignment process can be both time-consuming and expensive.

It is worth noting that in remote sensing imagery, due to the rich and unique data provided along
the temporal and spectral domains, algorithms tend to exploit more on the spectral and temporal
organization but neglect the spatial characteristics, as pointed out in [4]. So, extracting effective
representations from these misaligned multi-scale images poses a significant challenge. In this
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paper, we delve into multi-scale analysis and develop novel ways to fully explore the wealth of
information offered by images at multiple scales. We present Cross-Scale MAE, a self-supervised
model based on the Masked Autoencoder (MAE) [21]] that explicitly learns relationships between data
at different scales throughout the pre-training process. By leveraging this information, Cross-Scale
MAE produces a robust pre-trained model with superior performance across various GSDs and tasks.

Like MAE, Cross-Scale MAE also masks most of the transformed image and then tasks a Vision
Transformer (ViT)-based Autoencoder with embeddings of the unmasked components. A decoding
light ViT then decodes the entire image from these learned embeddings, where the decoder is later
discarded, and the encoder is used to produce representations for an unmasked input image. The
main differences can be addressed from two aspects. First, Cross-Scale MAE introduces the “scale
augmentation” to synthesize inputs of different scales of one input image to engage the transformer
to learn features with varying scales in the encoder. The scale augmentation eliminates the need for
aligned multi-scale images of the same ground site as input. The pre-trained model is generic enough
to extract arbitrary scale input image representations. The second key difference stems from the term
“Cross-Scale”, where features extracted from the multi-scale images are not simply concatenated or
combined in any ad hoc fashion as many existing fusion frameworks do; instead, Cross-Scale MAE
exploits information consistency across the multi-scale images and uses it as constraints to train a
more robust Autoencoder model. The cross-scale information consistency is examined at both the
encoder and decoder end to ensure consistency is reinforced at both the structural level (i.e., the
encoder end) and the semantic level (i.e., the decoder end).

The experimental results overwhelmingly show that Cross-Scale MAE yields more robust multi-scale
representations and better performance for downstream tasks as compared to other state-of-the-
art methods, across a couple of remote sensing datasets with a variety of scale and resolution
characteristics. Our contributions can be summarized as follows:

(1) We develop Cross-Scale MAE, a flexible SSL framework that yields robust representations
by enforcing cross-scale information consistency at both structural and semantic levels
without the need for aligned multi-scale remote sensing imagery.

(2) We investigate the combination of contrastive learning and masked imagery modeling,
specifically, the effect of negative samples on representation at different levels.

(3) We deploy xFormers to realize Cross-Scale MAE, where both the pre-training time and
memory usage are improved without performance degradation, making large language
model training affordable on a single GPU.

The remainder of this paper is organized as follows. Sec. [2|reviews recent developments in SSL
and multi-scale representation learning. Sec. [3|elaborates on the proposed Cross-Scale MAE model
design. Sec.[d]presents details about experiments and results. Sec. [5|concludes the paper and provides
general directions for further improvements.

2 Related Work

We mainly discuss recent works related to SSL and multi-scale representation learning.

Self-Supervised Learning (SSL). Self-supervised learning is a branch of unsupervised learning
aiming to learn effective representations for downstream tasks without using training labels. SSL can
be divided into two groups, namely, discriminative models and generative models. The discriminative
approach, e.g., contrastive learning (CL), requires the representation to be distinctive in information
for different inputs. The gist of CL is to make the representations of positive samples close and
those of negative samples far from each other, where positive samples are obtained by applying
various augmentation schemes on the same image. CL has emerged as a dominant visual SSL method,
especially after the advent of MoCo [20] and SimCLR [[7]. Negative-free, i.e., non-contrastive, joint-
embedding methods have been developed [51} 150, 9], demonstrating comparable performance as CL
methods. In the remote sensing community, the CL-based representation learning methods have been
developed, such as SeCo [28], mCL-LC [42], where the SeCo, short for Seasonal Contrast, offers
a novel approach to the challenge of insufficient labeled data in remote sensing by capitalizing on
self-supervised learning mechanisms. The mCL-LC method jointly learns global-local representations
to improve the segmentation performance for satellite images. On the other hand, the generative
approach, e.g., MAE, requires the representation to preserve as much of the input information as



possible. MAE is an autoencoder with masked prediction, i.e., predicting a property of masked input
from unmasked input. Benefiting from the success of masked language models [34} 135, |1, 113]], the
similar mechanism was investigated in vision tasks and has dramatically advanced the field of SSL
[16} 21]. Following the trend in computer vision, the masked image model has also shown strength in
the remote sensing field. For example, the GFM model [30] excels in representation learning through
continual learning, aiming to enhance the applicability of large language models to satellite imagery
via knowledge distillation.

