
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ONLINE BANDIT NONLINEAR CONTROL
WITH DYNAMIC BATCH LENGTH AND
ADAPTIVE LEARNING RATE

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper is concerned with the online bandit nonlinear control, which aims to
learn the best stabilizing controller from a pool of stabilizing and destabilizing
controllers of unknown types for a given nonlinear dynamical system. We develop
an algorithm, named Dynamic Batch length and Adaptive learning Rate (DBAR),
and study its stability and regret. Unlike the existing Exp3 algorithm requiring an
exponentially stabilizing controller, DBAR only needs a significantly weaker notion
of controller stability, in which case substantial time may be required to certify the
system stability. Dynamic batch length in DBAR effectively addresses this issue
and enables the system to attain asymptotic stability, where the algorithm behaves
as if there were no destabilizing controllers. Moreover, adaptive learning rate in
DBAR only uses the state norm information to achieve a tight regret bound even
when none of the stabilizing controllers in the pool are exponentially stabilizing.

1 INTRODUCTION

The multi-armed bandit (MAB) problem aims to minimize the total cost of pulling a series of arms
while receiving immediate cost feedback for each arm pulled. Given a finite number of arms, the
problem balances between exploration and exploitation of arms without knowing the exact cost
structure of each arm. On the other hand, the online optimal control problem considers a transition
dynamic xt+1 = f(xt, ut, wt) and a set of cost functions ct(xt, ut), t = 0, . . . , T , where the goal is
to minimize the sum of costs over time, while both f and ct are fully or partially unknown. Basically,
MAB is a special type of the online optimal control problem in the sense that MAB is stateless
and simply selects an action each time, while the online control problem has a countable or an
uncountable number of states and selects a controller, acting as a function from states into actions,
each time without knowing the cost functions. Bandit algorithms can thus be leveraged for online
control, wherein the average cost incurred with a controller can be interpreted as the bandit feedback
of pulling the controller-arm (Lin et al., 2023; Li et al., 2023).

In this paper, we address the online nonstochastic control problem where both a transition dynamic
f and cost functions ct can be unbounded, nonlinear, and adversarially chosen. We only have
knowledge about xt and the bandit feedback ct(xt, ut) at time t, with adversarial disturbances wt

injected at each time step as in Gradu et al. (2020) and Cassel & Koren (2020). We operate the system
with a single trajectory where the system state cannot be reset. To overcome the difficulties of an
unknown nonlinear system, we are given a finite set of N controllers in advance, where we are not
aware of whether each controller can stabilize the system but we are allowed to alternate between
these controllers within a single trajectory according to a specific logic. We refer to this problem as
the online bandit nonlinear control problem.

To deal with this online bandit nonlinear control, Li et al. (2023) adopted their Exp3-ISS algorithm,
which uses the well-known Exp3 algorithm (Auer et al., 2002) with a mini-batch approach (Arora
et al., 2012), while successively removing destabilizing controllers when detected in terms of input-
to-state stability (ISS). In this paper, we aim to significantly relax the requirement on the controllers
and yet guarantee asymptotic stability of the closed-loop system and sharpen the regret bound by
designing our algorithm DBAR (Dynamic Batch length and Adaptive learning Rate).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Summary of required controllers and results: U is the set of destabilizing controllers and |U|
denotes its cardinality. Polynomial factors on N and |U| are hidden.

Algorithm Required Closed-loop system Regret BoundController asymptotic stability
Chen & Hazan (2021) Exponential N/A Õ(T 2/3) + exp(O(|U|))

Li et al. (2023) Exponential No Õ(T 2/3) + exp(O(|U|))
Dynamic Batching Asymptotic Yes Õ(T 2/3) + o(T 1/3) · exp(O(|U|))

Algorithm 1 (DBAR) Asymptotic Yes Õ(T 2/3) + Õ(T−1/3) · exp(O(|U|))

Motivation and contribution. Our main contribution is to allow a broader class of controllers to
qualify as a stabilizing controller within a priori controller pool. For the motivation, consider a
continuous-time gradient flow in the vector space:

ẋ(t) = −∇F (x(t)), (1)
where F : Rn → R is a smooth function. A merely convex F can be extremely flat around its
minimum, leading to a slowly (asymptotically) converging trajectory unlike exponentially converging
behavior achieved for strongly convex F (Khalil, 2015). In fact, assuming that a minimizer x∗ of
F exists, the decay rate F (x(t))− F (x∗) is O(1/(t log2 t)) if F is convex1 (Siegel & Wojtowytsch,
2023), and O(e−t) if F is strongly convex. In the machine learning literature, a loss function
l(g(x), y) of a gradient-based method is often given as a convex function in g (e.g., mean-squared
error or cross-entropy loss), but not necessarily strongly convex since g is often over-parameterized
and there could be a continuum of parameters corresponding to the value of g. Analogous to this
concept, one can consider F as f(xt, π(xt), wt), a dynamic governed by a given controller π and its
converging behavior as a (asymptotic or exponential) controller stability. Our work merely requires
the existence of at least one asymptotically stabilizing controller in the pool, which is far weaker than
exponentially stabilizing notions and represents a more realistic environment one may encounter.

The existing literature on online bandit control of linear dynamics with adversarial disturbance has
intrinsically assumed the existence of strongly stable controllers, which are exponentially stabilizing
controllers in our context, and achieves Õ(T 2/3) regret under general convex cost functions (Cassel
& Koren, 2020; Chen & Hazan, 2021; Ghai et al., 2023). In this paper, we will achieve the same
Õ(T 2/3) regret bound even when none of the stabilizing controllers are exponentially stabilizing.

Algorithm Design. The idea of our algorithm is two-fold:

1. We adopt a dynamic batch length instead of a fixed length to certify the stability of the system
without requiring exponentially stabilizing controllers and achieve both asymptotic system stability
and a sublinear regret bound. The batch length is scheduled to be non-decreasing and growing
unboundedly over time, but its growth amount eventually saturates. However, the strategy suffers
from a resulting multiplicative exponential regret in return.

2. To alleviate the multiplicative exponential regret without requiring the conservative notion of
exponentially stabilizing controllers, we adopt a novel adaptive learning rate scheme that relies on
the system state norm, instead of a fixed learning rate. While the conventional way to apply the Exp3
Algorithm is to use a non-increasing learning rate, we decrease the learning rate if the state is unstable
and subsequently increase the learning rate if the state returns to a stable region. By implementing
this approach, we can alleviate the multiplicative exponential term in all cases. In particular, for a
specific class of stabilizing controllers beyond exponential notions, we attain a regret bound order
[Õ(T 2/3) + Õ(T−1/3) · exp(O(|U|))] · (|U|+ 1)α, where α = 1/3 if |U| is known and α = 1/2 if
|U| is unknown.

Table 1 shows a summary of our results with related works. Appendix A provides more details on the
intermediate step "Dynamic Batching", which operates under asymptotically stabilizing controller
assumptions, and on how we devised DBAR algorithm to avoid the multiplicative exponential term.

Related works. Optimal control problems have been widely leveraged in a variety of fields with
the influential dynamic programming approach (Bellman, 1957). Recent successes of reinforcement

1Note that O(1/(t log2 t)) is integrable at infinity. In the context of controllers, we also handle the challenging
case where f(xt, π(xt), wt)− infx∈Rn f(x, π(x), wt) may not be integrable at infinity. This corresponds to a
convex function without minimizers, such as a log-exp-type softmax loss function for classification.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

learning (RL) in safety-critical systems, such as aircraft (Razzaghi et al., 2022), robotics (Ibarz et al.,
2021), and autonomous driving (Kiran et al., 2021), are also deeply rooted in optimal control methods
(Bertsekas, 2019). The common idea to gain system stability of optimal control problems is to falsify
the detected destabilizing controller, meaning that one can completely remove those controllers
failing to satisfy certain stability criteria from the controller pool (Baldi et al., 2010; Battistelli et al.,
2010; 2014; 2018; Stefanovic & Safonov, 2011; Li et al., 2023).

Online nonstochastic control considers a dynamical system with adversarial disturbances, which is
more challenging than having statistical noise. Early papers assumed full access to cost functions,
enabling us to leverage optimal policy structure with cost function gradients (Agarwal et al., 2019;
Foster & Simchowitz, 2020; Hazan et al., 2020; Hazan & Singh, 2022). Later, studies were generalized
to address the problem without cost gradients information (Gradu et al., 2020; Cassel & Koren, 2020;
Ghai et al., 2023; Sun et al., 2023); instead, they estimated the cost gradients, using the history of
scalar cost (bandit feedback) along the trajectory. However, the above research restricts the system
to linear transition dynamics. Instead, our work considers the candidate controller pool to handle
unknown nonlinear systems.

Multi-armed bandits with adversarial disturbances were first addressed in the pioneering work by
Auer et al. (2002) under bounded costs in their notable Exp3 algorithm. Arora et al. (2012) later
improved the algorithm using the same controller within a mini-batch, attaining a regret bound
equivalent to the lower bound presented in Dekel et al. (2014). As we have access to the candidate
controller pool in our problem setting, we adopt a bandit-related approach.

Dynamic batching gained considerable attention for training deep neural networks by increasing the
batch size over time and adaptively increasing the learning rate to maintain the ratio between the two
(Devarakonda et al., 2017; Bollapragada et al., 2018; Shallue et al., 2019; Ma et al., 2023). Although
this has been widely used in the machine learning literature, we adopt this idea to online control,
progressively increasing the batch length within a single trajectory to achieve asymptotic stability.

Adaptive learning rate in machine learning is generally determined by a set of gradients observed
so far (Ruder, 2016). As we do not have access to the gradients in our problem, we focus on the
learning rate for bandit algorithms. Several works (van Erven et al., 2011; de Rooij et al., 2014) in
hedge setting, an instance of multi-armed bandit problem, suggested using decreasing learning rate
as the batch length increases. Building on this idea, Li et al. (2023) proposed to use a non-increasing
learning rate over time, while no theoretical guarantee was presented. To the best of our knowledge,
this paper is the first work to provide theoretical guarantees for the adaptive learning rate scheme
based on the stability of state norm, where the rate is not necessarily non-increasing.

Outline. The paper is organized as follows. In Section 2, we formulate the problem and provide
necessary definitions and assumptions. In Section 3, we propose our DBAR algorithm. In Section 4,
we study the stability of the algorithm, the regret bound, and its applications in switched systems. In
Section 5, we present numerical experiments on the DBAR algorithm with an ablation study on batch
length and learning rate. Finally, concluding remarks are provided in Section 6.

Notation. For a vector z, ∥z∥ denotes the Euclidean norm of the vector. We use O(·) for the big-O
notation, o(·) for the small-o notation, and Õ(·) for the big-O notation hiding logarithmic factors.
Let E denote the expectation operator. For a set Z, we use |Z| for the cardinality and Zc for the
complement of the set Z. For a real number e, we use ⌊e⌋ for the floor and ⌈e⌉ for the ceiling of e.
Let R denote the set of real numbers and Z+ denote the set of nonnegative integers. For e1, e2 ∈ Z+

where e2 ≤ e1, let ie1:e2 denote the set {ie : e2 ≤ e ≤ e1, e ∈ Z+}. For the notations used in the
problem formulation and algorithm, see Appendix B.

