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ABSTRACT

Recently, interpretable machine learning has re-explored concept bottleneck mod-
els (CBM), comprising step-by-step prediction of the high-level concepts from the
raw features and the target variable from the predicted concepts. A compelling ad-
vantage of this model class is the user’s ability to intervene on the predicted con-
cept values, consequently affecting the model’s downstream output. In this work,
we introduce a method to perform such concept-based interventions on already-
trained neural networks, which are not interpretable by design. Furthermore, we
formalise the model’s intervenability as a measure of the effectiveness of concept-
based interventions and leverage this definition to fine-tune black-box models.
Empirically, we explore the intervenability of black-box classifiers on synthetic
tabular and natural image benchmarks. We demonstrate that fine-tuning improves
intervention effectiveness and often yields better-calibrated predictions. To show-
case the practical utility of the proposed techniques, we apply them to deep chest
X-ray classifiers and show that fine-tuned black boxes can be as intervenable and
more performant than CBMs.

1 INTRODUCTION

Interpretable and explainable machine learning (Doshi-Velez & Kim, 2017; Molnar, 2022) have seen
a renewed interest in concept-based predictive models and approaches to post hoc explanation, such
as concept bottlenecks (Lampert et al., 2009; Kumar et al., 2009; Koh et al., 2020), contextual se-
mantic interpretable bottlenecks (Marcos et al., 2020), concept whitening layers (Chen et al., 2020),
and concept activation vectors (Kim et al., 2018). Moving beyond interpretations defined in the
high-dimensional and unwieldy input space, these techniques relate the model’s inputs and outputs
via additional high-level human-understandable attributes, also referred to as concepts. Typically,
neural network models are supervised to predict these attributes in a dedicated bottleneck layer, or
post hoc explanations are derived to measure the model’s sensitivity to a set of concept variables.

This work focuses specifically on the concept bottleneck models, as revisited by Koh et al. (2020).
In brief, a CBM fθ, parameterised by θ, is given by fθ (x) = gψ (hϕ (x)), where x ∈ X and
y ∈ Y are covariates and targets, respectively, hϕ : X → C maps inputs to predicted concepts,
i.e. ĉ = hϕ (x), and gψ : C → Y predicts the target based on ĉ, i.e. ŷ = gψ (ĉ). CBMs are trained
on labelled data points (x, c, y) annotated by concepts c ∈ C and are supervised by the concept
and target prediction losses. Note that above, the output of hϕ forms a concept bottleneck layer,
and thus, the model’s final output depends on the covariates x solely through the predicted concept
values ĉ. At inference time, a human user may interact with the CBM by editing the predicted
concept values and, as a result, affecting the downstream target prediction. For example, if the user
chooses to replace ĉ with another c′ ∈ C, the final prediction is given by ŷ′ = gψ (c′). This act of
model editing is known as an intervention. User’s ability to intervene is a compelling advantage of
CBMs over other interpretable model classes, in that the former allows for human-model interaction.

An apparent limitation of the CBMs is that the knowledge of the concepts and annotated data are
required at model development. Recent research efforts have been directed at mitigating these limi-
tations by converting pretrained models into CBMs post hoc (Yuksekgonul et al., 2023) and discov-
ering concept sets automatically in a label-free manner using GPT-3 and CLIP models (Oikarinen
et al., 2023). However, these works either have not comprehensively investigated the effectiveness
of interventions in this setting or have mainly concentrated on global model editing rather than
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Figure 1: Schematic summary of concept-based instance-specific intervention on a black-box neural
network. This work introduces an intervention procedure that, given concept values c′, for an input
x, edits the network’s activation vector z at an intermediate layer, replacing it with z′ coherent with
the given concepts. The intervention results in an updated prediction ŷ′.

the influence on individual data point predictions. Complementary to the post hoc and label-free
CBMs, we focus on interventions and explore two related research questions: (i) Given post hoc
a concept set and dataset with concept labels, how can we perform instance-specific interventions
directly on a trained black-box model? (ii) How can we fine-tune the black-box model to improve
the effectiveness of interventions performed on it? Herein, instance-specific interventions refer to
the interventions performed locally, i.e. individually for each data point. Figure 1 schematically
summarises the principle behind concept-based interventions on black-box neural network models.

Contributions This work contributes to the line of research on concept bottleneck models and
concept-based explanations in several ways. (1) We devise a simple procedure (Figure 1) that, given
a set of concepts and a labelled dataset, allows performing concept-based instance-specific interven-
tions on an already trained black-box neural network by editing its activations at an intermediate
layer. Notably, during training, concept labels are not required and the network’s architecture does
not need to be adjusted. (2) We formalise intervenability as a measure of the effectiveness of the in-
terventions performed on the model and introduce a novel fine-tuning procedure for black-box neural
networks that utilises intervenability as the loss. This fine-tuning strategy is designed to improve the
effectiveness of concept-based interventions while preserving the original model’s architecture and
learnt representations. (3) We evaluate the proposed procedures alongside several common-sense
baseline techniques on the synthetic tabular, natural image, and medical imaging data. We demon-
strate that in practice, for some classification problems, we can improve the predictive performance
of already trained black-box models via concept-based interventions. Moreover, the effectiveness of
interventions improves considerably when explicitly fine-tuning for intervenability.

2 RELATED WORK

The use of high-level attributes in predictive models has been well-explored in computer vision
(Lampert et al., 2009; Kumar et al., 2009). Recent efforts have focused on explicitly incorporating
concepts in neural networks (Koh et al., 2020; Marcos et al., 2020), producing high-level post hoc
explanations by quantifying the network’s sensitivity to the attributes (Kim et al., 2018), probing
(Alain & Bengio, 2016; Belinkov, 2022) and de-correlating and aligning the network’s latent space
with concept variables (Chen et al., 2020). To alleviate the assumption of being given interpretable
concepts, some works have explored concept discovery prior to post hoc explanation (Ghorbani
et al., 2019; Yeh et al., 2020). Another relevant line of work investigated concept-based counterfac-
tual explanations (CCE) (Abid et al., 2022; Kim et al., 2023b).

Concept bottleneck models (Koh et al., 2020) have sparked a renewed interest in concept-based
classification methods. Many related works have described the inherent limitations of this model
class and attempted to address them. For example, Margeloiu et al. (2021) observe that CBMs may
not always learn meaningful relationships between the concept and input spaces. Similarly, Mahin-
pei et al. (2021) identify the issue of information leakage in concept predictions. Solutions to this
challenge include generative approaches (Marconato et al., 2022) and learning residual relationships
between the features and labels that are not captured by the given concept set (Havasi et al., 2022;
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Figure 2: Three steps of the intervention procedure. (i) A probe qξ is trained to predict the concepts
c from the activation vector z. (ii) The representations are edited according to Equation 1. (iii) The
final prediction is updated to ŷ′ based on the edited representations z′.

Sawada & Nakamura, 2022; Marcinkevičs et al., 2023). Another line of research has investigated
modelling uncertainty and probabilistic extensions of the CBMs (Collins et al., 2023; Kim et al.,
2023a). Most related to the current work are the techniques for converting already trained black-box
neural networks into CBMs post hoc (Yuksekgonul et al., 2023; Oikarinen et al., 2023) by keeping
the network’s backbone and projecting its activations into the concept bottleneck layer.

As mentioned, CBMs allow for concept-based instance-specific interventions. Several follow-up
works have studied interventions in further detail. Chauhan et al. (2023) and Sheth et al. (2022)
introduce adaptive intervention policies to further improve the predictive performance of the CBMs
at the test time. In a similar vein, Steinmann et al. (2023) propose learning to detect mistakes in
the predicted concepts and, thus, learning intervention strategies. Shin et al. (2023) empirically
investigate different intervention procedures across various settings.

3 METHODS

In this section, we define a measure for the effectiveness of interventions and present techniques for
performing concept-based interventions on black-box neural networks and fine-tuning black boxes
to improve the effectiveness of such interventions. Some additional remarks beyond the scope of
the main text are included in Appendix B. In the remainder of this paper, we will adhere to the
following notation. Let x ∈ X , y ∈ Y , and c ∈ C be the covariates, targets, and concepts. Consider
a black-box neural network fθ : X → Y parameterised by θ and a slice ⟨gψ, hϕ⟩ (Leino et al.,
2018), defining a layer, s.t. fθ (x) = gψ (hϕ (x)). We will assume that the black box has been
trained end-to-end on the labelled data {(xi, yi)}i. When applicable, we will use a similar notation
for CBMs, as outlined in Section 1. Lastly, for the techniques introduced below, we will assume
being given a labelled and annotated validation set {(xi, ci, yi)}i.