In Cross-Scale MAE, both the discriminative and generative mechanisms are used to guarantee the
representation from images of different scales to be consistent and meaningful.

Multi-Scale Representation Learning. As mentioned in Sec. |1} the multi-scale phenomenon is
common in vision tasks. To leverage the information in multi-scale sources, the vision community has
proposed to extract multi-scale features using traditional approaches, including, for example, spatial
pyramids [39} 2 26]], dense sampling of windows [23\ 48l 49]], and the combination of them [19]]. In
the last decade, deep convolution neural networks (CNNs) have emerged as the de facto architecture
for a wide range of vision tasks. Because of the pooling and multi-convolution kernel operation,
the CNN constructs the feature pyramids inherently so that it has been used to build deep multi-
scale representations [24]]. CNN-based multi-scale representation learning is commonly approached
in two ways. The first approach involves utilizing external or preset factors, which can include
multi-scale kernel architecture [41) 25, 37, 53] and multi-scale inputs architecture [14} [18} 27]].
The second approach involves designing internal layers of the network, such as skip and dense
connections [40, [33] 15]. Over the past three years, there has been a notable surge of interest in
applying transformer-based architectures to computer vision tasks. Among these architectures, the
Vision Transformer (ViT) [[16] stands out as a particularly successful example, where, compared
to CNN, ViT balances the global and local features much better. Recently, other efforts have been
made for the multi-scale feature learning, including the multi-scale Deformable Attention and Multi-
level Features Aggregation (MSDAM and MLFAM) network [15]], and the Shunted Self-Attention
(SSA) network [38]. These methods have shown strength in multi-level feature extraction for the
natural image containing multiple objects of different sizes. However, in remote sensing images, the
multi-scale phenomenon is even more prevalent and dynamic. As a result, there has been a growing
recognition of the need for customized approaches to address this. The recently published Scale-MAE
[36] is one such example.

Essentially, compared with the most recent two state-of-the-art MAE-based satellite imagery repre-
sentation learning methods, i.e., SatMAE [12]], and Scale-MAE [36], SatMAE is the first paper that
applies MAE to extract representations from satellite images with single and fixed scale. Scale-MAE
and the proposed Cross-Scale MAE are based on MAE but focus on multi-scale characteristics.
Specifically, Scale-MAE develops the GSD position encoding and applies multi-de-convolution after
the decoder to reconstruct images of different scales. Nonetheless, Scale-MAE integrates the scale
information into the network via hard coding of known GSD, and the de-convolution can only result
in a specific scale ratio. The proposed Cross-Scale MAE designs the network to learn the information
across different scales. With scale augmentation and multi-level contrastive loss between the scale
pair and masked patches reconstruction, Cross-Scale MAE can learn informative and consistent
representation across different scales without the need of known GSD. Additionally, we leverage
xFormers on a single GPU for pre-training efficiency.

3 Methodology

This section elaborates on the Cross-Scale MAE pre-training framework as illustrated in Fig. [I] Cross-
Scale MAE is a self-supervised pre-training framework built upon the MAE [21]]. Its objective is to
learn consistent representations from multi-scale images captured at the same site by harnessing the
strengths of both discriminative and generative learning approaches. Cross-Scale MAE incorporates
two novel loss functions at the encoder and decoder stages to achieve this objective. Firstly, the
representations obtained from images of different scales are enforced to be consistent. This ensures
that the learned representations capture relevant information across scales. Secondly, a decoder is
employed to reconstruct the corresponding input, promoting the learned representation to be more
representative. Additionally, the decoder utilizes cross-prediction, where the embeddings generated
by the decoder from an image with a lower GSD are used to predict the embeddings from an image
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Figure 1: The architecture of Cross-Scale MAE comprises an encoder and a decoder (Left). The
encoder (Top-Right) employs a vision transformer (ViT) backbone, specifically a ViT-base with 12
self-attention blocks. The decoder (Bottom-Right) uses a lightweight ViT backbone with 8 self-
attention blocks. A single satellite image undergoes scale augmentation through random cropping and
resizing. The contrastive loss is computed using encoder outputs for the two scale inputs. The cross-
prediction loss (in MSE) is applied to the last self-attention block’s decoder output. Reconstruction
loss compares the predicted masked patch and the actual input.

with a higher GSD. This cross-prediction mechanism helps capturing and leveraging the multi-scale
information present in the images.

