
InterpDetect: Interpretable Signals for Detecting
Hallucinations in Financial Question Answering

Likun Tan, Kuan-Wei Huang, Joy Shi, Kevin Wu∗

Pegasi AI, NYC
likun,kuan-wei,joy,kevin@usepegasi.com

Abstract

Retrieval-Augmented Generation (RAG) mitigates hallucinations by using external
knowledge, yet models can still produce outputs inconsistent with retrieved evi-
dence—a critical issue in financial QA. We find hallucinations often arise when
later-layer feedforward networks (FFNs) over-inject parametric knowledge into
the residual stream. To address this, we introduce external context scores and
parametric knowledge scores, mechanistic features from Qwen3-0.6b across layers
and attention heads. Using these signals, lightweight classifiers achieve strong de-
tection performance and generalize to GPT-4.1-mini responses, demonstrating the
promise of proxy-model evaluation for financial tasks. Mechanistic signals
thus offer efficient, generalizable predictors for hallucination detection in RAG. 2

1 Introduction

Large language models (LLMs) excel at tasks such as question answering and summarization [1, 2],
yet they frequently generate hallucinations—outputs that are factually incorrect or unsupported [3].
In financial question answering, where accuracy is critical, hallucinations can lead to misleading or
costly decisions. Retrieval-Augmented Generation (RAG) mitigates this by grounding responses in
external knowledge [4], but models still produce outputs inconsistent with retrieved content [5, 6, 7],
making reliable detection essential. Recent approaches to RAG hallucination detection fall into
two categories. Corpus-based methods (e.g., RAGTruth, LettuceDetect, Mu-SHROOM) provide
fine-grained supervision and cross-lingual benchmarks [8, 9, 10]. Mechanistic methods (e.g., ReDeEP,
LRP4RAG) analyze internal activations to disentangle external context from parametric knowledge,
showing that overactive FFNs and mis-weighted attention often drive hallucinations [11, 12]. Building
on ReDeEP [11], we introduce External Context Score (ECS) and Parametric Knowledge Score
(PKS) as predictive features for hallucination detection in financial QA. ECS quantifies grounding in
retrieved content, while PKS measures FFN-driven parametric knowledge injection, decomposing
generation into external versus internal contributions. Using Qwen3-0.6b, we compute ECS and
PKS across layers and attention heads and train regression-based classifiers. We further demonstrate
proxy-model evaluation: classifiers trained on Qwen3-0.6b transfer effectively to larger models
(e.g., GPT-4-mini), offering scalable, low-cost detection suitable for high-stakes financial applications.

Our contributions are threefold:

1. We extend the ReDeEP framework for ECS/PKS computation with a fully open-sourced imple-
mentation built on TransformerLens [13], enabling any GPT-like model without modifying the
underlying model library.

∗Corresponding Author
2Code and data: https://github.com/pegasi-ai/InterpDetect.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Workshop on Generative
AI in Finance.

https://github.com/pegasi-ai/InterpDetect

2. We conduct a systematic evaluation of multiple regression-based classifiers, identifying the optimal
model for hallucination prediction.

3. We demonstrate that leveraging a 0.6b-parameter model as a proxy allows effective and economical
computation, facilitating practical application to large-scale, production-level models.

2 Methodology

Figure 1 outlines our methodology. We first run a standard RAG pipeline to generate responses.
The model’s parametric knowledge is treated as internal knowledge, elicited by prompting with
the query. For each context–response span, we compute ECS from attention heads and PKS from
feed-forward layers, capturing external vs. internal contributions. After validating their correlation
with hallucination labels, these scores serve as features for binary classifiers, whose span-level outputs
are aggregated into response-level predictions.

Figure 1: Pipeline for Span-Level Hallucination Detection

Data Curation We use the FinQA dataset from RagBench [14], which contains 12.5k training
and 2.29k test instances. Each instance pairs an S&P 500 financial report with a grounded question
and an LLM-generated response. For our study, we regenerate responses with Qwen3-0.6b (used
for interpretability scores) and GPT-4.1 mini to test cross-model generalization. Our data pipeline
consists of three steps (Appendix A shows an example):

• Response Generation: We subsample 3,000 training instances from the original dataset and
generate responses separately with Qwen3-0.6b and GPT-4.1 mini.