2 PROBLEM FORMULATION

Consider a general discrete-time dynamical system xt+1 = f(xt, ut, wt), t = 0, . . . , T − 1, where
xt ∈ Rn is the system state at time t, ut ∈ Rm is the control input at time t to be designed via an
algorithm. ut is determined by selecting a controller from a priori finite number of controller pool
consisting of πi : Rn → Rm, i = 1, . . . , N . wt ∈ W ⊂ Rg is the adversarial noise at time t, where
W = {w ∈ Rg : ∥w∥ ≤ wmax} and the bounding constant wmax > 0 is assumed to be known. Each
time instance t is associated with a cost function ct : Rn ×Rm → R. The state transition is governed
by the dynamic f : Rn × Rm × Rg → R. We have the following assumptions on the dynamic f .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Controller Stability notions (b) Controller pool for unknown nonlinear systems

Figure 1: Illustration of Assumption 2.5: (a) Our work does not require exponentially stabilizing
controllers, which allow the learner to detect the stability in O(log(1/ϵ)) time. Instead, we only
require an asymptotically stabilizing controller of the true system, where the detectable time may
be arbitrarily long. (b) One can design stabilizing controllers for each parameter characterizing the
nonlinear system. While we know that at least one of them should work, we do not know which one
works, since the learner is unaware of the true parameter of the system. Assumption 2.5 is always
satisfied if the given pool contains a rich set of controllers, as long as the true system is stabilizable.

Assumption 2.1 (Dynamic). The transition dynamic f is Lf -Lipschitz continuous with Lf ≥ 1;
i.e., |f(x, u, w)− f(x̃, ũ, w̃)| ≤ Lf (∥x− x̃∥+ ∥u− ũ∥+ ∥w − w̃∥) for all x, x̃ ∈ Rn, u, ũ ∈ Rm,
w, w̃ ∈ W . We let f(0, 0, 0) = f0.

We adopt the notion of locally Lipschitz continuous cost functions ct given in Li et al. (2023), which
contains quadratic tracking costs along an arbitrary bounded state trajectory and action sequence.
Assumption 2.2 (Cost functions). There exist Lc1, Lc2 > 0 such that |ct(x, u) − ct(x̃, ũ)| ≤
(Lc1(max{∥x∥, ∥x̃∥} + max{∥u∥, ∥ũ∥}) + Lc2)(∥x − x̃∥ + ∥u − ũ∥) for all x, x̃ ∈ Rn, u, ũ ∈
Rm, t ∈ Z+. There exists c0,max ≥ 0 such that |ct(0, 0)| ≤ c0,max for all t ∈ Z+.

Input-to-state (asymptotic) stability (ISS) is a classic notion of stability implying that the controller
successfully stabilizes the system under any bounded noises (Sontag, 2008; Khalil, 2015). Incremental
(asymptotic) stability extends the input-to-state stability to describe the asymptotic behavior of some
trajectory towards a different trajectory (Tran et al., 2016). It is worth noting that Li et al. (2023) also
adopted these concepts under an exponential stability assumption; i.e., they require some controllers
to satisfy exponential ISS and exponential incremental stability. However, in practice, general
asymptotic concepts need to be considered for stabilizing controllers. We will address this controller
stability issue below.
Definition 2.3 (Input-to-state stable controller). A controller π is (asymptotically) input-to-state
stable (ISS) if there exists a non-increasing function β(·) : Z+ → R that satisfies β(0) = 12 with
limt→∞ β(t) = 0 and γ > 0 such that for any x0 ∈ Rn and ∥wt∥ ≤ wmax for all t ≥ 0, the sequence
{xt}t≥0 determined by xt+1 = f(xt, π(xt), wt) satisfies ∥xt∥ ≤ β(t)∥x0∥+ γwmax.
Definition 2.4 (Incrementally stable controller). A controller π is (asymptotically) incrementally
stable if there exists a non-increasing function β(·) : Z+ → R that satisfies β(0) = 1 with
limt→∞ β(t) = 0 such that for any x0, x̃0 ∈ Rn and ∥wt∥ ≤ wmax for all t ≥ 0, it holds that
∥xt − x̃t∥ ≤ β(t)∥x0 − x̃0∥ for any two sequences determined by xt+1 = f(xt, π(xt), wt) and
x̃t+1 = f(x̃t, π(x̃t), wt).
Assumption 2.5 (Controller pool). Consider the candidate controller index set P0 = {1, . . . , N},
in which there exists a controller satisfying Definitions 2.3 and 2.4. There exists π0,max ≥ 0 such
that ∥πi(0)∥ ≤ π0,max for all i ∈ P0. All candidate controllers are Lπ-Lipschitz continuous; i.e.,
∥πi(x)− πi(x̃)∥ ≤ Lπ∥x− x̃∥ for all x, x̃ ∈ Rn and i ∈ P0.

In Figure 2, we illustrate a concept of the controller pool for the unknown system, and how general the
requirement of asymptotically stable notion is. For future use, we define the relevant sets regarding
controller stability below.

2This assumption in Definitions 2.3 and 2.4 is to guarantee β(t)2 ≤ β(t) for all t, which can be overcome by
a large γ. If we relax Assumption 2.2 on ct to be Lipschitz continuous, we can remove the assumption β(0) = 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Definition 2.6 (Stabilizing and destabilizing controller). Let S denote an index set of stabilizing
controllers that satisfy both of Definitions 2.3 and 2.4. We also let U denote an index set of
destabilizing controllers that do not satisfy Definition 2.3. Thus, we have |S| ≥ 1 and S ⊆ Uc.
Remark 2.7. Definition 2.4 is a stronger notion than Definition 2.3 due to the triangle inequality.
However, for a special case of linear systems with additive noise; i.e., f(xt, π(xt), wt) = Axt+h(wt),
where A ∈ Rn×n and h : Rg → Rn, a controller π satisfying Definition 2.3 also satisfies Definition
2.4. In such a case, Assumption 2.5 boils down to requiring at least one ISS controller in the pool.

Now, we define different notions of closed-loop system stability with bounded adversarial disturbances
wt, where ∥wt∥ ≤ wmax holds. Asymptotic stability and finite-gain stability both shed light on the
connection between the disturbance input and the state output, where none of them implies the other
(Hill & Moylan, 1980). Hence, it is desirable to achieve both system stability notions.
Definition 2.8 (Asymptotic stability). A system is asymptotically stable if the sum of state norms
satisfies limT→∞

1
T

∑T
t=0 ∥xt∥ ≤ γwmax.

Definition 2.9 (Finite-gain stability). A system is finite-gain L1 stable if there exist constants
A1, A2 > 0 such that for all T ∈ Z+, it holds that

∑T
t=0 ∥xt∥ ≤ A1 · wmaxT +A2.

Recall that xt and ut denote the state and action sequence for the system according to the
algorithm. We also let x∗

t and u∗
t denote the optimal state and action sequence generated

by the best stabilizing controller i∗ that satisfies both of Definitions 2.3 and 2.4; i.e., i∗ =

argmini∈S E[
∑T

t=0 ct(xt, πi(xt))] subject to the dynamic f . Then, the regret of the algorithm
is defined as follows.
Definition 2.10 (Regret). The regret of the algorithm implementing the policy πit at time t =

0, . . . , T − 1 is defined as RegretT = EiT−1:0

∑T
t=0[ct(xt, ut)− ct(x

∗
t , u

∗
t)].

3 ALGORITHM DESCRIPTION

Denote the number of batches in the algorithm by B. Denote by tb the start time for each batch
b = 0, 1, . . . , B − 1. We implement the same policy within the mini-batch.
Assumption 3.1 (Dynamic batch length). We design our batch length (τb)b≥0 as follows:

1. τb is non-decreasing in b and limb→∞ τb = +∞.

2. maxb≥0
τb+1

τb
= τ1

τ0
and limb→∞

τb+1

τb
= 1.

For example, τ0 = ⌊z1(z2)z3⌋ > 0 and τb = ⌈z1(νb + z2)
z3⌉ for every b ≥ 1 with the constants

z1, z2, z3, ν > 0 satisfy Assumption 3.1. For future use, we refer to this type of formulation as
polynomial batches with (z1, z2, z3, ν).
Remark 3.2. As our dynamic batch length eventually grows unboundedly over time, excessively
strict controller stability criteria may result in most of the candidate controllers violating these criteria.
Thus, it is crucial to adopt (asymptotic) ISS and incremental stability as our criteria, instead of
exponential notions in Li et al. (2023) and the literature on linear dynamics (Cassel & Koren, 2020;
Chen & Hazan, 2021; Ghai et al., 2023). Figure 4 in Appendix A strongly supports the necessity
of a growing batch length regardless of the noise assumption. On the other hand, our batch length
requires limb→∞

τb+1

τb
= 1, which means the ratio of two consecutive batch lengths should approach

1 as time goes by (e.g., geometric sequences are not acceptable). In other words, the batch length
is designed to increase over time but eventually saturates, which is used to ensure both asymptotic
system stability and a sublinear regret. We formally present both properties in Theorems 4.1 and 4.6.

We propose our DBAR algorithm in Algorithm 1 (see Appendix B for the notations). Lines 3-9
generate the state trajectory based on the selected controller πKb

for the current batch b, and falsify
the controller if it is found to violate Definition 2.3; i.e., Kb ∈ U . Here, let U denote the number of
times that the Break statement in Line 7 is activated. In the rest of the paper, when we say the Break
statement is activated, it means that Line 7 of Algorithm 1 has been activated. As the controllers in
Uc do not suffer from the Break statement, they always remain in the controller pool. Accordingly,
we have U ≤ |U|.
Lines 11-20 keep track of the state norm of xb+1 by determining αb+1 and sb+1 that indicates the
magnitude of the next batch’s initial state norm compared to ∥x0∥. Note that we keep adjusting the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 DBAR
Input: T. η0 > 0. (τb)b≥0. β(·). γ. W0(k) = 0 for all k ∈ P0. t0 = 0, s0 = 0.
A uniform distribution p0; i.e., p0(k) = 1

N
for all k ∈ P0. x0 ̸= 0. α0 > β(0) = 1. δ ≥ γwmax

1−β(τ0)
.

1: for Batch b = 0, 1, 2, . . . , do
2: Sample Kb from a distribution pb. Terminate the al-

gorithm if Pb is empty.
// Phase 1: Falsify a detected destabilizing controller

3: for t = tb, . . . ,min(tb + τb − 1, T) do
4: Implement πKb

, observe xt+1.
5: if ∥xt+1∥ > β(t+1− tb)∥xtb∥+ γwmax then
6: Set Pb+1 = Pb − {Kb}.
7: Break
8: end if
9: end for

10: Let tb+1 = t+ 1.
// Record the magnitude of the state norm for Phase 2

11: if ∥xtb+1∥ ≥ αb∥x0∥+ δ then
12: Pick s ≥ 1 that satisfies

(αb)
s∥x0∥ ≤ ∥xtb+1∥ − δ < (αb)

s+1∥x0∥.
13: if s− sb > 1 then
14: Let αb+1 be any α > αb such that

αsb+1∥x0∥ ≤ ∥xtb+1∥ − δ < αsb+2∥x0∥
and let sb+1 = sb + 1.

15: else
16: Let sb+1 = s and let αb+1 = αb.
17: end if
18: else
19: Let sb+1 = 0 and let αb+1 = αb.
20: end if

// Phase 2: Set or reset weight for each controller
21: Let wb(Kb) =

∑tb+1−1
t=tb

ct(xt, ut)

and w′
b(k) =

wb(Kb)
pb(k)

I(Kb=k) for k ∈ Pb.
22: if sb+1 ̸= sb then
23: Let Wb+1(k) = 0 for all k ∈ Pb.
24: else
25: Let Wb+1(k) = Wb(k) + w′

b(k) for k ∈ Pb.
26: end if
27: Let ηb+1 = η0/(αb+1)

2sb+1 .
28: For all k ∈ Pb+1, let

pb+1(k) =
exp(−ηb+1Wb+1(k))∑

i∈Pb+1
exp(−ηb+1Wb+1(i))

29: end for

value of αb+1 to avoid sb+1 > sb + 1 (Line 14), and the adjusted αb+1 is guaranteed to be bounded
by some constant (see Lemma C.5 in the Appendix). It is later discussed formally in Lemma 4.7 that
these observations cause sb ̸= 0 to occur at most O(U) times throughout the algorithm.

