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Abstract—In recent years, several diagnostic challenges have
developed due to the COVID-19 pandemic, including the post-
infectious sequelae multisystem inflammatory syndrome in chil-
dren (MIS-C). This syndrome shares several clinical features
with other entities, such as Kawasaki disease (KD) and endemic
typhus, among other febrile diseases. Endemic typhus, or murine
typhus, is an acute infection treated much differently than MIS-C
and KD. Early diagnosis and appropriate treatment are crucial
to a favorable outcome for patients with these disorders. To
address these challenges, a Clinical Decision Support System
(CDSS) designed to support the decision-making of medical teams
can be implemented to differentiate between these disorders.
We developed and evaluated a CDSS based on a Triplet Loss
Siamese Network to distinguish between patients presenting with
clinically similar febrile illnesses, KD, MIS-C, or typhus. We used
eight clinical and laboratory features typically available within
six hours of presentation. The performance assessment for AI-
HEAT, Logistic Regression, Support Vector Machine, XGBoost,
and the TabPFN machine learning models was performed by
computing Balanced Accuracy. AI-HEAT is a CDSS capable of
obtaining performance similar to a state-of-the-art Transformer-
type deep learning model such as TabPFN, with advantages such
as being almost a thousand times smaller.

Index Terms—Artificial Intelligence, Clinical Decision Support
System, Deep Learning, Endemic Typhus, Kawasaki, MIS-C
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I. INTRODUCTION

In April 2020, children began to be hospitalized for fever
and multisystem inflammation [3, 4, 5, 6], and one of the most
critical clinical challenges to arise during the pandemic ap-
peared: multisystem inflammatory syndrome in children (MIS-
C). In May 2020, the Centers for Disease Control and Pre-
vention (CDC) published a case definition for this syndrome
[7], where the clinical similarity with other febrile diseases
was already evident. Fever, rash, conjunctivitis, oromucosal
changes, abdominal pain, vomiting, diarrhea, myocarditis, and
hematological abnormalities are just some of the symptoms
frequently found in MIS-C [3, 4, 5, 6, 7, 8] and that can be
found in Kawasaki Disease (KD) [9], toxic shock syndrome
(TSS) [10], and typhus [11, 12], generating a clinical challenge
to distinguish MIS-C from these pathologies.

To address other high-level clinical challenges, computer
systems designed to support the decision-making of medical
teams, such as Clinical Decision Support Systems (CDSS),
have been implemented. These computing systems have been
implemented in a wide range of clinical challenges, such as
antibiotic management [13], heart disease prediction [14], and
even cancer detection [15], so the implementation of a CDSS
capable of distinguishing between KD, MIS-C, typhus among
other non-specific febrile illnesses would be of significant
impact for medical teams in the emergency department for
timely-decision making which is essential for better outcomes
in these febrile conditions.

The main contributions of this paper are:

• Developed and evaluated an AI-based CDSS for distin-



guishing between KD, MIS-C, typhus, and other non-
specific febrile illnesses.

• Developed and evaluated a new downsampling approach
to face the problems of small imbalanced datasets.

II. BACKGROUND

CDSSs have been used during the COVID-19 pandemic
as support tools for the prognosis of disease severity [16]
or predicting mortality [17], and most of them have focused
only on MIS-C-related clinical challenges [18, 19]. One of
the only CDSS that has extended its approach beyond MIS-
C prediction is the one presented by Lam et al. [20], where
they built a two-stage model of feedforward neural networks
intended to differentiate between MIS-C, KD, and children
with non-specific febrile illnesses, considering the importance
of timely prediction using features obtained within the first 24
hours.

This research can be considered an extension of Bautista-
Castillo, et al. work [21], which, to our knowledge, is the
only one considering endemic typhus as one of the pos-
sible overlapping febrile diseases for MIS-C and that also
incorporates a score that can be used in the Emergency
Department (ED) without using electronic devices and only
using features obtained during the first six hours after patient’s
arrival. AI-HEAT incorporates KD and children with non-
specific febrile illnesses to be distinguished, being the first
CDSS that considers these febrile conditions only using eight
features obtained during the first six hours after Emergency
Department arrival and predicting the four febrile conditions.