• Labeling: We label hallucinated spans using LettuceDetect [9], refined with two LLM judges
(llama-4-maverick-17b-128e-instruct and gpt-oss-120b for Qwen3-0.6b-generated response; claude-
sonnet-4 for GPT-4.1-mini-generated response to reduce family bias). Majority voting is applied at
the response level, and samples are retained if at least one judge confirms the LettuceDetect label,
yielding 1,852 instances for analysis.

• Chunking: To compute accurate ECS and PKS, we operate at the span level by chunking documents
(using documents_sentences from FinQA) and splitting responses into individual sentences.

2

Mechanistic Metrics Our work draws on concepts from mechanistic interpretability research.
Specifically, we leverage TransformerLens, an open-source library that provides access to internal
model parameters—such as attention heads, feed-forward network layers (FFNs), and residual
streams—in GPT-like models. For a detailed description of the architecture, we refer the reader
to the original TransformerLens work [13]. We primarily use TransformerLens to compute two
metrics: the External Context Score and the Parametric Knowledge Score, following the definitions
in ReDeEP [11]. While the original ReDeEP framework supports both token-level and chunk-level
hallucination detection, computing scores at the token level is computationally expensive and does
not fully capture context. Therefore, we restrict our calculations at the chunk level. Details about the
computation is given in Appendix B.

Classifier for Hallucination Detection Hallucination detection is formulated as a binary classifica-
tion task. As input features, we use ECS computed for each attention head and layer, together with
PKS computed for each layer. Predictions are generated at the span level and can subsequently be
aggregated to obtain response-level results. Training details are provided in Appendix C.

3 Experiments

Correlation Analysis We examine mechanistic signals for their correlation with hallucinations
in RAG outputs. Comparing ECS values between truthful and hallucinated responses (Figure 2a)
shows that hallucinated responses rely less on external context. Pearson correlation analysis using
inverse hallucination labels confirms that higher ECS corresponds to lower hallucination likelihood
(Figure 2b). While copying-head proxies (OV_copying_score) offer interpretable, low-cost ap-
proximations [15], we did not observe strong correlations in Qwen3-0.6b, so we include all layers
and heads for ECS and apply feature selection during classification. For PKS, later-layer FFNs
exhibit higher scores for hallucinated responses (Figure 3a), and Pearson correlations show positive
associations with hallucinations (Figure 3b). Together, these results indicate that RAG hallucinations
arise from under-utilization of external context and over-reliance on parametric knowledge.

Figure 2: Relationship Between LLM Utilization of External Context and Hallucination

Figure 3: Relationship Between LLM Utilization of Parametric Knowledge and Hallucination

Hallucination Detection Response-level labels are obtained by aggregating span-level predictions
from the trained classier: a response is labeled hallucinated if any span is predicted as such. We

3

evaluate self-evaluation (responses from Qwen3-0.6b) and proxy-based evaluation (responses
from other models, e.g., GPT-4.1 mini). We compare against proprietary models (GPT-5, GPT-4.1),
open-source LLMs (GPT-OSS-20b, LLaMA-3.3-70b, LLaMA-3.1-8b, Qwen3-32b, Qwen3-0.6b),
and commercial detection systems (RAGAS [16], TruLens [17], RefChecker [18]). Baseline prompts
and implementation details of commercial detection systems are in Appendices D and E. Results are
summarized in Table 1. Key observations are:

• Overall, our method achieves moderate performance. In self-evaluation, it outperforms TruLens
and LLaMA-3.1-8b and matches RefChecker. In proxy evaluation, it surpasses nearly all models
except GPT-5 and RAGAS, despite using only a 0.6b parameter model, while higher-performing
models are proprietary or much larger.

• We also include Qwen3-0.6b as a detection model to demonstrate that, by itself, the 0.6b model
is insufficient for hallucination detection. However, when combined with a strong classifier that
leverages its internal signals, performance is substantially improved.