Lines 21-26 determine the weight Wb+1(k) for each controller k. In Line 21, we use the sum of
costs at the current batch b to add up to the weight in Line 25. In Lines 22-26, we reset the weight if
sb+1 ̸= sb. This resetting weight idea to forget the costs in the past is also proposed in van Erven
et al. (2011). In the scenario that the Lipschitz constant Lf is very large, it may help to forget the
time-varying costs c0, . . . , ct−1 and restart gathering the information from the outset. Line 22 reflects
this case where the next batch’s state norm significantly deviates from the current state norm.

Lines 27-29 calculate the adaptive learning rate ηb+1 = η0/(αb+1)
sb+1 for the next batch b+ 1 used

to apply the Exp3 algorithm to our problem. Since (αb+1)
sb+1 increases when the state norm ∥xtb+1

∥
is large, and sb+1 resets to zero for sufficiently small state norm, the corresponding learning rate
decreases in unstable states and increases back to the initial value when the state norm returns to a
stable region. Thus, the learning rate fluctuates depending on the state norm. However, it is essential
to note that the effective learning rate, determined by the ratio ηb

τb
, indeed decreases as the batch length

increases even if sb+1 = sb. The only plausible situation in which the effective rate may increase is
sb+1 < sb with (αb+1)

2 > τb+1

τb
. Apart from this scenario, the effective learning rate experiences

a polynomial decay with polynomial batches defined in Assumption 3.1, which does not cause any
contradiction with the polynomially decreasing learning rate concept proposed in Aubert et al. (2023).

Our adaptive learning rate stabilizes the cost of current batch, alleviating the multiplicative exponential
term in the regret bound (see Table 1). Moreover, since we run the algorithm along a single trajectory
with the selection of the policy only relying on the state norm as a context, we obtain a linear-time
algorithm by harnessing a form of contextual bandit without requiring strict assumptions.

4 MAIN RESULTS

4.1 STABILITY

In this section, we will present the stability results of Algorithm 1, which deeply hinge on Lemma
4.3 (see the proof details in Lemma C.1).
Theorem 4.1 (Asymptotic stability). In Algorithm 1, suppose that τ1

τ0
β(τ0) < 1. Then, it holds that

limT→∞
1
T

∑T
t=0 ∥xt∥ ≤ γwmax.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Theorem 4.2 (Finite-gain stability). In Algorithm 1, suppose that τ1
τ0
β(τ0) < 1. Assume that

limt→∞ H(t) < ∞. Then, Algorithm 1 achieves finite-gain L1 stability; i.e., there exist constants
A1, A2 > 0 such that for all T ∈ Z+,∑T

t=0 ∥xt∥ ≤ A1 · wmaxT +A2.

Lemma 4.3. Define H(t) :=
∑t−1

i=0 β(i), which determines the scope of stabilizing controllers
throughout the entire horizon. Under Assumption 3.1, we have limt→∞

H(t)
t = 0.

Proof sketch of Theorems 4.1 and 4.2: By Lemma 4.3, we have limt→∞
H(t)
t = 0. Using this

result with the non-decreasing property of both τb and H(τb), we obtain that
∑B−1

b=0 H(τb) = o(T)
according to Assumption 3.1 for the dynamic batch length. This assumption further indicates that
falsifying destabilizing controllers in Lines 5-8 results in the existence of a constant M > 0 such that
the following inequality holds for all T ≥ 0:

T∑
t=0

∥xt∥ ≤ M + γwmax · (O(

B−1∑
b=0

H(τb)) + T). (2)

Thus,
∑B−1

b=0 H(τb) = o(T) along with (2) proves both Theorems 4.1 and 4.2. More details about
the proof are provided in Appendix C.
Remark 4.4. With a fixed batch length τ as presented in Li et al. (2023), the resulting closed-loop
system cannot achieve asymptotic stability since limT→∞

1
T

∑T
t=0 ∥xt∥ = γwmax(1 + O(1τ)) >

γwmax. Thus, it is intuitively desirable to design as limb→∞ τb = ∞ to achieve an asymptotic system
stability, validating our dynamic batch length strategy in Algorithm 1. This idea also results in having
limT→∞ B/T = 0 (see Lemma C.9 in the Appendix). It is crucial to note that we have achieved
asymptotic stability even when limt→∞ H(t) = ∞. In addition, finite-gain stability can be achieved
for every β(·) that satisfies H(·) < ∞, which incorporates exponentially stabilizing controllers.

4.2 REGRET

In this section, we will present the regret bound of Algorithm 1, where the regret defined in Definition
2.10 is equivalent to EKB−1:0

∑T
t=0[ct(xt, ut)− ct(x

∗
t , u

∗
t)], considering that the policy at each time

t is determined by the policy at the corresponding batch.
Theorem 4.5 (Regret Bound). In Algorithm 1, suppose that τ1

τ0
(β(τ0))

2 < 1
2
√
2

. Then, we have

RegretT = O(|U|) +O(

B−1∑
b=0

H(τb)) +
Õ(|U|+ 1)

η0
+

η0N

2
[exp(O(|U|))O(τB−1H(τB−1)) +O(

B−1∑
b=0

(τb)
2)].

Theorem 4.6 (Regret bound with known |U|). Consider Algorithm 1 with polynomial batches defined

in Assumption 3.1 with proper parameters satisfying (β(τ0))
2 < 1

2
√
2

. Then, with η0 = O((|U|+1)2/3

T 2/3N1/3)

and T ≥ max{ |U|3/2
(N(|U|+1))1/2

, N(|U|+ 1)}, we achieve a sublinear regret bound. Moreover3, when

H(t) ≤ O(
∑t

i=1
1
i) for all t ≥ 1, we have

RegretT =
[
Õ(T 2/3) + Õ(T−1/3) exp(O(|U|))

]
N1/3(|U|+ 1)1/3.

The regret bound deeply relies on Lemma 4.7. For the lemma, define L := {0 ≤ b ≤ B − 1, b ∈
Z+ : sb+1 ̸= sb} and Also, define V := {0 ≤ b ≤ B − 1, b ∈ Z+ : sb ̸= 0}. In other words, |L|
is the number of transitions of sb across the batches, and |V| is the number of batches whose sb is
nonzero. It turns out that both quantities are bounded in terms of the number of the Break statement
activation. The proof details can be found in Lemma D.3.
Lemma 4.7. In Algorithm 1, suppose that β(τ0) < 1 and let U denote the number of times that the
Break statement is activated. Then, it holds that |L| = O(U) and |V| = O(U).

3Among stabilizing controllers achieving Õ(T 2/3) regret bound, we also cover the case where H(t) can be
of the order of a harmonic series that is not summable at infinity.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Proof sketch of Theorems 4.5 and 4.6: By adopting the analysis performed in previous works (Cesa-
Bianchi & Lugosi, 2006; van Erven et al., 2011; de Rooij et al., 2014), we divide the expected
total cost into the mix loss − 1

η0
log(Ek∼pb

exp(−ηbw
′
b(k))) and the mixability gap Ek∼pb

[w′
b(k)] +

1
η0

log(Ek∼pb
exp(−ηbw

′
b(k))). The big difference between the previous analysis and our approach

is that we use different learning rates for the one in the denominator (η0) and the other inside the
exponential term (ηb) as we use an adaptive learning rate. The additional term introduced by using
different rates is in |L| and |V|, which are bounded in terms of U by Lemma 4.7.

After bounding the expected total cost with cumulative mix loss and mixability gap, we need to
study EKB−1:0

∑B−1
b=0

∑tb+1−1
t=tb

[ct(xK
t (i∗),uK

t (i∗))

(αb)
2sb

− ct(x
∗
t , u

∗
t)
]
, where xK

t (i) and uK
t (i) for t =

tb, . . . , tb+1 − 1 denote the state and action sequence generated by selecting the controllers before
batch b according to Algorithm 1, while selecting the controller i at batch b. This does not produce
any exponential term since the costs are regularized with the factor (αb)

2sb . The additional term
introduced by regularization is also bounded by the order of U due to Lemma 4.7. The proof details
are provided in Appendix D.

Remark 4.8 (Lower bound). The regret bound Õ(T 2/3N1/3(|U| + 1)1/3) provided in Theorem
4.6 is similar to the lower bound presented in Dekel et al. (2014), except that there is an extra term
(|U|+ 1)1/3, reflecting the unbounded costs for the bandits. Moreover, a stability-agnostic nature
of the given controllers implies that any algorithm will normally encounter destabilizing controllers
and it is unavoidable to face the exponential term exp(O(|U|)) in regret. To be more specific, our
work has an exponential term in the number of destabilizing controllers (|U|), while the work Chen &
Hazan (2021) provides the lower bound involving an exponential term in L > kdu (see Section 2.1
and Theorem 3), where du is the dimension of the action and k is the controllability index. Here, a
large controllability index implies that the system is complex to control as more stages of control
actions are needed to stabilize the system. Thus, together with a dimension of the controller action
du, a large kdu in their work is analogous to a large |U| in our setting. Thus, due to the lower
bound, the exponentially increasing term can be tackled by reducing it by the inverse power term
on T at best. Theorem 4.6 aligns with this idea since the resulting regret bound involves the term
Õ(T−1/3) · exp(O(|U|)) by factoring in every potential exponential term to be multiplied with the
initial learning rate η0 = O(T−2/3), which inherently serves as a mitigating factor. Note that instead
of dramatically reducing the regret bound, our main contribution is on significantly relaxing the
stability assumptions for required controllers (see Table 1 and Appendix A).
Remark 4.9 (Nonlinear control). Our approach is useful to extend the stability and regret analysis
beyond linear dynamics, but if |U| is too large, it would be difficult to reach good enough performance
as the regret bound depends on exp(O(|U|)). This occurs because we have focused on a discrete set
of controllers instead of a connected set as in linear dynamics. Note that in the linear dynamics case,
it is guaranteed that the set of stabilizing controllers is connected. However, adopting a discrete set
was inevitable to handle unknown nonlinear systems since the set of stabilizing controllers may not be
connected. To address this limitation, we believe that this issue can be mitigated by the formulation
where the problem of interest is |U| number of connected sets, where |U| is not too large and each
set is disjoint from the others. The agent can apply techniques of continuous parameterization (e.g.
gradient descent) within a set and also transition between separate sets by leveraging our technique.
This mixture of algorithms for discrete and connected sets will be an interesting future work.

Now, a question arises as to what happens if |U| is not known in advance. With Algorithm 1, one
can leverage |U|+ 1 ≤ N to upper-bound the regret in Theorem 4.6 and achieve Õ(T 2/3N2/3) at
best (without considering exponential terms) by determining η0 and (τb)b≥0 as if there were only
one stabilizing controller. It turns out that we can reduce the bound to Õ(T 2/3N1/3(|U|+ 1)1/2) by
adaptively changing the value of ηb as in Algorithm 2, where we increase the value of µb if the Break
statement in Algorithm 1 is activated and keep it unchanged otherwise.
Theorem 4.10 (Regret bound with unknown |U|). Consider Algorithm 2 with polynomial batches
defined in Assumption 3.1 with proper parameters satisfying τ1

τ0
(β(τ0))

2 < 1
2
√
2

. Then, with y = 1
2 ,

η0 = O(1
T 2/3N1/3), and T ≥ max{ |U|3/2

N1/2(|U|+1)3/4
, N}, we achieve a sublinear regret bound.