III. METHODS

This section will discuss the methods used to create AI-
HEAT, a CDSS based on a Triplet Loss Siamese Network that
distinguishes between patients with Kawasaki, MIS-C, Typhus,
and non-specific febrile illnesses.

A. Data Imputation

Multiple Imputation by Chained Equations (MICE) [22]
with LightGBM was used to address the missing values for
data imputation. This is an iterative statistical technique where
values are imputed several times and performed chained using
LightGBM to perform the predictions in every iteration. The
Python package implemented in this work can be found in
[23].

B. Cohort Creation

To avoid biases during the training and testing phases, we
created four cohorts, considering three characteristics: age,
sex, and the patient’s condition, to obtain the most homo-
geneous distribution of patients possible in each cohort. This
process can also be referred to as a 4-set cross-validation with
matching conditions, where the matching conditions are the
age, delimited in one-year intervals, the sex, and the patient’s
febrile condition.

Fig. 1. Elbow method applied to get the optimal number of clusters (K) for
the K-means algorithm using distortion as the metric.

Fig. 2. Informative Samples Selection method using k-means and the
Euclidean distance to select those patients that are further from the centroid
because they possess the less common pattern within that cluster and are more
informative to our model. All patients belong to the same majority class.

C. Informative Samples Selection Method

To address the dataset class imbalance problem, we propose
an algorithm for downsampling the majority classes. First,
we perform a bi-dimensional projection of all patients from a
majority class that will be used for training in the trial using t-
distributed Stochastic Neighbor Embedding (t-SNE). Next, we
used k-means as our clustering algorithm, defining the number
of clusters (K) to find using the ”elbow method,” where
we initialize k-means from one and iteratively augment that
number until the sum of square distances, or distortion stops
being considerably smaller for the next iteration, compared to
the previous one to find the optimal number of clusters (Fig.
1). Finally, we compute the Euclidean distance of all points
from the cluster’s centroid to which they belong to determine
which points are closer to the centroid and which are further
from it, keeping those that are further due to they possess the
less common pattern within that cluster and, therefore, they
will be more informative to our model (Fig. 2). This process
is iterative and is applied to all majority classes one at a time.



Fig. 3. Triplet Loss Siamese Network representation.

Fig. 4. Visualization of the Triplet Loss function in the embedding space.

D. Triplet Loss Siamese Network

The core of our deep learning model is the Triplet Loss
Siamese Network. Two of the network’s main characteristics
are that it has three branches that share weights and require as
input a positive example, a negative example, and an anchor
or baseline (Fig. 3). This input is usually referred to as a
triplet. This neural network aims to enforce a desired distance
between the triplets that make up its input in a meaningful
embedding space, reducing the distance between the anchor or
baseline and the positive example and maximizing the distance
between the anchor or baseline and the negative one, using the
Triplet Loss function defined as:

L(A,P,N) = max{d(A,P )− d(A,N) + α, 0}

where d(A,P ) is the distance between the anchor or baseline
and the positive example, d(A,N) is the distance between the
anchor or baseline and the negative example, and α is the
minimum desired difference between the distances (Fig. 4).

E. Deep Learning Model: AI-HEAT

AI-HEAT consists of an embedding stage and a classifica-
tion stage. In the embedding stage, the patient information
enters the four Siamese Triplet Loss Networks, where the
representation of that patient is obtained for each of the
embedding spaces in which the four febrile conditions are
represented. Subsequently, the resulting embedded vectors are
concatenated to form a single vector with said embedded
representations. This vector will feed the classification stage,
consisting of densely connected layers with a final softmax
layer, whose output will be a probability distributed among
the four febrile conditions given the patient’s clinical and
laboratory features (Fig. 5).

Fig. 5. AI-HEAT diagram, our deep learning model consisting of an
embedding stage and a classification stage.

