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ABSTRACT

This paper is concerned with the online bandit nonlinear control, which aims to
learn the best stabilizing controller from a pool of stabilizing and destabilizing
controllers of unknown types for a given nonlinear dynamical system. We develop
an algorithm, named Dynamic Batch length and Adaptive learning Rate (DBAR),
and study its stability and regret. Unlike the existing Exp3 algorithm requiring an
exponentially stabilizing controller, DBAR only needs a significantly weaker notion
of controller stability, in which case substantial time may be required to certify the
system stability. Dynamic batch length in DBAR effectively addresses this issue
and enables the system to attain asymptotic stability, where the algorithm behaves
as if there were no destabilizing controllers. Moreover, adaptive learning rate in
DBAR only uses the state norm information to achieve a tight regret bound even
when none of the stabilizing controllers in the pool are exponentially stabilizing.

1 INTRODUCTION

The multi-armed bandit (MAB) problem aims to minimize the total cost of pulling a series of arms
while receiving immediate cost feedback for each arm pulled. Given a finite number of arms, the
problem balances between exploration and exploitation of arms without knowing the exact cost
structure of each arm. On the other hand, the online optimal control problem considers a transition
dynamic xt+1 = f(xt, ut, wt) and a set of cost functions ct(xt, ut), t = 0, . . . , T , where the goal is
to minimize the sum of costs over time, while both f and ct are fully or partially unknown. Basically,
MAB is a special type of the online optimal control problem in the sense that MAB is stateless
and simply selects an action each time, while the online control problem has a countable or an
uncountable number of states and selects a controller, acting as a function from states into actions,
each time without knowing the cost functions. Bandit algorithms can thus be leveraged for online
control, wherein the average cost incurred with a controller can be interpreted as the bandit feedback
of pulling the controller-arm (Lin et al., 2023; Li et al., 2023).

In this paper, we address the online nonstochastic control problem where both a transition dynamic
f and cost functions ct can be unbounded, nonlinear, and adversarially chosen. We only have
knowledge about xt and the bandit feedback ct(xt, ut) at time t, with adversarial disturbances wt

injected at each time step as in Gradu et al. (2020) and Cassel & Koren (2020). We operate the system
with a single trajectory where the system state cannot be reset. To overcome the difficulties of an
unknown nonlinear system, we are given a finite set of N controllers in advance, where we are not
aware of whether each controller can stabilize the system but we are allowed to alternate between
these controllers within a single trajectory according to a specific logic. We refer to this problem as
the online bandit nonlinear control problem.

To deal with this online bandit nonlinear control, Li et al. (2023) adopted their Exp3-ISS algorithm,
which uses the well-known Exp3 algorithm (Auer et al., 2002) with a mini-batch approach (Arora
et al., 2012), while successively removing destabilizing controllers when detected in terms of input-
to-state stability (ISS). In this paper, we aim to significantly relax the requirement on the controllers
and yet guarantee asymptotic stability of the closed-loop system and sharpen the regret bound by
designing our algorithm DBAR (Dynamic Batch length and Adaptive learning Rate).
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Table 1: Summary of required controllers and results: U is the set of destabilizing controllers and |U|
denotes its cardinality. Polynomial factors on N and |U| are hidden.

Algorithm Required Closed-loop system Regret BoundController asymptotic stability
Chen & Hazan (2021) Exponential N/A Õ(T 2/3) + exp(O(|U|))

Li et al. (2023) Exponential No Õ(T 2/3) + exp(O(|U|))
Dynamic Batching Asymptotic Yes Õ(T 2/3) + o(T 1/3) · exp(O(|U|))

Algorithm 1 (DBAR) Asymptotic Yes Õ(T 2/3) + Õ(T−1/3) · exp(O(|U|))

Motivation and contribution. Our main contribution is to allow a broader class of controllers to
qualify as a stabilizing controller within a priori controller pool. For the motivation, consider a
continuous-time gradient flow in the vector space:

ẋ(t) = −∇F (x(t)), (1)
where F : Rn → R is a smooth function. A merely convex F can be extremely flat around its
minimum, leading to a slowly (asymptotically) converging trajectory unlike exponentially converging
behavior achieved for strongly convex F (Khalil, 2015). In fact, assuming that a minimizer x∗ of
F exists, the decay rate F (x(t))− F (x∗) is O(1/(t log2 t)) if F is convex1 (Siegel & Wojtowytsch,
2023), and O(e−t) if F is strongly convex. In the machine learning literature, a loss function
l(g(x), y) of a gradient-based method is often given as a convex function in g (e.g., mean-squared
error or cross-entropy loss), but not necessarily strongly convex since g is often over-parameterized
and there could be a continuum of parameters corresponding to the value of g. Analogous to this
concept, one can consider F as f(xt, π(xt), wt), a dynamic governed by a given controller π and its
converging behavior as a (asymptotic or exponential) controller stability. Our work merely requires
the existence of at least one asymptotically stabilizing controller in the pool, which is far weaker than
exponentially stabilizing notions and represents a more realistic environment one may encounter.

The existing literature on online bandit control of linear dynamics with adversarial disturbance has
intrinsically assumed the existence of strongly stable controllers, which are exponentially stabilizing
controllers in our context, and achieves Õ(T 2/3) regret under general convex cost functions (Cassel
& Koren, 2020; Chen & Hazan, 2021; Ghai et al., 2023). In this paper, we will achieve the same
Õ(T 2/3) regret bound even when none of the stabilizing controllers are exponentially stabilizing.

Algorithm Design. The idea of our algorithm is two-fold:

1. We adopt a dynamic batch length instead of a fixed length to certify the stability of the system
without requiring exponentially stabilizing controllers and achieve both asymptotic system stability
and a sublinear regret bound. The batch length is scheduled to be non-decreasing and growing
unboundedly over time, but its growth amount eventually saturates. However, the strategy suffers
from a resulting multiplicative exponential regret in return.

2. To alleviate the multiplicative exponential regret without requiring the conservative notion of
exponentially stabilizing controllers, we adopt a novel adaptive learning rate scheme that relies on
the system state norm, instead of a fixed learning rate. While the conventional way to apply the Exp3
Algorithm is to use a non-increasing learning rate, we decrease the learning rate if the state is unstable
and subsequently increase the learning rate if the state returns to a stable region. By implementing
this approach, we can alleviate the multiplicative exponential term in all cases. In particular, for a
specific class of stabilizing controllers beyond exponential notions, we attain a regret bound order
[Õ(T 2/3) + Õ(T−1/3) · exp(O(|U|))] · (|U|+ 1)α, where α = 1/3 if |U| is known and α = 1/2 if
|U| is unknown.

Table 1 shows a summary of our results with related works. Appendix A provides more details on the
intermediate step "Dynamic Batching", which operates under asymptotically stabilizing controller
assumptions, and on how we devised DBAR algorithm to avoid the multiplicative exponential term.

Related works. Optimal control problems have been widely leveraged in a variety of fields with
the influential dynamic programming approach (Bellman, 1957). Recent successes of reinforcement

1Note that O(1/(t log2 t)) is integrable at infinity. In the context of controllers, we also handle the challenging
case where f(xt, π(xt), wt)− infx∈Rn f(x, π(x), wt) may not be integrable at infinity. This corresponds to a
convex function without minimizers, such as a log-exp-type softmax loss function for classification.
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learning (RL) in safety-critical systems, such as aircraft (Razzaghi et al., 2022), robotics (Ibarz et al.,
2021), and autonomous driving (Kiran et al., 2021), are also deeply rooted in optimal control methods
(Bertsekas, 2019). The common idea to gain system stability of optimal control problems is to falsify
the detected destabilizing controller, meaning that one can completely remove those controllers
failing to satisfy certain stability criteria from the controller pool (Baldi et al., 2010; Battistelli et al.,
2010; 2014; 2018; Stefanovic & Safonov, 2011; Li et al., 2023).

Online nonstochastic control considers a dynamical system with adversarial disturbances, which is
more challenging than having statistical noise. Early papers assumed full access to cost functions,
enabling us to leverage optimal policy structure with cost function gradients (Agarwal et al., 2019;
Foster & Simchowitz, 2020; Hazan et al., 2020; Hazan & Singh, 2022). Later, studies were generalized
to address the problem without cost gradients information (Gradu et al., 2020; Cassel & Koren, 2020;
Ghai et al., 2023; Sun et al., 2023); instead, they estimated the cost gradients, using the history of
scalar cost (bandit feedback) along the trajectory. However, the above research restricts the system
to linear transition dynamics. Instead, our work considers the candidate controller pool to handle
unknown nonlinear systems.

Multi-armed bandits with adversarial disturbances were first addressed in the pioneering work by
Auer et al. (2002) under bounded costs in their notable Exp3 algorithm. Arora et al. (2012) later
improved the algorithm using the same controller within a mini-batch, attaining a regret bound
equivalent to the lower bound presented in Dekel et al. (2014). As we have access to the candidate
controller pool in our problem setting, we adopt a bandit-related approach.

Dynamic batching gained considerable attention for training deep neural networks by increasing the
batch size over time and adaptively increasing the learning rate to maintain the ratio between the two
(Devarakonda et al., 2017; Bollapragada et al., 2018; Shallue et al., 2019; Ma et al., 2023). Although
this has been widely used in the machine learning literature, we adopt this idea to online control,
progressively increasing the batch length within a single trajectory to achieve asymptotic stability.

Adaptive learning rate in machine learning is generally determined by a set of gradients observed
so far (Ruder, 2016). As we do not have access to the gradients in our problem, we focus on the
learning rate for bandit algorithms. Several works (van Erven et al., 2011; de Rooij et al., 2014) in
hedge setting, an instance of multi-armed bandit problem, suggested using decreasing learning rate
as the batch length increases. Building on this idea, Li et al. (2023) proposed to use a non-increasing
learning rate over time, while no theoretical guarantee was presented. To the best of our knowledge,
this paper is the first work to provide theoretical guarantees for the adaptive learning rate scheme
based on the stability of state norm, where the rate is not necessarily non-increasing.

Outline. The paper is organized as follows. In Section 2, we formulate the problem and provide
necessary definitions and assumptions. In Section 3, we propose our DBAR algorithm. In Section 4,
we study the stability of the algorithm, the regret bound, and its applications in switched systems. In
Section 5, we present numerical experiments on the DBAR algorithm with an ablation study on batch
length and learning rate. Finally, concluding remarks are provided in Section 6.

Notation. For a vector z, ∥z∥ denotes the Euclidean norm of the vector. We use O(·) for the big-O
notation, o(·) for the small-o notation, and Õ(·) for the big-O notation hiding logarithmic factors.
Let E denote the expectation operator. For a set Z, we use |Z| for the cardinality and Zc for the
complement of the set Z. For a real number e, we use ⌊e⌋ for the floor and ⌈e⌉ for the ceiling of e.
Let R denote the set of real numbers and Z+ denote the set of nonnegative integers. For e1, e2 ∈ Z+

where e2 ≤ e1, let ie1:e2 denote the set {ie : e2 ≤ e ≤ e1, e ∈ Z+}. For the notations used in the
problem formulation and algorithm, see Appendix B.

2 PROBLEM FORMULATION

Consider a general discrete-time dynamical system xt+1 = f(xt, ut, wt), t = 0, . . . , T − 1, where
xt ∈ Rn is the system state at time t, ut ∈ Rm is the control input at time t to be designed via an
algorithm. ut is determined by selecting a controller from a priori finite number of controller pool
consisting of πi : Rn → Rm, i = 1, . . . , N . wt ∈ W ⊂ Rg is the adversarial noise at time t, where
W = {w ∈ Rg : ∥w∥ ≤ wmax} and the bounding constant wmax > 0 is assumed to be known. Each
time instance t is associated with a cost function ct : Rn ×Rm → R. The state transition is governed
by the dynamic f : Rn × Rm × Rg → R. We have the following assumptions on the dynamic f .
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(a) Controller Stability notions (b) Controller pool for unknown nonlinear systems

Figure 1: Illustration of Assumption 2.5: (a) Our work does not require exponentially stabilizing
controllers, which allow the learner to detect the stability in O(log(1/ϵ)) time. Instead, we only
require an asymptotically stabilizing controller of the true system, where the detectable time may
be arbitrarily long. (b) One can design stabilizing controllers for each parameter characterizing the
nonlinear system. While we know that at least one of them should work, we do not know which one
works, since the learner is unaware of the true parameter of the system. Assumption 2.5 is always
satisfied if the given pool contains a rich set of controllers, as long as the true system is stabilizable.

Assumption 2.1 (Dynamic). The transition dynamic f is Lf -Lipschitz continuous with Lf ≥ 1;
i.e., |f(x, u, w)− f(x̃, ũ, w̃)| ≤ Lf (∥x− x̃∥+ ∥u− ũ∥+ ∥w − w̃∥) for all x, x̃ ∈ Rn, u, ũ ∈ Rm,
w, w̃ ∈ W . We let f(0, 0, 0) = f0.

We adopt the notion of locally Lipschitz continuous cost functions ct given in Li et al. (2023), which
contains quadratic tracking costs along an arbitrary bounded state trajectory and action sequence.
Assumption 2.2 (Cost functions). There exist Lc1, Lc2 > 0 such that |ct(x, u) − ct(x̃, ũ)| ≤
(Lc1(max{∥x∥, ∥x̃∥} + max{∥u∥, ∥ũ∥}) + Lc2)(∥x − x̃∥ + ∥u − ũ∥) for all x, x̃ ∈ Rn, u, ũ ∈
Rm, t ∈ Z+. There exists c0,max ≥ 0 such that |ct(0, 0)| ≤ c0,max for all t ∈ Z+.

Input-to-state (asymptotic) stability (ISS) is a classic notion of stability implying that the controller
successfully stabilizes the system under any bounded noises (Sontag, 2008; Khalil, 2015). Incremental
(asymptotic) stability extends the input-to-state stability to describe the asymptotic behavior of some
trajectory towards a different trajectory (Tran et al., 2016). It is worth noting that Li et al. (2023) also
adopted these concepts under an exponential stability assumption; i.e., they require some controllers
to satisfy exponential ISS and exponential incremental stability. However, in practice, general
asymptotic concepts need to be considered for stabilizing controllers. We will address this controller
stability issue below.
Definition 2.3 (Input-to-state stable controller). A controller π is (asymptotically) input-to-state
stable (ISS) if there exists a non-increasing function β(·) : Z+ → R that satisfies β(0) = 12 with
limt→∞ β(t) = 0 and γ > 0 such that for any x0 ∈ Rn and ∥wt∥ ≤ wmax for all t ≥ 0, the sequence
{xt}t≥0 determined by xt+1 = f(xt, π(xt), wt) satisfies ∥xt∥ ≤ β(t)∥x0∥+ γwmax.
Definition 2.4 (Incrementally stable controller). A controller π is (asymptotically) incrementally
stable if there exists a non-increasing function β(·) : Z+ → R that satisfies β(0) = 1 with
limt→∞ β(t) = 0 such that for any x0, x̃0 ∈ Rn and ∥wt∥ ≤ wmax for all t ≥ 0, it holds that
∥xt − x̃t∥ ≤ β(t)∥x0 − x̃0∥ for any two sequences determined by xt+1 = f(xt, π(xt), wt) and
x̃t+1 = f(x̃t, π(x̃t), wt).
Assumption 2.5 (Controller pool). Consider the candidate controller index set P0 = {1, . . . , N},
in which there exists a controller satisfying Definitions 2.3 and 2.4. There exists π0,max ≥ 0 such
that ∥πi(0)∥ ≤ π0,max for all i ∈ P0. All candidate controllers are Lπ-Lipschitz continuous; i.e.,
∥πi(x)− πi(x̃)∥ ≤ Lπ∥x− x̃∥ for all x, x̃ ∈ Rn and i ∈ P0.

In Figure 2, we illustrate a concept of the controller pool for the unknown system, and how general the
requirement of asymptotically stable notion is. For future use, we define the relevant sets regarding
controller stability below.

2This assumption in Definitions 2.3 and 2.4 is to guarantee β(t)2 ≤ β(t) for all t, which can be overcome by
a large γ. If we relax Assumption 2.2 on ct to be Lipschitz continuous, we can remove the assumption β(0) = 1.
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Definition 2.6 (Stabilizing and destabilizing controller). Let S denote an index set of stabilizing
controllers that satisfy both of Definitions 2.3 and 2.4. We also let U denote an index set of
destabilizing controllers that do not satisfy Definition 2.3. Thus, we have |S| ≥ 1 and S ⊆ Uc.
Remark 2.7. Definition 2.4 is a stronger notion than Definition 2.3 due to the triangle inequality.
However, for a special case of linear systems with additive noise; i.e., f(xt, π(xt), wt) = Axt+h(wt),
where A ∈ Rn×n and h : Rg → Rn, a controller π satisfying Definition 2.3 also satisfies Definition
2.4. In such a case, Assumption 2.5 boils down to requiring at least one ISS controller in the pool.