Moreover, when H(t) ≤ O(
∑t

i=1
1
i) for all t ≥ 1, we have

RegretT =
[
Õ(T 2/3) + Õ(T−1/3) exp(O(|U|))

]
N1/3(|U|+ 1)1/2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm 2 DBAR-unknown |U|
Input: Add two more inputs µ0 = 0. y > 0.

// Modification 1: Add the following IF-ELSE Statement right after Line 9 in Algorithm 1.
if Pb+1 = Pb then µb+1 = µb. else µb+1 = µb + 1. end if

// Modification 2: Incorporate µb+1 to set ηb+1 in Line 27 in Algorithm 1.
ηb+1 =

η0(µb+1+1)y

(αb+1)
2sb+1

.

Proof sketch: Define η0,r := η0
√
r + 1. It turns out that for every r = 0, . . . , U , Õ(1

η0,r
) appears in

the regret instead of the integrated term Õ(|U|+1
η0

) in Theorem 4.5. The constant |U|+1 is distributed
among each Õ(1

η0,r
) term. Under the constraints given by the disintegration rule using Lemma

4.7 for each r, one can establish an upper bound of Õ((|U|+1)1/2

η0
) on the sum of Õ(1

η0,r
) terms

over r = 0, . . . , U by attaining the coefficients of these terms with complementary slackness in
Karush-Kuhn-Tucker (KKT) conditions. The details are available in Appendix E.

Our DBAR algorithm can also be applied to scenarios such as those switched systems (Tousi
et al., 2008; Zhao et al., 2022) in which the transition dynamics and the associated controller pool
change according to either the detection of a destabilizing controller or pre-determined time instants
(Battistelli et al., 2011), as well as the ballooning problem (Ghalme et al., 2021) where the controller
pool may expand. We proposed Algorithm 3, the switching version of DBAR, in Appendix F.

5 NUMERICAL EXPERIMENTS

To demonstrate the main results of this paper, we provide illustrative examples on both linear and
nonlinear dynamics with adversarial disturbances.

Example 1: Consider the following linear dynamical system with xt ∈ R2 and ut ∈ R2:

xt+1 =

[
2 1.2
1.1 2.5

]
xt +

[
1 0.3
0.4 0.9

]
ut + wt, t = 0, 1, . . . , (3)

where x0 = [100, 200]′ and wt = [sin
(

t
5π

)
, sin

(
t

11π

)
]′. We consider a linear policy ut = Kxt =[

k1 k2
k3 k4

]
xt and a controller pool K ′ = {K ∈ R2×2 : k1, k3, k4 ∈ {−3,−2,−1}, k2 ∈ {−1, 0, 1}}

that has |U| = 53 out of 81 candidate controllers. The goal is to keep the state near the origin, where
the cost function is quadratic at each time, namely ct(xt, ut) = ∥xt∥2.

Falsifying destabilizing controllers moderately stabilizes the state norm (Li et al., 2023). Compared
to their work, Figures 2(a) and 2(b) show that both integral components of our algorithm DBAR,
dynamic batch length and adaptive learning rate, further lowers the regret and stabilizes the system,
where approximately 2/3 of controllers in K ′ are destabilizing the system. In this case, Figures
2(c) and 2(d) both demonstrate that the two components of our algorithm mutually reinforce each
other, where each component stabilizes the state norm with or without time delay. This supports
the observations in Appendix A. In Appendix G.1, we also provide the experiment details and
simulation results with noise terms generated by uniform random walk, where wt − wt−1 has a
uniform distribution for t ≥ 1, as well as the results with truncated Gaussian noise for sanity check.

Example 2: Consider the following nonlinear noise-injected ball-beam system (Hauser et al., 1992):

ẍ = B(xθ̇2 − 9.81 sin θ) + 3wx, θ̈ = ux, B = 0.7143, (4)

where x is the ball position, θ is the beam angle, ux is the action, and wx(t) = sin
(

t
7π

)
. To provide

the simulations for high-dimensional systems, we consider the leader-follower system (Morbidi et al.,
2011), where the leader is represented by a ball-beam system, and the followers leverage the leader’s
state to stabilize themselves. Specifically, if the leader is controlled by destabilizing controllers, the
followers may also fail to stabilize. Consider the followers’ system:

ż = A[x, ẋ, − 9.81Bθ, − 9.81Bθ̇]′ + Ãz + uz + 3wz, (5)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Stability analysis (b) Regret analysis (c) Adaptive learning rate
under dynamic batch length

(d) Dynamic batch length
under adaptive learning rate

Figure 2: The stability and the regret in the linear system under sinusoidal noise. Fixed τ , fixed η
represents the algorithm in Li et al. (2023). Ablation study of the algorithm is presented.

(a) Ball-beam Leader-follower system (b) Stability analysis (c) Regret analysis

Figure 3: The stability and the regret in the leader-follower system under sinusoidal noise, where the
leader is represented by a ball-beam system. We selected β(t) = min{10/t1.05, 1} (see Definition
2.3) and used squared sum of state and action norms as the cost.

where [x, ẋ, θ, θ̇] ∈ R4 are the states of the leader given in (4), z ∈ R96 are the states of the followers,
uz ∈ R96 is the action of the followers, wz = [sin

(
t
5π

)
, sin

(
t

11π

)
, sin

(
t
5π

)
, sin

(
t

11π

)
, . . .] ∈ R96,

and A, Ã are relevant random matrices. Note that the number of states in the entire system is 100.

For the action ux, we now adopt a broader notion of stabilizing controllers and choose the policy
class to be the nested saturating control (Teel, 1992), without considering exponentially stabilizing
notions. For the action uz , we consider a linear policy in z; however, the policy is inherently nonlinear
with respect to the entire state, as the leader’s system itself is nonlinear. In Figures 3(b) and 3(c),
we observe that dynamic batching does not necessarily stabilize the state norm by itself. However,
if an adaptive learning rate is additionally applied, DBAR effectively stabilizes the explosion of
the nonlinear system and enjoys the improved regret, even when we use a polynomially stabilizing
criterion O(1/t1.05) to define the stabilizing controllers (see Definition 2.3). We also provide the
simulation results with the other polynomially decreasing β(·) series at a different rate. More
experiment details are available in Appendix G.2.

6 CONCLUSION

In an online bandit nonlinear control problem, an agent makes decisions with the bandit feedback
information, while suffering from nonlinear dynamics and adversarial disturbances. To address
such challenges, this paper develops a novel Exp3-type algorithm with theoretical guarantees. The
proposed algorithm uses a dynamic batch length to achieve asymptotic stability of the system without
requiring an exponential assumption on stabilizing controllers in the pool. Our adaptive learning rate
scheme observes the stability of state norm to overcome the inherent multiplicative exponential term
in the regret, thereby improving the overall regret. Future directions include extending these results
to problems with explicit safety constraints while selecting the best stabilizing controller among a
continuum of candidate controllers.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Naman Agarwal, Brian Bullins, Elad Hazan, Sham M. Kakade, and Karan Singh. Online control
with adversarial disturbances. In International Conference on Machine Learning, pp. 111–119.
PMLR, 2019.

Jason Altschuler and Kunal Talwar. Online learning over a finite action set with limited switching. In
Conference on Learning Theory, volume 75, pp. 1569–1573. PMLR, 2018.

Oren Anava, Elad Hazan, and Shie Mannor. Online learning for adversaries with memory: Price of
past mistakes. In Advances in Neural Information Processing Systems, volume 28, pp. 784–792,
2015.

Raman Arora, Ofer Dekel, and Ambuj Tewari. Online bandit learning against an adaptive adversary:
from regret to policy regret. In International Conference on Machine Learning, pp. 1747–1754.
PMLR, 2012.

Raman Arora, Teodor V. Marinov, and Mehryar Mohri. Bandits with feedback graphs and switching
costs. In Advances in Neural Information Processing Systems, volume 32, pp. 10397–10407, 2019.

Julien Aubert, Luc Luhéricy, and Patricia Reynaud-Bouret. On the convergence of the mle as an
estimator of the learning rate in the exp3 algorithm. In International Conference on Machine
Learning, pp. 1244–1275. PMLR, 2023.

Peter Auer, Nicoló Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The non-stochastic multi-
armed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

Simone Baldi, Giorgio Battistelli, Edoardo Mosca, and Pietro Tesi. Multi-model unfalsified adaptive
switching supervisory control. Automatica, 46(2):249–259, 2010.

Corneliu Barbu, Rodolphe Sepulchre, Wei Lin, and Petar V. Kokotović. Global asymptotic stabiliza-
tion of the ball-and-beam system. In Conference on Decision and Control. IEEE, 1997.

Giorgio Battistelli, Edoardo Mosca, Michael G. Safonov, and Pietro Tesi. Stability of unfalsified
adaptive switching control in noisy environments. IEEE Transactions on Automatic Control, 55
(10):2424–2429, 2010.

Giorgio Battistelli, João P. Hespanha, Edoardo Mosca, and Pietro Tesi. Model-free adaptive switching
control of uncertain time-varying plants. The International Federation of Automatic Control, 44
(1):1273–1278, 2011.

Giorgio Battistelli, Edoardo Mosca, and Pietro Tesi. Adaptive memory in multi-model switching
control of uncertain plants. Automatica, 50(3):874–882, 2014.

Giorgio Battistelli, Daniele Mari, Daniela Selvi, and Pietro Tesi. Direct control design via controller
unfalsification. International Journal of Robust and Nonlinear Control, 28:3694–3712, 2018.

Richard E. Bellman. Dynamic programming. Princeton university press, 1957.

Dimitri P Bertsekas. Reinforcement learning and optimal control. Athena Scientific Belmont, MA,
2019.

Raghu Bollapragada, Jorge Nocedal, Dheevatsa Mudigere, Hao-Jun Shi, and Ping Tak Peter Tang. A
progressive batching l-bfgs method for machine learning. In International Conference on Machine
Learning, pp. 620–629. PMLR, 2018.

Asaf Cassel and Tomer Koren. Bandit linear control. In Advances in Neural Information Processing
Systems, volume 33, pp. 8872–8882, 2020.

N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University Press, 2006.

Xinyi Chen and Elad Hazan. Black-box control for linear dynamical systems. In Conference on
Learning Theory, volume 134, pp. 1114–1143. PMLR, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Steven de Rooij, Tim van Erven, Peter Grünwald, and Wouter M Koolen. Follow the leader if you
can, hedge if you must. Journal of Machine Learning Research, 15(1):1281–1316, 2014.

Ofer Dekel, Jian Ding, Tomer Koren, and Yuval Peres. Bandits with switching costs: t2/3 regret. In
Symposium on the Theory of Computing, pp. 459–467, 2014.

Aditya Devarakonda, Maxim Naumov, and Michael Garland. Adabatch: Adaptive batch sizes for
training deep neural networks. arXiv preprint arXiv:1712.02029, 2017.

Dylan J. Foster and Max Simchowitz. Logarithmic regret for adversarial online control. In Interna-
tional Conference on Machine Learning, pp. 3211–3221, 2020.

Udaya Ghai, Arushi Gupta, Wenhan Xia, Karan Singh, and Elad Hazan. Online nonstochastic model-
free reinforcement learning. In Advances in Neural Information Processing Systems, volume 36,
2023.

Ganesh Ghalme, Swapnil Dhamal, Shweta Jain, Sujit Gujar, and Y. Narahari. Ballooning multi-armed
bandits. Artificial Intelligence, 296:103485, 2021.

Paula Gradu, John Hallman, and Elad Hazan. Non-stochastic control with bandit feedback. In
Advances in Neural Information Processing Systems, volume 34, pp. 10764–10774, 2020.

John Hauser, Shankar Sastry, and Petar V. Kokotović. Nonlinear control via approximate input-output
linearization: the ball and beam example. IEEE Transactions on Automatic Control, 37(3):392–398,
1992.