3.1 Basic Setting

Let p € REXWXC represent an input image of height H and width W with C channels. First, multi-
scale augmentation (Sec. [3.2) is applied to p to generate two images, py, of relatively higher GSD and
p of relatively lower GSD. For each of the augmented images, a sequence of |.S| independent patches

of height and width of n pixels are created, where each of the patches, s € .S, has dimension s € R™°C,
A fraction, m, of the patches is removed, while the remaining patches are passed through a projection

function (e.g., a linear layer) to project the patches s into D dimensions, fe,,q : RYC 5 RD , to
obtain embedded patches Seng = femd(S). A standard positional encoding vector is added to the
embedded patches and fed into the encoder. After the encoder, the removed m patches are placed
back into their original location in the sequence of patches where a learned mask token represents the
masked patches that were not encoded. Another positional encoding vector is added to all patches,
and a sequence of transformer blocks decodes these patches to form the original input image; these
steps are illustrated in Fig. [T}

3.2 Multi-Scale Augmentation

A specialized augmentation method is applied to the input image before patchifying it in the Cross-
Scale MAE framework. This augmentation process generates an additional image of lower GSD
for the same site, and the two images are then used as inputs through two independent instances of
the MAE network. More specifically, given an input image p with a certain GSD, the framework
randomly selects two scale ratios, r; and r;, from the range [0, 1], where r; < r;,. The image p is
then down-sampled using these scale ratios to generate two images, py, and p;. In our experiments,
we set 7, = 1, s0 py, = p. Both images, p;, and p;, are subsequently resized to a fixed size of 128px>2,
and the GSD values of p;, and p; are denoted as gy, and g;, respectively.

Note that this augmentation approach differs from traditional augmentation, where the rescaled
images are traditionally only used as separate samples. Instead, the multi-scale inputs are generated
dynamically at runtime and used as inputs through multiple network branches, where the branches
have shared weights. The constraints enforced upon the learned representations of these network
branches are detailed in the following sections.



3.3 Cross-Scale Information Consistency in the Encoder

Typically, the standard MAE trains a network to reconstruct an image by masking out a significant
portion of its pixels. However, the standard MAE encoder does not explicitly address the issue
of representation consistency for multi-scale input sources. In contrast, the proposed Cross-Scale
MAE aims to learn meaningful and consistent scale-invariant representations. To achieve this, Cross-
Scale MAE focuses on two fundamental properties in the learned representations: (1) consistency
of information across different-scale images and (2) representativeness of the raw image. In the
Cross-Scale MAE framework, a contrastive learning strategy is employed within the encoder to
ensure consistency among representations derived from different-scale images.

The intuitive idea behind Cross-Scale MAE is that different-scale images captured at the same ground
site contain highly relevant information despite potential visual differences. Cross-Scale MAE
leverages this notion by maximizing the shared information between representations derived from
different-scale images of the same site while minimizing the shared information between images from
different sites. This approach aligns with the principles of contrastive learning. In contrastive learning,
the InfoNCE loss is commonly used to estimate the lower bound of mutual information between data
samples. By minimizing the InfoNCE loss, we effectively maximize the mutual information between
representations from different scales [44] 32].

Specifically, the encoder E, uses the ViT-base [[16] as the backbone. Upon feeding an input image p
to encoder F, a high-level representation, F/(p), can be obtained. Before computing the contrastive
loss, a nonlinear projection head g f() is needed, which has been proven to be effective [8]. So,
after the encoder and projection head, we obtain the representation, z = g (E (p)). The cross-scale
consistency loss is thus defined as:

1 N

cc ﬁ
k=1

mfo pl ,Ph) =+ gznfo (phvpl )) (D

where pfl’ and p‘l"’ are the different-scale images from the same input image px, N denotes the number
of samples in a mini-batch, and the InfoNCE contrastive loss function #i,¢, is the same as in [6]],
which is defined as follows:

exp (sim (2, 25) /7) )
ZPGA exp (sim(z{“,ng(E(p))) )

where zf' = g (E (pf)). 2F = g7 (E (p}})) and A is the sample batch. The sim operator is the
cosine distance.