• Our model favors recall over precision, likely due to low-confidence false-positive spans retained
during data curation (Section 2). Nonetheless, we argue that higher recall is generally desirable, as
false-positive cases can be further verified in downstream.

• In proxy evaluation, all models (from tiny 0.6b to GPT-5) show higher precision than recall. This
trend may stem from models such as GPT-4.1-mini producing more reasonable-sounding responses
where subtle inaccuracies are harder to detect. While in self-evaluation, errors from Qwen3-0.6b
are more readily detected by stronger models.

Table 1: Response-level Detection Performance (%)

Self-Evaluation Proxy-based Evaluation
Model Precision Recall F1 Precision Recall F1
GPT-5 77.27 92.97 84.40 91.67 66.27 76.92
GPT-4.1 76.39 85.94 80.88 94.29 39.76 55.93
GPT-OSS-20b 82.79 78.91 80.80 92.31 43.37 59.02
llama-3.3-70b-versatile 81.03 73.44 77.05 93.75 18.07 30.30
llama-3.1-8b-instant 69.23 49.22 57.53 70.37 22.89 34.55
Qwen3-32b 79.55 82.03 80.77 86.11 37.35 52.10
Qwen3-0.6b 70.27 20.31 31.52 78.79 31.33 44.83
RAGAS 68.45 89.84 77.70 75.29 77.11 76.19
TruLens 89.61 53.91 67.32 49.08 96.39 65.04
RefChecker 84.62 68.75 75.86 71.43 12.05 20.62
Ours 63.89 89.84 74.68 62.90 93.98 75.36

Note: RAGAS, TruLens and RefChecker use GPT-4.1 under the hood.

4 Conclusion and Limitations

We developed a RAG hallucinations detection method by decoupling contributions from parametric
knowledge and external context. Our correlation analysis shows that hallucinations arise from over-
reliance on parametric knowledge and insufficient use of external context. We trained classifiers to
predict span-level hallucinations and aggregate them for response-level detection. Additionally, we
demonstrated our method as a proxy for evaluating large-scale models at low computational cost.

Despite these strengths, several limitations remain. First, computing ECS and PKS across all layers
and attention heads is computationally expensive, especially when projecting hidden states to vocabu-
lary distributions. Future work could identify a minimal set of late-layer signals to reduce overhead
while maintaining accuracy, making deployment in financial pipelines more practical. Second, our
approach relies solely on ECS and PKS, which constrains performance relative to larger detection
models; integrating additional features such as token-level uncertainty or representation-based signals
could further improve robustness. Finally, while mechanistic signals hold promise for real-time
response steering—ensuring generated answers remain consistent with financial evidence—practical
deployment would require advances in low-latency inference and intervention tooling beyond our
current proxy-based framework.

4

Acknowledgments and Disclosure of Funding

We thank Neo for supporting this research through their startup accelerator program. Their contribu-
tion played a crucial role in enabling the development and evaluation of our models.

References
[1] Siwei Wang et al. Infibench: Evaluating the question-answering capabilities of code large

language models. OpenReview, 2024.

[2] Juyong Jiang et al. A survey on large language models for code generation. arXiv preprint
arXiv:2406.00515, 2024.

[3] Zhiwei Ji, Yiming Zhang, Yicheng Liu, et al. A survey on hallucination in large language
models. arXiv preprint arXiv:2311.05232, 2023.

[4] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models:
A survey. arXiv preprint arXiv:2312.10997, 2(1), 2023.

[5] Juntong Song, Xingguang Wang, Juno Zhu, Yuanhao Wu, Xuxin Cheng, Randy Zhong, and
Cheng Niu. Rag-hat: A hallucination-aware tuning pipeline for llm in retrieval-augmented
generation. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing: Industry Track, pages 1548–1558, 2024.

[6] Haichuan Hu, Congqing He, Xiaochen Xie, and Quanjun Zhang. Lrp4rag: Detecting hallucina-
tions in retrieval-augmented generation via layer-wise relevance propagation. arXiv preprint
arXiv:2408.15533, 2024.