Elad Hazan and Karan Singh. Introduction to online nonstochastic control. arXiv preprint
arXiv:2211.09619, 2022.

Elad Hazan, Sham M. Kakade, and Karan Singh. The nonstochastic control problem. In Proceedings
of the 31st International Conference on Algorithmic Learning Theory, volume 117, pp. 408–421.
PMLR, 2020.

David J. Hill and Peter J. Moylan. Connections between finite-gain and asymptotic stability. IEEE
Transactions on Automatic Control, 25(5):931–936, 1980.

Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey Levine. How to
train your robot with deep reinforcement learning: lessons we have learned. The International
Journal of Robotics Research, 40(4-5):698–721, 2021.

Hassan K. Khalil. Nonlinear Systems. Pearson Education, 2015.

B. Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey.
IEEE Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

Yingying Li, James A. Preiss, Na Li, Yiheng Lin, Adam Wierman, and Jeff Shamma. Online
switching control with stability and regret guarantees. In Learning for Dynamics and Control
Conference, pp. 1138–1151. PMLR, 2023.

Yiheng Lin, James A. Preiss, Emile Anand, Yingying Li, Yisong Yue, and Adam Wierman. Online
adaptive policy selection in time-varying systems: No-regret via contractive perturbations. In
Advances in Neural Information Processing Systems, volume 37, 2023.

Zhenguo Ma, Yang Xu, Hongli Xu, Zeyu Meng, Liusheng Huang, and Yinxing Xue. Adaptive batch
size for federated learning in resource-constrained edge computing. IEEE Transactions on Mobile
Computing, 22(1):37–53, 2023.

Fabio Morbidi, Francesco Bullo, and Domenico Prattichizzo. Visibility maintenance via controlled
invariance for leader–follower vehicle formations. Automatica, 47(5), 2011.

Pouria Razzaghi, Amin Tabrizian, Wei Guo, Shulu Chen, Abenezer Taye, Ellis Thompson, Alexis
Bregeon, Ali Baheri, and Peng Wei. A survey on reinforcement learning in aviation applications.
arXiv preprint arXiv:2211.02147, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E. Dahl. Measuring the effects of data parallelism on neural network training. Journal of
Machine Learning Research, 20(112):1–49, 2019.

Jonathan W. Siegel and Stephan Wojtowytsch. A qualitative difference between gradient flows of con-
vex functions in finite- and infinite-dimensional hilbert spaces. arXiv preprint arXiv:2310.17610,
2023.

Eduardo D. Sontag. Input to state stability: Basic concepts and results. Nonlinear and Optimal
Control Theory, pp. 163–220, 2008.

Margareta Stefanovic and Michael G. Safonov. Safe Adaptive Control: Data-driven Stability Analysis
and Robust Synthesis. Springer, 2011.

Y. Jennifer Sun, Stephen Newman, and Elad Hazan. Optimal rates for bandit nonstochastic control.
In Advances in Neural Information Processing Systems, volume 36, 2023.

Andrew R. Teel. Global stabilization and restricted tracking for multiple integrators with bounded
controls. Systems & control letters, 18(3):165–171, 1992.

Mani M. Tousi, Idin Karuei, Shahin Hashtrudi-Zad, and Amir G. Aghdam. Supervisory control of
switching control systems. Systems & control letters, 57(2):132–141, 2008.

Duc N. Tran, Björn S. Rüffer, and Christopher M. Kellett. Incremental stability properties for
discrete-time systems. In Conference on Decision and Control. IEEE, 2016.

Tim van Erven, Wouter M Koolen, Steven de Rooij, and Peter Grünwald. Adaptive hedge. In
Advances in Neural Information Processing Systems, pp. 10565–10576, 2011.

Rui Zhao, Zhiqiang Zuo, and Yijing Wang. Event-triggered control for networked switched systems
with quantization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(10):
6120–6128, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A NECESSITY OF DBAR UNDER WEAKER STABILITY NOTION OF REQUIRED
CONTROLLERS

To illustrate how significant the weaker controller stability notion is compared to the exponential
notions, let us further present a one-dimensional system, where the current system state is 1. The goal
is to achieve a state near 0, and we would like to detect this stability by observing whether one arrives
at a state less than 1− ϵ, where ϵ is an arbitrarily small positive number. Exponentially stabilizing
controllers guarantee to detect the stability in O(log(1/ϵ)) time. However, with an asymptotically
stabilizing controller, if the controller is designed to keep the system state unchanged for an arbitrarily
long time T and then collapse the state towards 0 afterward, one cannot detect the stability before
time T regardless of how small ϵ is. In such a case, even though the controller ultimately achieves the
goal, it may take a lot of time to learn whether a closed-loop system would be stable or not.

Note that dynamic batch length is an important part of our work. If an exponentially stabilizing
controller is applied to a system, one can quickly certify the stability. However, if we only have the
asymptotically stabilizing controllers as in our problem setting, it may take a long time to observe
any abnormal behavior in the closed-loop system. Such an issue cannot be handled by a fixed batch
length and in that sense dynamic batch length is a necessary part of our work. In Table 1, we have
stated the intermediate step "Dynamic Batching" to achieve closed-loop system asymptotic stability,
which was not achievable by the previous works.

Figure 4 also demonstrates the necessity of a dynamic batch length regardless of the noise assump-
tion. The blue and orange lines represent the state norms generated by a fixed batch length and a
dynamic batch length, respectively. With both relatively easier statistical noise and more challenging
adversarial noise, the blue line shows a larger state norm than the orange line. Moreover, the blue line
occasionally has higher values than the red line, which is our asymptotic stability bound γwmax = 1.5,
while the orange line remains below the red line after a certain time.

(a) Statistical Noise (b) Adversarial Noise

Figure 4: The state norm with a fixed batch length compared to that with a dynamic batch length.
xt+1 = xt + 0.15ut + wt with ut = Kxt where K ∈ [−3.0,−2.9,−2.8, . . . , 4.9, 5.0]. We use
τ0 = 10, γ = 3, and set wmax = 0.5. The noise wt is (a) i.i.d. sampled from Uniform[−0.2, 0.5], and
(b) 0.15 + 0.35 sin(t

3π).

However, it turns out that the resulting regret by dynamic batching contains the multiplicative term
o(T 1/3) · exp(O(|U|)), which is because a dynamic batch length induces H(τB−1) to be necessarily
multiplied with exp(O(|U|)). (see Corollary D.10). Thus, we came up with a careful switching
strategy, an adaptive learning rate, to address this issue. The multiplicative term can be resolved
with splitting technique by introducing an adaptive learning rate, achieving both closed-loop system
asymptotic stability (by dynamic batch length) and the improved regret (by adaptive learning rate),
even though we have greatly relaxed the assumption on controller stability (exponential to asymptotic).
We developed this approach by factoring in every potential exponential term to be multiplied with the
initial learning rate η0 = O(T−2/3), which has a negative exponent on T , thus inherently serving as a
mitigating factor (see Theorem 4.6 and the term η0N

2

∑B−1
b=0 EKb−1:0

(wK
b (ib))2 in Lemma D.5). Due

to Lemma 4.7, one can explain that the remaining terms produced by the splitting can be bounded by
O(|U|). More details can be found in Appendix D.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B GLOSSARY

Before formally presenting the proofs, we provide a glossary to help readers understand the notations
of our algorithm DBAR (see Algorithm 1).

Table 2: Glossary
Notation Meaning

xt state at time t in the algorithm
x∗
t optimal state at time t

ut action at time t in the algorithm
u∗
t optimal action at time t

ct(xt, ut) cost at time t
wmax the maximum norm of the noise
T the length of time in the algorithm
B the number of batches in the algorithm
tb the start time for each batch b
τb the batch length at batch b
ηb learning rate at batch b
Kb the controller selected at batch b
N the number of controllers in the candidate pool

Wb(k) the weight of controller k at batch b
pb(k) the probability of selecting controller k at batch b
Pb a set of available controllers at batch b

αb, sb (αb)
sb indicates the magnitude of the state norm at tb compared to ∥x0∥

β(t), γ applying a stabilizing controller incurs ∥xt∥ ≤ β(t)∥x0∥+ γwmax
Lf Lipschitz constant for the dynamic f
Lπ Lipschitz constant for any controller π
U the number of times the Break statement is activated

b1, . . . , bU the next batch after the Break statement is activated

C STABILITY PROOF

Let b1, . . . , bU denote the next batch after the Break statement is activated; i.e., ∥xtbu
∥ > β(tbu −

tbu−1)∥xtbu−1
∥ + γwmax for every u = 1, . . . , U . For future use, let b0 = 0 and bU+1 = B.

Accordingly, tb0 = t0 = 0 and tbU+1
= tB = T + 1.

Lemma C.1 (Restatement of Lemma 4.3). Define H(t) :=
∑t−1

i=0 β(i). Under Assumption 3.1, we
have

lim
t→∞

H(t)

t
= 0.

Proof. Recall that we designed β(·) to be non-increasing and nonnegative. Then, we have β(i) ≤∫ i

i−1
β(x)dx for every integer i ≥ 1. Using the inequality, one can write

0 ≤ H(t) = β(0) +

t−1∑
i=1

β(i) ≤ β(0) +

∫ t−1

0

β(x)dx. (6)

If limt→∞ H(t) < ∞, clearly limt→∞
H(t)
t = 0 holds. If limt→∞ H(t) = ∞, we leverage

L’Hôpital’s rule with β(t) → 0 as t → ∞ to derive

lim
t→∞

H(t)

t
≤ lim

t→∞

β(0) +
∫ t−1

0
β(x)dx

t
= lim

t→∞

β(t− 1)

1
= 0,

where the first inequality follows from (6).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Lemma C.2. For 0 ≤ j ≤ k, we have

H(τk)

H(τj)
≤ τk

τj
.

Proof. For 0 ≤ j ≤ k,

H(τk)

H(τj)
≤

H(τj) +
∑τk−1

i=τj
β(i)

H(τj)
≤ 1 +

(τk − τj) · β(τj)
τj · β(τj)

=
τk
τj

,

where the last inequality is due to the non-increasing property of β(·). The equality holds when
β(0) = · · · = β(τk − 1).

Lemma C.3 (Sum of state norms in a single batch). In Algorithm 1, for each batch b = 0, 1, . . . , B−1,
the following inequality holds:

tb+1−1∑
t=tb

∥xt∥ ≤ H(τb)∥xtb∥+ γwmax(τb − 1)

Proof. For t = tb, we have ∥xt∥ ≤ β(0)∥xtb∥ since β(0) = 1. For tb < t ≤ tb+1 − 1, we have

∥xt∥ ≤ β(t− tb)∥xtb∥+ γwmax. (7)

Summing up all inequalities gives
tb+1−1∑
t=tb

∥xt∥ ≤ H(tb+1 − tb)∥xtb∥+ γwmax(tb+1 − tb − 1).

Since Line 5 of Algorithm 1 is not satisfied, τb = tb+1 − tb. This completes the proof.

Lemma C.4 (Weighted sum of state norms between the two consecutive Break statements). In
Algorithm 1, suppose that τ1

τ0
β(τ0) < 1. For every next batch index after the Break statement

u = 0, . . . , U , the following inequality holds:

bu+1−1∑
b=bu

H(τb)∥xtb∥ ≤ 1

1− τbu+1

τbu
β(τbu)

H(τbu)∥xtbu
∥+ γwmax

1− β(τbu+1)

bu+1−1∑
b=bu+1

H(τb).