3.1 INTERVENING ON BLACK-BOX MODELS

Given a black-box model fθ and a data point (x, y), a human user might desire to influence the pre-
diction ŷ = fθ (x) made by the model via high-level and understandable concept values c′, e.g. think
of a doctor trying to interact with a chest X-ray classifier (fθ) by annotating their findings (c′)
in a radiograph (x). To facilitate such interactions, we propose a simple recipe for concept-based
instance-specific interventions (detailed in Figure 2) that can be applied to any black-box neural
network model. Intuitively, using the given validation data and concept values, our procedure edits
the network’s representations z = hϕ (x), where z ∈ Z , to align more closely with c′ and, thus,
affects the downstream prediction. Below, we explain this procedure step-by-step. Pseudocode
implementation can be found as part of Algorithm A.1 in Appendix A.

Step 1: Probing To align the network’s activation vectors with concepts, the preliminary step is
to train a probing function (Alain & Bengio, 2016; Belinkov, 2022), or a probe for short, mapping
the intermediate representations to concepts. Namely, using the given annotated validation data
{(xi, ci, yi)}i, we train a probe qξ to predict the concepts ci from the representations zi = hϕ (xi):
minξ

∑
i Lc (qξ (zi) , ci), where Lc is the concept prediction loss. Note that, herein, an essential
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design choice explored in our experiments is the (non)linearity of the probe. Consequently, the
probing function can be used to interpret the activations in the intermediate layer and edit them.

Step 2: Editing Representations Recall that we are given a data point (x, y) and concept values
c′ for which an intervention needs to be performed. Note that this c′ ∈ C could correspond to the
ground-truth concept values or reflect the beliefs of the human subject intervening on the model.
Intuitively, we seek an activation vector z′, which is similar to z = hϕ (x) and consistent with
c′ according to the previously learnt probing function qξ: argminz′ d (z, z′) , s.t. qξ (z′) = c′,
where d is an appropriate distance function applied to the activation vectors from the intermediate
layer. Throughout main experiments (Section 4), we utilise the Euclidean metric, which is frequently
applied to neural network representations, e.g. see works by Moradi Fard et al. (2020) and Jia et al.
(2021). In Appendix E.5, we additionally explore the cosine distance. Instead of the constrained
problem above, we resort to minimising a relaxed objective:

argmin
z′

λLc (qξ (z′) , c′) + d (z, z′) , (1)

where, similarly to the counterfactual explanation (Wachter et al., 2017; Mothilal et al., 2020), hy-
perparameter λ > 0 controls the tradeoff between the intervention’s validity, i.e. the “consistency”
of z′ with the given concept values c′ according to the probe, and proximity to the original activation
vector z. In practice, we optimise z′ for batched interventions using Adam (Kingma & Ba, 2015).

Step 3: Updating Output The edited representation z′ can be consequently fed into gψ to com-
pute the updated output ŷ′ = gψ (z′), which could be then returned and displayed to the human
subject. For example, if c′ are the ground-truth concept values, we would ideally expect a decrease
in the prediction error for the given data point (x, y).

3.2 WHAT IS INTERVENABILITY?

Concept bottlenecks (Koh et al., 2020) and their extensions are often evaluated empirically by plot-
ting test-set performance or error attained after intervening on concept subsets of varying sizes.
Ideally, the model’s test-set performance should improve when given more ground-truth attribute
values. Below, we formalise this notion of intervention effectiveness, referred to as intervenability,
for the concept bottleneck and black-box models.

Following the notation from Section 1, for a trained CBM fθ (x) = gψ (hϕ (x)) = gψ (ĉ), we
define the intervenability as follows:

E
(x,c,y)∼D

[
E
c′∼π

[
Ly

(
fθ (x)︸ ︷︷ ︸
ŷ=gψ(ĉ)

, y
)
− Ly

(
gψ (c′)︸ ︷︷ ︸

ŷ′

, y
)]]

, (2)

whereD is the joint distribution over the covariates, concepts, and targets, Ly is the target prediction
loss, e.g. the mean squared error (MSE) or cross-entropy (CE), and π denotes a distribution over
edited concept values c′. Observe that Equation 2 generalises the standard evaluation strategy of
intervening on a random concept subset and setting it to the ground-truth values, as proposed in
the original work by Koh et al. (2020). Here, the effectiveness of interventions is quantified by the
gap between the regular prediction loss and the loss attained after the intervention: the larger the
gap between these values, the stronger the effect interventions have. The intervenability measure
is related to permutation-based variable importance and model reliance (Fisher et al., 2019). We
provide a detailed discussion of this relationship in Appendix B.

Note that the definition in Equation 2 can also accommodate more sophisticated intervention strate-
gies, for example, similar to those studied by Shin et al. (2023) and Sheth et al. (2022). An in-
tervention strategy can be specified via the distribution π, which can be conditioned on x, ĉ, c, ŷ,
or even y: π (c′|x, ĉ, c, ŷ, y). The set of conditioning variables may vary depending on the specific
application scenario. For brevity, we will use π as a shorthand notation for this distribution. Lastly,
notice that, in practice, when performing human- or application-grounded evaluation (Doshi-Velez
& Kim, 2017), sampling from π may be replaced with the interventions by a human. Algorithms D.1
and D.2 provide concrete examples of the strategies utilised in our experiments.
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Leveraging the intervention procedure described in Section 3.1, analogous to Equation 2, the inter-
venability for a black-box neural network fθ at the intermediate layer given by ⟨gψ, hϕ⟩ is

E(x,c,y)∼D, c′∼π [Ly (fθ (x) , y)− Ly (gψ (z′) , y)] ,

where z′ ∈ argmin
z̃

λLc (qξ (z̃) , c′) + d (z, z̃) .
(3)

Recall that qξ is the probe trained to predict c based on the activations hϕ (x) (step 1, Section 3.1).
Furthermore, in the first line of Equation 3, edited representations z′ are a function of c′, as defined
by the second line, which corresponds to step 2 of the intervention procedure (Equation 1).

3.3 FINE-TUNING FOR INTERVENABILITY

Since the intervenability measure defined in Equation 3 is differentiable, a neural network can be
fine-tuned by explicitly maximising it using, for example, mini-batch gradient descent. We expect
fine-tuning for intervenability to reinforce the model’s reliance on the high-level attributes and have
a regularising effect. In this section, we provide a detailed description of the fine-tuning procedure
(Algorithm A.1, Appendix A), and, afterwards, we demonstrate its practical utility empirically.

To fine-tune an already trained black-box model fθ, we combine the target prediction loss with the
weighted intervenability term, which amounts to the following optimisation problem:

min
ϕ,ψ,z′

E(x,c,y)∼D, c′∼π

[
(1− β)Ly

(
gψ (hϕ (x)) , y

)
+ βLy

(
gψ (z′) , y

)]
,

s.t. z′ ∈ argmin
z̃

λLc (qξ (z̃) , c′) + d (z, z̃) ,
(4)

where β ∈ (0, 1] is the weight of the intervenability term. Note that for simplicity, we treat
the probe’s parameters ξ as fixed; however, since the outer optimisation problem is defined w.r.t.
parameters ϕ, ideally, the probe would need to be optimised as the third, inner-most level of
the problem. To avoid trilevel optimisation, we consider a special case of Equation 4 under
β = 1. For β = 1, Equation 4 simplifies to minψ,z′ E(x,c,y)∼D, c′∼π[Ly(gψ (z′) , y)], s.t. z′ ∈
argminz̃ λLc (qξ (z̃) , c′) + d (z, z̃). Thus, the parameters of hϕ do not need to be optimised, and,
hence, the probing function can be left fixed, as activations z are not affected by the fine-tuning. We
consider this case to (i) computationally simplify the problem and (ii) keep the network’s represen-
tations unchanged after fine-tuning for purposes of transfer learning for other downstream tasks.

4 EXPERIMENTAL SETUP

Datasets We evaluate the proposed methods on synthetic and real-world classification benchmarks
summarised in Table C.1 (Appendix C). All datasets were divided according to the 60%-20%-20%
train-validation-test split. Fine-tuning has been performed on the validation data, and evaluation on
the test set. Further relevant details can be found in Appendix C.