Now, we define different notions of closed-loop system stability with bounded adversarial disturbances
wt, where ∥wt∥ ≤ wmax holds. Asymptotic stability and finite-gain stability both shed light on the
connection between the disturbance input and the state output, where none of them implies the other
(Hill & Moylan, 1980). Hence, it is desirable to achieve both system stability notions.
Definition 2.8 (Asymptotic stability). A system is asymptotically stable if the sum of state norms
satisfies limT→∞

1
T

∑T
t=0 ∥xt∥ ≤ γwmax.

Definition 2.9 (Finite-gain stability). A system is finite-gain L1 stable if there exist constants
A1, A2 > 0 such that for all T ∈ Z+, it holds that

∑T
t=0 ∥xt∥ ≤ A1 · wmaxT +A2.

Recall that xt and ut denote the state and action sequence for the system according to the
algorithm. We also let x∗

t and u∗
t denote the optimal state and action sequence generated

by the best stabilizing controller i∗ that satisfies both of Definitions 2.3 and 2.4; i.e., i∗ =

argmini∈S E[
∑T

t=0 ct(xt, πi(xt))] subject to the dynamic f . Then, the regret of the algorithm
is defined as follows.
Definition 2.10 (Regret). The regret of the algorithm implementing the policy πit at time t =

0, . . . , T − 1 is defined as RegretT = EiT−1:0

∑T
t=0[ct(xt, ut)− ct(x

∗
t , u

∗
t )].

3 ALGORITHM DESCRIPTION

Denote the number of batches in the algorithm by B. Denote by tb the start time for each batch
b = 0, 1, . . . , B − 1. We implement the same policy within the mini-batch.
Assumption 3.1 (Dynamic batch length). We design our batch length (τb)b≥0 as follows:

1. τb is non-decreasing in b and limb→∞ τb = +∞.

2. maxb≥0
τb+1

τb
= τ1

τ0
and limb→∞

τb+1

τb
= 1.

For example, τ0 = ⌊z1(z2)z3⌋ > 0 and τb = ⌈z1(νb + z2)
z3⌉ for every b ≥ 1 with the constants

z1, z2, z3, ν > 0 satisfy Assumption 3.1. For future use, we refer to this type of formulation as
polynomial batches with (z1, z2, z3, ν).
Remark 3.2. As our dynamic batch length eventually grows unboundedly over time, excessively
strict controller stability criteria may result in most of the candidate controllers violating these criteria.
Thus, it is crucial to adopt (asymptotic) ISS and incremental stability as our criteria, instead of
exponential notions in Li et al. (2023) and the literature on linear dynamics (Cassel & Koren, 2020;
Chen & Hazan, 2021; Ghai et al., 2023). Figure 4 in Appendix A strongly supports the necessity
of a growing batch length regardless of the noise assumption. On the other hand, our batch length
requires limb→∞

τb+1

τb
= 1, which means the ratio of two consecutive batch lengths should approach

1 as time goes by (e.g., geometric sequences are not acceptable). In other words, the batch length
is designed to increase over time but eventually saturates, which is used to ensure both asymptotic
system stability and a sublinear regret. We formally present both properties in Theorems 4.1 and 4.6.

We propose our DBAR algorithm in Algorithm 1 (see Appendix B for the notations). Lines 3-9
generate the state trajectory based on the selected controller πKb

for the current batch b, and falsify
the controller if it is found to violate Definition 2.3; i.e., Kb ∈ U . Here, let U denote the number of
times that the Break statement in Line 7 is activated. In the rest of the paper, when we say the Break
statement is activated, it means that Line 7 of Algorithm 1 has been activated. As the controllers in
Uc do not suffer from the Break statement, they always remain in the controller pool. Accordingly,
we have U ≤ |U|.
Lines 11-20 keep track of the state norm of xb+1 by determining αb+1 and sb+1 that indicates the
magnitude of the next batch’s initial state norm compared to ∥x0∥. Note that we keep adjusting the
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Algorithm 1 DBAR
Input: T. η0 > 0. (τb)b≥0. β(·). γ. W0(k) = 0 for all k ∈ P0. t0 = 0, s0 = 0.
A uniform distribution p0; i.e., p0(k) = 1

N
for all k ∈ P0. x0 ̸= 0. α0 > β(0) = 1. δ ≥ γwmax

1−β(τ0)
.

1: for Batch b = 0, 1, 2, . . . , do
2: Sample Kb from a distribution pb. Terminate the al-

gorithm if Pb is empty.
// Phase 1: Falsify a detected destabilizing controller

3: for t = tb, . . . ,min(tb + τb − 1, T ) do
4: Implement πKb

, observe xt+1.
5: if ∥xt+1∥ > β(t+1− tb)∥xtb∥+ γwmax then
6: Set Pb+1 = Pb − {Kb}.
7: Break
8: end if
9: end for

10: Let tb+1 = t+ 1.
// Record the magnitude of the state norm for Phase 2

11: if ∥xtb+1∥ ≥ αb∥x0∥+ δ then
12: Pick s ≥ 1 that satisfies

(αb)
s∥x0∥ ≤ ∥xtb+1∥ − δ < (αb)

s+1∥x0∥.
13: if s− sb > 1 then
14: Let αb+1 be any α > αb such that

αsb+1∥x0∥ ≤ ∥xtb+1∥ − δ < αsb+2∥x0∥
and let sb+1 = sb + 1.

15: else
16: Let sb+1 = s and let αb+1 = αb.
17: end if
18: else
19: Let sb+1 = 0 and let αb+1 = αb.
20: end if

// Phase 2: Set or reset weight for each controller
21: Let wb(Kb) =

∑tb+1−1
t=tb

ct(xt, ut)

and w′
b(k) =

wb(Kb)
pb(k)

I(Kb=k) for k ∈ Pb.
22: if sb+1 ̸= sb then
23: Let Wb+1(k) = 0 for all k ∈ Pb.
24: else
25: Let Wb+1(k) = Wb(k) + w′

b(k) for k ∈ Pb.
26: end if
27: Let ηb+1 = η0/(αb+1)

2sb+1 .
28: For all k ∈ Pb+1, let

pb+1(k) =
exp(−ηb+1Wb+1(k))∑

i∈Pb+1
exp(−ηb+1Wb+1(i))

29: end for

value of αb+1 to avoid sb+1 > sb + 1 (Line 14), and the adjusted αb+1 is guaranteed to be bounded
by some constant (see Lemma C.5 in the Appendix). It is later discussed formally in Lemma 4.7 that
these observations cause sb ̸= 0 to occur at most O(U) times throughout the algorithm.

Lines 21-26 determine the weight Wb+1(k) for each controller k. In Line 21, we use the sum of
costs at the current batch b to add up to the weight in Line 25. In Lines 22-26, we reset the weight if
sb+1 ̸= sb. This resetting weight idea to forget the costs in the past is also proposed in van Erven
et al. (2011). In the scenario that the Lipschitz constant Lf is very large, it may help to forget the
time-varying costs c0, . . . , ct−1 and restart gathering the information from the outset. Line 22 reflects
this case where the next batch’s state norm significantly deviates from the current state norm.

Lines 27-29 calculate the adaptive learning rate ηb+1 = η0/(αb+1)
sb+1 for the next batch b+ 1 used

to apply the Exp3 algorithm to our problem. Since (αb+1)
sb+1 increases when the state norm ∥xtb+1

∥
is large, and sb+1 resets to zero for sufficiently small state norm, the corresponding learning rate
decreases in unstable states and increases back to the initial value when the state norm returns to a
stable region. Thus, the learning rate fluctuates depending on the state norm. However, it is essential
to note that the effective learning rate, determined by the ratio ηb

τb
, indeed decreases as the batch length

increases even if sb+1 = sb. The only plausible situation in which the effective rate may increase is
sb+1 < sb with (αb+1)

2 > τb+1

τb
. Apart from this scenario, the effective learning rate experiences

a polynomial decay with polynomial batches defined in Assumption 3.1, which does not cause any
contradiction with the polynomially decreasing learning rate concept proposed in Aubert et al. (2023).

Our adaptive learning rate stabilizes the cost of current batch, alleviating the multiplicative exponential
term in the regret bound (see Table 1). Moreover, since we run the algorithm along a single trajectory
with the selection of the policy only relying on the state norm as a context, we obtain a linear-time
algorithm by harnessing a form of contextual bandit without requiring strict assumptions.

4 MAIN RESULTS

4.1 STABILITY

In this section, we will present the stability results of Algorithm 1, which deeply hinge on Lemma
4.3 (see the proof details in Lemma C.1).
Theorem 4.1 (Asymptotic stability). In Algorithm 1, suppose that τ1

τ0
β(τ0) < 1. Then, it holds that

limT→∞
1
T

∑T
t=0 ∥xt∥ ≤ γwmax.

6
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Theorem 4.2 (Finite-gain stability). In Algorithm 1, suppose that τ1
τ0
β(τ0) < 1. Assume that

limt→∞ H(t) < ∞. Then, Algorithm 1 achieves finite-gain L1 stability; i.e., there exist constants
A1, A2 > 0 such that for all T ∈ Z+,∑T

t=0 ∥xt∥ ≤ A1 · wmaxT +A2.

Lemma 4.3. Define H(t) :=
∑t−1

i=0 β(i), which determines the scope of stabilizing controllers
throughout the entire horizon. Under Assumption 3.1, we have limt→∞

H(t)
t = 0.

Proof sketch of Theorems 4.1 and 4.2: By Lemma 4.3, we have limt→∞
H(t)
t = 0. Using this

result with the non-decreasing property of both τb and H(τb), we obtain that
∑B−1

b=0 H(τb) = o(T )
according to Assumption 3.1 for the dynamic batch length. This assumption further indicates that
falsifying destabilizing controllers in Lines 5-8 results in the existence of a constant M > 0 such that
the following inequality holds for all T ≥ 0:

T∑
t=0

∥xt∥ ≤ M + γwmax · (O(

B−1∑
b=0

H(τb)) + T ). (2)

Thus,
∑B−1

b=0 H(τb) = o(T ) along with (2) proves both Theorems 4.1 and 4.2. More details about
the proof are provided in Appendix C.
Remark 4.4. With a fixed batch length τ as presented in Li et al. (2023), the resulting closed-loop
system cannot achieve asymptotic stability since limT→∞

1
T

∑T
t=0 ∥xt∥ = γwmax(1 + O( 1τ )) >

γwmax. Thus, it is intuitively desirable to design as limb→∞ τb = ∞ to achieve an asymptotic system
stability, validating our dynamic batch length strategy in Algorithm 1. This idea also results in having
limT→∞ B/T = 0 (see Lemma C.9 in the Appendix). It is crucial to note that we have achieved
asymptotic stability even when limt→∞ H(t) = ∞. In addition, finite-gain stability can be achieved
for every β(·) that satisfies H(·) < ∞, which incorporates exponentially stabilizing controllers.

4.2 REGRET

In this section, we will present the regret bound of Algorithm 1, where the regret defined in Definition
2.10 is equivalent to EKB−1:0

∑T
t=0[ct(xt, ut)− ct(x

∗
t , u

∗
t )], considering that the policy at each time

t is determined by the policy at the corresponding batch.
Theorem 4.5 (Regret Bound). In Algorithm 1, suppose that τ1

τ0
(β(τ0))

2 < 1
2
√
2

. Then, we have

RegretT = O(|U|) +O(

B−1∑
b=0

H(τb)) +
Õ(|U|+ 1)

η0
+

η0N

2
[exp(O(|U|))O(τB−1H(τB−1)) +O(

B−1∑
b=0

(τb)
2)].

Theorem 4.6 (Regret bound with known |U|). Consider Algorithm 1 with polynomial batches defined

in Assumption 3.1 with proper parameters satisfying (β(τ0))
2 < 1

2
√
2

. Then, with η0 = O( (|U|+1)2/3

T 2/3N1/3 )

and T ≥ max{ |U|3/2
(N(|U|+1))1/2

, N(|U|+ 1)}, we achieve a sublinear regret bound. Moreover3, when

H(t) ≤ O(
∑t

i=1
1
i ) for all t ≥ 1, we have

RegretT =
[
Õ(T 2/3) + Õ(T−1/3) exp(O(|U|))

]
N1/3(|U|+ 1)1/3.

The regret bound deeply relies on Lemma 4.7. For the lemma, define L := {0 ≤ b ≤ B − 1, b ∈
Z+ : sb+1 ̸= sb} and Also, define V := {0 ≤ b ≤ B − 1, b ∈ Z+ : sb ̸= 0}. In other words, |L|
is the number of transitions of sb across the batches, and |V| is the number of batches whose sb is
nonzero. It turns out that both quantities are bounded in terms of the number of the Break statement
activation. The proof details can be found in Lemma D.3.
Lemma 4.7. In Algorithm 1, suppose that β(τ0) < 1 and let U denote the number of times that the
Break statement is activated. Then, it holds that |L| = O(U) and |V| = O(U).

3Among stabilizing controllers achieving Õ(T 2/3) regret bound, we also cover the case where H(t) can be
of the order of a harmonic series that is not summable at infinity.
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Proof sketch of Theorems 4.5 and 4.6: By adopting the analysis performed in previous works (Cesa-
Bianchi & Lugosi, 2006; van Erven et al., 2011; de Rooij et al., 2014), we divide the expected
total cost into the mix loss − 1

η0
log(Ek∼pb

exp(−ηbw
′
b(k))) and the mixability gap Ek∼pb

[w′
b(k)] +

1
η0

log(Ek∼pb
exp(−ηbw

′
b(k))). The big difference between the previous analysis and our approach

is that we use different learning rates for the one in the denominator (η0) and the other inside the
exponential term (ηb) as we use an adaptive learning rate. The additional term introduced by using
different rates is in |L| and |V|, which are bounded in terms of U by Lemma 4.7.

After bounding the expected total cost with cumulative mix loss and mixability gap, we need to
study EKB−1:0

∑B−1
b=0

∑tb+1−1
t=tb

[ ct(xK
t (i∗),uK

t (i∗))

(αb)
2sb

− ct(x
∗
t , u

∗
t )
]
, where xK

t (i) and uK
t (i) for t =

tb, . . . , tb+1 − 1 denote the state and action sequence generated by selecting the controllers before
batch b according to Algorithm 1, while selecting the controller i at batch b. This does not produce
any exponential term since the costs are regularized with the factor (αb)

2sb . The additional term
introduced by regularization is also bounded by the order of U due to Lemma 4.7. The proof details
are provided in Appendix D.

Remark 4.8 (Lower bound). The regret bound Õ(T 2/3N1/3(|U| + 1)1/3) provided in Theorem
4.6 is similar to the lower bound presented in Dekel et al. (2014), except that there is an extra term
(|U|+ 1)1/3, reflecting the unbounded costs for the bandits. Moreover, a stability-agnostic nature
of the given controllers implies that any algorithm will normally encounter destabilizing controllers
and it is unavoidable to face the exponential term exp(O(|U|)) in regret. To be more specific, our
work has an exponential term in the number of destabilizing controllers (|U|), while the work Chen &
Hazan (2021) provides the lower bound involving an exponential term in L > kdu (see Section 2.1
and Theorem 3), where du is the dimension of the action and k is the controllability index. Here, a
large controllability index implies that the system is complex to control as more stages of control
actions are needed to stabilize the system. Thus, together with a dimension of the controller action
du, a large kdu in their work is analogous to a large |U| in our setting. Thus, due to the lower
bound, the exponentially increasing term can be tackled by reducing it by the inverse power term
on T at best. Theorem 4.6 aligns with this idea since the resulting regret bound involves the term
Õ(T−1/3) · exp(O(|U|)) by factoring in every potential exponential term to be multiplied with the
initial learning rate η0 = O(T−2/3), which inherently serves as a mitigating factor. Note that instead
of dramatically reducing the regret bound, our main contribution is on significantly relaxing the
stability assumptions for required controllers (see Table 1 and Appendix A).
Remark 4.9 (Nonlinear control). Our approach is useful to extend the stability and regret analysis
beyond linear dynamics, but if |U| is too large, it would be difficult to reach good enough performance
as the regret bound depends on exp(O(|U|)). This occurs because we have focused on a discrete set
of controllers instead of a connected set as in linear dynamics. Note that in the linear dynamics case,
it is guaranteed that the set of stabilizing controllers is connected. However, adopting a discrete set
was inevitable to handle unknown nonlinear systems since the set of stabilizing controllers may not be
connected. To address this limitation, we believe that this issue can be mitigated by the formulation
where the problem of interest is |U| number of connected sets, where |U| is not too large and each
set is disjoint from the others. The agent can apply techniques of continuous parameterization (e.g.
gradient descent) within a set and also transition between separate sets by leveraging our technique.
This mixture of algorithms for discrete and connected sets will be an interesting future work.