[7] Likun Tan, Kuan-Wei Huang, and Kevin Wu. Fred: Financial retrieval-enhanced detection and
editing of hallucinations in language models. arXiv preprint arXiv:2507.20930, 2025.

[8] Cheng Niu, Yuanhao Wu, Juno Zhu, Siliang Xu, Kashun Shum, Randy Zhong, Juntong Song,
and Tong Zhang. Ragtruth: A hallucination corpus for developing trustworthy retrieval-
augmented language models. In Proceedings of ACL 2024, 2024.

[9] Ádám Kovács and Gábor Recski. Lettucedetect: A hallucination detection framework for rag
applications. arXiv preprint arXiv:2501.00232, 2025.

[10] Raúl Vázquez, Timothée Mickus, Elaine Zosa, Teemu Vahtola, Jörg Tiedemann, et al. Semeval-
2025 task 3: Mu-shroom, the multilingual shared task on hallucinations and related observable
overgeneration mistakes. arXiv preprint arXiv:2504.11975, 2025.

[11] Zhongxiang Sun, Xiaoxue Zang, Kai Zheng, Jun Xu, Xiao Zhang, Weijie Yu, and Han Li. Re-
deep: Detecting hallucination in retrieval-augmented generation via mechanistic interpretability.
arXiv preprint arXiv:2410.11414, 2024.

[12] Yuchen Liu, Yiming Zhang, Hao Chen, et al. Lrp4rag: Detecting hallucinations in retrieval-
augmented generation via layer-wise relevance propagation. arXiv preprint arXiv:2408.15533,
2024.

[13] Neel Nanda and Joseph Bloom. Transformerlens. https://github.com/
TransformerLensOrg/TransformerLens, 2022.

[14] Robert Friel, Masha Belyi, and Atindriyo Sanyal. Ragbench: Explainable benchmark for
retrieval-augmented generation systems. arXiv preprint arXiv:2407.11005, 2024.

[15] Anonymous (TransformerLens Documentation). Transformerlens main demo notebook
– eigenvalue copying score analysis. https://transformerlensorg.github.io/
TransformerLens/generated/demos/Main_Demo.html, 2025. Shows empirical finding
that OV_copying_score and full_OV_copying_score are “highly (but not perfectly!) correlated”.

5

https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://transformerlensorg.github.io/TransformerLens/generated/demos/Main_Demo.html
https://transformerlensorg.github.io/TransformerLens/generated/demos/Main_Demo.html

[16] Shahul Es, Jithin James, Luis Espinosa Anke, and Steven Schockaert. Ragas: Automated
evaluation of retrieval augmented generation. In Proceedings of the 18th Conference of the
European Chapter of the Association for Computational Linguistics: System Demonstrations,
pages 150–158, 2024.

[17] Anupam Datta, Matt Fredrikson, Klas Leino, Kaiji Lu, Shayak Sen, Ricardo Shih, and Zifan
Wang. Exploring conceptual soundness with trulens. In Proceedings of the NeurIPS 2021
Competitions and Demonstrations Track, volume 176, pages 302–307. PMLR, 2022.

[18] Xiangkun Hu, Dongyu Ru, Lin Qiu, Qipeng Guo, Tianhang Zhang, Yang Xu, Yun Luo, Pengfei
Liu, Yue Zhang, and Zheng Zhang. Refchecker: Reference-based fine-grained hallucination
checker and benchmark for large language models. arXiv preprint arXiv:2405.14486, 2024.