For controlled experiments, we have adapted the nonlinear synthetic tabular dataset introduced by
Marcinkevičs et al. (2023). Similar to Shin et al. (2023), we consider several data-generating mech-
anisms shown in Figure C.1, Appendix C.1. We refer to these three scenarios as bottleneck, con-
founder, and incomplete. The first scenario directly matches the inference graph of the vanilla CBM.
The confounder is a setting wherein c and x are generated by an unobserved confounder and y is
generated by c. Lastly, incomplete is a scenario with incomplete concepts, where c does not fully ex-
plain the association between x and y. Here, unexplained variance is modelled via the residual con-
nection x→ y. Another benchmark we consider is the Animals with Attributes 2 (AwA2) natural
image dataset (Lampert et al., 2009; Xian et al., 2019). It includes animal images accompanied by
85 binary attributes and species labels. To further corroborate our findings, we perform experiments
on the Caltech-UCSD Birds-200-2011 (CUB) dataset (Wah et al., 2011) (Appendix C.3), adapted
for the CBM setting as described by Koh et al. (2020). We report these results in Appendix E.3.

Finally, to explore a practical setting, we utilise our techniques in chest radiograph classification.
Namely, we test them on publicly available CheXpert (Irvin et al., 2019) and MIMIC-CXR (John-
son et al., 2019) datasets from the Stanford Hospital and Beth Israel Deaconess Medical Center,
Boston, MA. Both datasets feature 14 binary attributes extracted from radiologist reports by au-
tomated labelling. In our analysis, the Finding/No Finding attribute is the target variable, and the
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remaining labels are the concepts, similar to Chauhan et al. (2023). For simplicity, we retain a single
X-ray per patient, excluding data with uncertain labels. Further details are in Appendix C.4.

Baselines & Methods Below, we briefly outline the neural network models and fine-tuning tech-
niques compared. All methods were implemented using PyTorch (v 1.12.1) (Paszke et al., 2019).
Appendix D provides additional details. The code is available in an anonymised repository at
https://anonymous.4open.science/r/intervenable-models-85E6/.

Firstly, we train a standard neural network (BLACK BOX) without concept knowledge, i.e. on the
dataset of tuples {(xi, yi)}i. We utilise our technique for intervening post hoc by training a probe to
predict concepts and editing the network’s activations (Equation 1, Section 3.1). As an interpretable
baseline, we consider the vanilla concept bottleneck model (CBM) by Koh et al. (2020). Across all
experiments, we restrict ourselves to the joint bottleneck version, which minimises the weighted sum
of the target and concept prediction losses: minϕ,ψ E(x,c,y)∼D [Ly (fθ (x) , y) + αLc (hϕ (x) , c)],
where α > 0 is a hyperparameter controlling the tradeoff between the two loss terms. Finally, as the
primary method of interest, we apply our fine-tuning for intervenability technique (FINE-TUNED,
I; Equation 4, Section 3.3) on the annotated validation set {(xi, ci, yi)}i.
As a common-sense baseline, we fine-tune the black box by training a probe to predict the concepts
from intermediate representations (FINE-TUNED, MT). This amounts to multitask (MT) learning
with hard weight sharing (Ruder, 2017). Specifically, the model is fine-tuned by minimising the fol-
lowing MT loss: minϕ,ψ,ξ E(x,c,y)∼D [Ly (fθ (x) , y) + αLc (qξ (hϕ (x)) , c)]. As another base-
line, we fine-tune the black box by appending concepts to the network’s activations (FINE-TUNED,
A). At test time, unknown concept values are set to 0.5. To prevent overfitting and handle con-
cept missingness, randomly chosen concept variables are masked during training. The objective is
given by minψ̃ E(x,c,y)∼D[Ly(g̃ψ̃ ([hϕ (x) , c]) , y)], where g̃ takes as input concatenated activation
and concept vectors. Note that, for this baseline, the parameters ϕ remain fixed during fine-tuning.
Last but not least, as a strong baseline resembling the approaches by Yuksekgonul et al. (2023) and
Oikarinen et al. (2023), we train a CBM post hoc (POST HOC CBM) by solving the following
problem: minξ,ψ E(x,c,y)∼D [Ly (gψ (qξ (hϕ (x))) , y) + αLc (qξ (hϕ (x)) , c)]. The architectures
of individual modules were kept as similar as possible for a fair comparison across all techniques.

Evaluation To compare the proposed methods, we conduct interventions and analyze their per-
formance under varying concept subset sizes. We report the areas under the receiver operating
characteristic (AUROC) and precision-recall curves (AUPR) (Davis & Goadrich, 2006) since these
performance measures provide a well-rounded summary over varying cutoff points and it might be
challenging to choose a single cutoff in high-stakes decision areas. We utilise the Brier score (Brier,
1950) to gauge the accuracy of probabilistic predictions and, in addition, evaluate calibration.

5 RESULTS

Results on Synthetic Data Figure 3 shows intervention results obtained across ten independent
simulations under three generative mechanisms (Figure C.1, Appendix C.1) on the synthetic tabular
data. Results w.r.t. the AUPR are very similar and can be found in Figure E.1, Appendix E.1. Across
all three scenarios, we observe that, in principle, the proposed intervention procedure can improve
the predictive performance of a black-box neural network. However, as expected, interventions are
considerably more effective in CBMs than in untuned black-box classifiers: the former exhibit a
steeper increase in performance given more ground-truth concept values. Generally, models explic-
itly fine-tuned for intervenability (FINE-TUNED, I) significantly improve over the original classifier,
achieving intervention curves comparable to those of the CBM for the bottleneck and incomplete
settings. Importantly, under an incomplete concept set (Figure 3(c)), black-box classifiers are ex-
pectedly superior to the ante hoc CBM, and fine-tuning for intervenability improves intervention ef-
fectiveness while maintaining the performance gap. Other fine-tuning strategies (FINE-TUNED, MT
and FINE-TUNED, A) are either less effective or harmful, leading to a lower increase in AUROC
and AUPR than attained by the untuned black box. Lastly, CBMs trained post hoc perform well
in the bottleneck and confounder scenarios, being slightly less intervenable than FINE-TUNED, I.
However, for the incomplete setting, interventions hurt the performance of the post hoc CBM. This
behaviour may be related to the leakage described by Havasi et al. (2022).
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(a) Bottleneck (b) Confounder (c) Incomplete

Figure 3: Effectiveness of interventions w.r.t. target AUROC on the synthetic data under three gener-
ative mechanisms. Interventions were performed on the test set across ten independent simulations.
Bold lines correspond to medians, and confidence bands are given by interquartile ranges.

In Table 1, we report the test-set performance of the models without interventions (under the bot-
tleneck mechanism). For the concept prediction, expectedly, CBM outperforms black-box models,
even after fine-tuning with the MT loss. However, without interventions, all models attain com-
parable AUROCs and AUPRs at the target prediction. Interestingly, fine-tuning for intervenability
results in better-calibrated probabilistic predictions with lower Brier scores than those made by the
original black box and after applying other fine-tuning strategies. As evidenced by Figure E.5(a)
(Appendix E.4), fine-tuning has a regularising effect, reducing the false overconfidence observed in
neural networks (Guo et al., 2017). Figure E.2 (Appendix E.1) contains further ablations for the
intervention procedure on the influence of the hyperparameters, intervention strategies, and probe.
In addition, Appendix E.2 explores the effect of interventions on the distribution of representations.

Results on AwA2 Additionally, we explore the AwA2 dataset in Figure 4(a). This is a simple
classification benchmark with class-wide concepts helpful for predicting the target. Hence, CBMs
trained ante and post hoc are highly performant and intervenable. Nevertheless, untuned black-
box models also benefit from concept-based interventions. In agreement with our findings on the
synthetic dataset and in contrast to the other fine-tuning methods, ours enhances the performance of
black-box models. Notably, black boxes fine-tuned for intervenability even surpass CBMs. Overall,
the simplicity of this dataset leads to the generally high AUROCs and AUPRs across all methods.

To further investigate the impact of different hyperparameters on the interventions, we have per-
formed ablation studies on untuned black-box models. These results are shown in Figures 4(b)–(d).
Firstly, we vary the λ-parameter from Equation 3, which weighs the cross-entropy term, encour-
aging representation consistency with the given concept values. The results in Figure 4(b) suggest
that interventions are effective across all λs. Expectedly, higher hyperparameter values yield more
effective interventions, i.e. a steeper increase in AUROC and AUPR. Figure 4(c) compares two inter-
vention strategies: randomly selecting a concept subset (random) and prioritising the most uncertain
concepts (uncertainty) (Shin et al., 2023) to intervene on (Algorithms D.1 and D.2, Appendix D).
The intervention strategy has a clear impact on the performance increase, with the uncertainty-
based approach yielding a steeper improvement. Finally, Figure 4(d) compares linear and nonlinear
probes. Here, intervening via a nonlinear function leads to a significantly higher performance in-
crease. Last but not least, Table 1 contains evaluation metrics at test time without interventions for
target and concept prediction. We observe comparable performance across the methods, which are
all successful due to the large dataset size and the relative simplicity of the classification task.