Now, a question arises as to what happens if |U| is not known in advance. With Algorithm 1, one
can leverage |U|+ 1 ≤ N to upper-bound the regret in Theorem 4.6 and achieve Õ(T 2/3N2/3) at
best (without considering exponential terms) by determining η0 and (τb)b≥0 as if there were only
one stabilizing controller. It turns out that we can reduce the bound to Õ(T 2/3N1/3(|U|+ 1)1/2) by
adaptively changing the value of ηb as in Algorithm 2, where we increase the value of µb if the Break
statement in Algorithm 1 is activated and keep it unchanged otherwise.
Theorem 4.10 (Regret bound with unknown |U|). Consider Algorithm 2 with polynomial batches
defined in Assumption 3.1 with proper parameters satisfying τ1

τ0
(β(τ0))

2 < 1
2
√
2

. Then, with y = 1
2 ,

η0 = O( 1
T 2/3N1/3 ), and T ≥ max{ |U|3/2

N1/2(|U|+1)3/4
, N}, we achieve a sublinear regret bound.

Moreover, when H(t) ≤ O(
∑t

i=1
1
i ) for all t ≥ 1, we have

RegretT =
[
Õ(T 2/3) + Õ(T−1/3) exp(O(|U|))

]
N1/3(|U|+ 1)1/2.
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Algorithm 2 DBAR-unknown |U|
Input: Add two more inputs µ0 = 0. y > 0.

// Modification 1: Add the following IF-ELSE Statement right after Line 9 in Algorithm 1.
if Pb+1 = Pb then µb+1 = µb. else µb+1 = µb + 1. end if

// Modification 2: Incorporate µb+1 to set ηb+1 in Line 27 in Algorithm 1.
ηb+1 =

η0(µb+1+1)y

(αb+1)
2sb+1

.

Proof sketch: Define η0,r := η0
√
r + 1. It turns out that for every r = 0, . . . , U , Õ( 1

η0,r
) appears in

the regret instead of the integrated term Õ( |U|+1
η0

) in Theorem 4.5. The constant |U|+1 is distributed
among each Õ( 1

η0,r
) term. Under the constraints given by the disintegration rule using Lemma

4.7 for each r, one can establish an upper bound of Õ( (|U|+1)1/2

η0
) on the sum of Õ( 1

η0,r
) terms

over r = 0, . . . , U by attaining the coefficients of these terms with complementary slackness in
Karush-Kuhn-Tucker (KKT) conditions. The details are available in Appendix E.

Our DBAR algorithm can also be applied to scenarios such as those switched systems (Tousi
et al., 2008; Zhao et al., 2022) in which the transition dynamics and the associated controller pool
change according to either the detection of a destabilizing controller or pre-determined time instants
(Battistelli et al., 2011), as well as the ballooning problem (Ghalme et al., 2021) where the controller
pool may expand. We proposed Algorithm 3, the switching version of DBAR, in Appendix F.

5 NUMERICAL EXPERIMENTS

To demonstrate the main results of this paper, we provide illustrative examples on both linear and
nonlinear dynamics with adversarial disturbances.

Example 1: Consider the following linear dynamical system with xt ∈ R2 and ut ∈ R2:

xt+1 =

[
2 1.2
1.1 2.5

]
xt +

[
1 0.3
0.4 0.9

]
ut + wt, t = 0, 1, . . . , (3)

where x0 = [100, 200]′ and wt = [sin
(

t
5π

)
, sin

(
t

11π

)
]′. We consider a linear policy ut = Kxt =[

k1 k2
k3 k4

]
xt and a controller pool K ′ = {K ∈ R2×2 : k1, k3, k4 ∈ {−3,−2,−1}, k2 ∈ {−1, 0, 1}}

that has |U| = 53 out of 81 candidate controllers. The goal is to keep the state near the origin, where
the cost function is quadratic at each time, namely ct(xt, ut) = ∥xt∥2.

Falsifying destabilizing controllers moderately stabilizes the state norm (Li et al., 2023). Compared
to their work, Figures 2(a) and 2(b) show that both integral components of our algorithm DBAR,
dynamic batch length and adaptive learning rate, further lowers the regret and stabilizes the system,
where approximately 2/3 of controllers in K ′ are destabilizing the system. In this case, Figures
2(c) and 2(d) both demonstrate that the two components of our algorithm mutually reinforce each
other, where each component stabilizes the state norm with or without time delay. This supports
the observations in Appendix A. In Appendix G.1, we also provide the experiment details and
simulation results with noise terms generated by uniform random walk, where wt − wt−1 has a
uniform distribution for t ≥ 1, as well as the results with truncated Gaussian noise for sanity check.

Example 2: Consider the following nonlinear noise-injected ball-beam system (Hauser et al., 1992):

ẍ = B(xθ̇2 − 9.81 sin θ) + 3wx, θ̈ = ux, B = 0.7143, (4)

where x is the ball position, θ is the beam angle, ux is the action, and wx(t) = sin
(

t
7π

)
. To provide

the simulations for high-dimensional systems, we consider the leader-follower system (Morbidi et al.,
2011), where the leader is represented by a ball-beam system, and the followers leverage the leader’s
state to stabilize themselves. Specifically, if the leader is controlled by destabilizing controllers, the
followers may also fail to stabilize. Consider the followers’ system:

ż = A[x, ẋ, − 9.81Bθ, − 9.81Bθ̇]′ + Ãz + uz + 3wz, (5)

9
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(a) Stability analysis (b) Regret analysis (c) Adaptive learning rate
under dynamic batch length

(d) Dynamic batch length
under adaptive learning rate

Figure 2: The stability and the regret in the linear system under sinusoidal noise. Fixed τ , fixed η
represents the algorithm in Li et al. (2023). Ablation study of the algorithm is presented.

(a) Ball-beam Leader-follower system (b) Stability analysis (c) Regret analysis

Figure 3: The stability and the regret in the leader-follower system under sinusoidal noise, where the
leader is represented by a ball-beam system. We selected β(t) = min{10/t1.05, 1} (see Definition
2.3) and used squared sum of state and action norms as the cost.

where [x, ẋ, θ, θ̇] ∈ R4 are the states of the leader given in (4), z ∈ R96 are the states of the followers,
uz ∈ R96 is the action of the followers, wz = [sin

(
t
5π

)
, sin

(
t

11π

)
, sin

(
t
5π

)
, sin

(
t

11π

)
, . . . ] ∈ R96,

and A, Ã are relevant random matrices. Note that the number of states in the entire system is 100.

For the action ux, we now adopt a broader notion of stabilizing controllers and choose the policy
class to be the nested saturating control (Teel, 1992), without considering exponentially stabilizing
notions. For the action uz , we consider a linear policy in z; however, the policy is inherently nonlinear
with respect to the entire state, as the leader’s system itself is nonlinear. In Figures 3(b) and 3(c),
we observe that dynamic batching does not necessarily stabilize the state norm by itself. However,
if an adaptive learning rate is additionally applied, DBAR effectively stabilizes the explosion of
the nonlinear system and enjoys the improved regret, even when we use a polynomially stabilizing
criterion O(1/t1.05) to define the stabilizing controllers (see Definition 2.3). We also provide the
simulation results with the other polynomially decreasing β(·) series at a different rate. More
experiment details are available in Appendix G.2.

6 CONCLUSION

In an online bandit nonlinear control problem, an agent makes decisions with the bandit feedback
information, while suffering from nonlinear dynamics and adversarial disturbances. To address
such challenges, this paper develops a novel Exp3-type algorithm with theoretical guarantees. The
proposed algorithm uses a dynamic batch length to achieve asymptotic stability of the system without
requiring an exponential assumption on stabilizing controllers in the pool. Our adaptive learning rate
scheme observes the stability of state norm to overcome the inherent multiplicative exponential term
in the regret, thereby improving the overall regret. Future directions include extending these results
to problems with explicit safety constraints while selecting the best stabilizing controller among a
continuum of candidate controllers.
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A NECESSITY OF DBAR UNDER WEAKER STABILITY NOTION OF REQUIRED
CONTROLLERS

To illustrate how significant the weaker controller stability notion is compared to the exponential
notions, let us further present a one-dimensional system, where the current system state is 1. The goal
is to achieve a state near 0, and we would like to detect this stability by observing whether one arrives
at a state less than 1− ϵ, where ϵ is an arbitrarily small positive number. Exponentially stabilizing
controllers guarantee to detect the stability in O(log(1/ϵ)) time. However, with an asymptotically
stabilizing controller, if the controller is designed to keep the system state unchanged for an arbitrarily
long time T and then collapse the state towards 0 afterward, one cannot detect the stability before
time T regardless of how small ϵ is. In such a case, even though the controller ultimately achieves the
goal, it may take a lot of time to learn whether a closed-loop system would be stable or not.

Note that dynamic batch length is an important part of our work. If an exponentially stabilizing
controller is applied to a system, one can quickly certify the stability. However, if we only have the
asymptotically stabilizing controllers as in our problem setting, it may take a long time to observe
any abnormal behavior in the closed-loop system. Such an issue cannot be handled by a fixed batch
length and in that sense dynamic batch length is a necessary part of our work. In Table 1, we have
stated the intermediate step "Dynamic Batching" to achieve closed-loop system asymptotic stability,
which was not achievable by the previous works.

Figure 4 also demonstrates the necessity of a dynamic batch length regardless of the noise assump-
tion. The blue and orange lines represent the state norms generated by a fixed batch length and a
dynamic batch length, respectively. With both relatively easier statistical noise and more challenging
adversarial noise, the blue line shows a larger state norm than the orange line. Moreover, the blue line
occasionally has higher values than the red line, which is our asymptotic stability bound γwmax = 1.5,
while the orange line remains below the red line after a certain time.

(a) Statistical Noise (b) Adversarial Noise

Figure 4: The state norm with a fixed batch length compared to that with a dynamic batch length.
xt+1 = xt + 0.15ut + wt with ut = Kxt where K ∈ [−3.0,−2.9,−2.8, . . . , 4.9, 5.0]. We use
τ0 = 10, γ = 3, and set wmax = 0.5. The noise wt is (a) i.i.d. sampled from Uniform[−0.2, 0.5], and
(b) 0.15 + 0.35 sin( t

3π ).

However, it turns out that the resulting regret by dynamic batching contains the multiplicative term
o(T 1/3) · exp(O(|U|)), which is because a dynamic batch length induces H(τB−1) to be necessarily
multiplied with exp(O(|U|)). (see Corollary D.10). Thus, we came up with a careful switching
strategy, an adaptive learning rate, to address this issue. The multiplicative term can be resolved
with splitting technique by introducing an adaptive learning rate, achieving both closed-loop system
asymptotic stability (by dynamic batch length) and the improved regret (by adaptive learning rate),
even though we have greatly relaxed the assumption on controller stability (exponential to asymptotic).
We developed this approach by factoring in every potential exponential term to be multiplied with the
initial learning rate η0 = O(T−2/3), which has a negative exponent on T , thus inherently serving as a
mitigating factor (see Theorem 4.6 and the term η0N

2

∑B−1
b=0 EKb−1:0

(wK
b (ib))2 in Lemma D.5). Due

to Lemma 4.7, one can explain that the remaining terms produced by the splitting can be bounded by
O(|U|). More details can be found in Appendix D.
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B GLOSSARY

Before formally presenting the proofs, we provide a glossary to help readers understand the notations
of our algorithm DBAR (see Algorithm 1).

Table 2: Glossary
Notation Meaning

xt state at time t in the algorithm
x∗
t optimal state at time t

ut action at time t in the algorithm
u∗
t optimal action at time t

ct(xt, ut) cost at time t
wmax the maximum norm of the noise
T the length of time in the algorithm
B the number of batches in the algorithm
tb the start time for each batch b
τb the batch length at batch b
ηb learning rate at batch b
Kb the controller selected at batch b
N the number of controllers in the candidate pool

Wb(k) the weight of controller k at batch b
pb(k) the probability of selecting controller k at batch b
Pb a set of available controllers at batch b

αb, sb (αb)
sb indicates the magnitude of the state norm at tb compared to ∥x0∥

β(t), γ applying a stabilizing controller incurs ∥xt∥ ≤ β(t)∥x0∥+ γwmax
Lf Lipschitz constant for the dynamic f
Lπ Lipschitz constant for any controller π
U the number of times the Break statement is activated

b1, . . . , bU the next batch after the Break statement is activated

C STABILITY PROOF

Let b1, . . . , bU denote the next batch after the Break statement is activated; i.e., ∥xtbu
∥ > β(tbu −

tbu−1)∥xtbu−1
∥ + γwmax for every u = 1, . . . , U . For future use, let b0 = 0 and bU+1 = B.

Accordingly, tb0 = t0 = 0 and tbU+1
= tB = T + 1.

Lemma C.1 (Restatement of Lemma 4.3). Define H(t) :=
∑t−1

i=0 β(i). Under Assumption 3.1, we
have

lim
t→∞

H(t)

t
= 0.

Proof. Recall that we designed β(·) to be non-increasing and nonnegative. Then, we have β(i) ≤∫ i

i−1
β(x)dx for every integer i ≥ 1. Using the inequality, one can write

0 ≤ H(t) = β(0) +

t−1∑
i=1

β(i) ≤ β(0) +

∫ t−1

0

β(x)dx. (6)

If limt→∞ H(t) < ∞, clearly limt→∞
H(t)
t = 0 holds. If limt→∞ H(t) = ∞, we leverage

L’Hôpital’s rule with β(t) → 0 as t → ∞ to derive

lim
t→∞

H(t)

t
≤ lim

t→∞

β(0) +
∫ t−1

0
β(x)dx

t
= lim

t→∞

β(t− 1)

1
= 0,

where the first inequality follows from (6).
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Lemma C.2. For 0 ≤ j ≤ k, we have

H(τk)

H(τj)
≤ τk

τj
.

Proof. For 0 ≤ j ≤ k,

H(τk)

H(τj)
≤

H(τj) +
∑τk−1

i=τj
β(i)

H(τj)
≤ 1 +

(τk − τj) · β(τj)
τj · β(τj)

=
τk
τj

,

where the last inequality is due to the non-increasing property of β(·). The equality holds when
β(0) = · · · = β(τk − 1).

Lemma C.3 (Sum of state norms in a single batch). In Algorithm 1, for each batch b = 0, 1, . . . , B−1,
the following inequality holds:

tb+1−1∑
t=tb

∥xt∥ ≤ H(τb)∥xtb∥+ γwmax(τb − 1)

Proof. For t = tb, we have ∥xt∥ ≤ β(0)∥xtb∥ since β(0) = 1. For tb < t ≤ tb+1 − 1, we have

∥xt∥ ≤ β(t− tb)∥xtb∥+ γwmax. (7)

Summing up all inequalities gives
tb+1−1∑
t=tb

∥xt∥ ≤ H(tb+1 − tb)∥xtb∥+ γwmax(tb+1 − tb − 1).

Since Line 5 of Algorithm 1 is not satisfied, τb = tb+1 − tb. This completes the proof.

Lemma C.4 (Weighted sum of state norms between the two consecutive Break statements). In
Algorithm 1, suppose that τ1

τ0
β(τ0) < 1. For every next batch index after the Break statement

u = 0, . . . , U , the following inequality holds:

bu+1−1∑
b=bu

H(τb)∥xtb∥ ≤ 1

1− τbu+1

τbu
β(τbu)

H(τbu)∥xtbu
∥+ γwmax

1− β(τbu+1)

bu+1−1∑
b=bu+1

H(τb).

Proof. Since we designed (τb)b≥0 to have a non-decreasing τb and non-increasing τb+1

τb
, notice

that we have β(τb) ≤ τb+1

τb
β(τb) ≤ τb

τb−1
β(τb−1) ≤ τ1

τ0
β(τ0) < 1 for every b ≥ 1 since β(·) is

non-increasing.