A Preprocessing Example

A sample entry from our preprocessed dataset is shown below:

question: "What is the growth rate in CCG operating income in 2015?"

documents: [
"Management 2019’s discussion and analysis of financial condition

and results of operations (continued). "
"The following results drove changes in CCG operating income by

approximately the amounts indicated:"
]

prompt: "Given the context , please answer the question based on the
provided information from the context. Include any reasoning with
the answer .\n\nContext: Management 2019’s discussion and analysis
of financial condition and results of operations (continued). The
following results drove changes in CCG operating income by
approximately the amounts indicated :\ nQuestion: What is the growth
rate in CCG operating income in 2015?\ nAnswer:"

response: "The exact growth rate is derived from the differences in
the values provided. Thus , the answer is that the growth rate in
CCG operating income in 2015 is approximately -20.7%."

labels: [
{start: 673, end: 722, confidence: 0.8037 , text: "Growth Rate} = \\

frac { -2161}{10327} \\times 100\\%"},
{start: 730, end: 734, confidence: 0.5833 , text: "20.7"}

]

labels_llama: 1
labels_gpt: 1

prompt_spans: [[0 ,135] ,[136 ,144] ,[145 ,348] ,[349 ,1177] ,[1178 ,3465]]
response_spans: [[0 ,383] ,[384 ,597] ,[598 ,663]]

Notes:

• labels provide span-level hallucination annotations with start and end indices in the response text.

• labels_llama and labels_gpt indicate whether the respective LLM judges marked the response
as hallucinated (1) or not (0).

• prompt_spans and response_spans segment the prompt and response into sentence or phrase-
level chunks for span-level scoring.

6

B Computation Details of Mechanistic Metrics

External Context Score: The External Context Score (ECS) quantifies the extent to which a
language model leverages external context when generating a response. In mechanistic interpretability,
attention heads are responsible for retrieving relevant information from the context. To measure this
utilization, ECS captures the semantic alignment between response segments and the context chunks
most strongly attended to by the model.

Let the external context be partitioned into chunks {c̃1, c̃2, . . . , c̃M}, and the generated output
into response chunks {r̃1, r̃2, . . . , r̃N}, corresponding to prompt_spans and response_spans in
Appendix A. For each attention head h at layer l, the most relevant context chunk for each response
chunk r̃j is identified as

c̃ ℓ,h
j = argmax

c̃i
A(r̃ ℓ,h

j , c̃ ℓ,h
i),

where A denotes the token-level attention weight matrix, and l and h indicate the layer and head
indices. The chunk-level ECS is defined as the cosine similarity between the embeddings of r̃j and
its corresponding context chunk c̃j :

ECS ℓ,h
r̃j

= cos
(
e(r̃ ℓ,h

j), e(c̃ ℓ,h
j)

)
,

where e(·) represents the embedding function, and cos(·, ·) denotes cosine similarity.

Parametric Knowledge Score: The Parametric Knowledge Score (PKS) quantifies the extent to
which the FFN contributes to parametric knowledge, i.e., knowledge stored in the model’s weights,
as opposed to information coming from external context. This is done by measuring the difference
between residual stream states before the FFN layer and after the FFN layer.

Since the residual stream itself does not directly indicate "which token is being suggested"—it is
a latent vector—we map it through the unembedding/projection matrix to the vocabulary distribu-
tion. This allows us to observe how the residual change after the FFN influences predicted token
probabilities.

We then apply the Jensen-Shannon divergence (JSD) to compute the distance between the two
vocabulary distributions, which defines the token-level PKS. The chunk-level PKS is computed by
averaging the token-level PKS over all tokens in the chunk. Mathematically, this is expressed as

PKSℓ
tn = JSD

(
p(xmid,ℓ

n), p(xℓ
n)
)
, PKSℓ

r̃ =
1

|r̃|
∑
tn∈r̃

PKSℓ
tn .

where p(·) denotes the mapping from residual stream states to vocabulary distributions, and xmid,ℓ
n

and xℓ
n refer to the residual stream states before and after the FFN layer, respectively. PKSℓ

tn and
PKSℓ

r̃ stand for token-level and chunk-level PKS, respectively.

The computation was performed using the TransformerLens library on the Qwen3-0.6B model.
Inference was executed on a Google Colab L4 GPU with 24-GB memory, using torch.float16
precision to reduce activation storage costs. Sentence-level semantic similarity was computed using
the BAAI/bge-base-en-v1.5 encoder, also hosted on GPU to avoid transfer overhead.