Proof. Since we designed (τb)b≥0 to have a non-decreasing τb and non-increasing τb+1

τb
, notice

that we have β(τb) ≤ τb+1

τb
β(τb) ≤ τb

τb−1
β(τb−1) ≤ τ1

τ0
β(τ0) < 1 for every b ≥ 1 since β(·) is

non-increasing.

If bu+1 = bu + 1, the inequality clearly holds since 1

1−
τbu+1
τbu

β(τbu)
> 0. Otherwise, consider the

following inequality for bu < b ≤ bu+1 − 1:

H(τb)∥xtb∥ ≤ H(τb)β(τb−1)∥xtb−1
∥+H(τb)γwmax

=
H(τb)

H(τb−1)
β(τb−1)H(τb−1)∥xtb−1

∥+H(τb)γwmax,

where the inequality holds since Line 5 of Algorithm 1 is not satisfied. Recursively applying this
inequality, one arrives at

H(τb)∥xtb∥ ≤ Πb−1
a=bu

[H(τa+1)

H(τa)
β(τa)

]
·H(τbu)∥xtbu

∥+H(τb)γwmax(1 +

b−1∑
b′=bu+1

Πb−1
a=b′β(τa))

≤ Πb−1
a=bu

[H(τa+1)

H(τa)
β(τa)

]
·H(τbu)∥xtbu

∥+H(τb)γwmax(1 +

b−1∑
b′=bu+1

[β(τbu+1)]
b−b′)

≤ Πb−1
a=bu

[H(τa+1)

H(τa)
β(τa)

]
·H(τbu)∥xtbu

∥+H(τb)
γwmax

1− β(τbu+1)
(8)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

≤ Πb−1
a=bu

[τa+1

τa
β(τa)

]
·H(τbu)∥xtbu

∥+H(τb)
γwmax

1− β(τbu+1)

≤
[τbu+1

τbu
β(τbu)

]b−bu
·H(τbu)∥xtbu

∥+H(τb)
γwmax

1− β(τbu+1)
,

where the second inequality comes from the non-increasing property of β(·), the third inequality is
by β(τbu+1) < 1, the fourth inequality is due to Lemma C.2, and the last inequality comes from the
non-increasing property of τb+1

τb
β(τb). Since τbu+1

τbu
β(τbu) < 1, summing up the above inequalities

for bu < b ≤ bu+1 − 1 completes the proof.

Lemma C.5 (Next state norm after the Break statement). Define M1 := Lf (1 + Lπ)γwmax +
Lf (π0,max + wmax) + f0. Then, for every u = 1, . . . , U , we have

∥xtbu
∥ ≤ Lf (1 + Lπ)β(0)∥xtbu−1

∥+M1.

Proof. Suppose we picked a controller πt at time step t. Then, by Assumption 2.5, we have

∥ut∥ = ∥πt(xt)− πt(0) + πt(0)∥ ≤ ∥πt(xt)− πt(0)∥+ ∥πt(0)∥ ≤ Lπ∥xt∥+ π0,max. (9)

Combining the above inequality with Assumption 2.1, one can write

∥xt+1∥ = ∥f(xt, ut, wt)− f(0, 0, 0) + f(0, 0, 0)∥
≤ ∥f(xt, ut, wt)− f(0, 0, 0)∥+ ∥f(0, 0, 0)∥ ≤ Lf (∥xt∥+ ∥ut∥+ ∥wt∥) + f0

≤ Lf (∥xt∥+ Lπ∥xt∥+ π0,max + wmax) + f0

= Lf (1 + Lπ)∥xt∥+ Lf (π0,max + wmax) + f0.

Thus, for every u = 1, . . . , U , we obtain that

∥xtbu
∥ ≤ Lf (1 + Lπ)∥xtbu−1∥+ Lf (π0,max + wmax) + f0

≤ Lf (1 + Lπ)(β(tbu − tbu−1 − 1)∥xtbu−1
∥+ γwmax) + Lf (π0,max + wmax) + f0

= Lf (1 + Lπ)β(tbu − tbu−1 − 1)∥xtbu−1
∥+M1

≤ Lf (1 + Lπ)β(0)∥xtbu−1
∥+M1,

where the second inequality holds since Line 5 of Algorithm 1 is not satisfied during tbu−1 ≤ t ≤
tbu − 1 and the equality holds for the last inequality when tbu = tbu−1 + 1. This completes the
proof.

Lemma C.6 (Weighted sum of state norms along the Break statements). In Algorithm 1, suppose that
τ1
τ0
β(τ0) < 1. Define M2 := Lf (1 + Lπ)β(0)

γwmax
1−β(τ1)

+M1. Then, there exists a constant C ≥ 1

such that
U∑

u=0

H(τbu)∥xtbu
∥ ≤ [Lf (1 + Lπ)β(0)C]U+1 − 1

Lf (1 + Lπ)β(0)C − 1
H(τ0)∥x0∥+

([Lf (1 + Lπ)β(0)C]U − 1)M2

[Lf (1 + Lπ)β(0)C − 1]2
H(τbU)

Proof. Since we designed τb+1

τb
to converge, there exists R > 0 such that τb+1

τb
≤ R for all b ≥ 0.

Moreover, since limb→∞
τb+1

τb
= 1 and β(τ0) < 1, there exists b∗ > 0 such that

b ≥ b∗ =⇒ τb+1

τb
<

1

β(τ0)
. (10)

Accordingly, for any two batches b′ > b ≥ 0, we have

τb′

τb
[β(τb)]

b′−b−1 ≤ [β(τ0)]
b′−b−1Πb′−1

a=b

τa+1

τa
≤ Rb∗

β(τ0)
, (11)

considering that b = 0 and b′ = b∗ yields the largest possible upper bound due to (10). Now, define
C := Rb∗

β(τ0)
. Notice that we have C ≥ 1 since the left-hand side of (11) is greater than equal to 1

when b′ = b+ 1. Then, for every u = 1, . . . , U , one can write

H(τbu)∥xtbu
∥ ≤ Lf (1 + Lπ)β(0)

H(τbu)

H(τbu−1)
H(τbu−1)∥xtbu−1

∥+H(τbu)M1

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

≤ Lf (1 + Lπ)β(0)
H(τbu)

H(τbu−1)
Πbu−2

a=bu−1

[H(τa+1)

H(τa)
β(τa)

]
·H(τbu−1)∥xtbu−1

∥

+ Lf (1 + Lπ)β(0)H(τbu)
γwmax

1− β(τbu−1+1)
+H(τbu)M1

≤ Lf (1 + Lπ)β(0)
H(τbu)

H(τbu−1
)
[β(τbu−1

)]bu−bu−1−1 ·H(τbu−1
)∥xtbu−1

∥+H(τbu)M2

≤ Lf (1 + Lπ)β(0)
τbu
τbu−1

[β(τbu−1
)]bu−bu−1−1 ·H(τbu−1

)∥xtbu−1
∥+H(τbu)M2

≤ Lf (1 + Lπ)β(0)C ·H(τbu−1
)∥xtbu−1

∥+H(τbu)M2

where the first inequality is due to Lemma C.5, the second inequality is by (8) in Lemma C.4, the
fourth inequality is due to Lemma C.2, and the last inequality is by (11). Recursively applying this
inequality, one arrives at

H(τbu)∥xtbu
∥ ≤ [Lf (1 + Lπ)β(0)C]uH(τ0)∥x0∥+M2 ·

u∑
i=1

[Lf (1 + Lπ)β(0)C]u−iH(τbi)

≤ [Lf (1 + Lπ)β(0)C]uH(τ0)∥x0∥+M2H(τbU) ·
[Lf (1 + Lπ)β(0)C]u − 1

Lf (1 + Lπ)β(0)C − 1

< [Lf (1 + Lπ)β(0)C]u·
[
H(τ0)∥x0∥+

M2H(τbU)

Lf (1 + Lπ)β(0)C − 1

]
,

where the second inequality comes from the non-decreasing property of H(·) and the equality holds
when H(τb1) = · · · = H(τbU). Notice that for b′ > b ≥ 0, the case H(τb′) = H(τb) arises when
τb′ = τb or β(τb + 1) = · · · = β(τb′) = 0. Since Lf (1 + Lπ)β(0)C > 1, summing up the above
inequality for u = 1, . . . , U completes the proof.

Lemma C.7 (Sum of state norms). In Algorithm 1, suppose that τ1
τ0
β(τ0) < 1. Then, we have

T∑
t=0

∥xt∥ ≤ O([Lf (1 + Lπ)β(0)C]U (∥x0∥+H(τbU))) + γwmax · (O(

B−1∑
b=0

H(τb)) + T)

Proof. Applying Lemma C.3, C.4, and C.6 in turn, we have
T∑

t=0

∥xt∥ =

U∑
u=0

bu+1−1∑
b=bu

tb+1−1∑
t=tb

∥xt∥

≤
U∑

u=0

bu+1−1∑
b=bu

[
H(τb)∥xtb∥+ γwmax(τb − 1)

]

≤
U∑

u=0

[
1

1− τbu+1

τbu
β(τbu)

H(τbu)∥xtbu
∥+ γwmax

1− β(τbu+1)

bu+1−1∑
b=bu+1

H(τb) + γwmax(tbu+1
− tbu − 1)

]

≤ 1

1− τ1
τ0
β(τ0)

U∑
u=0

H(τbu)∥xtbu
∥+ γwmax

1− β(τ1)
(

B−1∑
b=0

H(τb)−
U∑

u=0

H(τbu)) + γwmax(T − U)

≤ 1

1− τ1
τ0
β(τ0)

U∑
u=0

H(τbu)∥xtbu
∥+ γwmax

1− β(τ1)

B−1∑
b=0

H(τb) + γwmaxT

≤ H(τ0)∥x0∥
1− τ1

τ0
β(τ0)

[Lf (1 + Lπ)β(0)C]U+1 − 1

Lf (1 + Lπ)β(0)C − 1
+

H(τbU)

1− τ1
τ0
β(τ0)

([Lf (1 + Lπ)β(0)C]U − 1)M2

[Lf (1 + Lπ)β(0)C − 1]2

+
γwmax

1− β(τ1)

B−1∑
b=0

H(τb) + γwmaxT

= O([Lf (1 + Lπ)β(0)C]U (∥x0∥+H(τbU))) + γwmax · (O(

B−1∑
b=0

H(τb)) + T)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where the equality holds for the fourth inequality when Line 5 of Algorithm 1 is not satisfied for the
entire horizon.

Theorem C.8 (Restatement of Theorem 4.1, Asymptotic stability). In Algorithm 1, suppose that
τ1
τ0
β(τ0) < 1. Then, it holds that

lim
T→∞

1

T

T∑
t=0

∥xt∥ ≤ γwmax.

Proof. We mainly use Lemma C.1 to prove the asymptotic stability. First, we have

H(τbU) ≤ H(τB−1) = o(τB−1) = o(T), (12)

where the first equality is due to Lemma C.1 and τB−1 = T when there is only one batch over the
entire horizon. Now, consider the following relationship between the number of batch B and the time
horizon T :

B−1∑
b=0

τb ≥ T ≥
B−U−1∑

b=0

τb + U, (13)

where the second inequality is due to the non-decreasing property of τb. Now, if
∑B−1

b=0 H(τb) < ∞,
clearly

∑B−1
b=0 H(τb) = o(T). Otherwise, define H(τB) = H(τB−1). Then, we have

lim
T→∞

∑B−1
b=0 H(τb)

T
≤ lim

B→∞

∑B−1
b=0 H(τb)∑B−U−1

b=0 τb + U
≤ lim

B→∞

∫ B

0
H(τb)db

τ0 +
∫ B−U−1

0
τbdb+ U

= lim
B→∞

H(τB−1)

τB−U−1
= lim

B→∞

H(τB−1)

τB−1
ΠB−2

b=B−U−1

τb+1

τb

= 0 · 1U = 0 (14)

where the second inequality leverages the non-decreasing property of both τb and H(τb), the remain-
ing equalities leverage L’Hôpital’s rule, Lemma C.1, and limb→∞

τb+1

τb
= 1. Thus, with Lemma C.7,

we have
T∑

t=0

∥xt∥ ≤ O([Lf (1 + Lπ)β(0)C]U (∥x0∥+ o(T))) + γwmax · (T + o(T)).