If bu+1 = bu + 1, the inequality clearly holds since 1

1−
τbu+1
τbu

β(τbu )
> 0. Otherwise, consider the

following inequality for bu < b ≤ bu+1 − 1:

H(τb)∥xtb∥ ≤ H(τb)β(τb−1)∥xtb−1
∥+H(τb)γwmax

=
H(τb)

H(τb−1)
β(τb−1)H(τb−1)∥xtb−1

∥+H(τb)γwmax,

where the inequality holds since Line 5 of Algorithm 1 is not satisfied. Recursively applying this
inequality, one arrives at

H(τb)∥xtb∥ ≤ Πb−1
a=bu

[H(τa+1)

H(τa)
β(τa)

]
·H(τbu)∥xtbu

∥+H(τb)γwmax(1 +

b−1∑
b′=bu+1

Πb−1
a=b′β(τa))

≤ Πb−1
a=bu

[H(τa+1)

H(τa)
β(τa)

]
·H(τbu)∥xtbu

∥+H(τb)γwmax(1 +

b−1∑
b′=bu+1

[β(τbu+1)]
b−b′)

≤ Πb−1
a=bu

[H(τa+1)

H(τa)
β(τa)

]
·H(τbu)∥xtbu

∥+H(τb)
γwmax

1− β(τbu+1)
(8)
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≤ Πb−1
a=bu

[τa+1

τa
β(τa)

]
·H(τbu)∥xtbu

∥+H(τb)
γwmax

1− β(τbu+1)

≤
[τbu+1

τbu
β(τbu)

]b−bu
·H(τbu)∥xtbu

∥+H(τb)
γwmax

1− β(τbu+1)
,

where the second inequality comes from the non-increasing property of β(·), the third inequality is
by β(τbu+1) < 1, the fourth inequality is due to Lemma C.2, and the last inequality comes from the
non-increasing property of τb+1

τb
β(τb). Since τbu+1

τbu
β(τbu) < 1, summing up the above inequalities

for bu < b ≤ bu+1 − 1 completes the proof.

Lemma C.5 (Next state norm after the Break statement). Define M1 := Lf (1 + Lπ)γwmax +
Lf (π0,max + wmax) + f0. Then, for every u = 1, . . . , U , we have

∥xtbu
∥ ≤ Lf (1 + Lπ)β(0)∥xtbu−1

∥+M1.

Proof. Suppose we picked a controller πt at time step t. Then, by Assumption 2.5, we have

∥ut∥ = ∥πt(xt)− πt(0) + πt(0)∥ ≤ ∥πt(xt)− πt(0)∥+ ∥πt(0)∥ ≤ Lπ∥xt∥+ π0,max. (9)

Combining the above inequality with Assumption 2.1, one can write

∥xt+1∥ = ∥f(xt, ut, wt)− f(0, 0, 0) + f(0, 0, 0)∥
≤ ∥f(xt, ut, wt)− f(0, 0, 0)∥+ ∥f(0, 0, 0)∥ ≤ Lf (∥xt∥+ ∥ut∥+ ∥wt∥) + f0

≤ Lf (∥xt∥+ Lπ∥xt∥+ π0,max + wmax) + f0

= Lf (1 + Lπ)∥xt∥+ Lf (π0,max + wmax) + f0.

Thus, for every u = 1, . . . , U , we obtain that

∥xtbu
∥ ≤ Lf (1 + Lπ)∥xtbu−1∥+ Lf (π0,max + wmax) + f0

≤ Lf (1 + Lπ)(β(tbu − tbu−1 − 1)∥xtbu−1
∥+ γwmax) + Lf (π0,max + wmax) + f0

= Lf (1 + Lπ)β(tbu − tbu−1 − 1)∥xtbu−1
∥+M1

≤ Lf (1 + Lπ)β(0)∥xtbu−1
∥+M1,

where the second inequality holds since Line 5 of Algorithm 1 is not satisfied during tbu−1 ≤ t ≤
tbu − 1 and the equality holds for the last inequality when tbu = tbu−1 + 1. This completes the
proof.

Lemma C.6 (Weighted sum of state norms along the Break statements). In Algorithm 1, suppose that
τ1
τ0
β(τ0) < 1. Define M2 := Lf (1 + Lπ)β(0)

γwmax
1−β(τ1)

+M1. Then, there exists a constant C ≥ 1

such that
U∑

u=0

H(τbu)∥xtbu
∥ ≤ [Lf (1 + Lπ)β(0)C]U+1 − 1

Lf (1 + Lπ)β(0)C − 1
H(τ0)∥x0∥+

([Lf (1 + Lπ)β(0)C]U − 1)M2

[Lf (1 + Lπ)β(0)C − 1]2
H(τbU )

Proof. Since we designed τb+1

τb
to converge, there exists R > 0 such that τb+1

τb
≤ R for all b ≥ 0.

Moreover, since limb→∞
τb+1

τb
= 1 and β(τ0) < 1, there exists b∗ > 0 such that

b ≥ b∗ =⇒ τb+1

τb
<

1

β(τ0)
. (10)

Accordingly, for any two batches b′ > b ≥ 0, we have

τb′

τb
[β(τb)]

b′−b−1 ≤ [β(τ0)]
b′−b−1Πb′−1

a=b

τa+1

τa
≤ Rb∗

β(τ0)
, (11)

considering that b = 0 and b′ = b∗ yields the largest possible upper bound due to (10). Now, define
C := Rb∗

β(τ0)
. Notice that we have C ≥ 1 since the left-hand side of (11) is greater than equal to 1

when b′ = b+ 1. Then, for every u = 1, . . . , U , one can write

H(τbu)∥xtbu
∥ ≤ Lf (1 + Lπ)β(0)

H(τbu)

H(τbu−1)
H(τbu−1)∥xtbu−1

∥+H(τbu)M1
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≤ Lf (1 + Lπ)β(0)
H(τbu)

H(τbu−1)
Πbu−2

a=bu−1

[H(τa+1)

H(τa)
β(τa)

]
·H(τbu−1)∥xtbu−1

∥

+ Lf (1 + Lπ)β(0)H(τbu)
γwmax

1− β(τbu−1+1)
+H(τbu)M1

≤ Lf (1 + Lπ)β(0)
H(τbu)

H(τbu−1
)
[β(τbu−1

)]bu−bu−1−1 ·H(τbu−1
)∥xtbu−1

∥+H(τbu)M2

≤ Lf (1 + Lπ)β(0)
τbu
τbu−1

[β(τbu−1
)]bu−bu−1−1 ·H(τbu−1

)∥xtbu−1
∥+H(τbu)M2

≤ Lf (1 + Lπ)β(0)C ·H(τbu−1
)∥xtbu−1

∥+H(τbu)M2

where the first inequality is due to Lemma C.5, the second inequality is by (8) in Lemma C.4, the
fourth inequality is due to Lemma C.2, and the last inequality is by (11). Recursively applying this
inequality, one arrives at

H(τbu)∥xtbu
∥ ≤ [Lf (1 + Lπ)β(0)C]uH(τ0)∥x0∥+M2 ·

u∑
i=1

[Lf (1 + Lπ)β(0)C]u−iH(τbi)

≤ [Lf (1 + Lπ)β(0)C]uH(τ0)∥x0∥+M2H(τbU ) ·
[Lf (1 + Lπ)β(0)C]u − 1

Lf (1 + Lπ)β(0)C − 1

< [Lf (1 + Lπ)β(0)C]u·
[
H(τ0)∥x0∥+

M2H(τbU )

Lf (1 + Lπ)β(0)C − 1

]
,

where the second inequality comes from the non-decreasing property of H(·) and the equality holds
when H(τb1) = · · · = H(τbU ). Notice that for b′ > b ≥ 0, the case H(τb′) = H(τb) arises when
τb′ = τb or β(τb + 1) = · · · = β(τb′) = 0. Since Lf (1 + Lπ)β(0)C > 1, summing up the above
inequality for u = 1, . . . , U completes the proof.

Lemma C.7 (Sum of state norms). In Algorithm 1, suppose that τ1
τ0
β(τ0) < 1. Then, we have

T∑
t=0

∥xt∥ ≤ O([Lf (1 + Lπ)β(0)C]U (∥x0∥+H(τbU ))) + γwmax · (O(

B−1∑
b=0

H(τb)) + T )

Proof. Applying Lemma C.3, C.4, and C.6 in turn, we have
T∑

t=0

∥xt∥ =

U∑
u=0

bu+1−1∑
b=bu

tb+1−1∑
t=tb

∥xt∥

≤
U∑

u=0

bu+1−1∑
b=bu

[
H(τb)∥xtb∥+ γwmax(τb − 1)

]

≤
U∑

u=0

[
1

1− τbu+1

τbu
β(τbu)

H(τbu)∥xtbu
∥+ γwmax

1− β(τbu+1)

bu+1−1∑
b=bu+1

H(τb) + γwmax(tbu+1
− tbu − 1)

]

≤ 1

1− τ1
τ0
β(τ0)

U∑
u=0

H(τbu)∥xtbu
∥+ γwmax

1− β(τ1)
(

B−1∑
b=0

H(τb)−
U∑

u=0

H(τbu)) + γwmax(T − U)

≤ 1

1− τ1
τ0
β(τ0)

U∑
u=0

H(τbu)∥xtbu
∥+ γwmax

1− β(τ1)

B−1∑
b=0

H(τb) + γwmaxT

≤ H(τ0)∥x0∥
1− τ1

τ0
β(τ0)

[Lf (1 + Lπ)β(0)C]U+1 − 1

Lf (1 + Lπ)β(0)C − 1
+

H(τbU )

1− τ1
τ0
β(τ0)

([Lf (1 + Lπ)β(0)C]U − 1)M2

[Lf (1 + Lπ)β(0)C − 1]2

+
γwmax

1− β(τ1)

B−1∑
b=0

H(τb) + γwmaxT

= O([Lf (1 + Lπ)β(0)C]U (∥x0∥+H(τbU ))) + γwmax · (O(

B−1∑
b=0

H(τb)) + T )
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where the equality holds for the fourth inequality when Line 5 of Algorithm 1 is not satisfied for the
entire horizon.

Theorem C.8 (Restatement of Theorem 4.1, Asymptotic stability). In Algorithm 1, suppose that
τ1
τ0
β(τ0) < 1. Then, it holds that

lim
T→∞

1

T

T∑
t=0

∥xt∥ ≤ γwmax.

Proof. We mainly use Lemma C.1 to prove the asymptotic stability. First, we have

H(τbU ) ≤ H(τB−1) = o(τB−1) = o(T ), (12)

where the first equality is due to Lemma C.1 and τB−1 = T when there is only one batch over the
entire horizon. Now, consider the following relationship between the number of batch B and the time
horizon T :

B−1∑
b=0

τb ≥ T ≥
B−U−1∑

b=0

τb + U, (13)

where the second inequality is due to the non-decreasing property of τb. Now, if
∑B−1

b=0 H(τb) < ∞,
clearly

∑B−1
b=0 H(τb) = o(T ). Otherwise, define H(τB) = H(τB−1). Then, we have

lim
T→∞

∑B−1
b=0 H(τb)

T
≤ lim

B→∞

∑B−1
b=0 H(τb)∑B−U−1

b=0 τb + U
≤ lim

B→∞

∫ B

0
H(τb)db

τ0 +
∫ B−U−1

0
τbdb+ U

= lim
B→∞

H(τB−1)

τB−U−1
= lim

B→∞

H(τB−1)

τB−1
ΠB−2

b=B−U−1

τb+1

τb

= 0 · 1U = 0 (14)

where the second inequality leverages the non-decreasing property of both τb and H(τb), the remain-
ing equalities leverage L’Hôpital’s rule, Lemma C.1, and limb→∞

τb+1

τb
= 1. Thus, with Lemma C.7,

we have
T∑

t=0

∥xt∥ ≤ O([Lf (1 + Lπ)β(0)C]U (∥x0∥+ o(T ))) + γwmax · (T + o(T )).

This completes the proof.

Lemma C.9. In Algorithm 1, we have

lim
T→∞

B

T
= 0

Proof. Recall the relationship stated in (13) between T and B. Using the second inequality, we have

0 ≤ lim
T→∞

B

T
≤ lim

T→∞

B∑B−U−1
b=0 τb + U

≤ lim
T→∞

B

τ0 +
∫ B−U−1

0
τbdb+ U

= lim
T→∞

1

τB−U−1
= 0,

where the third inequality uses the non-decreasing property of τb, after which we use L’Hôpital’s rule.
This completes the proof.

Theorem C.10 (Restatement of Theorem 4.2, Finite-gain stability). In Algorithm 1, suppose that
τ1
τ0
β(τ0) < 1. Assume that limt→∞ H(t) < ∞. Then, Algorithm 1 achieves finite-gain L1 stability;

i.e., there exist constants A1, A2 > 0 such that for all T ∈ Z+,
T∑

t=0

∥xt∥ ≤ A1 · wmaxT +A2.
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Proof. Since limt→∞ H(t) < ∞, there exists a constant q1 that upper-bounds H(t); i.e., H(t) ≤ q1
for all t ≥ 0. Likewise, by Lemma C.9, there exists a constant q2 that upper-bounds B

T . Thus, with
Lemma C.7, one can write

T∑
t=0

∥xt∥ ≤ O([Lf (1 + Lπ)β(0)C]U (∥x0∥+ q1)) + γwmax · (O(Bq1) + T )

= O([Lf (1 + Lπ)β(0)C]U (∥x0∥+ q1)) + γ(1 +
B

T
O(q1)) · wmaxT

≤ O([Lf (1 + Lπ)β(0)C]U (∥x0∥+ q1)) + γ(1 +O(q1q2)) · wmaxT.

This completes the proof.

D REGRET PROOF FOR ALGORITHM 1

Lemma D.1. In Algorithm 1, we have

EKB−1:0
[wb(Kb)] = EKB−1:0

[Ek∼pb
[w′

b(k)]],

Proof. Given Kb−1, . . . ,K0, we have

Ek∼pb
[w′

b(k)] =
∑
k∈Pb

pb(k)
wb(Kb)

pb(k)
I(Kb=k) = wb(Kb), (15)

which implies that w′
b(k) sampled from pb is an unbiased estimator of wb(Kb).

Thus, for all b = 0, 1, . . . , B − 1, one can write

EKB−1:0
[wb(Kb)] = EKb:0

[wb(Kb)] = EKb−1:0
EKb

[wb(Kb) |Kb−1:0]

= EKb−1:0
EKb

[Ek∼pb
[w′

b(k)] |Kb−1:0]

= EKb:0
[Ek∼pb

[w′
b(k)]] = EKB−1:0

[Ek∼pb
[w′

b(k)]],

where the first equality is because KB−1, . . . ,Kb+1 does not affect the value of wb(Kb) and the
remaining equalities are by law of total expectation and (15).

Now, we let wK
b (i) denote the cost incurred at batch b if one selects the controllers for batch

0, . . . , b− 1 according to Algorithm 1, and the controller for batch b to be i.

Lemma D.2. In Algorithm 1, for any i ∈ Pb, we have

EKB−1:0
[w′

b(i)] = EKB−1:0
[wK

b (i)]

and for some controller ib ∈ Pb, we have

EKB−1:0

[
η0
2

(wb(Kb))
2

pb(Kb)

]
≤ η0N

2
EKb−1:0

(wK
b (ib))2.

Proof. For all b = 0, 1, . . . , B − 1 and for all i ∈ Pb, we have

EKB−1:0
[w′

b(i)] = EKb:0
[w′

b(i)] = EKb−1:0
[EKb

[w′
b(i) |Kb−1:0]]

= EKb−1:0
[
∑

Kb∈Pb

pb(Kb)
wb(Kb)

pb(i)
I(Kb=i)]

= EKb−1:0
[wK

b (i)] = EKB−1:0
[wK

b (i)]

where the first equality is because KB−1, . . . ,Kb+1 does not affect the value of w′
b(i) and the last

equality is because KB−1, . . . ,Kb does not affect the value of wK
b (i). Next, we can also obtain that

EKB−1:0

[
η0
2

(wb(Kb))
2

pb(Kb)

]
= EKb:0

[
η0
2

(wb(Kb))
2

pb(Kb)

]
= EKb−1:0

EKb

[
η0
2

(wb(Kb))
2

pb(Kb)
|Kb−1:0

]
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= EKb−1:0

∑
Kb∈Pb

[
η0
2
pb(Kb)

(wb(Kb))
2

pb(Kb)

]
= EKb−1:0

∑
Kb∈Pb

[
η0
2
(wb(Kb))

2

]
≤ η0N

2
EKb−1:0

(wK
b (ib))2,

for the controller ib = argmaxi∈Pb
(wK

b (i))2. This completes the proof.

In Algorithm 1, define L := {0 ≤ b ≤ B − 1, b ∈ Z+ : sb+1 ̸= sb} and let b1, . . . , b|L| denote the
batch where Line 22 of Algorithm 1 is satisfied; i.e., sbl+1 ̸= sbl for l = 1, . . . , |L|. For convenience,
we let b0 = 0, b|L|+1 = B − 1, and sB = sB−1. Also, define V := {0 ≤ b ≤ B − 1, b ∈ Z+ : sb ̸=
0}.
Lemma D.3 (Restatement of Lemma 4.7). In Algorithm 1, suppose that β(τ0) < 1 and let U denote
the number of times that the Break statement is activated. Then, it holds that |L| = O(U) and
|V| = O(U).