Application to Chest X-ray Classification To showcase the practicality of our approach, we
present empirical findings on two chest X-ray datasets, MIMIC-CXR and CheXpert. Figure 5 shows
intervention curves across ten independent initialisations. Interestingly, in both datasets, untuned
black-box neural networks are not intervenable. By contrast, after fine-tuning for intervenability, the
model’s predictive performance and effectiveness of interventions improve visibly and even surpass
those of the CBM. Given the challenging nature of these datasets, featuring instance-level concept
labels, the final predictions by black boxes may not be as strongly reliant on the attributes, and
CBMs do not necessarily outperform black-box networks, unlike in simpler benchmarking datasets.
Finally, post hoc CBMs exhibit a behaviour similar to the synthetic dataset with incomplete con-
cepts: interventions have no or even an adverse effect on performance.
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(a) Interventions (b) Influence of λ (c) Intervention strategies (d) Probe linearity
(a)

(b) … (d)(c)

Figure 4: Intervention results on the AwA2 dataset w.r.t. target AUROC (top) and AUPR (bot-
tom) across ten independent train-validation-test splits. (a) Comparison among considered meth-
ods. (b) Intervention results for the untuned black-box model under varying values of λ ∈
{0.2, 0.4, 0.8, 1.6, 3.2} (Equation 3). Darker colours correspond to lower values. (c) Comparison
between random-subset and uncertainty-based intervention strategies. (d) Comparison between
linear and nonlinear probing functions.

(a) CheXpert, AUROC (b) CheXpert, AUPR (c) MIMIC-CXR, AUROC (d) MIMIC-CXR, AUPR

Figure 5: Intervention results w.r.t. target AUROC (a, c) and AUPR (b, d) across ten initialisations
on the CheXpert (a, b) and MIMIC-CXR (c, d) datasets.

Furthermore, Table 1 shows the target and concept prediction performance without interventions.
CBMs exhibit better performance for concept prediction, while fine-tuned models and post hoc
CBMs outperform them at the target classification. Similar to the synthetic dataset, fine-tuning for
intervenability enhances calibration, as evidenced Figure E.5 (Appendix E.4) and Brier scores.

6 DISCUSSION & CONCLUSION

This work has formalised intervenability as a measure of the effectiveness of concept-based interven-
tions. It has also introduced techniques for performing instance-specific concept-based interventions
on neural networks post hoc and fine-tuning the black-box models to improve their intervenability.

In contrast to interpretable models such as CBMs (Koh et al., 2020), our method circumvents the
need for concept labels during training, which can be a substantial challenge in practical applica-
tions. Unlike recent works on converting black boxes into CBMs post hoc (Yuksekgonul et al.,
2023; Oikarinen et al., 2023), we propose an effective intervention method that is faithful to the
original architecture and representations. Our approach does not impose restrictions on the size
of the bottleneck layer since it uses a probing function defined on the concept set and any chosen
layer. Another line of work on CCEs (Abid et al., 2022) tackles a different problem—generating
counterfactual explanations for the given prediction—using somewhat similar techniques. We have
provided a detailed discussion of salient differences in Appendix B.

8



Under review as a conference paper at ICLR 2024

Table 1: Test-set concept and target prediction performance without interventions on the synthetic,
AwA2, and chest X-ray datasets. For black-box models, concepts were predicted via a linear probe.
Results are reported as averages and standard deviations across ten seeds. For concepts, performance
metrics were averaged. Best results are reported in bold, second best are in italics.

Dataset Model Concepts Target

AUROC AUPR Brier AUROC AUPR Brier

Sy
nt

he
tic

BLACK BOX 0.716±0.018 0.710±0.017 0.208±0.006 0.686±0.043 0.675±0.046 0.460±0.003
CBM 0.837±0.008 0.835±0.008 0.196±0.006 0.713±0.040 0.700±0.038 0.410±0.012
POST HOC CBM 0.725±0.040 0.720±0.040 0.208±0.007 0.707±0.049 0.698±0.048 0.299±0.041
FINE-TUNED, A — — — 0.682±0.047 0.668±0.046 0.470±0.004
FINE-TUNED, MT 0.784±0.013 0.780±0.014 0.186±0.006 0.687±0.046 0.668±0.043 0.471±0.003
FINE-TUNED, I 0.716±0.018 0.710±0.017 0.208±0.006 0.695±0.051 0.685±0.051 0.285±0.014

Aw
A

2

BLACK BOX 0.991±0.002 0.979±0.006 0.027±0.006 0.996±0.001 0.926±0.020 0.199±0.038
CBM 0.993±0.001 0.979±0.002 0.025±0.001 0.988±0.001 0.892±0.005 0.234±0.009
POST HOC CBM 0.990±0.002 0.976±0.006 0.027±0.005 0.996±0.001 0.927±0.019 0.176±0.035
FINE-TUNED, A — — — 0.996±0.001 0.938±0.016 0.170±0.036
FINE-TUNED, MT 0.994±0.002 0.985±0.004 0.022±0.005 0.997±0.001 0.938±0.017 0.178±0.038
FINE-TUNED, I 0.991±0.002 0.979±0.005 0.027±0.006 0.996±0.001 0.925±0.020 0.195±0.040

C
he

X
pe

rt

BLACK BOX 0.665±0.003 0.257±0.003 0.097±0.001 0.785±0.011 0.911±0.006 0.305±0.009
CBM 0.723±0.005 0.322±0.003 0.116±0.001 0.786±0.009 0.919±0.006 0.375±0.013
POST HOC CBM 0.597±0.007 0.221±0.03 0.103±0.001 0.820±0.080 0.939±0.004 0.206±0.005
FINE-TUNED, A — — — 0.749±0.008 0.891±0.005 0.329±0.013
FINE-TUNED, MT 0.684±0.003 0.275±0.003 0.094±0.001 0.768±0.019 0.901±0.012 0.297±0.012
FINE-TUNED, I 0.668±0.004 0.257±0.003 0.097±0.001 0.819±0.009 0.938±0.004 0.201±0.007

M
IM

IC
-C

X
R BLACK BOX 0.743±0.006 0.170±0.004 0.046±0.001 0.789±0.006 0.706±0.009 0.444±0.003

CBM 0.744±0.006 0.224±0.003 0.053±0.001 0.765±0.007 0.699±0.006 0.427±0.003
POST HOC CBM 0.713±0.007 0.157±0.008 0.046±0.001 0.808±0.006 0.733±0.009 0.306±0.006
FINE-TUNED, A — — — 0.773±0.009 0.665±0.013 0.459±0.004
FINE-TUNED, MT 0.748±0.008 0.187±0.003 0.045±0.001 0.785±0.006 0.696±0.009 0.450±0.008
FINE-TUNED, I 0.744±0.005 0.172±0.005 0.046±0.001 0.808±0.007 0.733±0.009 0.314±0.015

Empirically, we demonstrated that black-box models trained without explicit concept knowledge are
intervenable on synthetic tabular and natural image data, given an annotated validation set. We also
showed that fine-tuning for intervenability improved the effectiveness of the interventions, bringing
black boxes on par with CBMs, and led to better-calibrated predictions. Additionally, we explored
the practical applicability of our techniques in chest X-ray classification. In this more realistic set-
ting, black-box classifiers were not directly intervenable. However, the proposed fine-tuning proce-
dure alleviated this limitation. On simpler benchmarks, where concepts are directly embedded into
the data-generating mechanism and are sufficient (Yeh et al., 2020), CBMs slightly outperformed
all variants of black-box models and post hoc CBMs. By contrast, in a more realistic setting, where
concepts differ at the instance level or are incomplete, black-box models fine-tuned for interven-
ability surpass CBMs. Moreover, interventions on a CBM trained post hoc in that setting are not
effective or are even harmful. Lastly, in addition to the findings above, we introduced and studied
common-sense fine-tuning baselines that performed worse than the proposed method, highlighting
the need for explicitly including the intervenability in the loss function.

To summarise, this work has explored the tradeoffs between interpretability, intervenability, and
performance in black-box predictive models. In particular, we have proposed procedures allowing
for effective concept-based interventions without a need to train CBMs ante hoc or alter the model’s
architecture or representations while only requiring concept labels for probing and fine-tuning.