TABLE I
DATASET FEATURES

ID Feature Description DT

1 ALC : Absolute Lymphocyte
Count (K/µL)

ALC laboratory test within
six hours of presentation N

2 ANC : Absolute Neutrophil
Count (K/µL)

ANC laboratory test within
six hours of presentation N

3 Age (years) Patient’s age when admitted N

4 ALT : Alanine
Aminotransaminase (U/L)

ALT laboratory test within
six hours of presentation N

5 Conjunctivitis Redness of the conjunctiva B

6 Fever days before
hospital (days)

Self-reported days of fever
before admission N

7 Rash Abnormal change in
skin color B

8 Sex Female = 0, Male = 1 B

DT=Data Type , N=Numerical, B=Binary

IV. RESULTS

This section will discuss the characteristics related to the
dataset used to train and test the AI-HEAT model and the
models used as baselines, among them TabPFN [24], a prior-
data fitted network that uses a transformer to classify small
tabular data, XGBoost [25], Support Vector Machine (SVM),
and Logistic Regression (LR), in addition to the characteristics
of the cohorts and trials, the metrics used as performance
assessment, and all the settings for the experimental results.

A. Training/Testing Dataset Description

The dataset used for training and testing both models in-
cluded 943 patients admitted with non-specific febrile illnesses
and 1,105 patients admitted with KD to Rady Children’s
Hospital and its satellite locations, 135 patients admitted
with MIS-C and 87 patients admitted with murine typhus
admitted to Texas Children’s Hospital and its two satellite
campuses within the greater Houston area. Medical records
were reviewed, with eight demographic, clinical, and labo-
ratory features available within six hours of the presentation
for all febrile conditions (Table I). Within the dataset, 1,347
patients are males, and 923 are females. Maximum, minimum,
mean, prevalence, and missing values for all the features of
the dataset are shown in Table II.

B. Trials

After applying the 4-set cross-validation with matching
conditions to create the four cohorts for training and testing,
the distributions shown in Table III were obtained. Once the



TABLE II
DATASET STATISTICS

Numerical Binary
Feature Min Max Median Prevalence Missing
ALC 0.07 17.42 2.52 - 96
ANC 0.38 37.97 6.99 - 92
Age (years) <1 19 3 - 0
ALT 3 1,045 33 - 273

Conjunctivitis - - - Yes: 71%
No: 29% 5

Fever days
before hospital
(days)

0 15 5 - 1

Rash - - - Yes: 81%
No: 19% 5

Sex - - - Female: 41%
Male: 59% 0

TABLE III
NUMBER OF PATIENTS IN EACH COHORT

Cohort 1 Cohort 2 Cohort 3 Cohort 4 % of
Total

Febrile
Control 250 241 232 220 42

Kawasaki 292 278 271 264 48
MIS-C 50 38 28 19 6
Typhus 34 24 18 11 4
Total 626 581 549 514 100

cohorts were created, we defined the training and testing
patients for each trial based on these cohorts, where for each
trial, the cohort with the same Trial number will be used as
a test cohort. For Trial 1, the cohort used as a test set was
Cohort 1; for Trial 2, the cohort used as the test was Cohort
2, and so on. Finally, for the cohorts used as training for each
trial, the Informative Samples Selection Method (Sec. III-C)
was applied, obtaining the distribution of the febrile conditions
for training for every trial shown in Table IV.

C. Performance Assessment

The Balanced Accuracy metric was used to evaluate the per-
formance of AI-HEAT and the baseline models. This decision
was made based on the evident imbalance of the cohort used
for testing in each trial, which is not subject to the Informative
Sample Selection Method and thus retains the characteristics
shown in Table III. The Balanced Accuracy metric was defined

TABLE IV
DISTRIBUTION OF PATIENTS FOR EACH FEBRILE CONDITION ACROSS ALL

TRIALS

Trial 1 Trial 2 Trial 3 Trial 4 % of Total
Febrile
Control 67 79 90 98 24

Kawasaki 78 92 103 111 28
MIS-C 85 97 107 116 29
Typhus 53 63 69 76 19
Total 283 331 369 401 100

as follows:

Balanced Accuracy =
1

N

N∑
i=1

Sensitivityi,

where N is the number of febrile conditions.