Proof. For every batch b = 0, . . . , B − 1, we have

∥xtb∥ < (αb)
sb+1∥x0∥+ δ (16)

by Lines 11-20. If the Break statement is not activated, since we designed δ ≥ γwmax
1−β(τ0)

, it yields that

∥xtb+1
∥ ≤ β(τb)∥xtb∥+ γwmax ≤ β(τ0)(αb)

sb+1∥x0∥+ β(τ0)δ + γwmax

≤ β(τ0)(αb)
sb+1∥x0∥+ δ < (αb)

sb+1∥x0∥+ δ,

where the second and the last inequalities are due to β(τb) ≤ β(τ0) < 1 and the third inequality is
by the formulation of δ. Then, sb+1 > sb cannot occur when the Break statement is not activated.
Also, Line 14 avoids sb+1 > sb + 1. As a result, starting from s0 = 0, the event sb+1 = sb + 1 can
occur at most U times. Accordingly, the event sb+1 < sb also can occur at most U times, leading to
|L| ≤ 2U .

Now, we observe the number of batches b̃ needed to stabilize the state norm; i.e., min{b̃ > 0 :
sb+b̃ < sb} when the Break statement is not activated. Starting from batch b and the corresponding
sb, provided that the Break statement is not activated, one can write

∥xtb+b̃
∥ ≤ β(τb+b̃−1)∥xtb+b̃−1

∥+ γwmax ≤ β(τ0)∥xtb+b̃−1
∥+ γwmax

≤ (β(τ0))
b̃∥xtb∥+ γwmax

b̃−1∑
a=0

(β(τ0))
a ≤ (β(τ0))

b̃∥xtb∥+
γwmax

1− β(τ0)

≤ (β(τ0))
b̃∥xtb∥+ δ < (β(τ0))

b̃[(αb)
sb+1∥x0∥+ δ] + δ, (17)

where the first and third inequalities are due to not satisfying Line 5 iteratively when the Break
statement is not activated, the second and fourth inequalities are by β(τb) ≤ β(τ0) < 1, and the last
two inequalities are by the design of δ and (16). It is desirable to find the minimum value of b̃ that
makes the right-hand side of (17) smaller than (αb)

sb∥x0∥+ δ:

(β(τ0))
b̃[(αb)

sb+1∥x0∥+ δ] + δ ≤ (αb)
sb∥x0∥+ δ ⇐⇒ 1

(β(τ0))b̃
≥ αb +

δ

(αb)sb∥x0∥
, (18)

where the right-hand side of (18) can be upper-bounded by αb +
δ

∥x0∥ since αb > 1. Thus, if sb ̸= 0,

min{b̃ > 0 : sb+b̃ < sb} ≤

⌈
log(αb +

δ
∥x0∥ )

− log β(τ0)

⌉
, (19)

when the Break statement is not activated. In other words, starting from a batch b where sb > 0,
within the number of batches on the right-hand side of (19), either the Break statement is activated or
the value of sb decreases.

More specifically, consider two sets of batches: B1 = {0 ≤ b ≤ B − 1, b ∈ Z+ :
the Break statement activated} and B2 = {0 ≤ b ≤ B − 1, b ∈ Z+ : sb+1 < sb}. Let B = B1 ∪ B2
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be the set ordered by batch numbers. Then, the batch interval between two consecutive batches in B
is upper-bounded by (19). Thus, considering that |L| ≤ 2U , we have

|V| ≤ (2U − 1)

⌈
log(αb +

δ
∥x0∥ )

− log β(τ0)

⌉
,

which completes the proof.

Lemma D.4 (cumulative mix loss). In Algorithm 1, for any controller il ∈ Uc for l = 0, . . . , |L|, the
cumulative mix loss is upper-bounded as follows:

EKB−1:0

B−1∑
b=0

− 1

η0
log(Ek∼pb

exp(−ηbw
′
b(k))) ≤

Õ(U + 1)

η0
+ EKB−1:0

|L|∑
l=0

bl+1−1∑
b=bl

wK
b (il)

(αb)2sb

Proof. Given l = 0, . . . , |L|, we can analyze a single mix loss for b = bl+1, . . . , bl+1−1 as follows:

− 1

η0
log(Ek∼pb

exp(−ηbw
′
b(k))) = − 1

η0
log(

∑
k∈Pb

pb(k) exp(−ηbw
′
b(k)))

= − 1

η0
log(

∑
k∈Pb

exp(−ηbWb(k)) exp(−ηbw
′
b(k))∑

i∈Pb
exp(−ηbWb(i))

)

= − 1

η0
log(

∑
k∈Pb

exp(−ηbWb+1(k))∑
i∈Pb

exp(−ηbWb(i))
), (20)

while a mix loss for b = bl is as follows:

− 1

η0
log(Ek∼pb

exp(−ηblw
′
bl(k))) = − 1

η0
log(

∑
k∈P

bl

pbl(k) exp(−ηblw
′
bl(k)))

= − 1

η0
log(

1

|Pbl |
∑

k∈P
bl

exp(−ηblw
′
bl(k)))

≤ logN

η0
− 1

η0
log(

∑
k∈P

bl

exp(−ηblw
′
bl(k))) (21)

=
logN

η0
− 1

η0
log(

∑
k∈P

bl

exp(−ηblWbl+1(k))), (22)

where the last equality only holds when bl+1 > bl+1. Now, notice that the batches b = bl, . . . , bl+1−1
share the same learning rate; i.e., ηbl = · · · = ηbl+1−1 since the same sb yields the same αb, and thus
the same ηb. Thus, in the case where bl+1 > bl + 1, we have

bl+1−1∑
b=bl

− 1

η0
log(Ek∼pb

exp(−ηbw
′
b(k))) ≤

logN

η0
− 1

η0
log(Πbl+1−1

b=bl+1

∑
k∈Pb−1

exp(−ηblWb(k))∑
k∈Pb

exp(−ηblWb(k))
)

− 1

η0
log(

∑
k∈P

bl+1−1

exp(−ηblWbl+1(k)))

≤ logN

η0
− 1

η0
log(

∑
k∈P

bl+1−1

exp(−ηblWbl+1(k))), (23)

where the first inequality is by (20) and (22) and the second inequality comes from Pb ⊆ Pb−1.
Considering both cases (21) and (23), for any controller i0, . . . , i|L| ∈ Uc, one can write

B−1∑
b=0

− 1

η0
log(Ek∼pb

exp(−ηbw
′
b(k))) ≤

|L|∑
l=0

[
logN

η0
− 1

η0
log(

∑
k∈P

bl+1−1

exp(−ηbl

bl+1−1∑
b=bl

w′
b(k)))

]
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≤ (|L|+ 1) logN

η0
−

|L|∑
l=0

1

η0
log(exp(−ηbl

bl+1−1∑
b=bl

w′
b(i

l)))

=
Õ(U + 1)

η0
+

|L|∑
l=0

∑bl+1−1
b=bl w′

b(i
l)

(αbl)
2s

bl
, (24)

where the first inequality considers Wbl+1(k) =
∑bl+1−1

b=bl w′
b(k) in (23), the second inequality is

because any controller il is an element of Pbl+1−1, and the last equality comes from the definition of
ηbl = η0/(αbl)

2s
bl and |L| = O(U) by Lemma D.3. Finally, by Lemma D.2, taking the expectation

of (24) with respect to KB−1:0 completes the proof.

Now, we consider the cumulative mixability gap.

Lemma D.5 (cumulative mixability gap). In Algorithm 1, there exists a set of controllers ib ∈ Pb for
b = 0, . . . , B − 1 such that the cumulative mixability gap is upper-bounded as follows:

EKB−1:0

B−1∑
b=0

Ek∼pb
[w′

b(k)]+
1

η0
log(Ek∼pb

exp(−ηbw
′
b(k))) ≤

O(U)

2η0
+
η0N

2

B−1∑
b=0

EKb−1:0
(wK

b (ib))2

Proof. Given the set V , we can analyze a single mixability gap for b /∈ V and b ∈ V , respectively.
Since sb = 0 for b /∈ V , given Kb−1, . . . ,K0, we have

Ek∼pb
[w′

b(k)] +
1

η0
log(Ek∼pb

exp(−ηbw
′
b(k))) = Ek∼pb

[w′
b(k)] +

1

η0
log(Ek∼pb

exp(−η0w
′
b(k)))

≤ Ek∼pb
[w′

b(k)] +
1

η0
(Ek∼pb

exp(−η0w
′
b(k))− 1)

≤ Ek∼pb
[w′

b(k)] +
1

η0
(Ek∼pb

η20(w
′
b(k))

2

2
− η0w

′
b(k))

=
η0
2
Ek∼pb

[(w′
b(k))

2]

=
η0
2

∑
k∈Pb

pb(k)
(wb(Kb))

2

(pb(k))2
I(Kb=k) =

η0
2

(wb(Kb))
2

pb(Kb)
,

(25)

where the first inequality uses log(x) ≤ x − 1 for all x ∈ R and the second inequality uses
ex ≤ 1 + x+ x2

2 for all x ∈ R. Now, for b ∈ V , given Kb−1, . . . ,K0, we obtain that

Ek∼pb
[w′

b(k)] +
1

η0
log(Ek∼pb

exp(− ηbw
′
b(k))) ≤ Ek∼pb

[w′
b(k)] +

1

η0
(Ek∼pb

exp(−ηbw
′
b(k))− 1)

≤ Ek∼pb
[w′

b(k)]

≤ Ek∼pb
[w′

b(k)] +
1

η0
(Ek∼pb

η20(w
′
b(k))

2

2
− η0w

′
b(k) +

1

2
)

=
η0
2
Ek∼pb

[(w′
b(k))

2] +
1

2η0
=

η0
2

(wb(Kb))
2

pb(Kb)
+

1

2η0
, (26)

where the second inequality uses ex ≤ 1 for all x ≤ 0 and the third inequality uses x2

2 + x+ 1
2 ≥ 0

for all x ∈ R. Since |V| = O(U) by Lemma D.3, we have inequality (26) holding at most O(U)
times and (25) holding in the remaining batches among b = 0, . . . , B − 1. Finally, by Lemma D.2,
taking expectation of (25) and (26) with respect to KB−1:0 completes the proof.

We let xt and ut denote the state and action sequence in the algorithm depending on the context.
We let xK

t (i) and uK
t (i) for t = tb, . . . , tb+1 − 1 denote the state and action sequence generated by

selecting the controllers before batch b according to Algorithm 1, while selecting the controller i at
batch b. Accordingly, we have wK

b (i) =
∑tb+1−1

t=tb
ct(x

K
t (i), uK

t (i)). We also let x∗
t and u∗

t denote

23
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the optimal state and action sequence generated by the best stabilizing controller i∗ that satisfies
both of Definitions 2.3 and 2.4; i.e., i∗ = argmini∈S

∑T
t=0 ct(xt, πi∗(xt)) subject to the transition

dynamics.
Lemma D.6. In Algorithm 1, suppose that τ1

τ0
(β(τ0))

2 < 1
2
√
2

. For any controller ib ∈ Pb for
b = 0, . . . , B − 1, we have

B−1∑
b=0

EKb−1:0
(wK

b (ib))2 = exp(O(U))O(τB−1H(τB−1)) +O(

B−1∑
b=0

(τb)
2).

Proof. By Assumption 2.2, for all x ∈ Rn and u ∈ Rm, we have

|ct(x, u)| = |ct(x, u)− ct(0, 0) + ct(0, 0)| ≤ |ct(x, u)− ct(0, 0)|+ |ct(0, 0)|
≤ (Lc1(∥x∥+ ∥u∥) + Lc2)(∥x∥+ ∥u∥) + c0,max

= Lc1(∥x∥+ ∥u∥)2 + Lc2(∥x∥+ ∥u∥) + c0,max

≤ 2Lc1(∥x∥2 + ∥u∥2) + Lc2(∥x∥+ ∥u∥) + c0,max, (27)

where the last inequality is due to Cauchy–Schwarz inequality. Thus, we can upper-bound (wK
b (ib))2

for any controller ib ∈ Pb for b = 0, . . . , B − 1 as follows:

(wK
b (ib))2 =

[ tb+1−1∑
t=tb

ct(x
K
t (ib), uK

t (ib))

]2
≤

tb+1−1∑
t=tb

ct(x
K
t (ib), uK

t (ib))2(tb+1 − tb)

≤ (tb+1 − tb)

tb+1−1∑
t=tb

(2Lc1(∥xK
t (ib)∥2 + ∥uK

t (ib)∥2) + Lc2(∥xK
t (ib)∥+ ∥uK

t (ib)∥) + c0,max)
2

≤ 5(tb+1 − tb)

tb+1−1∑
t=tb

(4L2
c1(∥x

K
t (ib)∥4 + ∥uK

t (ib)∥4) + L2
c2(∥xK

t (ib)∥2 + ∥uK
t (ib)∥2) + c20,max)

(28)

where the first and the third inequalities are due to Cauchy–Schwarz inequality.

From (7), for tb < t ≤ tb+1 − 1, we have

∥xK
t (ib)∥2 ≤ 2[β(t− tb)]

2∥xK
tb
(ib)∥2 + 2γ2w2

max (29)

∥xK
t (ib)∥4 ≤ 8[β(t− tb)]

4∥xK
tb
(ib)∥4 + 8γ4w4

max, (30)

where the inequalities are by Cauchy-Schwarz inequality. Accordingly, we obtain that

tb+1−1∑
t=tb

∥xK
t (ib)∥2 ≤ 2H(tb+1 − tb)∥xK

tb
(ib)∥2 + 2γ2w2

max(tb+1 − tb − 1) (31)

tb+1−1∑
t=tb

∥xK
t (ib)∥4 ≤ 8H(tb+1 − tb)∥xK

tb
(ib)∥4 + 8γ4w4

max(tb+1 − tb − 1), (32)

where we use β(·) ≤ 1 to derive
∑tb+1−tb−1

t=0 [β(t)]p ≤
∑tb+1−tb−1

t=0 [β(t)] = H(tb+1− tb) for p ≥ 1.

From (9), for tb ≤ t ≤ tb+1 − 1, we have

∥uK
t (ib)∥2 ≤ 2L2

π∥xK
t (ib)∥2 + 2π2

0,max (33)

∥uK
t (ib)∥4 ≤ 8L4

π∥xK
t (ib)∥4 + 8π4

0,max, (34)

where the inequalities are by Cauchy-Schwarz inequality. Now, we substitute (31), (32), (33), (34),
and tb+1 − tb ≤ τb into the right-hand side of (28) to upper-bound (wK

b (ib))2 as follows:

(wK
b (ib))2 ≤ 5τb[32L

2
c1(1 + 8L4

π)H(τb)∥xK
tb
(ib)∥4 + 2L2

c2(1 + 2L2
π)H(τb)∥xK

tb
(ib)∥2]+

5τ2b [32L
2
c1((1 + 8L4

π)γ
4w4

max + π4
0,max) + 2L2

c2((1 + 2L2
π)γ

2w2
max + π2

0,max) + c20,max]
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= M3τbH(τb)∥xK
tb
(ib)∥4 +M4τbH(τb)∥xK

tb
(ib)∥2 +M5τ

2
b

= M3τbH(τb)∥xtb∥4 +M4τbH(τb)∥xtb∥2 +M5τ
2
b , (35)

where M3,M4,M5 are constants determined by Lc1, Lc2, Lπ, γ, wmax, π0,max, and c0,max. The last
equality comes from xK

tb
(ib) = xtb for any ib ∈ Pb.

Meanwhile, one can upper-bound both
∑B−1

b=0 τbH(τb)∥xtb∥4 and
∑B−1

b=0 τbH(τb)∥xtb∥2 by succes-
sively applying Lemma C.3, C.4, and C.6 in the same fashion as presented in the proof of Lemma
C.7. Since τ2

1

τ2
0
8(β(τ0))

4 < 1, by (29) and (30), there exists C1, C2 ≥ 1 such that

B−1∑
b=0

τbH(τb)∥xtb∥4 = O([8L4
f (1 + Lπ)

4β(0)4C1]
U (∥x0∥4 + τbUH(τbU ))) + 8γ4w4

max ·O(

B−1∑
b=0

τbH(τb))

B−1∑
b=0

τbH(τb)∥xtb∥2 = O([2L2
f (1 + Lπ)

2β(0)2C2]
U (∥x0∥2 + τbUH(τbU ))) + 2γ2w2

max ·O(

B−1∑
b=0

τbH(τb)).