ginfo (Pfcypﬁ) = - log

3.4 Cross-Scale Prediction in the Decoder

The InfoNCE loss in the encoder provides consistency for multi-scale input but cannot guarantee that
the learned representation adequately represents the input. In other words, the representation learned
by the network from multi-scale images should be not only consistent among different scales, but also
representative of the semantic information. According to [3]], the self-supervised ViT automatically
learns class-specific features leading to unsupervised object segmentation; specifically, the attention
block’s last layer includes abundant semantic information. Motivated by [3]], the decoder of the
Cross-Scale MAE has two tasks: (1) reconstruction of the multi-scale input as close as possible, (2)
cross-scale prediction between attentions from different scales, as shown in the decoder part of Fig.[I]
and detailed below.

Similar to the standard MAE, Cross-Scale MAE also adopts a light decoder. Decoding follows the
standard MAE decoder where, following the encoder, the removed m patches are placed back into
their original location in the sequence of patches where a learned mask token represents the masked
patches that were not encoded, and a positional encoding is added. Then, a series of transformer layers
decode all patches. Given the two representations fe » and fe ;, where fe ;, = E (pp), feq = E (p1),
after the decoder attention block, we will obtain two new representations, fq 5 and fg;. Then, the
cross-scale prediction is applied between them to get the cross-scale prediction loss, defined as:



Table 1: The information of datasets used in Sec.

Dataset GSD(m) Number of Images Number of Categories
RESISC45 0.2-30 31500 45
WHU-19 0.5 1050 19
UC Merced 0.3 2100 21
EuroSAT 10 27000 10
1
Lop = D (Corea (f51: Fin)) 3)
k=1
where [V is the batch size and the prediction loss £,,.q is defined as:
epred (f(l;,laf(l;,h) = ||f¢§h _gp(ftlj,l)H% (4)

It follows the Mean Squared Error (MSE) between the prediction and target representation, where
the predictor, g, (-), is a multi-layer perceptron (MLP). Besides the cross-scale prediction loss, the
decoder reconstructs images of different scales. The reconstruction loss is thus defined as:

N
1 - -
Lre = D (llpe = Bill3 + 1w — £ull3) S
k=1

where p; = D(E(p;)) and pp, = D(E(py,)). Via the cross-scale prediction loss and the reconstruction
loss, the consistency and effectiveness of the semantic information of the representation can be better
preserved.

The total loss of the Cross-Scale MAE is the sum of cross-scale consistency loss at the encoder (L..),
cross-scale prediction loss at the decoder (L.,), and the reconstruction loss (L,.), defined as:

L="Lee+ Lep+ Lre (6)

4 Experiments & Results

We investigate the quality of representations learned from Cross-Scale MAE pre-training through
comparisons to state-of-the-art approaches (Sec. 4.1) and comprehensive ablation studies (Sec. 4.2).
Sec. 4.3, we briefly explore their robustness to scale variation and transfer performance to additional
tasks. We use SatMAE [12] as the baseline, the state-of-the-art MAE-based approach for remote
sensing image analysis. We pre-train Cross-Scale MAE with a ViT-Large model (unless mentioned
otherwise) using the Functional Map of the World (fMoW) [[11]] RGB training set, which consists of
363.6k images of varying image resolution and GSD. In Sec. we present experiments and results
to validate the effectiveness of the proposed method, compared with baseline and other state-of-art
methods, such as Scale-MAE [36]]. Section[4.2] presents a set of ablation experiments to show how
different losses and hyper-parameters affect the performance of Cross-Scale MAE. Section [4.3|briefly
describes the efficient backbone built through xFormers.

4.1 Comparison with State-of-the-Art

Similar to Scale-MAE, we use both the K-nearest neighbors (KNN) classification accuracy and
performance in downstream tasks as metrics to evaluate the quality of the representation learned by
Cross-Scale MAE. Specifically, we pre-train the Cross-Scale MAE on the fMoW-RGB dataset and
freeze the encoder as a representation generator; then, we test its effectiveness on different datasets
via KNN classification.