D. Experimental Results

The training and testing of all models were performed with
Python 3.9.17, Tensorflow 2.13.0, Pandas 2.0.3, and Keras
2.13.1 running on a LINUX-based computer equipped with an
AMD Ryzen 5 5600g CPU and a NVIDIA GeForce RTX3060
GPU. For TabPFN, we used the Python package downloaded
directly from the authors’ GitHub repository [26]. Similarly,
XGBoost was installed and ran following the steps outlined
in the developers’ documentation [27]. SVM and LR were
implemented directly from the scikit-learn package for Python
[28]. To train AI-HEAT, our CDSS, we began by training
each Triplet Loss Siamese network. These networks were
designed to create an embedding space for each of the four
febrile conditions. In this setup, each febrile condition was
treated as a positive instance within its embedding space, while
the other conditions were considered negative. Once the four
Triplet Loss Siamese Networks had been trained, their outputs
were fed into a concatenation layer that combines the vectors
from each network and pass them through a series of densely
connected layers that form the classification stage of our
CDSS. Each Triplet Loss Siamese Network consists of four
layers with 16, 32, 16, and 8 neurons, respectively. Training
was performed using the Triplet Loss function with a learning
rate of 0.002, an alpha parameter of 0.2, and a batch size of
30. The classification module uses three densely connected
layers, with 32, 64, and 32 neurons, respectively, and employs
a ReLU activation function. For training this module, we
used mean square error as the loss function and an Adam
optimizer with a learning rate of 0.001 over 25 epochs, with
ten steps per epoch. The training was conducted for all models
with and without the Informative Sample Selection method
implementation to compare the impact of the downsampling
method proposed in III-C. In the case of TabPFN, due to the
Transformer’s restrictions that do not admit more than 1024
samples for training, a random sampling of 400 samples was
carried out for non-specific febrile illnesses and KD patients.
The experimental results for all trials are shown in Table V,
while experimental results for all classes can be seen in Fig.
6.

V. DISCUSSION

In the results shown in Table V and Figure 6, the positive
impact of implementing the Informative Samples Selection
Method is evident, where the models most benefited by its
implementation were SVM and AI-HEAT, and the least bene-
fited was TabPFN. This may be due to TabPFN’s well-known
robustness even when dealing with imbalanced datasets thanks
to its Transformer-type architecture. AI-HEAT achieves a
performance similar to that of the TabPFN, with some specific
advantages such as being a model that allows visualization



TABLE V
BALANCED ACCURACY RESULTS FOR ALL TRIALS

Imbalanced Balanced
LR SVM XGBoost TabPFN AI-HEAT LR SVM XGBoost TabPFN AI-HEAT

Trial 1 0.51 0.48 0.55 0.64 0.50 0.64 0.63 0.61 0.66 0.69
Trial 2 0.49 0.42 0.53 0.65 0.54 0.68 0.65 0.66 0.75 0.72
Trial 3 0.52 0.47 0.64 0.66 0.51 0.69 0.70 0.70 0.78 0.74
Trial 4 0.55 0.49 0.69 0.69 0.54 0.69 0.73 0.73 0.75 0.78
Average 0.52 0.47 0.60 0.66 0.52 0.68 0.68 0.67 0.74 0.73

Fig. 6. Experimental results per class for every baseline model and AI-HEAT before and after Informative Samples Selection Method.

of the embedding spaces (Fig. 7, 8, 9, and 10) that can
result in a better understanding of the similarity of some of
the febrile conditions treated here, as well as the significant
difference in size of both architectures, where TabPFN has
25.8 M parameters. In comparison, AI-HEAT only has 24.4 K
parameters.

In these bidimensional projections of the multi-embedding
space, it can be observed how AI-HEAT interprets the ex-
istence of a certain similarity in febrile conditions such as
Kawasaki (Fig. 8) and typhus (Fig. 10), where it observes
that several patients occupy the same regions of this multi-
embedding space. At the same time, it can be seen that
patients with MIS-C (Fig. 9) are distributed throughout the
multi-embedding space, which suggests that they are the most
challenging patients to distinguish between the four febrile
conditions. These conclusions were confirmed by medical staff
who are in constant contact with these febrile conditions.

VI. CONCLUSIONS

AI-HEAT is a CDSS capable of obtaining performance
similar to that of a state-of-the-art Transformer-type deep
learning model such as TabPFN with advantages such as
being almost a thousand times smaller, having the ability to

allow the visualization of its embedding spaces to the better
understanding of the febrile conditions that it distinguishes,
and having the flexibility to be able to incorporate other
architectures in its classification stage that can improve its
performance.
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