Substituting the equalities into the summation of (35) for b = 0, . . . , B − 1 yields

B−1∑
b=0

(wK
b (ib))2 = exp(O(U))O(τbUH(τbU )) +O(

B−1∑
b=0

τbH(τb)) +O(

B−1∑
b=0

(τb)
2). (36)

Notice that taking expectation of (wK
b (ib))2 with respect to Kb−1:0 does not affect the inequality.

Finally, τbU ≤ τB−1 and H(τb) = o(τb) completes the proof.

Lemma D.7. In Algorithm 1, for the best stabilizing controller i∗ ∈ S, we have

EKB−1:0

B−1∑
b=0

tb+1−1∑
t=tb

[
ct(x

K
t (i∗), uK

t (i∗))

(αb)2sb
− ct(x

∗
t , u

∗
t )

]
≤ O(U) +O(

B−1∑
b=0

H(τb)).

Proof. Since x∗
t is generated by a stabilizing controller, we have

∥x∗
t ∥ ≤ β(t)∥x0∥+ γwmax ≤ β(0)∥x0∥+ γwmax

∥x∗
t ∥2 ≤ 2β(t)2∥x0∥2 + 2γ2w2

max ≤ 2β(0)2∥x0∥2 + 2γ2w2
max,

where the inequalities are by Cauchy-Schwarz inequality and the non-increasing property of β(·).
Then, by (9), (27), and (33), we have

ct(x
∗
t , u

∗
t ) ≤ 2Lc1(∥x∗

t ∥2 + ∥u∗
t ∥2) + Lc2(∥x∗

t ∥+ ∥u∗
t ∥) + c0,max

≤ 2Lc1((1 + 2L2
π)∥x∗

t ∥2 + 2π2
0,max) + Lc2((1 + Lπ)∥x∗

t ∥+ π0,max) + c0,max

≤ 4Lc1(1 + 2L2
π)(β(0))

2∥x0∥2 + Lc2(1 + Lπ)β(0)∥x0∥+ 4Lc1(1 + 2L2
π)γ

2w2
max

+ Lc2(1 + Lπ)γwmax + 4Lc1π
2
0,max + Lc2π0,max + c0,max := M6.

(37)

In Algorithm 1, one can write∥∥∥∥ xtb

(αb)sb

∥∥∥∥ ≤ (αb)
sb+1∥x0∥+ δ

(αb)sb
≤ αb∥x0∥+ δ (38)∥∥∥∥ x∗

t

(αb)sb

∥∥∥∥ ≤ β(t)∥x0∥+ γwmax

(αb)sb
≤ β(0)∥x0∥+ γwmax, (39)

where the equalities hold for the last inequalities of (38) and (39) when sb = 0.

By Assumption 2.2, for the best stabilizing controller i∗ ∈ S and for tb ≤ t < tb+1, we have

1

(αb)2sb
|ct(xK

t (i∗), uK
t (i∗))− ct(x

∗
t , u

∗
t )|
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≤ 1

(αb)2sb
(Lc1(max{∥xK

t (i∗)∥, ∥x∗
t ∥}+max{∥uK

t (i∗)∥, ∥u∗
t ∥}) + Lc2)(∥xK

t (i∗)− x∗
t ∥+ ∥uK

t (i∗)− u∗
t ∥)

≤ 1

(αb)2sb
(Lc1((1 + Lπ)max{∥xK

t (i∗)∥, ∥x∗
t ∥}+ π0,max) + Lc2)(1 + Lπ)∥xK

t (i∗)− x∗
t ∥

= (1 + Lπ)(Lc1(1 + Lπ)max{
∥∥∥∥xK

t (i∗)

(αb)sb

∥∥∥∥,∥∥∥∥ x∗
t

(αb)sb

∥∥∥∥}+ Lc1π0,max + Lc2

(αb)sb
)

∥∥∥∥xK
t (i∗)− x∗

t

(αb)sb

∥∥∥∥
≤ (1 + Lπ)(β(t− tb)Lc1(1 + Lπ)max{

∥∥∥∥xK
tb
(i∗)

(αb)sb

∥∥∥∥,∥∥∥∥ x∗
tb

(αb)sb

∥∥∥∥}
+

Lc1(1 + Lπ)γwmax + Lc1π0,max + Lc2

(αb)sb
) · β(t− tb)

∥∥∥∥xK
tb
(i∗)− x∗

tb

(αb)sb

∥∥∥∥
≤ Lc1(1 + Lπ)

2β(t− tb)
2

(∥∥∥∥ xtb

(αb)sb

∥∥∥∥+∥∥∥∥ x∗
tb

(αb)sb

∥∥∥∥)2

+
Lc1(1 + Lπ)γwmax + Lc1π0,max + Lc2

(αb)sb
(1 + Lπ)β(t− tb)

(∥∥∥∥ xtb

(αb)sb

∥∥∥∥+∥∥∥∥ x∗
tb

(αb)sb

∥∥∥∥)
≤ Lc1(1 + Lπ)

2β(t− tb)
2((αb + β(0))∥x0∥+ δ + γwmax)

2

+ (Lc1(1 + Lπ)γwmax + Lc1π0,max + Lc2)(1 + Lπ)β(t− tb)((αb + β(0))∥x0∥+ δ + γwmax)

≤ M7β(t− tb)
2 +M8β(t− tb), (40)

where M7 and M8 are constants determined by Lc1, Lc2, Lπ, π0,max, β(0), δ, γ, wmax and
maxb∈{0,1,...,B−1} αb. Notice that αb in Line 14 of Algorithm 1 is upper-bounded by some constant
by Lemma C.5. The second inequality is by (9), the third inequality is due to Definition 2.4 and by
leveraging the same stabilizing controller i∗ from tb for both trajectories xK

t (i∗) and x∗
t , the fourth

inequality uses xK
tb
(i∗) = xtb , and the fifth inequality is by (38) and (39). By combining (37) and

(40), we have∣∣∣∣ct(xK
t (i∗), uK

t (i∗))

(αb)2sb
− ct(x

∗
t , u

∗
t )

∣∣∣∣ =∣∣∣∣ct(xK
t (i∗), uK

t (i∗))

(αb)2sb
− ct(x

∗
t , u

∗
t )

(αb)2sb
− (αb)

2sb − 1

(αb)2sb
ct(x

∗
t , u

∗
t )

∣∣∣∣
≤ 1

(αb)2sb
|ct(xK

t (i∗), uK
t (i∗))− ct(x

∗
t , u

∗
t )|+

(αb)
2sb − 1

(αb)2sb
ct(x

∗
t , u

∗
t )

≤

{
M7β(t− tb)

2 +M8β(t− tb), if sb = 0,

M7β(t− tb)
2 +M8β(t− tb) +M6, if sb ̸= 0.

Thus, one can conclude that

B−1∑
b=0

tb+1−1∑
t=tb

[
ct(x

K
t (i∗), uK

t (i∗))

(αb)2sb
− ct(x

∗
t , u

∗
t )

]
≤ M6|V|+

B−1∑
b=0

(M7 +M8)H(tb+1 − tb)

= O(U) +O(

B−1∑
b=0

H(τb)), (41)

where the first inequality uses β(·) ≤ 1 to derive
∑tb+1−1

t=tb
[β(t − tb)]

2 ≤
∑tb+1−1

t=tb
[β(t − tb)] =

H(tb+1 − tb) and the last equality uses tb+1 − tb ≤ τb and Lemma D.3. Taking expectation of (41)
with respect to KB−1:0 completes the proof.

Theorem D.8 (Restatement of Theorem 4.5, Regret Bound). In Algorithm 1, suppose that
τ1
τ0
(β(τ0))

2 < 1
2
√
2

. Then, the regret bound is as follows:

EKB−1:0

T∑
t=0

[ct(xt, ut)− ct(x
∗
t , u

∗
t )]

= O(|U|) +O(

B−1∑
b=0

H(τb)) +
Õ(|U|+ 1)

η0
+

η0N

2
[exp(O(|U|))O(τB−1H(τB−1)) +O(

B−1∑
b=0

(τb)
2)].

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Proof. By Lemma D.1, we have

EKB−1:0

T∑
t=0

ct(xt, ut) = EKB−1:0

B−1∑
b=0

tb+1−1∑
t=tb

ct(xt, ut) = EKB−1:0

B−1∑
b=0

[wb(Kb)]

= EKB−1:0

B−1∑
b=0

[Ek∼pb
[w′

b(k)]]

≤ Õ(U + 1)

η0
+

η0N

2

B−1∑
b=0

EKb−1:0
(wK

b (ib))2 + EKB−1:0

|L|∑
l=0

bl+1−1∑
b=bl

wK
b (i∗)

(αb)2sb

≤ Õ(U + 1)

η0
+

η0N

2
[exp(O(U))O(τB−1H(τB−1)) +O(

B−1∑
b=0

(τb)
2)]

+O(U) +O(

B−1∑
b=0

H(τb)) + EKB−1:0

T∑
t=0

ct(x
∗, u∗),

where the first inequality is due to Lemma D.4 and D.5, and the last inequality is due to Lemma D.6
and D.7. Using U ≤ |U| completes the proof.

Theorem D.9 (Restatement of Theorem 4.6, Regret bound with known |U|). In Algorithm 1,
let τ0 = ⌊( z

N(|U|+1) )
1/2⌋ and τb = ⌈( (νb+z)

N(|U|+1) )
1/2⌉ for every b ≥ 1 with the constants

z, ν > 0 that satisfies τ0 > 0 and τ1
τ0
(β(τ0))

2 < 1
2
√
2

. Also, let η0 = O( (|U|+1)2/3

T 2/3N1/3 ). When

T ≥ max{ |U|3/2
(N(|U|+1))1/2

, N(|U|+ 1)}, we have

EKB−1:0

T∑
t=0

[ct(xt, ut)− ct(x
∗
t , u

∗
t )] = Õ(T 2/3N1/3(|U|+ 1)1/3)) + o(1) exp(O(|U|)) + o(T ),

which implies that we achieve a sublinear regret bound. Moreover, when H(t) ≤ O(
∑t

i=1
1
i ) for all

t ≥ 1, we have

EKB−1:0

T∑
t=0

[ct(xt, ut)− ct(x
∗
t , u

∗
t )] =

[
Õ(T 2/3) + Õ(T−1/3) exp(O(|U|))

]
N1/3(|U|+ 1)1/3.

Proof. By the formulation of (τb)b≥0, we have

B−1∑
b=0

(νb+ z)1/2

(N(|U|+ 1))1/2
− 1 ≤

B−1∑
b=0

τb = T ≤
B−1∑
b=0

(νb+ z)1/2

(N(|U|+ 1))1/2
+ (B − 1),

where we can further use non-decreasing property of (·)1/2 to arrive at

z1/2 + 2
3ν [(ν(B − 1) + z)3/2 − z3/2]

(N(|U|+ 1))1/2
− 1 =

z1/2 +
∫ B−1

0
(νb+ z)1/2db

(N(|U|+ 1))1/2
− 1 ≤ T

≤
∫ B

0
(νb+ z)1/2db

(N(|U|+ 1))1/2
+ (B − 1) =

2
3ν [(νB + z)3/2 − z3/2]

(N(|U|+ 1))1/2
+ (B − 1),

(42)

thus we have B = O(T 2/3N1/3(|U|+1)1/3) from the first inequality and T = O(B3/2N−1/2(|U|+
1)−1/2) from the second inequality and T ≥ N(|U| + 1). Similarly, we can find the order of∑B−1

b=0 (τb)
2 as follows:

B−1∑
b=0

(τb)
2 ≤

B−1∑
b=0

[
(νb+ z)1/2

(N(|U|+ 1))1/2
+ 1

]2
≤

∫ B

0

[
(νb+ z)

(N(|U|+ 1))
+

2(νb+ z)1/2

(N(|U|+ 1))1/2
+ 1

]
db
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= O(
B2

N(|U|+ 1)
) = O(T 4/3N−1/3(|U|+ 1)−1/3),

(43)

where the last equality is by B = O(T 2/3N1/3(|U|+ 1)1/3). We also have

τB−1 = ⌈( (ν(B − 1) + z)

N(|U|+ 1)
)1/2⌉ = O(B1/2N−1/2(|U|+ 1)−1/2) = O(T 1/3N−1/3(|U|+ 1)−1/3).

(44)

Thus, we have

O(τB−1H(τB−1)) = o((τB−1)
2) = o(T 2/3N−2/3(|U|+ 1)−2/3) =

o(1)

η0N
, (45)

where the first equality is due to Lemma C.1. With T ≥ |U|3/2
(N(|U|+1))1/2

, we have

η0N exp(O(|U|))O(τB−1H(τB−1)) = o(1) exp(O(|U|)) (46)

O(|U|) = O(T 2/3N1/3(|U|+ 1)1/3). (47)

With (43), (45), (46), and (47), we can apply Theorem D.8 to derive

EKB−1:0

T∑
t=0

[ct(xt, ut)−ct(x
∗
t , u

∗
t )] = Õ(T 2/3N1/3(|U|+1)1/3)+o(1) exp(O(|U|))+O(

B−1∑
b=0

H(τb)).

Applying (14) to O(
∑B−1

b=0 H(τb)) achieves a sublinear regret bound.

Moreover, when limt→∞ H(t) < ∞, there exists a constant q1 that upper-bounds H(t); i.e., H(t) ≤
q1 for all t ≥ 0. Then, we have

B−1∑
b=0

H(τb) ≤ q1B = O(B) = O(T 2/3N1/3(|U|+ 1)1/3). (48)

Also, (45) and (46) can be modified to

τB−1H(τB−1) ≤ q1τB−1 = O(T 1/3N−1/3(|U|+ 1)−1/3),

η0N exp(O(|U|)))O(τB−1H(τB−1)) = O(T−1/3N1/3(|U|+ 1)1/3) · exp(O(|U|)). (49)

Similarly, when H(t) = O(
∑t

i=1
1
i ) for all t ≥ 1, we have

B−1∑
b=0

H(τb) ≤ BH(τB−1) = O(B log τB−1) = Õ(T 2/3N1/3(|U|+ 1)1/3), (50)

η0N exp(O(|U|)))O(τB−1H(τB−1)) = Õ(T−1/3N1/3(|U|+ 1)1/3) · exp(O(|U|)). (51)

Using (48), (49), (50), and (51) completes the proof.

Small modification provides the regret bound for the intermediate step "Dynamic Batching" mentioned
in Appendix A.
Corollary D.10. Consider "Dynamic Batching" strategy without adaptive learning rate, i.e. sb = 0
for all b = 0, . . . , B − 1 in Algorithm 1. Let τ0, . . . , τB−1 and η0 be the same quantity with Theorem

D.9. When T ≥ max{ |U|3/2
(N(|U|+1))1/2

, N(|U|+ 1)}, the term o(1) exp(O(|U|)) in the regret bound of

Theorem D.9 is replaced by o(T 1/3) exp(O(|U|)).

Proof. Since sb = 0 for all b, we need to modify Lemma D.7. Equation (40) is modified to

|ct(xK
t (i∗), uK

t (i∗))− ct(x
∗
t , u

∗
t )| ≤ Lc1(1 + Lπ)

2β(t− tb)
2(∥xtb∥+ ∥x∗

tb
∥)2 + Lc1(1 + Lπ)γwmax

+ Lc1π0,max + Lc2(1 + Lπ)β(t− tb)(∥xtb∥+ ∥x∗
tb
∥),
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which incurs
tb+1−1∑
t=tb

|ct(xK
t (i∗), uK

t (i∗))− ct(x
∗
t , u

∗
t )| ≤ O(H(τb)∥xtb∥2) +O(H(τb)∥xtb∥) +O(H(τb)).

Thus, it follows that

B−1∑
b=0

tb+1−1∑
t=tb

|ct(xK
t (i∗), uK

t (i∗))− ct(x
∗
t , u

∗
t )| ≤ exp(O(|U|))(∥x0∥2 + ∥x0∥) + exp(O(|U|))H(τB−1)

= exp(O(|U|)) · o(T 1/3),

where the last equality is by the choice of τB−1 = O(B1/2) = O(T 1/3) and applying Lemma 4.3.
This shows that o(1) exp(O(|U|)) in Theorem D.9 should be replaced by o(T 1/3) exp(O(|U|)) in
the algorithm without adaptive learning rate.