Limitations & Future Work The current work opens many avenues for future research and im-
provements. Firstly, the variant of the fine-tuning procedure considered in this paper does not affect
the neural network’s representations. However, it would be interesting to investigate a more general
formulation wherein all model and probe parameters are fine-tuned end-to-end. According to our
empirical findings, the choice of intervention strategy, hyperparameters, and probing function can
influence the effectiveness of interventions. A more in-depth experimental investigation of these
aspects is warranted. Furthermore, we only considered having a single fixed intervention strategy
throughout fine-tuning, whereas further improvement could come from learning an optimal strategy
alongside fine-tuned weights. Lastly, the proposed techniques rely on the annotated validation data
to fit a probe and could benefit from (semi-)automated concept discovery, e.g. using multimodal
models.
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esnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(85):
2825–2830, 2011. URL http://jmlr.org/papers/v12/pedregosa11a.html.

Sebastian Ruder. An overview of multi-task learning in deep neural networks, 2017. URL https:
//doi.org/10.48550/arXiv.1706.05098. arXiv:1706.05098.

Yoshihide Sawada and Keigo Nakamura. Concept bottleneck model with additional unsuper-
vised concepts. IEEE Access, 10:41758–41765, 2022. URL https://doi.org/10.1109/
ACCESS.2022.3167702.

12

https://doi.org/10.48550/arXiv.2106.13314
https://doi.org/10.48550/arXiv.2106.13314
https://doi.org/10.48550/arXiv.2302.14460
https://doi.org/10.48550/arXiv.2302.14460
https://doi.org/10.1007/978-3-030-69538-5_22
https://doi.org/10.48550/arXiv.2105.04289
https://doi.org/10.48550/arXiv.2105.04289
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://www.sciencedirect.com/science/article/pii/S0167865520302749
https://www.sciencedirect.com/science/article/pii/S0167865520302749
https://doi.org/10.1145/3351095.3372850
https://openreview.net/forum?id=FlCg47MNvBA
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.48550/arXiv.1706.05098
https://doi.org/10.48550/arXiv.1706.05098
https://doi.org/10.1109/ACCESS.2022.3167702
https://doi.org/10.1109/ACCESS.2022.3167702


Under review as a conference paper at ICLR 2024

Ivaxi Sheth, Aamer Abdul Rahman, Laya Rafiee Sevyeri, Mohammad Havaei, and Samira Ebrahimi
Kahou. Learning from uncertain concepts via test time interventions. In Workshop on Trust-
worthy and Socially Responsible Machine Learning, NeurIPS 2022, 2022. URL https:
//openreview.net/forum?id=WVe3vok8Cc3.

Sungbin Shin, Yohan Jo, Sungsoo Ahn, and Namhoon Lee. A closer look at the intervention pro-
cedure of concept bottleneck models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th Inter-
national Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 31504–31520. PMLR, 2023. URL https://proceedings.mlr.press/
v202/shin23a.html.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

David Steinmann, Wolfgang Stammer, Felix Friedrich, and Kristian Kersting. Learning to inter-
vene on concept bottlenecks, 2023. URL https://doi.org/10.48550/arXiv.2308.
13453. arXiv:2308.13453.

Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without opening
the black box: Automated decisions and the GDPR. Harvard Journal of Law & Technology, 31,
2017. URL https://doi.org/10.2139/ssrn.3063289.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. Caltech-UCSD
Birds-200-2011, 2011. URL https://authors.library.caltech.edu/records/
cvm3y-5hh21. Technical report. CNS-TR-2011-001. California Institute of Technology.

Yongqin Xian, Christoph H. Lampert, Bernt Schiele, and Zeynep Akata. Zero-shot learning—a
comprehensive evaluation of the good, the bad and the ugly. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 41(9):2251–2265, 2019. URL https://doi.org/10.1109/
tpami.2018.2857768.

Chih-Kuan Yeh, Been Kim, Sercan Arik, Chun-Liang Li, Tomas Pfister, and Pradeep Raviku-
mar. On completeness-aware concept-based explanations in deep neural networks. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 20554–20565. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/ecb287ff763c169694f682af52c1f309-Paper.pdf.

Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. In The 11th
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=nA5AZ8CEyow.

13

https://openreview.net/forum?id=WVe3vok8Cc3
https://openreview.net/forum?id=WVe3vok8Cc3
https://proceedings.mlr.press/v202/shin23a.html
https://proceedings.mlr.press/v202/shin23a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.48550/arXiv.2308.13453
https://doi.org/10.48550/arXiv.2308.13453
https://doi.org/10.2139/ssrn.3063289
https://authors.library.caltech.edu/records/cvm3y-5hh21
https://authors.library.caltech.edu/records/cvm3y-5hh21
https://doi.org/10.1109/tpami.2018.2857768
https://doi.org/10.1109/tpami.2018.2857768
https://proceedings.neurips.cc/paper_files/paper/2020/file/ecb287ff763c169694f682af52c1f309-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/ecb287ff763c169694f682af52c1f309-Paper.pdf
https://openreview.net/forum?id=nA5AZ8CEyow
https://openreview.net/forum?id=nA5AZ8CEyow


Under review as a conference paper at ICLR 2024

APPENDIX

A FINE-TUNING FOR INTERVENABILITY

Algorithm A.1 contains the detailed pseudocode for fine-tuning for intervenability described in Sec-
tion 3.3. Recall that the black-box model fθ is fine-tuned using a combination of the target prediction
loss and intervenability defined in Equation 3. The implementation below applies to the special case
of β = 1, which leads to the simplified loss. Importantly, in this case, the parameters ϕ are treated
as fixed, and the probing function qξ does not need to be fine-tuned alongside the model. Lastly,
note that, in Algorithm A.1, interventions are performed for whole batches of data points xb using
the procedure described in Section 3.1.

Algorithm A.1: Fine-tuning for Intervenability
Input: Trained black-box model fθ = ⟨gψ, hϕ⟩, probing function qξ, concept prediction loss

function Lc, target prediction loss function Ly , validation set {(xi, ci, yi)}Ni=1,
intervention strategy π, distance function d, hyperparameter value λ > 0, maximum
number of steps EI for the intervention procedure, parameter for the convergence
criterion εI > 0 for the intervention procedure, learning rate ηI > 0 for the intervention
procedure, number of fine-tuning epochs E, mini-batch size M , learning rate η > 0

Output: Fine-tuned model

1 Train the probing function qξ on the validation set,
i.e. ξ ← argminξ′

∑N
i=1 Lc (qξ′ (hϕ (xi) , ci)) ▷ Step 1: Probing

2 for e = 0 to E − 1 do
3 Randomly split {1, ..., N} into mini-batches of size M given by B
4 for b ∈ B do
5 zb ← hϕ (xb)
6 ŷb ← gψ (zb)
7 ĉb ← qξ (zb)

8 Sample c′b ∼ π
9 Initialise z′b = zb, z′b,old = zb + εIe, and eI = 0 ▷ Step 2: Editing Representations

10 while
∥∥∥z′b − z′b,old∥∥∥

1
≥ εI and eI < EI do

11 z′b,old ← z′b
12 z′b ← z′b − ηI∇z′

b
[d(zb, z

′
b) + λLc (qξ (z′b) , c′b)] ▷ Equation 1

13 eI ← eI + 1
14 end
15 ŷ′b ← gψ (z′b) ▷ Step 3: Updating Output

16 ψ ← ψ − η∇ψLy (ŷ′b, yb) ▷ Equation 4
17 end
18 end

19 return fθ

14
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B FURTHER REMARKS & DISCUSSION

This appendix contains extended remarks and discussion beyond the scope of the main text.

Design Choices for the Intervention Procedure The intervention procedure entails a few design
choices, including the (non)linearity of the probing function, the distance function in the objective
from Equation 1, and the tradeoff between consistency and proximity determined by λ from Equa-
tion 1. We have explored some of these choices empirically in our ablation experiments (see Fig-
ure 4 and Appendix E). Naturally, interventions performed on black-box models using our method
are meaningful in so far as the activations of the neural network are correlated with the given high-
level attributes and the probing function qξ can be trained to predict these attribute values accurately.
Otherwise, edited representations and updated predictions are likely to be spurious and may harm
the model’s performance.