KNN Performance. Similar to the original MAE configuration, the encoder of Cross-Scale MAE
uses a ViT-Large model, and the decoder is a light ViT model with the 8-layer attention blocks.
The datasets we use include RESISC45 [10]], WHU-RS19 [47], UC Merced [47], EuroSAT [22], as
shown in Table To evaluate the representation learning capacity of the proposed method with



Table 2: Average KNN accuracy with different scale ratios (12.5%, 25%, 50%, 100%)

RESISC45 WHU-RS19 UC Merced EuroSAT
SatMAE 66.3 69.9 69.7 81.9
Scale-MAE 70.0 79.5 75.0 86.7
Cross-Scale MAE 75.6 79.8 74.5 87.8

different GSD images, we evaluate the network performance using images with different scale ratios,
{12.5%, 25%, 50%, 100%}, to the raw image to simulate different GSD.

The results are presented in Fig. [2] This figure shows the performance of Cross-Scale MAE compared
to both SatMAE and Scale-MAE for different scale ratios. From Fig. 2] we observe that, in general,
the Cross-Scale MAE performs better than SatMAE or Scale-MAE in all different scale ratios on all
datasets. And, for scale ratio in {25%, 50%, 100%}, the Cross-Scale MAE can obtain more stable
performance compared with SatMAE or Scale-MAE. When the scale ratio equals 12.5%, all three
models perform relatively worse. This is because the scale ratio set during pre-training is from 0.2
to 0.8, and 0.125 is out of this range. Nonetheless, Cross-Scale MAE still presents overwhelmingly
better performance than the other two. Table [2|shows the average accuracy at all scale ratios and
compares Cross-Scale MAE with SatMAE and Scale-MAE. We can find that Cross-Scale MAE
presents overwhelmingly better performance than SatMAE in all datasets and we observe similar
trend as in Fig. 2. Cross-Scale MAE generally performs better than Scale-MAE except in the UC
Merced dataset. It may be because RESISC45 covers an extensive range of GSD, from 0.2m to 30m,
but the other three datasets have fixed GSD. This comparison effectively demonstrates the robustness
of representations generated from Cross-Scale MAE, especially on multi-scale datasets.

RESISC45 UCMerced WHU-19
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Figure 2: The KNN classification of Cross-Scale MAE for different datasets.

Downstream Tasks. We further evaluate the performance of Cross-Scale MAE on different down-
stream tasks to assess the effectiveness of the learned representations in various practical scenarios,
including classification and segmentation. We conduct the classification task on the fMoW-RGB
dataset. The segmentation downstream tasks are performed on two datasets, Potsdam and Vaihungen.
We fine-tune the model for 50 epochs for all downstream tasks, following the same hyper-parameter
settings as Scale-MAE [36].

To test the capability of handling multi-scale inputs, we compare the performance of different methods
on low-resolution images with different scaling ratios applied on full-resolution images. In Table [3|
we report the classification performance regarding Top-1 and Top-5 accuracy. In Table [ we report
the segmentation performance regarding mloU. The proposed Cross-Scale MAE performs superior
to state-of-the-art methods in both classification and semantic segmentation downstream tasks.

4.2 Ablation Study

The ablation study is four-fold. First, we investigate the critical role of each of the three loss functions
to multi-scale inputs. Second, we investigate the effect of negative samples in different levels of
the representation. This includes two parts, with the first evaluating the whole Cross-Scale MAE
framework and the second under the pure contrastive learning framework (leaving out the masking
patch reconstruction part). Third, we compare the effect of multi-scale input and the GSD positional
encoding used in Scale-MAE [36]]. Although we have shown performance improvement with scale
augmentation, we extend the investigation to see whether it has better generalization capacity than



Table 3: Linear classification fine-tuning performance on fMoW-RGB

Scale=50% Scale=100%
Backbone Top-1 Top-5 Top-1 Top-5
GASSL ResNet50 0.494 0.540 0.683 0.715
SeCo ResNet50 0.508 0.602 0.614 0.796
SatMAE ViT-Base 0.551 0.776 0.651 0.892
SatMAE ViT-Large 0.591 0.793 0.678 0.923
Scale-MAE ViT-Base 0.623 0.850 0.673 0.930

Cross-Scale MAE | ViT-Base | 0.632 0914 | 0.692 0.954

Table 4: Semantic segmentation performance on Potsdam & Vaihingen (mloU)