E REGRET PROOF FOR ALGORITHM 2

Theorem E.1 (Restatement of Theorem 4.10, Regret bound with unknown |U|). In Algorithm 2,
let τ0 = ⌊( z

N )1/2⌋ and τb = ⌈( (νb+z)
N )1/2⌉ for every b ≥ 1 with the constants z, ν > 0 that

satisfies τ0 > 0 and τ1
τ0
(β(τ0))

2 < 1
2
√
2

. Also, let η0 = O( 1
T 2/3N1/3 ) and y = 1

2 . When T ≥

max{ |U|3/2
N1/2(|U|+1)3/4

, N}, we have

EKB−1:0

T∑
t=0

[ct(xt, ut)−ct(x
∗
t , u

∗
t )] = Õ(T 2/3N1/3(|U|+1)1/2)+o(1) exp(O(|U|))(|U|+1)1/2+o(T ),

which implies that we achieve a sublinear regret bound. Moreover, when H(t) ≤ O(
∑t

i=1
1
i ) for all

t ≥ 1, we have

EKB−1:0

T∑
t=0

[ct(xt, ut)− ct(x
∗
t , u

∗
t )] =

[
Õ(T 2/3) + Õ(T−1/3) exp(O(|U|))

]
N1/3(|U|+ 1)1/2

Proof. By the formulation of (τb)b≥0, as in (42), we can derive

B = O(T 2/3N1/3) and T = O(B3/2N−1/2)

when T ≥ N . We can also obtain
B−1∑
b=0

(τb)
2 = O(T 4/3N−1/3) and O(τB−1H(τB−1)) = o(T 2/3N−2/3)

similar to (43) and (45). Now, define η0,r := η0(r + 1)y = η0
√
r + 1. Let Br denote the set of

batches where µb = r; i.e., Br = {0 ≤ b ≤ B − 1, b ∈ Z+ : µb = r}. Then, one can write

N

2

U∑
r=0

∑
b∈Br

η0,rEKb−1:0
(wK

b (ib))2 ≤ η0N

2

U∑
r=0

∑
b∈Br

√
U + 1EKb−1:0

(wK
b (ib))2

=
√
U + 1 ·O(T−2/3N2/3)[exp(O(U))O(τB−1H(τB−1)) +O(

B−1∑
b=0

(τb)
2)]

≤
√
|U|+ 1 · [o(1) exp(O(|U|)) +O(T 2/3N1/3)], (52)

where the first equality holds by Lemma D.6 and the second inequality holds by U ≤ |U|.
Recall the definition and the cardinality of L = {0 ≤ b ≤ B − 1, b ∈ Z+ : sb+1 ̸= sb}
and V = {0 ≤ b ≤ B − 1, b ∈ Z+ : sb ̸= 0} in Lemma D.3. We focus on the mix loss and the
mixability gap with the denominator η0,r; i.e., − 1

η0,r
log(Ek∼pb

exp(−ηbw
′
b(k))) and Ek∼pb

[w′
b(k)]+
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1
η0,r

log(Ek∼pb
exp(−ηbw

′
b(k))). Considering that ηb

η0,r
still remains to be 1

(αb)
2sb

as in Algorithm 1,
Lemma D.4 can be modified to

EKB−1:0

U∑
r=0

∑
b∈Br

− 1

η0,r
log(Ek∼pb

exp(−ηbw
′
b(k))) ≤

U∑
r=0

ρlr logN

η0,r
+ EKB−1:0

|L|∑
l=0

bl+1−1∑
b=bl

wK
b (il)

(αb)2sb
,

(53)

where ρlr denotes the number of batches in Br ∩ L. Similarly, considering that η0,r now depends on
the value of r, Lemma D.5 can be modified to

EKB−1:0

U∑
r=0

∑
b∈Br

Ek∼pb
[w′

b(k)] +
1

η0,r
log(Ek∼pb

exp(−ηbw
′
b(k)))

≤
U∑

r=0

ρvr
2η0,r

+
N

2

U∑
r=0

∑
b∈Br

η0,rEKb−1:0
(wK

b (ib))2, (54)

where ρvr denotes the number of batches in Br ∩ V . Now, our goal is to upper-bound
∑U

r=0
ρl
r

η0,r
=

1
η0

∑U
r=0

ρl
r logN√
r+1

in (53) and
∑U

r=0
ρv
r

η0,r
= 1

η0

∑U
r=0

ρv
r√

r+1
in (54). It is straightforward to infer that

ρl0+ρl1+ · · ·+ρlU ≤ 2U+1 by Lemma D.3 and (24), which also leads to ρl0+ρl1+ · · ·+ρlr ≤ 2r+1

for r = 0, . . . , U . Similarly, we can infer that ρv0 = 0 and ρv1+· · ·+ρvU ≤ (2U−1)⌈
log(αb+

δ
∥x0∥ )

− log β(τ0)
⌉ by

Lemma D.3 and (26), which also leads to ρv1 + · · ·+ ρvr ≤ (2r− 1)⌈
log(αb+

δ
∥x0∥ )

− log β(τ0)
⌉ for r = 1, . . . , U .

Define M9 := ⌈
log(αb+

δ
∥x0∥ )

− log β(τ0)
⌉ and consider the following maximization problems to get the upper

bound.

l∗ = max
ρl
0,...,ρ

l
U

U∑
r=0

ρlr√
r + 1

v∗ = max
ρv
1 ,...,ρ

v
U

U∑
r=1

ρvr√
r + 1

s.t. ρl0 ≤ 1 s.t. ρv1 ≤ M9

ρl0 + ρl1 ≤ 3 ρv1 + ρv2 ≤ 3M9

. . . . . .

ρl0 + ρl1 + · · ·+ ρlU ≤ 2U + 1, ρv1 + ρv2 + · · ·+ ρvU ≤ (2U − 1)M9.

We can easily achieve an optimal point of each linear programming (LP) problem by the well-known
Karush-Kuhn-Tucker (KKT) conditions. There exist positive constants λ0, . . . , λU , κ1, . . . , κU such
that

[1
1√
2

. . .
1√

U + 1
] = [

U∑
r=0

λr

U∑
r=1

λr . . . λU ] (55)

[
1√
2

1√
3

. . .
1√

U + 1
] = [

U∑
r=1

κr

U∑
r=2

κr . . . κU ], (56)

which yields λU = κU = 1√
U+1

, λr = κr = 1√
r+1

− 1√
r+2

> 0 for r = 1, . . . , U − 1, and
λ0 = 1− 1√

2
. Since every dual variable is positive, complementary slackness tells that there is no

slack for every inequality at the optimal solution. Thus, the optimal solutions are

ρl0 = 1, ρlr = 2, r = 1, . . . , U.

ρv1 = M9, ρvr = 2M9, r = 2, . . . , U,

where the corresponding optimal objective values are

l∗ = 1 +

U∑
r=1

2√
r + 1

≤ 1 +
√
2 + 2

∫ U

1

1√
r + 1

dr = O(
√
U + 1)
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v∗ =
M9√
2
+

U∑
r=2

2M9√
r + 1

≤ M9√
2
+

2M9√
3

+ 2M9

∫ U

2

1√
r + 1

dr = O(
√
U + 1),

where we leverage the non-increasing property of 1√
r+1

for the inequalities. Thus, we have both
1
η0

∑U
r=0

ρl
r logN√
r+1

= Õ(T 2/3N1/3(U + 1)1/2) and 1
η0

∑U
r=0

ρv
r√

r+1
= O(T 2/3N1/3(U + 1)1/2).

Combining (52), (53), and (54) with Lemma D.7 and U ≤ |U|, one can write

EKB−1:0

T∑
t=0

[ct(xt, ut)− ct(x
∗
t , u

∗
t )]

= Õ(T 2/3N1/3(|U|+ 1)1/2) + o(1) exp(O(|U|))(|U|+ 1)1/2 +O(|U|) +O(

B−1∑
b=0

H(τb))

= Õ(T 2/3N1/3(|U|+ 1)1/2) + o(1) exp(O(|U|))(|U|+ 1)1/2 +O(

B−1∑
b=0

H(τb)),

where the second equality holds when T ≥ |U|3/2
N1/2(|U|+1)3/4

. Using (14) shows a sublinear regret

bound. When H(t) ≤ O(
∑t

i=1
1
i ) for all t ≥ 1, (48) and (49) are modified to

B−1∑
b=0

H(τb) ≤ O(BH(τB−1)) = Õ(T 2/3N1/3),

τB−1H(τB−1) ≤ τB−1O(log(τB−1)) = Õ(T 1/3N−1/3),

η0N exp(O(|U|)))O(τB−1H(τB−1)) = Õ(T−1/3N1/3) · exp(O(|U|)).

Applying this equality to re-derive (52) completes the proof.

F APPLICATIONS: SWITCHED SYSTEMS

So far, we have used the best stabilizing controller i∗ ∈ S for all time steps t = 0, . . . , T as the
baseline of regret. However, the proofs of the theorems stated above imply one can even use any
set of controllers {i0, i1, . . .} ⊆ S as a baseline, where the controller is switched from il to il+1

whenever the cumulative weight W (·) resets. This motivates the application of our DBAR algorithm
to scenarios such as the switched systems (Tousi et al., 2008; Zhao et al., 2022) for which the
transition dynamics and the associated controller pool may undergo changes, as well as the ballooning
problem (Ghalme et al., 2021) where the controller pool may expand up to some finite set. We
propose Algorithm 3, the switching version of DBAR, which resets the weight whenever the system is
faced with a finite number of O(U) switches. Here, we consider the regret with switching costs where
the unit cost d ≥ 1 is additionally incurred when the controller is switched; i.e., d

∑T
t=1 I(it ̸=it−1)

done in Altschuler & Talwar (2018) and Arora et al. (2019).

For an event A, I(A) denotes an indicator function, where I(A) = 1 if an event A occurs and I(A) = 0
otherwise. Pr(A) denotes the probability of an event A. Let x′

t and u′
t denote the state and action

sequence generated by our set of best stabilizing controllers {i′0, . . . , i′|L|} ⊆ S. We consider a

regret with switching cost where the unit switching cost is d ≥ 1; i.e., EKB−1:0

[∑T
t=0[ct(xt, ut)−

ct(x
′
t, u

′
t)] + d

∑B−1
b=1 I(Kb ̸=Kb−1) − d

∑|L|
l=1 I(i′l ̸=i′l−1)

]
.

Algorithm 3 can easily be generalized to the situation where we have O(U) number of system
switches or controller pool switches. In fact, we can simply add i′|L|+1, . . . , i

′
|L|+O(U) ∈ S to the

set of best stabilizing controllers {i′0, . . . , i′|L|} ⊆ S, where |L| = O(U) by Lemma D.3. Thus, it
suffices to derive the regret bound of Algorithm 3, even in the context of general switched systems or
ballooning problem. We first provide a useful lemma to construct a regret bound.

Lemma F.1. In Algorithm 3, let τ0 = ⌊( z
N(|U|+1) )

1/2⌋ and τb = ⌈( (νb+z)
N(|U|+1) )

1/2⌉ for every
b ≥ 1 with the constants z, ν > 0 that satisfies τ0 > 0 and τ1

τ0
(β(τ0))

2 < 1
2
√
2

. When
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Algorithm 3 DBAR-switching
// Modification: Use this IF-ELSE Statement to select the current policy in Line 2 in Algorithm 1.
if b > 0 and sb = sb−1 and Pb = Pb−1 then

Pick Kb = Kb−1 with probability exp(−ηbWb(Kb−1))

exp(−ηb−1Wb−1(Kb−1))
. Sample Kb from a distribution pb with

probability 1− exp(−ηbWb(Kb−1))

exp(−ηb−1Wb−1(Kb−1))
.

else
Sample Kb from a distribution pb. Terminate the algorithm if Pb is empty.

end if

T ≥ (o(1)exp(O(|U|)))3/2
(N(|U|+1))1/2

, we have

EKB−1:0

B−1∑
b=1

I(Kb ̸=Kb−1) = O(|U|) +O(η0NT ).

Proof. For all b = 1, . . . , B − 1 such that sb = sb−1, given Kb−1, . . . ,K0, we have

Pr(Kb ̸= Kb−1) ≤ 1− exp(−ηbWb(Kb−1))

exp(−ηb−1Wb−1(Kb−1))
≤ 1− exp(−ηb−1Wb(Kb−1))

exp(−ηb−1Wb−1(Kb−1))

= 1− exp(−ηb−1w
′
b−1(Kb−1)) ≤ 1− exp(−η0w

′
b−1(Kb−1))

≤ η0w
′
b−1(Kb−1) = η0

wb−1(Kb−1)

pb−1(Kb−1)
, (57)

where the second inequality is because ηb = ηb−1 when sb = sb−1, the third inequality uses η0 ≥ ηb
for all b ≥ 0, and the last inequality uses 1 + x ≤ ex for all x ∈ R. Now, given a set of controllers
ib ∈ Pb for b = 0, . . . , B − 1, we can upper-bound

∑B−2
b=0 wb(i

b) by tb+1 − tb ≤ τb as follows:

B−2∑
b=0

wb(i
b) =

B−2∑
b=0

tb+1−1∑
t=tb

ct(xt, ut) ≤
B−2∑
b=0

tb+1−1∑
t=tb

2Lc1(∥xt∥2 + ∥ut∥2) + Lc2(∥xt∥+ ∥ut∥) + c0,max

≤
B−2∑
b=0

tb+1−1∑
t=tb

2Lc1((1 + 2L2
π)∥xt∥2 + 2π2

0,max) + Lc2((1 + Lπ)∥xt∥+ π0,max) + c0,max

≤
B−2∑
b=0

2Lc1(1 + 2L2
π)H(τb)∥xtb∥2 + Lc2(1 + Lπ)H(τb)∥xtb∥+ τb[4Lc1π

2
0,max + Lc2π0,max + c0,max]

= O(exp(O(|U|))H(τbU )) +O(

B−2∑
b=0

H(τb)) +O(

B−2∑
b=0

τb), (58)

where the first inequality is due to (27), the second inequality is by (9) and (33), the third inequality
is due to using β(·) ≤ 1 to derive

∑tb+1−tb
t=0 [β(t)]2 ≤

∑tb+1−tb
t=0 [β(t)] = H(tb+1 − tb), and the last

equality can be derived in the same fashion with (36). With T ≥ (o(1)exp(O(|U|)))3/2
(N(M+1))1/2

, we obtain by
(44) that

O(exp(O(|U|))H(τbU )) +O(

B−2∑
b=0

H(τb)) +O(

B−2∑
b=0

τb) ≤ O(T ). (59)

Thus, one can write

EKB−1:0

B−1∑
b=1

I(Kb ̸=Kb−1) =

B−1∑
b=1

EKb:0
I(Kb ̸=Kb−1) =

B−1∑
b=1

EKb−1:0
EKb

[I(Kb ̸=Kb−1) |Kb−1:0]

=

B−1∑
b=1

EKb−1:0
Pr(Kb ̸= Kb−1 |Kb−1:0)
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=

B−1∑
b=1

EKb−1:0
[Pr(sb = sb−1,Pb = Pb−1 |Kb−1:0)Pr(Kb ̸= Kb−1 | sb = sb−1,Pb = Pb−1,Kb−1:0)

+ Pr(sb ̸= sb−1 or Pb ̸= Pb−1 |Kb−1:0)Pr(Kb ̸= Kb−1 | sb ̸= sb−1 or Pb ̸= Pb−1,Kb−1:0)]

= |L|+ U +

B−1∑
b=1

EKb−1:0
[Pr(sb = sb−1,Pb = Pb−1 |Kb−1:0)Pr(Kb ̸= Kb−1 | sb = sb−1,Pb = Pb−1,Kb−1:0)

≤ |L|+ U +

B−1∑
b=1

EKb−1:0
Pr(Kb ̸= Kb−1 | sb = sb−1,Pb = Pb−1,Kb−1:0)

≤ |L|+ U +

B−1∑
b=1

EKb−1:0
η0

wb−1(Kb−1)

pb−1(Kb−1)

= |L|+ U +

B−1∑
b=1

EKb−2:0
EKb−1

[
η0

wb−1(Kb−1)

pb−1(Kb−1)
|Kb−2:0

]

= |L|+ U +

B−1∑
b=1

η0EKb−2:0

∑
Kb−1∈Pb−1

pb−1(Kb−1)
wb−1(Kb−1)

pb−1(Kb−1)

≤ |L|+ U +

B−1∑
b=1

η0NEKb−2:0
wb−1(i

b−1) (60)

for the controller ib−1 = argmaxi∈Pb−1
wb−1(i). The first equality is because KB−1, . . . ,Kb+1

does not affect on I(Kb ̸=Kb−1) and the second inequality is by (57). Taking expectation of (58) with
respect to Kb−1:0 and applying it to (60) yields

EKB−1:0

B−1∑
b=1

I(Kb ̸=Kb−1) = |L|+ U +O(η0NT )

by (59). Using |L| = O(U) in Lemma D.3 and U ≤ |U| completes the proof.