Should All Models Be Intervenable? Intervenability (Equation 3), in combination with the prob-
ing function, can be used to evaluate the interpretability of a black-box predictive model and help un-
derstand whether (i) learnt representations capture information about given human-understandable
attributes and whether (ii) the network utilises these attributes and can be interacted with. However,
a black-box model does not always need to be intervenable. For instance, when the given concept
set is not predictive of the target variable, the black box trained using supervised learning should not
and probably would not rely on the concepts. On the other hand, if the model’s representations are
nearly perfectly correlated with the attributes, providing the ground truth should not significantly
impact the target prediction loss. Lastly, the model’s intervenability may depend on the chosen
intervention strategy, which may not always lead to the expected decrease in the loss.

Intervenability & Variable Importance As mentioned in Section 3.2, intervenability (Equa-
tion 2) measures the effectiveness of interventions performed on a model by quantifying a gap
between the expected target prediction loss with and without performing concept-based interven-
tions. Equation 2 is reminiscent of the model reliance (MR) (Fisher et al., 2019) used for quantifying
variable importance.

Informally, for a predictive model f , MR measures the importance of some feature of interest and is
defined as

MR (f) ··=
expected loss of f under noise

expected loss of f without noise
. (B.1)

Above, the noise augments the inputs of f and must render the feature of interest uninformative
of the target variable. One practical instance of the model reliance is permutation-based variable
importance (Breiman, 2001; Molnar, 2022).

The intervenability measure in Equation 2 can be summarised informally as the difference between
the expected loss of gψ without interventions and the loss under interventions. Suppose intervention
strategy π is specified so that it augments a single concept in ĉ with noise (Equation B.1). In that
case, intervenability can be used to quantify the reliance of gψ on the concept variable of interest
in ĉ. The main difference is that Equation B.1 is given by the ratio of the expected losses, whereas
intervenability looks at the difference of expectations.

Comparison with Conceptual Counterfactual Explanations We can draw a relationship be-
tween the concept-based interventions (Equation 3) and conceptual counterfactual explanations
(CCE) studied by Abid et al. (2022) and Kim et al. (2023b). In brief, interventions aim to “in-
ject” concepts c′ provided by the user into the network’s representation to affect and improve the
downstream prediction. By contrast, CCEs seek to identify a sparse set of concept variables that
could be leveraged to flip the label predicted by the classifier fθ. Thus, the problem tackled in the
current work is different from and complementary to CCE.

More formally, following the notation from Section 1, a conceptual counterfactual explanation (Abid
et al., 2022) is given by

argmin
w
Ly

(
gψ

(
hϕ (x) +wC̃

)
, y′

)
+ α ∥w∥1 + β ∥w∥2 ,

s.t. wmin ≤ w ≤ wmax,
(B.2)
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where C̃ is the concept bank, y′ is the given target value (in classification, the opposite to the
predicted ŷ), α, β > 0 are penalty weights, and

[
wmin,wmax

]
defines the desired range for weights

w. Note that further detailed constraints are imposed via the definition of
[
wmin,wmax

]
in the

original work by Abid et al. (2022).

Observe that the optimisation problem in Equation B.2 is defined w.r.t. the flipped label y′ and does
not incorporate user-specified concepts c′ as opposed to interventions in Equation 1. Thus, CCEs
aim to identify the concept variables that need to be “added” to flip the label output by the classifier.
In contrast, interventions seek to perturb representations consistently with the given concept values.
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C DATASETS

Below, we present further details about the datasets and preprocessing involved in the experiments
(Section 4). The synthetic data can be generated using our code;1 AwA2, CUB, CheXpert, and
MIMIC-CXR datasets are publicly available. Table C.1 provides a brief summary of the datasets.

Table C.1: Dataset summary. After any filtering or preprocessing, N is the total number of data
points; p is the input dimensionality; and K is the number of concept variables.

Dataset Data type N p K

Synthetic Tabular 50,000 1,500 30
AwA2 Image 37,322 224×224 85
CUB Image 11,788 224×224 112
CheXpert Image 49,408 224×224 13
MIMIC-CXR Image 54,276 224×224 13

C.1 SYNTHETIC TABULAR DATA

As mentioned in Section 4, to perform experiments in a controlled manner, we generate synthetic
nonlinear tabular data using the procedure adapted from Marcinkevičs et al. (2023). We explore
three settings corresponding to different data-generating mechanisms (Figure C.1): (a) bottleneck,
(b) confounder, and (c) incomplete. The first scenario directly matches the inference graph of the
vanilla CBM (Koh et al., 2020). The confounder is a setting wherein c and x are generated by
an unobserved confounder z and y is generated by c. Lastly, incomplete is a scenario with in-
complete concepts, where c does not fully explain the variance in y. Here, unexplained variance
is modelled as a latent variable r via the path x → r → y. Unless mentioned otherwise, we
mainly focus on the simplest scenario shown in Figure C.1(a). Below, we outline each generative
process in detail. Throughout this appendix, let N , p, and K denote the number of independent
data points {(xi, ci, yi)}Ni=1, covariates, and concepts, respectively. Across all experiments, we set
N = 50,000, p = 1,500, and K = 30.

x c y

(a) Bottleneck

x c y

z

(b) Confounder

x c y

r

(c) Incomplete

Figure C.1: Data-generating mechanisms for the synthetic dataset summarised as graphical models.
Each node corresponds to a random variable. Observed variables are shown in grey.

Bottleneck In this setting, the covariates xi generate binary-valued concepts ci ∈ {0, 1}K , and
the binary-valued target yi depends on the covariates exclusively via the concepts. The generative
process is as follows:

1. Randomly sample µ ∈ Rp s.t. µj ∼ Uniform (−5, 5) for 1 ≤ j ≤ p.
2. Generate a random symmetric, positive-definite matrix Σ ∈ Rp×p.
3. Randomly sample a design matrixX ∈ RN×p s.t. Xi,: ∼ Np (µ, Σ).2

4. Let h : Rp → RK and g : RK → R be randomly initialised multilayer perceptrons with
ReLU nonlinearities.

5. Let ci,k = 1{[h(Xi,:)]k≥mk}, where mk = median
({

[h (Xl,:)]k
}N

l=1

)
, for 1 ≤ i ≤ N

and 1 ≤ k ≤ K.

6. Let yi = 1{g(ci)≥my}, where my = median
(
{g (ci)}Nl=1

)
, for 1 ≤ i ≤ N .

1https://anonymous.4open.science/r/intervenable-models-85E6/
2Xi,: refers to the i-th row of the design matrix, i.e. the covariate vector xi
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Confounder Another scenario we consider is where x and c are generated by an unobserved
confounder:

1. Randomly sample Z ∈ RN×K s.t. zi,k ∼ N (0, 1) for 1 ≤ i ≤ N and 1 ≤ k ≤ K.

2. Let ci,k = 1{zi,k≥0} for 1 ≤ i ≤ N and 1 ≤ k ≤ K.

3. Let h : RK → Rp and g : RK → R be randomly initialised multilayer perceptrons with
ReLU nonlinearities.

4. Let xi = h (Zi,:) for 1 ≤ i ≤ N .

5. Let yi = 1{σ(g(ci)≥1/2)} for 1 ≤ i ≤ N , where σ denotes the sigmoid function.

Incomplete Last but not least, to simulate the incomplete concept set scenario, where a part of
concepts are latent, we slightly adjust the procedure from the bottleneck setting above:

1. Follow steps 1–3 from the bottleneck procedure.

2. Let h : Rp → RK+J and g : RK+J → R be randomly initialised multilayer perceptrons
with ReLU nonlinearities, where J is the number of unobserved concept variables.

3. Let ui,k = 1{[h(Xi,:)]k≥mk}, where mk = median
({

[h (Xl,:)]k
}N

l=1

)
, for 1 ≤ i ≤ N

and 1 ≤ k ≤ K + J .

4. Let ci = ui,1:K and ri = ui,(K+1):(K+J) for 1 ≤ i ≤ N .

5. Let yi = 1{g(ui)≥my}, where my = median
(
{g (ui)}Nl=1

)
, for 1 ≤ i ≤ N .

Note that, in steps 3–5 above, ui corresponds to the concatenation of ci and ri. Across all experi-
ments, we set J = 90.

C.2 ANIMALS WITH ATTRIBUTES 2

Animals with Attributes 23 dataset (Lampert et al., 2009; Xian et al., 2019) serves as a natural image
benchmark in our experiments. It comprises 37,322 images of 50 animal classes (species), each
associated with 85 binary attributes utilised as concepts. An apparent limitation of this dataset is
that the concept labels are shared across whole classes, similar to the Caltech-UCSD Birds exper-
iment from the original work by Koh et al. (2020). Thus, AwA2 offers a simplified setting for
transfer learning across different classes and is designed to address attribute-based classification and
zero-shot learning challenges. In our evaluation, we used all the images in the dataset without any
specialised preprocessing or preselection. All images were rescaled to 224× 224 pixels.