This completes the proof.

Lemma C.9. In Algorithm 1, we have

lim
T→∞

B

T
= 0

Proof. Recall the relationship stated in (13) between T and B. Using the second inequality, we have

0 ≤ lim
T→∞

B

T
≤ lim

T→∞

B∑B−U−1
b=0 τb + U

≤ lim
T→∞

B

τ0 +
∫ B−U−1

0
τbdb+ U

= lim
T→∞

1

τB−U−1
= 0,

where the third inequality uses the non-decreasing property of τb, after which we use L’Hôpital’s rule.
This completes the proof.

Theorem C.10 (Restatement of Theorem 4.2, Finite-gain stability). In Algorithm 1, suppose that
τ1
τ0
β(τ0) < 1. Assume that limt→∞ H(t) < ∞. Then, Algorithm 1 achieves finite-gain L1 stability;

i.e., there exist constants A1, A2 > 0 such that for all T ∈ Z+,
T∑

t=0

∥xt∥ ≤ A1 · wmaxT +A2.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof. Since limt→∞ H(t) < ∞, there exists a constant q1 that upper-bounds H(t); i.e., H(t) ≤ q1
for all t ≥ 0. Likewise, by Lemma C.9, there exists a constant q2 that upper-bounds B

T . Thus, with
Lemma C.7, one can write

T∑
t=0

∥xt∥ ≤ O([Lf (1 + Lπ)β(0)C]U (∥x0∥+ q1)) + γwmax · (O(Bq1) + T)

= O([Lf (1 + Lπ)β(0)C]U (∥x0∥+ q1)) + γ(1 +
B

T
O(q1)) · wmaxT

≤ O([Lf (1 + Lπ)β(0)C]U (∥x0∥+ q1)) + γ(1 +O(q1q2)) · wmaxT.

This completes the proof.

D REGRET PROOF FOR ALGORITHM 1

Lemma D.1. In Algorithm 1, we have

EKB−1:0
[wb(Kb)] = EKB−1:0

[Ek∼pb
[w′

b(k)]],

Proof. Given Kb−1, . . . ,K0, we have

Ek∼pb
[w′

b(k)] =
∑
k∈Pb

pb(k)
wb(Kb)

pb(k)
I(Kb=k) = wb(Kb), (15)

which implies that w′
b(k) sampled from pb is an unbiased estimator of wb(Kb).

Thus, for all b = 0, 1, . . . , B − 1, one can write

EKB−1:0
[wb(Kb)] = EKb:0

[wb(Kb)] = EKb−1:0
EKb

[wb(Kb) |Kb−1:0]

= EKb−1:0
EKb

[Ek∼pb
[w′

b(k)] |Kb−1:0]

= EKb:0
[Ek∼pb

[w′
b(k)]] = EKB−1:0

[Ek∼pb
[w′

b(k)]],

where the first equality is because KB−1, . . . ,Kb+1 does not affect the value of wb(Kb) and the
remaining equalities are by law of total expectation and (15).

Now, we let wK
b (i) denote the cost incurred at batch b if one selects the controllers for batch

0, . . . , b− 1 according to Algorithm 1, and the controller for batch b to be i.

Lemma D.2. In Algorithm 1, for any i ∈ Pb, we have

EKB−1:0
[w′

b(i)] = EKB−1:0
[wK

b (i)]

and for some controller ib ∈ Pb, we have

EKB−1:0

[
η0
2

(wb(Kb))
2

pb(Kb)

]
≤ η0N

2
EKb−1:0

(wK
b (ib))2.

Proof. For all b = 0, 1, . . . , B − 1 and for all i ∈ Pb, we have

EKB−1:0
[w′

b(i)] = EKb:0
[w′

b(i)] = EKb−1:0
[EKb

[w′
b(i) |Kb−1:0]]

= EKb−1:0
[
∑

Kb∈Pb

pb(Kb)
wb(Kb)

pb(i)
I(Kb=i)]

= EKb−1:0
[wK

b (i)] = EKB−1:0
[wK

b (i)]

where the first equality is because KB−1, . . . ,Kb+1 does not affect the value of w′
b(i) and the last

equality is because KB−1, . . . ,Kb does not affect the value of wK
b (i). Next, we can also obtain that

EKB−1:0

[
η0
2

(wb(Kb))
2

pb(Kb)

]
= EKb:0

[
η0
2

(wb(Kb))
2

pb(Kb)

]
= EKb−1:0

EKb

[
η0
2

(wb(Kb))
2

pb(Kb)
|Kb−1:0

]

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

= EKb−1:0

∑
Kb∈Pb

[
η0
2
pb(Kb)

(wb(Kb))
2

pb(Kb)

]
= EKb−1:0

∑
Kb∈Pb

[
η0
2
(wb(Kb))

2

]
≤ η0N

2
EKb−1:0

(wK
b (ib))2,

for the controller ib = argmaxi∈Pb
(wK

b (i))2. This completes the proof.

In Algorithm 1, define L := {0 ≤ b ≤ B − 1, b ∈ Z+ : sb+1 ̸= sb} and let b1, . . . , b|L| denote the
batch where Line 22 of Algorithm 1 is satisfied; i.e., sbl+1 ̸= sbl for l = 1, . . . , |L|. For convenience,
we let b0 = 0, b|L|+1 = B − 1, and sB = sB−1. Also, define V := {0 ≤ b ≤ B − 1, b ∈ Z+ : sb ̸=
0}.
Lemma D.3 (Restatement of Lemma 4.7). In Algorithm 1, suppose that β(τ0) < 1 and let U denote
the number of times that the Break statement is activated. Then, it holds that |L| = O(U) and
|V| = O(U).

Proof. For every batch b = 0, . . . , B − 1, we have

∥xtb∥ < (αb)
sb+1∥x0∥+ δ (16)

by Lines 11-20. If the Break statement is not activated, since we designed δ ≥ γwmax
1−β(τ0)

, it yields that

∥xtb+1
∥ ≤ β(τb)∥xtb∥+ γwmax ≤ β(τ0)(αb)

sb+1∥x0∥+ β(τ0)δ + γwmax

≤ β(τ0)(αb)
sb+1∥x0∥+ δ < (αb)

sb+1∥x0∥+ δ,

where the second and the last inequalities are due to β(τb) ≤ β(τ0) < 1 and the third inequality is
by the formulation of δ. Then, sb+1 > sb cannot occur when the Break statement is not activated.
Also, Line 14 avoids sb+1 > sb + 1. As a result, starting from s0 = 0, the event sb+1 = sb + 1 can
occur at most U times. Accordingly, the event sb+1 < sb also can occur at most U times, leading to
|L| ≤ 2U .

Now, we observe the number of batches b̃ needed to stabilize the state norm; i.e., min{b̃ > 0 :
sb+b̃ < sb} when the Break statement is not activated. Starting from batch b and the corresponding
sb, provided that the Break statement is not activated, one can write

∥xtb+b̃
∥ ≤ β(τb+b̃−1)∥xtb+b̃−1

∥+ γwmax ≤ β(τ0)∥xtb+b̃−1
∥+ γwmax

≤ (β(τ0))
b̃∥xtb∥+ γwmax

b̃−1∑
a=0

(β(τ0))
a ≤ (β(τ0))

b̃∥xtb∥+
γwmax

1− β(τ0)

≤ (β(τ0))
b̃∥xtb∥+ δ < (β(τ0))

b̃[(αb)
sb+1∥x0∥+ δ] + δ, (17)

where the first and third inequalities are due to not satisfying Line 5 iteratively when the Break
statement is not activated, the second and fourth inequalities are by β(τb) ≤ β(τ0) < 1, and the last
two inequalities are by the design of δ and (16). It is desirable to find the minimum value of b̃ that
makes the right-hand side of (17) smaller than (αb)

sb∥x0∥+ δ:

(β(τ0))
b̃[(αb)

sb+1∥x0∥+ δ] + δ ≤ (αb)
sb∥x0∥+ δ ⇐⇒ 1

(β(τ0))b̃
≥ αb +

δ

(αb)sb∥x0∥
, (18)

where the right-hand side of (18) can be upper-bounded by αb +
δ

∥x0∥ since αb > 1. Thus, if sb ̸= 0,

min{b̃ > 0 : sb+b̃ < sb} ≤

⌈
log(αb +

δ
∥x0∥)

− log β(τ0)

⌉
, (19)

when the Break statement is not activated. In other words, starting from a batch b where sb > 0,
within the number of batches on the right-hand side of (19), either the Break statement is activated or
the value of sb decreases.

More specifically, consider two sets of batches: B1 = {0 ≤ b ≤ B − 1, b ∈ Z+ :
the Break statement activated} and B2 = {0 ≤ b ≤ B − 1, b ∈ Z+ : sb+1 < sb}. Let B = B1 ∪ B2

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

be the set ordered by batch numbers. Then, the batch interval between two consecutive batches in B
is upper-bounded by (19). Thus, considering that |L| ≤ 2U , we have

|V| ≤ (2U − 1)

⌈
log(αb +

δ
∥x0∥)

− log β(τ0)

⌉
,

which completes the proof.

Lemma D.4 (cumulative mix loss). In Algorithm 1, for any controller il ∈ Uc for l = 0, . . . , |L|, the
cumulative mix loss is upper-bounded as follows:

EKB−1:0

B−1∑
b=0

− 1

η0
log(Ek∼pb

exp(−ηbw
′
b(k))) ≤

Õ(U + 1)

η0
+ EKB−1:0

|L|∑
l=0

bl+1−1∑
b=bl

wK
b (il)

(αb)2sb

Proof. Given l = 0, . . . , |L|, we can analyze a single mix loss for b = bl+1, . . . , bl+1−1 as follows:

− 1

η0
log(Ek∼pb

exp(−ηbw
′
b(k))) = − 1

η0
log(

∑
k∈Pb

pb(k) exp(−ηbw
′
b(k)))

= − 1

η0
log(

∑
k∈Pb

exp(−ηbWb(k)) exp(−ηbw
′
b(k))∑

i∈Pb
exp(−ηbWb(i))

)

= − 1

η0
log(

∑
k∈Pb

exp(−ηbWb+1(k))∑
i∈Pb

exp(−ηbWb(i))
), (20)

while a mix loss for b = bl is as follows:

− 1

η0
log(Ek∼pb

exp(−ηblw
′
bl(k))) = − 1

η0
log(

∑
k∈P

bl

pbl(k) exp(−ηblw
′
bl(k)))

= − 1

η0
log(

1

|Pbl |
∑

k∈P
bl

exp(−ηblw
′
bl(k)))

≤ logN

η0
− 1

η0
log(

∑
k∈P

bl

exp(−ηblw
′
bl(k))) (21)

=
logN

η0
− 1

η0
log(

∑
k∈P

bl

exp(−ηblWbl+1(k))), (22)

where the last equality only holds when bl+1 > bl+1. Now, notice that the batches b = bl, . . . , bl+1−1
share the same learning rate; i.e., ηbl = · · · = ηbl+1−1 since the same sb yields the same αb, and thus
the same ηb. Thus, in the case where bl+1 > bl + 1, we have

bl+1−1∑
b=bl

− 1

η0
log(Ek∼pb

exp(−ηbw
′
b(k))) ≤

logN

η0
− 1

η0
log(Πbl+1−1

b=bl+1

∑
k∈Pb−1

exp(−ηblWb(k))∑
k∈Pb

exp(−ηblWb(k))
)

− 1

η0
log(

∑
k∈P

bl+1−1

exp(−ηblWbl+1(k)))

≤ logN

η0
− 1

η0
log(

∑
k∈P

bl+1−1

exp(−ηblWbl+1(k))), (23)

where the first inequality is by (20) and (22) and the second inequality comes from Pb ⊆ Pb−1.
Considering both cases (21) and (23), for any controller i0, . . . , i|L| ∈ Uc, one can write

B−1∑
b=0

− 1

η0
log(Ek∼pb

exp(−ηbw
′
b(k))) ≤

|L|∑
l=0

[
logN

η0
− 1

η0
log(

∑
k∈P

bl+1−1

exp(−ηbl

bl+1−1∑
b=bl

w′
b(k)))

]

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

≤ (|L|+ 1) logN

η0
−

|L|∑
l=0

1

η0
log(exp(−ηbl

bl+1−1∑
b=bl

w′
b(i

l)))

=
Õ(U + 1)

η0
+

|L|∑
l=0

∑bl+1−1
b=bl w′

b(i
l)

(αbl)
2s

bl
, (24)

where the first inequality considers Wbl+1(k) =
∑bl+1−1

b=bl w′
b(k) in (23), the second inequality is

because any controller il is an element of Pbl+1−1, and the last equality comes from the definition of
ηbl = η0/(αbl)

2s
bl and |L| = O(U) by Lemma D.3. Finally, by Lemma D.2, taking the expectation

of (24) with respect to KB−1:0 completes the proof.