\ Potsdam \ Vaihingen
| Backbone | 25%  50%  100% | 25%  50%  100%

Supervised Baseline | ResNet50 | 0.4518 0.5212 0.7411 | 0.4603 0.5237 0.7438
SimCLR ResNet50 | 0.5327 0.5472 0.7233 | 0.5286 0.5904 0.7075
BYOL ResNet50 | 0.5509 0.5715 0.7264 | 0.5618 0.5903 0.7298
SimSiam ResNet50 | 0.5439 0.5903 0.7188 | 0.5522 0.6005 0.7205
SeCo ResNet50 | 0.5571 0.5935 0.7298 | 0.5741 0.6213 0.7250
mCL-LC ResNet50 | 0.5589 0.5973 0.7316 | 0.5795 0.6277 0.7262
SatMAE ViT-Base | 0.6325 0.6879 0.7355|0.6239 0.6980 0.7364
Scale-MAE ViT-Base | 0.6853 0.7333 0.7507 | 0.6910 0.7280 0.7512

Cross-Scale MAE

ViT-Base | 0.7082 0.7225 0.7617 | 0.7163 0.7354 0.7603

the GSD positional encoding. Finally, we explore the effects of some hyper-parameters, including,
for example, the number of epochs and the type of backbone used. All experiments in this section are
conducted on the RESISC45 dataset [[10]] and use the KNN classification as a metric.

The weight update of the encoder and decoder networks is mainly controlled by the loss function
in Eq. E] that consists of three modules, the cross consistency loss in the encoder, L., the cross
prediction loss, L., and the reconstruction loss, £,.. Table [5|thoroughly compares the classification
accuracy using different loss combinations, from which we make some interesting observations. This
experiment is conducted on RESISC45 at two scaling ratios, 0.5, 1, on the raw image with ViT-Base
and pre-trained 300 epochs on fMoW-RGB dataset with input size of 128 x 128.

The first row is essentially SatMAE, with single scale input, and thus serves as the baseline for the
subsequent comparisons. The second row adds the multi-scale input and solely uses reconstruction
loss. The improved accuracy displays the effectiveness of multi-scale inputs, especially for lower-
scale samples. From the second to the last row, all experiments use multi-scale inputs with different
loss components. From the 3rd to the 4th row, where only one additional loss module is applied,
we observe that both the consistency in the encoder representation and decoder representation are
adequate, with the consistency in the decoder representation playing a more critical role. Finally,
in the last row, we observe that the combination of consistency in the encoder and decoder has a
performance increment of 3% — 4% on both scaling rates, again demonstrating the effectiveness of
the proposed Cross-Scale MAE.

Second, we look into the effectiveness of negative samples in formulating the contrastive loss. Because
Cross-Scale MAE leverages contrastive learning at two levels to handle multi-level representations,
we must investigate the necessity of involving negative samples at each stage. Specifically, two kinds
of losses are evaluated: InfoNCE relating to positive and negative samples and prediction distance
relating to only positive samples. First, we assess it under the complete Cross-Scale MAE framework
with two scaling ratios, and the results are reported in Table[6] From Table[6] we can find the negative
samples in the encoder can improve the classification performance but decrease the performance
when involved in the decoder. It may be because the representation from the encoder contains more



Table 5: Ablation study of the effect of each of the three losses in Eq. E] (%)

Multi-Scale Cross-Consis Cross-Pred KNN 50% KNN 100%

o o o 52.1 58.9
v o o 68.3 69.2
v v o 72.4 74.4
v o v 74.9 76.5
v v v 78.7 79.3

Table 6: The effect of negative samples (NS) in Cross-Scale MAE (%)

NS in Encoder NS in Decoder KNN 50% KNN 100%

o o 75.9 77.9
v v 76.8 e
o v 75.1 77.1
v ) 78.7 79.3

“structural” information, but the decoder contains more “semantic” information [36]. Hence, the
involvement of negative samples in the encoder can help boost the discriminative capacity between
multi-scale inputs. On the other hand, with prediction loss between positive samples at the decoder,
the consistency in “semantic” information can be better preserved. Having observed this interesting
phenomenon, we are intrigued to study if the same pattern would be found in a pure contrastive
learning (CL) framework, i.e., Cross-Scale MAE without the reconstruction loss. And we did, the
results are shown in Table