C.3 CALTECH-UCSD BIRDS

Caltech-UCSD Birds-200-20114 dataset (Wah et al., 2011) is another natural image benchmark ex-
plored in the original work on CBMs by Koh et al. (2020). It consists of 11,788 bird photographs
from 200 species (classes) and originally includes 312 concepts, such as wing colour, beak shape,
etc. We have followed the preprocessing routine proposed by Koh et al. (2020). Particularly, the final
dataset includes only the 112 most prevalent binary attributes. We have included image augmenta-
tions during training, such as random horizontal flips, adjustments of the brightness and saturation,
and normalisation. Similar to AwA2, CUB concepts are shared across all instances of individual
classes. No additional specialised preprocessing was performed on the images, which were rescaled
to a resolution of 224× 224 pixels.

C.4 CHEST X-RAY DATASETS

As mentioned, we conducted an empirical evaluation on two real-world chest X-ray datasets: CheX-
pert (Irvin et al., 2019) and MIMIC-CXR (Johnson et al., 2019). The former includes over 220,000

3https://cvml.ista.ac.at/AwA2/
4https://www.vision.caltech.edu/datasets/cub_200_2011/
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chest radiographs from 65,240 patients at the Stanford Hospital.5 These images are accompanied by
14 binary attributes extracted from radiologist reports using the CheXpert labeller (Irvin et al., 2019),
a model trained to predict these attributes. MIMIC-CXR is another publicly available dataset con-
taining chest radiographs in DICOM format, paired with free-text radiology reports.6 It comprises
more than 370,000 images associated with 227,835 radiographic studies conducted at the Beth Israel
Deaconess Medical Center, Boston, MA, involving 65,379 patients. Similar to CheXpert, the same
labeller was employed to extract the same set of 14 binary labels from the text reports. Notably,
some concepts may be labelled as uncertain. Similar to Chauhan et al. (2023), we designate the
Finding/No Finding attribute as the target variable for classification and utilise the remaining labels
as concepts. In our implementation, we remove all the samples that contain uncertain labels and we
discard multiple visits of the same patient, keeping only the last acquired recording per subject for
both datasets. All images were cropped to a square aspect ratio and rescaled to 224 × 224 pixels.
Additionally, augmentations were applied during training, namely, random affine transformations,
including rotation up to 5 degrees, translation up to 5% of the image’s width and height, and shear-
ing with a maximum angle of 5 degrees. We also include a random horizontal flip augmentation to
introduce variation in the orientation of recordings within the dataset.

5https://stanfordmlgroup.github.io/competitions/chexpert/
6https://physionet.org/content/mimic-cxr/2.0.0/
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D IMPLEMENTATION DETAILS

This section provides implementation details, such as network architectures and intervention and
fine-tuning procedure hyperparameter configurations. All models and procedures were implemented
using PyTorch (v 1.12.1) (Paszke et al., 2019) and scikit-learn (v 1.0.2) (Pedregosa et al., 2011).

Network & Probe Architectures For the synthetic tabular data, we utilise a fully connected neural
network (FCNN) as the black-box model. Its architecture is summarised in Table D.1 in PyTorch-
like pseudocode. For this classifier, probing functions are trained and interventions are performed on
the activations of the third layer, i.e. the output after line 2 in Table D.1. For natural and medical im-
age datasets, we use the ResNet-18 (He et al., 2016) with random initialisation followed by four fully
connected layers and the sigmoid or softmax activation. Probing and interventions are performed
on the activations of the second layer after the ResNet-18 backbone. For the CBMs, to facilitate
fair comparison, we use the same architectures with the exception that the layers mentioned above
were converted into bottlenecks with appropriate dimensionality and activation functions. Similar
settings are used for post hoc CBMs with the addition of a linear layer mapping representations to
the concepts.

For fine-tuning, we utilise a single fully connected layer with an appropriate activation function as
a linear probe and a multilayer perceptron with a single hidden layer as a nonlinear function. For
evaluation on the test set (Table 1), we fit a logistic regression classifier from scikit-learn as a linear
probe. The logistic regression is only used for evaluation purposes and not interventions.

Table D.1: Fully connected neural network architecture used as a black-box classifier in
the experiments on the synthetic tabular data. nn stands for torch.nn; F stands for
torch.nn.functional; input dim corresponds to the number of input features.

FCNN Classifier

1 nn.Linear(input dim, 256)
F.relu()
nn.Dropout(0.05)
nn.BatchNorm1d(256)

2 for l in range(2):
nn.Linear(256, 256)
F.relu()
nn.Dropout(0.05)
nn.BatchNorm1d(256)

3 out = nn.Linear(256, 1)
4 torch.sigmoid()

Interventions Unless mentioned otherwise, interventions on black-box models were performed
using linear probes, the random-subset intervention strategy, and under λ = 0.8 (Equation 1). Recall
that Figures 4 and E.2 provide ablation results on the influence of this hyperparameter. Despite some
variability, the analysis shows that higher values of λ expectedly lead to more effective interventions.
The choice of λ for our experiments was meant to represent the “average case”, and no tuning was
performed for this hyperparameter.

Similarly, we have mainly used a linear probing function and the simple random-subset interven-
tion strategy to provide proof-of-concept results without extensive optimisation of the intervention
strategy or the need for nonlinear probing. Thus, our primary focus was on demonstrating the in-
tervenability of black-box models and showcasing the effectiveness of the fine-tuning method rather
than an exhaustive hyperparameter search.

Intervention Strategies In ablation studies, we compare two intervention strategies (Figure 4)
inspired by Shin et al. (2023): (i) random-subset and (ii) uncertainty-based. Herein, we provide a
more formal definition of these procedures described as pseudocode in Algorithms D.1–D.2. Re-
call that given a data point (x, c, y) and predicted values ĉ and ŷ, an intervention strategy defines
a distribution over intervened concept values c′. Random-subset strategy (Algorithm D.1) replaces
predicted values with the ground truth for several concept variables (k) chosen uniformly at ran-
dom. By contrast, the uncertainty-based strategy (Algorithm D.2) samples concept variables to be
replaced with the ground-truth values without replacement with initial probabilities proportional to
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the concept prediction uncertainties, denoted by σ. In our experiments, the components of ĉ are
the outputs of the sigmoid function, and the uncertainties are computed as σi = 1/ (|ĉi − 0.5|+ ε)
(Shin et al., 2023) for 1 ≤ i ≤ K, where ε > 0 is small.

Algorithm D.1: Random-subset Intervention Strategy
Input: A data point (x, c, y), predicted concept values ĉ, the number of concept variables to be

intervened on 1 ≤ k ≤ K
Output: Intervened concept values c′

1 c′ ← ĉ
2 Sample I uniformly at random from {S ⊆ {1, . . . ,K} : |S| = k}
3 c′I ← cI

4 return c′

Algorithm D.2: Uncertainty-based Intervention Strategy
Input: A data point (x, c, y), predicted concept values ĉ, the number of concept variables to be

intervened on 1 ≤ k ≤ K
Output: Intervened concept values c′

1 σj ← 1/ (|ĉj − 0.5|+ ε) for 1 ≤ j ≤ K, where ε > 0 is small
2 σ ← (σ1 · · · σK)
3 c′ ← ĉ

4 Sample k indices I = {ij}kj=1 s.t. each ij is sampled without replacement from {1, . . . ,K}

with initial probabilities given by (σ + ε) /
(
Kε+

∑K
i=1 σi

)
, where ε > 0 is small

5 c′I ← cI

6 return c′

Fine-tuning for Intervenability The fine-tuning procedure outlined in Section 3.3 and detailed in
Algorithm A.1 necessitates intervening on the representations throughout the optimisation. During
fine-tuning, we utilise the random-subset intervention strategy, i.e. interventions are performed on a
subset of the concept variables by providing the ground-truth values. More concretely, interventions
are performed on 50% of the concept variables chosen uniformly at random.