Algorithm 3 uses the same distribution with Algorithm 1 if b = 0 or sb ̸= sb−1 or Pb ̸= Pb−1. It
turns out that even if sb = sb−1 and Pb = Pb−1, the distribution of policy from Algorithm 1 and 3
are indeed the same, which is motivated by Anava et al. (2015). For the sake of completeness, we
state the lemma in this paper.
Lemma F.2. Let pb and p̃b denote the distribution of policy at batch b = 0, . . . , B − 1 resulting from
Algorithm 1 and 3, respectively. Then, p and p̃ are the same distribution.

Proof. For b = 0, p0(k) = p̃0(k) =
1
N for all k ∈ P0. For all b = 1, . . . , B − 1 such that sb ̸= sb−1

or Pb ̸= Pb−1, it holds that pb = p̃b. Thus, it suffices to prove the induction step for b = 1, . . . , B−1
such that sb = sb−1 and Pb = Pb−1. Define Yb :=

∑
k∈Pb

exp(−ηbWb(k)) and suppose that
pb−1 = p̃b−1. Thus, we have

p̃b(k) = p̃b−1(k) ·
exp(−ηbWb(k))

exp(−ηb−1Wb−1(k))
+ pb(k) ·

∑
i∈Pb

(1− exp(−ηbWb(i))

exp(−ηb−1Wb−1(i))
) · p̃b−1(i)

= pb−1(k) ·
exp(−ηbWb(k))

exp(−ηb−1Wb−1(k))
+ pb(k) ·

∑
i∈Pb

(1− exp(−ηbWb(i))

exp(−ηb−1Wb−1(i))
) · pb−1(i)

=
exp(−ηb−1Wb−1(k))

Yb−1
· exp(−ηbWb(k))

exp(−ηb−1Wb−1(k))

+
exp(−ηbWb(k))

Yb

∑
i∈Pb

(1− exp(−ηbWb(i))

exp(−ηb−1Wb−1(i))
)
exp(−ηb−1Wb−1(k))

Yb−1

=
exp(−ηbWb(k))

Yb−1
+

exp(−ηbWb(k))

Yb

∑
i∈Pb

exp(−ηb−1Wb−1(i))− exp(−ηbWb(i))

Yb−1
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=
exp(−ηbWb(k))

Yb−1
+

exp(−ηbWb(k))

Yb
· Yb−1 − Yb

Yb−1
=

exp(−ηbWb(k)) · Yb−1

Yb · Yb−1
= pb(k),

where the first equality is due to the law of total probability, the second equality is due to the induction
hypothesis, and the fifth equality is by Pb = Pb−1. Notice that sb = sb−1 yields ηb = ηb−1 and
Wb(k) ≥ Wb−1(k), and thus 0 ≤ exp(−ηbWb(k))

exp(−ηb−1Wb−1(k))
≤ 1; i.e., the probability distribution is properly

defined for every batch. This completes the proof.

Theorem F.3 (Regret with switching costs bound with known |U|). In Algorithm 3, let τ0 =

⌊( z
N(|U|+1) )

1/2⌋ and τb = ⌈( (νb+z)
N(|U|+1) )

1/2⌉ for every b ≥ 1 with the constants z, ν > 0 that

satisfies τ0 > 0 and τ1
τ0
(β(τ0))

2 < 1
2
√
2

. Also, let η0 = O( (|U|+1)2/3

T 2/3N1/3d1/3 ). When T ≥

max{ (o(1)exp(O(|U|)))3/2
(N(|U|+1))1/2

, |U|3/2d
(N(|U|+1))1/2

, N(|U|+ 1)d}, we have

EKB−1:0

[
T∑

t=0

[ct(xt, ut)− ct(x
′
t, u

′
t)] + d

B−1∑
b=1

I(Kb ̸=Kb−1) − d

|L|∑
l=1

I(i′l ̸=i′l−1)

]
= Õ(T 2/3N1/3(|U|+ 1)1/3d1/3) + o(T ),

which implies that we achieve a sublinear regret bound. Moreover, when limt→∞ H(t) < ∞ and

T ≥ max{ exp(O(|U|))
d2/3 , |U|3/2d

(N(|U|+1))1/2
, N(|U|+ 1)d}, we have

EKB−1:0

[
T∑

t=0

[ct(xt, ut)−ct(x
′
t, u

′
t)]+d

B−1∑
b=1

I(Kb ̸=Kb−1)−d

|L|∑
l=1

I(i′l ̸=i′l−1)

]
= Õ(T 2/3N1/3(|U|+1)1/3d1/3).

Proof. The distribution of policy is the same for Algorithm 1 and 3 by Lemma F.2. Thus, we can use
Theorem D.8 with Lemma F.1 to achieve

EKB−1:0

[
T∑

t=0

[ct(xt, ut)− ct(x
′
t, u

′
t)] + d

B−1∑
b=1

I(Kb ̸=Kb−1) − d

|L|∑
l=1

I(i′l ̸=i′l−1)

]

≤ Õ(|U|+ 1)

η0
+

η0N

2
[exp(O(|U|))O(τB−1H(τB−1)) +O(

B−1∑
b=0

(τb)
2)]

+O(

B−1∑
b=0

H(τb)) +O(d|U|) +O(dη0NT ), (61)

since d ≥ 1 and
∑L

l=1 I(i′l ̸=i′l−1)
≥ 0. Notice that (τb)b≥0 is the same for Algorithm 1 and 3.

Accordingly, we still have B = O(T 2/3N1/3(|U|+1)1/3) by (42) and T ≥ N(|U|+1)d ≥ N(|U|+
1). We also still have (43) and (44). Thus, with T ≥ (o(1)exp(O(|U|)))3/2

(N(|U|+1))1/2
and T ≥ |U|3/2d

(N(|U|+1))1/2
, we

obtain that
η0N exp(O(|U|))O(τB−1H(τB−1)) = o(d−1/3) exp(O(|U|)) = O(T 2/3N1/3(|U|+ 1)1/3d−1/3).

O(d|U|) = O(T 2/3N1/3(|U|+ 1)1/3d1/3).

Also, with T ≥ N(|U|+ 1)d, we have

O(dη0NT ) = O(T 2/3N1/3(|U|+ 1)1/3d1/3).

Combining all the above equalities with (61), one can write

EKB−1:0

[
T∑

t=0

[ct(xt, ut)− ct(x
′
t, u

′
t)] + d

B−1∑
b=1

I(Kb ̸=Kb−1) − d

|L|∑
l=1

I(i′l ̸=i′l−1)

]

= O(T 2/3N1/3(|U|+ 1)1/3d1/3) +O(

B−1∑
b=0

H(τb)).

Using (14) shows a sublinear regret bound. When limt→∞ H(t) < ∞, (49) is modified to

η0N exp(O(|U|))O(τB−1H(τB−1)) = O(T 2/3N1/3(|U|+ 1)1/3d1/3),

only with T ≥ exp(O(|U|))
d2/3 . This completes the proof.
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G NUMERICAL EXPERIMENT DETAILS

In the two following subsections, we will present experiment details on linear and nonlinear systems,
respectively. Since our Algorithm 1 only hinges on the system state norm as a context, we can avoid
computational burden; thus, Apple M1 Chip with 8-Core CPU is sufficient for the experiments. The
error bars (shaded area) in all the figures in the paper report 95% confidence intervals based on the
standard error. We calculate the standard error by randomly sampling 100 seeds to consider the
variability of our experimental results. The first factor of variability is the randomness of selecting the
policy determined by the probability calculated in Algorithm 1. The second factor is the randomness
of adversarial disturbances stated in each experiment. For example, sinusoidal noise does not involve
any randomness but the uniform random walk contains the randomness in the difference between two
consecutive noises.

G.1 EXPERIMENTS FOR THE LINEAR SYSTEM

In this subsection, we introduce the implementation details and present more experiments on the
linear system (3) discussed in Example 1 of Section 5.

We consider three different noises for the experiments. To perform a fair comparison, the bounding
constant wmax is set to 1.

(a) Sanity check: Gaussian noise with mean 0.3 and standard deviation 0.1, truncated to[−0.4, 1]

(b) Sinusoidal noise wt =
[
sin

( t

5π

)
, sin

( t

11π

)]′
(c) Uniform random walk, where w0 = Uniform

[
1

3
− 2

3T
,
1

3
+

2

3T

]2
and wt − wt−1 follows Uniform

[
− 2

3T
,
2

3T

]2
,

where T is time horizon. One can easily see that for uniform random walk, |wT | ≤ 1 for any T .
Notice that we use statistical (Gaussian) noise for the sanity check, and the rest are the adversarial
disturbances.

We perform the ablation study of Algorithm 1, which means that we consider four scenarios: (fixed,
dynamic) batch length and (fixed, adaptive) learning rate. For all the experiments implementing
the algorithm, we use T = 3000, η0 = 0.025, γ = 2.5, α0 = 1.01, and x0 = [100, 200]′. For
the dynamic batch length, we consider τ0 = 11 and τb = ⌈τ0 · ( b+10

10 )0.5⌉. It is well known that
every (asymptotically) stabilizing controller in the linear system is indeed exponentially stabilizing
controller (Khalil, 2015). Hence, we use β(t) = 0.99t without relaxing the assumptions on stabilizing
controllers. Finally, we use δ = γwmax

1−β(τ0)
. Since the sinusoidal noise case is already presented in

Figure 2, we only present truncated Gaussian noise case and uniform random walk case here.

In Figures 2, 5, and 6, we observe that each component of DBAR, a dynamic batch length and an
adaptive learning rate, jointly improves both the stability and the regret regardless of the noise form.
For example, a dynamic batch length delays the time that large state norms occur during learning,
but does not necessarily stabilize that state norm by itself (see Figures 6(a) and 6(b)). However,
when applied together with an adaptive learning rate, a potential multiplicative exponential term is
mitigated (see Remark 4.8) and the state norm is thus stabilized. This can be observed in Figures
2(d), 5(d), and 6(d) when comparing fixed and dynamic batch lengths under an adaptive learning
rate. This results from using a non-decreasing batch length where the increasing ratio between two
consecutive batch lengths is determined to converge to 1 (see Assumption 3.1). On the other hand,
an adaptive learning rate effectively lowers the state norm at the time that large state norms occur
without delay, since the learning rate adaptively decreases whenever the agent faces large state norm.
This can be seen in 2(c), 5(c), and 6(c), the ablation study about the comparison between fixed and
adaptive learning rates under a dynamic batch length. Thus, DBAR effectively stabilizes the state
norm below γwmax and minimizes the regret, where the two components support each other.
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(a) Stability analysis (b) Regret analysis (c) Adaptive learning rate
under dynamic batch length

(d) Dynamic batch length
under adaptive learning rate

Figure 5: The stability and the regret in the linear system under truncated Gaussian noise. Ablation
study of the algorithm is presented.

(a) Stability analysis (b) Regret analysis (c) Adaptive learning rate
under dynamic batch length

(d) Dynamic batch length
under adaptive learning rate

Figure 6: The stability and the regret in the linear system under Uniform random walk. Ablation
study of the algorithm is presented.

G.2 EXPERIMENTS FOR THE NONLINEAR SYSTEM

In this subsection, we introduce the implementation details and present more experiments on the
nonlinear ball-beam system introduced in Example 2 of Section 5. To study this continuous-time
nonlinear system, we first derive the first-order state representation of the leader system (4) with the
states (y1, y2, y3, y4) = (x, ẋ,−9.81Bθ,−9.81Bθ̇) ∈ R4 and the action v = −9.81Bux:

ẏ1 = y2, ẏ2 = 9.81B sin
( y3
9.81B

)
+

y1y
2
4

B(9.81)2
+ 3w, ẏ3 = y4, ẏ4 = v,

where wx is a sinusoidal noise sin
(

t
7π

)
and wmax = 1. A nested saturating control policy is known to

successfully stabilize the leader ball-beam system if the correct parameters are given, but it does not
necessarily exponentially stabilize the system (Barbu et al., 1997). This necessitates our approach of
extending the notion of stabilizing controllers beyond exponential assumptions. In this experiment,
we aim to learn the parameters of the best stabilizing controller. We choose a nested saturating control
policy v′ determined by three positive parameters (p, k1, k2):

ϵ =
1√

1 + y21 + y22
, p1 = p, p2 =

p

ϵ
, p3 =

p

ϵ2
, p4 =

p

ϵ3
,

z1 = y1 + k1y2 + k1y3 + y4, z2 = y2 + k2y3 + y4, z3 = y3 + y4, z4 = y4,

v′ = σp4
(z4 + σp3

(z3 + σp2
(z2 + σp1

(z1)))),

where σp(z) is the saturating function defined as p if z > p, −p if z < −p, and z if |z| ≤ p. We
consider the controller pool

V ′ = {v′ : p ∈ {2, 16, 30, 44, 58, 72, 86, 100}, k1 ∈ {2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5},
k2 ∈ {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5}},

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

(a) Stability analysis: β1(t) (b) Regret analysis: β1(t) (c) Stability analysis: β2(t) (d) Regret analysis: β2(t)

Figure 7: The stability and the regret in the noise-injected ball-beam system under sinusoidal noise
and the choice of β1(t) or β2(t).

which has a total of 800 controllers. Moreover, the follower systems are formulated by generating A, Ã
in (5) as random matrices, where each entry is independently sampled from Unif[0, 1]. For the action
uz of the follower systems, we consider a linear policy as in Example 1. Then, the action is parameter-
ized by uz = Kzz, where Kz ∈ R96×96. We let Kz be a multiple of identity matrix, and the diagonal
entry is selected from the pool {−45,−47.5,−50,−52.5,−55,−60,−70,−80,−90,−100}. Thus,
considering the actions of both leader and followers, the controller pool contains 8000 controllers.
Among them, we do not know if each controller stabilizes the system.

For simplicity, we perform forward-Euler discretization on the system with a sampling time 0.01.
The resulting discrete-time states and actions are denoted by [yt, zt] and [vty, v

t
z] at tth sampling time.

We use the cost function ct(y
t, zt, vty, v

t
z) = ∥yt∥2 + ∥zt∥2 + ∥vty∥2 + ∥vtz∥2 to stabilize the ball

position and the beam angle towards 0. We again perform the ablation study of Algorithm 1. For
the experiments implementing the algorithm, we use T = 5000, η0 = 0.25, γ = 1.5, α0 = 1.01,
y0 = [−32, 24, 5.6, 24], and z0 = [10, 10, . . . ] ∈ R96. For the dynamic batch length, we consider
τ0 = 9 and τb = ⌈τ0 · ( b+41

40 )0.5⌉.

Unlike the choice of β(t) in Section G.1, we select the stabilizing controller only to satisfy (asymp-
totic) ISS in Definition 2.3, instead of exponential ISS. To deeply study this notion, we consider
different polynomially decreasing series (which is not exponentially decreasing) to be the candidates
for β(t):

β1(t) = min

{
10

t1.05
, 1

}
, β2(t) = min

{
10

t1.08
, 1

}
.

Figures 3(b) and 3(c) show the stability and regret analysis of the system under β1(t). For the
completeness, we present the same pictures in Figures 7(a) and 7(b).

In our experiment, there are 3400 controllers out of 8000 controllers that induces the system to
explode, starting from the initial state. However, there exist far more destabilizing controllers within
this pool, since most of 5600 controllers are only locally stabilizing controllers, meaning that the
system is stabilized only at some initial states. With only few stabilizing controllers in the pool,
Figure 7 illustrates that a dynamic batch length by itself still suffers from a multiplicative exponential
term regarding a series of destabilizing controllers. However, for both β1(t) and β2(t), even though
H(t) and O(

∑t
i=1

1
i ) are close, one can observe that the combination of the two components of

DBAR effectively resolves this malignant term and the resulting closed-loop system enjoys both
asymptotic system stability and the improved regret (see Table 1).

The behaviors of β1(t) and β2(t) are slightly different, in the sense that while DBAR still performs
well, the system already appears stabilized even without some components of DBAR with β2(t).
This stems from the amount of discarding the destabilizing controllers. β2(t) removes the controller
with more strict criteria than β1(t) since 1.08 > 1.05. This prevents the explosion of the nonlinear
system by eliminating potential destabilizing controllers not yet seen in an unstable region in advance.
However, in practice, if the given candidate controller set had not included any controller satisfying
the strict assumptions, the algorithm would have terminated, failing to keep the system running. This
finding again demonstrates why it is crucial to allow a broader class of controllers and still achieve a
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tight regret bound. Moreover, the experimental results strongly support that our algorithm DBAR
performs well for any choice of β(t), which determines the scope of stabilizing controllers.
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