The average execution time for an end-to-end ECS/PKS computation was 42 seconds per example.
GPU allocation remained within 1.9–2.1 GB, with reserved memory peaking at 2.2 GB across
iterations. After each iteration, tensors were explicitly released, and memory was reclaimed using
torch.cuda.empty_cache() and torch.cuda.ipc_collect() to prevent fragmentation.

C Training Details of Classifiers

Training was conducted at the span level using 1,852 instances, corresponding to 7,799 span-level
samples (4,406 negative, 3,393 positive). We used External Context Scores (ECS) and Parametric
Knowledge Scores (PKS) as input features. For Qwen3-0.6b (28 layers, 16 attention heads per
layer), this initially yielded 476 features, which were reduced to 341 after feature selection. The
dataset was split 90/10 for training and validation with stratification on hallucination labels. Feature

7

preprocessing included standardization (StandardScaler), removal of near-constant and duplicate
features (DropConstantFeatures, DropDuplicateFeatures), and correlation-based filtering
(SmartCorrelatedSelection, Pearson threshold 0.9) using a RandomForestClassifier with
max depth 5. Four classifiers—Logistic Regression, Support Vector Classification (SVC), Random
Forest, and XGBoost—were evaluated using pipelines combining preprocessing and classification.
Random Forest and XGBoost had max tree depth 5 with other hyperparameters default. SVC achieved
the highest validation F1 score and was selected as the final model, while XGBoost, despite strong
training performance, overfit severely, highlighting the need for regularization or more data. Overall,
SVC provided the best balance between complexity and generalization (see Table 2).

Table 2: Span-level Detection performance (%)

Classifier Train Prec. Val Prec. Train Rec. Val Rec. Train F1 Val F1
LR 79.71 74.84 77.05 71.09 78.36 72.92
SVC 84.44 79.00 79.24 74.34 81.76 76.60
RandomForest 79.87 74.92 76.13 72.27 77.95 73.57
XGBoost 99.74 76.45 99.77 73.75 99.75 75.08

D Prompt for Baselines

Below is the prompt used for hallucination detection when using models GPT-5, GPT-4.1, GPT-OSS-
20b, LLaMA-3.3-70b-versatile, LLaMA-3.1-8b-instant, Qwen3-32b and Qwen3-0.6b.

User Prompt

You are an expert fact-checker. Given a context, a question, and a response,
your task is to determine if the response is faithful to the context.
Context: context
Question: question
Response: response
Is the response supported and grounded in the context above? Answer "Yes"
or "No", and provide a short reason if the answer is "No". Be concise and
objective.

E Implementation of Commercial Detection Systems

We describe our implementation of three commercial tools—RAGAS, TruLens, and RefChecker—for
hallucination detection below.

RAGAS: We use RAGAS’s faithfulness metric to evaluate how well a model’s responses align
with the provided context documents. GPT-4.1 is used as the evaluator model. For each data point, a
faithfulness score between 0 and 1 is computed. To determine the optimal threshold that maximizes
F1 score, we evaluate F1 across candidate thresholds in [0,1]. Predictions are binarized at each
threshold, and the threshold that maximizes F1—balancing precision and recall—is selected.

TruLens: TruLens provides a framework for evaluating hallucination via its groundedness feed-
back mechanism. We use the groundedness_measure_with_cot_reasons function to compute
groundedness scores in [0,1]. The F1-optimal threshold is determined using the same procedure as in
RAGAS.

RefChecker: RefChecker extracts factual claims from model responses and verifies them against
reference documents. It consists of two components: an LLMExtractor that extracts claims, and
an LLMChecker that classifies claims as Entailment, Neutral, or Contradictory. A response is
labeled hallucinated if any claim is Contradictory, and non-hallucinated if all claims are either
Entailment or Neutral.

8

	Introduction
	Methodology
	Experiments
	Conclusion and Limitations
	Preprocessing Example
	Computation Details of Mechanistic Metrics
	Training Details of Classifiers
	Prompt for Baselines
	Implementation of Commercial Detection Systems