Fine-tuning Baselines The baseline methods described in Section 4 incorporate concept informa-
tion in distinct ways. On the one hand, the multitask learning approach, FINE-TUNED, MT, utilises
the entire batch of concepts at each iteration during fine-tuning. For this procedure, we set α = 1.0
(recall that α controls the tradeoff between the target and concept prediction loss terms). On the
other hand, the FINE-TUNED, A approach, which appends the concepts to the network’s activations,
does not use the complete concept set for each batch. In particular, before appending, concept values
are randomly masked and set to 0.5 with a probability of 0.5. This practical trick is reminiscent of
the dropout (Srivastava et al., 2014) and is meant to help the model remain intervenable and handle
missing concept values.

Hyperparameters Below, we list key hyperparameter configurations; the remaining details are
documented in our code. For the synthetic data, CBMs and black-box classifiers are trained for 150
and 100 epochs, respectively, with a learning rate of 10−4 and a batch size of 64. Across all other
experiments, CBMs are trained for 350 epochs and black-box models for 300 epochs with a learning
rate of 10−4 halved midway through training and a batch size of 64. CBMs are trained using the joint
optimisation procedure (Koh et al., 2020) under α = 1.0, where α controls the tradeoff between the
concept and target prediction losses. All probes were trained on the validation data for 150 epochs
with a learning rate of 10−2 using the stochastic gradient descent (SGD) optimiser. Finally, all fine-
tuning procedures were run for 150 epochs with a learning rate of 10−4 and a batch size of 64 using
the Adam optimiser. At test time, interventions were performed on batches of 512 data points.
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E FURTHER RESULTS

This section contains supplementary results and ablation experiments not included in the main body
of the text.

E.1 FURTHER RESULTS ON SYNTHETIC DATA

Figure E.1 supplements the intervention experiment results in Figure 3, Section 5, showing interven-
tion curves w.r.t. AUPR under the three generative mechanisms for the synthetic data. The overall
patterns and conclusions are similar to those observed w.r.t. AUROC (Figure 3).

Figure E.2 provides ablation experiment results obtained on the synthetic tabular data under the
bottleneck generative mechanism shown in Figure C.1(a), similar to the results reported for AwA2
in Figure 4, Section 5. In Figure E.2(a), we plot black-box intervention results across varying values
of the hyperparameter λ (Equation 1). As for AwA2, higher λs result in more effective interventions:
this finding is expected since λ is the weight of the term penalising the inconsistency of the concept
values predicted by the probe with the given values and, in the current implementation, interventions
are performed using the ground truth. Interestingly, in Figure E.2(b), we observe no difference
between the random subset and uncertainty-based intervention strategies. This could be explained
by the fact that, in the synthetic dataset, all concepts by design are, on average, equally hard to
predict and equally helpful in predicting the target variable (see Appendix C.1). Hence, the entropy-
based uncertainty score should not be as informative in this dataset, and the order of intervention on
the concepts should have little effect. Finally, similar to the main text, Figure E.2(c) suggests that a
nonlinear probing function improves intervention effectiveness.

(a) Bottleneck (b) Confounder (c) Incomplete

Figure E.1: Effectiveness of interventions w.r.t. target AUPR on the synthetic tabular data under
three different data-generating mechanisms (Figure C.1, Appendix C.1). Interventions were per-
formed on the test set across ten independent simulations. Bold lines correspond to medians, and
confidence bands are given by interquartile ranges.
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(a) Influence of λ (b) Intervention strategies (c) Probe linearity

Figure E.2: Ablation study results w.r.t. target AUROC (top) and AUPR (bottom) on the synthetic
dataset. Bold lines correspond to medians, and confidence bands are given by interquartile ranges
across ten independent simulations. (a) Intervention results for the untuned black-box model under
varying values of λ ∈ {0.2, 0.4, 0.8, 1.6, 3.2} (Equation 3). Darker colours correspond to lower
values. (b) Comparison between random-subset and uncertainty-based intervention strategies.
(c) Comparison between linear and nonlinear probing functions.

E.2 EFFECT OF INTERVENTIONS ON REPRESENTATIONS

In some cases (Abid et al., 2022), it may be deemed desirable that intervened representations
z′ (Equation 1) remain plausible, i.e. their distribution should be close to that of the original rep-
resentations z. Figure E.3 shows the first two principal components (PC) obtained from a batch of
original and intervened representations from the synthetic dataset (under the bottleneck scenario)
for two different values of the λ-parameter. We observe that, under λ = 0.2 (Figure E.3(a)), inter-
ventions affect representations, but z′ mainly stay close to z w.r.t. the two PCs. By contrast, under
λ = 0.4, interventions lead to a visible distribution shift, with many vectors z′ lying outside of the
mass of z. This behaviour is expected since λ controls the tradeoff between the consistency with the
given concepts c′ and proximity. Thus, if the plausibility of intervened representations is desirable,
the parameter λ should be tuned accordingly.

(a) λ = 0.2 (b) λ = 0.4

Figure E.3: Principal components (PC) for a batch of data point representations before (z) and
after (z′) concept-based interventions under the varying values of the parameter for (a) λ = 0.2 and
(b) λ = 0.4.
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E.3 CUB RESULTS

In line with the previous literature (Koh et al., 2020), we assess our approach on the CUB dataset
with the results summarised in Figure E.4. This dataset is similar to the AwA2, as the concepts
are shared across whole classes. Thus, concepts and classes feature a strong and simple correla-
tion structure. Expectedly, the CBM performs very well due to its inductive bias in relying on the
concept variables. As in the previous simpler scenarios, untuned black boxes are, in principle, in-
tervenable. However, the proposed fine-tuning strategy considerably improves the effectiveness of
interventions. On this dataset, the performance (without interventions) of the post hoc CBM and the
model fine-tuned for intervenability is visibly lower than that of the untuned black box. We attribute
this to the poor association between the concepts and the representations learnt by the black box.
Interestingly, post hoc CBMs do not perform as successfully as the models fine-tuned for interven-
ability. Generally, the behaviour of the models on this dataset falls in line with the findings described
in the main body of the text and supports our conclusions.

(a) AUROC (b) AUPR

Figure E.4: Intervention results w.r.t. target AUROC (a) and AUPR (b) across ten initialisations on
the CUB dataset.
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E.4 CALIBRATION RESULTS

The fine-tuning approach introduced leads to better-calibrated predictions (Table 1), possibly, due to
the regularising effect of intervenability. In this section, we further support this finding by visualising
calibration curves for the binary classification tasks, namely, for the synthetic tabular data and chest
radiograph datasets. Figure E.5 shows calibration curves for the fine-tuned model, untuned black
box, and CBM averaged across ten seeds. We have omitted fine-tuning baselines in the interest of
legibility since their predictions were comparably ill-calibrated as for the black box. The fine-tuned
model consistently and considerably outperforms both the untuned black box and the CBM in all
three binary classification tasks, as its curve is the closest to the diagonal, which corresponds to
perfect calibration.

(a) Synthetic (b) CheXpert (c) MIMIC-CXR

Figure E.5: Analysis of the probabilities predicted by the black box, fine-tuned black box, and
CBM on the (a) synthetic, (b) CheXpert, and (c) MIMIC-CXR. The calibration curves, averaged
across ten seeds, display for each bin the true empirical probability of y = 1 against the probability
predicted by the model. The gray dashed line corresponds to perfectly calibrated predictions.
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E.5 INFLUENCE OF THE DISTANCE FUNCTION

Throughout the experiments, we have consistently utilised the Euclidean distance as d in Equa-
tion 1. In this section, we explore the influence of this design choice. In particular, we
fine-tune the black-box model and intervene on all models under the cosine distance given by
d(x,x′) = 1− x · x′/ (∥x∥2 ∥x′∥2).
Figure E.6 shows the intervention results under the cosine distance on the four datasets considered
before. Firstly, for the synthetic and AwA2 datasets, we observe that the untuned black box is visi-
bly less intervenable than under the Euclidean distance (cf. Figures 3 and 4). In fact, for the AwA2
(Figure E.6(b), top), interventions slightly reduce the test-set AUROC. These results suggest that the
intervention procedure is, indeed, sensitive to the choice of the distance function, and we hypoth-
esise that the distance should be chosen to suit the latent space of the neural network considered.
Encouragingly, the proposed fine-tuning procedure is equally effective under the cosine distance.
Similar to the Euclidean case, it greatly improves the model’s intervenability at test time and bridges
the gap towards CBMs.

(a) Synthetic (b) AwA2 (c) CheXpert (d) MIMIC-CXR

Figure E.6: Intervention results w.r.t. target AUROC (top) and AUPR (bottom) under the cosine
distance function (Equation 1) on the four studied datasets: (a) synthetic, (b) AwA2, (c) CheXpert,
and (d) MIMIC-CXR. The comparison is performed across ten seeds.
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