Third, we investigate the differences between scale augments and the GSD positional encoding
proposed in Scale-MAE [36]. The results are presented in Fig. [3] Two sets of comparisons have
been conducted — the left figure shows the performance of Cross-Scale MAE with or without the
GSD positional encoding, and the right one shows the SatMAE performance with GSD position or
multi-scale augments. The scaling ratios used in the comparison are {25%, 50%, 75%, 100%}. From
Fig.[3(a), we find that Cross-Scale MAE adding GSD positional encoding decreases the performance.
The reason may be that Cross-Scale MAE has already used multi-scale augmentation, rendering
the GSD positional encoding redundant. On the other hand, from Fig. [3(b), we can find both GSD
positional encoding and multi-scale augmentation can improve SatMAE’s performance since SatMAE
does not exploit cross-scale consistency in the images.

Finally, we show the performance of Cross-Scale MAE with different backbones at different training
epochs and the effect of different masking ratios. The results are posted in supplementary materials.

4.3 Efficient Backbone

Large-scale models are slow to train and have high memory consumption. Thus, they are usually
trained on large clusters of GPUs. We aim to make the model more accessible and optimize the
implementation in various ways to minimize the training time and memory footprint for training and
inference, such that the model can be feasibly trained end-to-end and used for inference on a single
GPU while maintaining competitive results. In this work, we showed using the xFormers library
to build an efficient foundation for our models, allowing us to train and conduct experiments more
quickly.

Table 7: The effect of negative samples in the pure CL framework (%)

NS in Encoder NS in Decoder KNN 50% KNN 100%

o o 97.2 98.7
v v 57.3 59.5
° v 97.1 58.2
v o 58.3 60.7




a 0.62 1 —® Sat-MAE [P STTIR
078 Vet ®- Sat-MAE-w/ GSDP ’
) - @ Sat-MAE-w/ Multi-Scale
y 0.60
0.76
® o
> ° 2 0.58 °
g 074 ° e
E] / S @
I+ I+
® ® 7
z072{ ¥ d z 0.56
g g ® °
0.70 0.54
L4
0.68 /
—#— Cross-MAE-w/o GSDP 0.52 4 ___—
@ Cross-MAE-w/ GSDP —
0661 ¢ / @
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Scale Ratio to Raw Image Scale Ratio to Raw Image
@ (b

Figure 3: The comparison of multi-scale augmentation and GSD positional encoding.

Most of the optimizations offered by the xFormers library were made with Tensor-architecture GPUs
in mind. We show that we can still gain noticeable improvements in training time even when using
an older and less powerful GPU. Thus, for this comparison, we stress-test the xFormers and Timm
versions of the baseline implementations by training them on individual Nvidia RTX A6000s. The
details of the implementation and ablation studies on attention and loss types have been placed in the
supplementary.

5 Conclusion & Future Work

This paper introduced Cross-Scale MAE, a novel multi-scale representation learning framework
specifically designed for remote sensing image understanding. By incorporating scale augmentation
and enforcing cross-scale consistency at both structural and semantic levels, our approach enhances
the representational capabilities of the Masked Autoencoder in the context of multi-scale datasets.
Remote sensing image analysis, which often relies on diverse multi-source data, greatly benefits from
this framework. To achieve more robust and meaningful representations, we utilize both contrastive
and generative losses, which encourage consistency and representation quality across different
image scales. Furthermore, we employed the xFormers library to expedite network pre-training
without sacrificing performance. Through extensive evaluation of various benchmarks, Cross-Scale
MAE demonstrated superior performance compared to other state-of-the-art frameworks for satellite
imagery.

Nonetheless, Cross-Scale MAE still has its limitations, which provide directions for our future work.
(1) In scale augmentation, we currently focus on spatial augmentation (scaling) while maintaining
consistent channel content across two augmentations. However, the complexity of remote sensing
scenes extends beyond just scale differences. Variations in source images include both scale and
channel disparities. We currently retain shared channels, like RGB, to address this challenge while
discarding differing channels. This approach, although maintaining consistency, could lead to the
loss of valuable information from dropped channels. For future work, we aim to investigate more
into the multi-spectral perspective of representation learning. (2) Our multi-level contrastive learning
employs diverse strategies across levels—leveraging both positive and negative samples at the encoder
level and exclusively positive samples at the decoder level. This strategy currently yields optimal
performance, although the underlying mechanism remains unexplored. In future research, we intend
to investigate more into this strategy to gain deeper insights.
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