Now, we consider the cumulative mixability gap.

Lemma D.5 (cumulative mixability gap). In Algorithm 1, there exists a set of controllers ib ∈ Pb for
b = 0, . . . , B − 1 such that the cumulative mixability gap is upper-bounded as follows:

EKB−1:0

B−1∑
b=0

Ek∼pb
[w′

b(k)]+
1

η0
log(Ek∼pb

exp(−ηbw
′
b(k))) ≤

O(U)

2η0
+
η0N

2

B−1∑
b=0

EKb−1:0
(wK

b (ib))2

Proof. Given the set V , we can analyze a single mixability gap for b /∈ V and b ∈ V , respectively.
Since sb = 0 for b /∈ V , given Kb−1, . . . ,K0, we have

Ek∼pb
[w′

b(k)] +
1

η0
log(Ek∼pb

exp(−ηbw
′
b(k))) = Ek∼pb

[w′
b(k)] +

1

η0
log(Ek∼pb

exp(−η0w
′
b(k)))

≤ Ek∼pb
[w′

b(k)] +
1

η0
(Ek∼pb

exp(−η0w
′
b(k))− 1)

≤ Ek∼pb
[w′

b(k)] +
1

η0
(Ek∼pb

η20(w
′
b(k))

2

2
− η0w

′
b(k))

=
η0
2
Ek∼pb

[(w′
b(k))

2]

=
η0
2

∑
k∈Pb

pb(k)
(wb(Kb))

2

(pb(k))2
I(Kb=k) =

η0
2

(wb(Kb))
2

pb(Kb)
,

(25)

where the first inequality uses log(x) ≤ x − 1 for all x ∈ R and the second inequality uses
ex ≤ 1 + x+ x2

2 for all x ∈ R. Now, for b ∈ V , given Kb−1, . . . ,K0, we obtain that

Ek∼pb
[w′

b(k)] +
1

η0
log(Ek∼pb

exp(− ηbw
′
b(k))) ≤ Ek∼pb

[w′
b(k)] +

1

η0
(Ek∼pb

exp(−ηbw
′
b(k))− 1)

≤ Ek∼pb
[w′

b(k)]

≤ Ek∼pb
[w′

b(k)] +
1

η0
(Ek∼pb

η20(w
′
b(k))

2

2
− η0w

′
b(k) +

1

2
)

=
η0
2
Ek∼pb

[(w′
b(k))

2] +
1

2η0
=

η0
2

(wb(Kb))
2

pb(Kb)
+

1

2η0
, (26)

where the second inequality uses ex ≤ 1 for all x ≤ 0 and the third inequality uses x2

2 + x+ 1
2 ≥ 0

for all x ∈ R. Since |V| = O(U) by Lemma D.3, we have inequality (26) holding at most O(U)
times and (25) holding in the remaining batches among b = 0, . . . , B − 1. Finally, by Lemma D.2,
taking expectation of (25) and (26) with respect to KB−1:0 completes the proof.

We let xt and ut denote the state and action sequence in the algorithm depending on the context.
We let xK

t (i) and uK
t (i) for t = tb, . . . , tb+1 − 1 denote the state and action sequence generated by

selecting the controllers before batch b according to Algorithm 1, while selecting the controller i at
batch b. Accordingly, we have wK

b (i) =
∑tb+1−1

t=tb
ct(x

K
t (i), uK

t (i)). We also let x∗
t and u∗

t denote

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

the optimal state and action sequence generated by the best stabilizing controller i∗ that satisfies
both of Definitions 2.3 and 2.4; i.e., i∗ = argmini∈S

∑T
t=0 ct(xt, πi∗(xt)) subject to the transition

dynamics.
Lemma D.6. In Algorithm 1, suppose that τ1

τ0
(β(τ0))

2 < 1
2
√
2

. For any controller ib ∈ Pb for
b = 0, . . . , B − 1, we have

B−1∑
b=0

EKb−1:0
(wK

b (ib))2 = exp(O(U))O(τB−1H(τB−1)) +O(

B−1∑
b=0

(τb)
2).

Proof. By Assumption 2.2, for all x ∈ Rn and u ∈ Rm, we have

|ct(x, u)| = |ct(x, u)− ct(0, 0) + ct(0, 0)| ≤ |ct(x, u)− ct(0, 0)|+ |ct(0, 0)|
≤ (Lc1(∥x∥+ ∥u∥) + Lc2)(∥x∥+ ∥u∥) + c0,max

= Lc1(∥x∥+ ∥u∥)2 + Lc2(∥x∥+ ∥u∥) + c0,max

≤ 2Lc1(∥x∥2 + ∥u∥2) + Lc2(∥x∥+ ∥u∥) + c0,max, (27)

where the last inequality is due to Cauchy–Schwarz inequality. Thus, we can upper-bound (wK
b (ib))2

for any controller ib ∈ Pb for b = 0, . . . , B − 1 as follows:

(wK
b (ib))2 =

[tb+1−1∑
t=tb

ct(x
K
t (ib), uK

t (ib))

]2
≤

tb+1−1∑
t=tb

ct(x
K
t (ib), uK

t (ib))2(tb+1 − tb)

≤ (tb+1 − tb)

tb+1−1∑
t=tb

(2Lc1(∥xK
t (ib)∥2 + ∥uK

t (ib)∥2) + Lc2(∥xK
t (ib)∥+ ∥uK

t (ib)∥) + c0,max)
2

≤ 5(tb+1 − tb)

tb+1−1∑
t=tb

(4L2
c1(∥x

K
t (ib)∥4 + ∥uK

t (ib)∥4) + L2
c2(∥xK

t (ib)∥2 + ∥uK
t (ib)∥2) + c20,max)

(28)

where the first and the third inequalities are due to Cauchy–Schwarz inequality.

From (7), for tb < t ≤ tb+1 − 1, we have

∥xK
t (ib)∥2 ≤ 2[β(t− tb)]

2∥xK
tb
(ib)∥2 + 2γ2w2

max (29)

∥xK
t (ib)∥4 ≤ 8[β(t− tb)]

4∥xK
tb
(ib)∥4 + 8γ4w4

max, (30)

where the inequalities are by Cauchy-Schwarz inequality. Accordingly, we obtain that

tb+1−1∑
t=tb

∥xK
t (ib)∥2 ≤ 2H(tb+1 − tb)∥xK

tb
(ib)∥2 + 2γ2w2

max(tb+1 − tb − 1) (31)

tb+1−1∑
t=tb

∥xK
t (ib)∥4 ≤ 8H(tb+1 − tb)∥xK

tb
(ib)∥4 + 8γ4w4

max(tb+1 − tb − 1), (32)

where we use β(·) ≤ 1 to derive
∑tb+1−tb−1

t=0 [β(t)]p ≤
∑tb+1−tb−1

t=0 [β(t)] = H(tb+1− tb) for p ≥ 1.

From (9), for tb ≤ t ≤ tb+1 − 1, we have

∥uK
t (ib)∥2 ≤ 2L2

π∥xK
t (ib)∥2 + 2π2

0,max (33)

∥uK
t (ib)∥4 ≤ 8L4

π∥xK
t (ib)∥4 + 8π4

0,max, (34)

where the inequalities are by Cauchy-Schwarz inequality. Now, we substitute (31), (32), (33), (34),
and tb+1 − tb ≤ τb into the right-hand side of (28) to upper-bound (wK

b (ib))2 as follows:

(wK
b (ib))2 ≤ 5τb[32L

2
c1(1 + 8L4

π)H(τb)∥xK
tb
(ib)∥4 + 2L2

c2(1 + 2L2
π)H(τb)∥xK

tb
(ib)∥2]+

5τ2b [32L
2
c1((1 + 8L4

π)γ
4w4

max + π4
0,max) + 2L2

c2((1 + 2L2
π)γ

2w2
max + π2

0,max) + c20,max]

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

= M3τbH(τb)∥xK
tb
(ib)∥4 +M4τbH(τb)∥xK

tb
(ib)∥2 +M5τ

2
b

= M3τbH(τb)∥xtb∥4 +M4τbH(τb)∥xtb∥2 +M5τ
2
b , (35)

where M3,M4,M5 are constants determined by Lc1, Lc2, Lπ, γ, wmax, π0,max, and c0,max. The last
equality comes from xK

tb
(ib) = xtb for any ib ∈ Pb.

Meanwhile, one can upper-bound both
∑B−1

b=0 τbH(τb)∥xtb∥4 and
∑B−1

b=0 τbH(τb)∥xtb∥2 by succes-
sively applying Lemma C.3, C.4, and C.6 in the same fashion as presented in the proof of Lemma
C.7. Since τ2

1

τ2
0
8(β(τ0))

4 < 1, by (29) and (30), there exists C1, C2 ≥ 1 such that

B−1∑
b=0

τbH(τb)∥xtb∥4 = O([8L4
f (1 + Lπ)

4β(0)4C1]
U (∥x0∥4 + τbUH(τbU))) + 8γ4w4

max ·O(

B−1∑
b=0

τbH(τb))

B−1∑
b=0

τbH(τb)∥xtb∥2 = O([2L2
f (1 + Lπ)

2β(0)2C2]
U (∥x0∥2 + τbUH(τbU))) + 2γ2w2

max ·O(

B−1∑
b=0

τbH(τb)).

Substituting the equalities into the summation of (35) for b = 0, . . . , B − 1 yields

B−1∑
b=0

(wK
b (ib))2 = exp(O(U))O(τbUH(τbU)) +O(

B−1∑
b=0

τbH(τb)) +O(

B−1∑
b=0

(τb)
2). (36)

Notice that taking expectation of (wK
b (ib))2 with respect to Kb−1:0 does not affect the inequality.

Finally, τbU ≤ τB−1 and H(τb) = o(τb) completes the proof.

Lemma D.7. In Algorithm 1, for the best stabilizing controller i∗ ∈ S, we have

EKB−1:0

B−1∑
b=0

tb+1−1∑
t=tb

[
ct(x

K
t (i∗), uK

t (i∗))

(αb)2sb
− ct(x

∗
t , u

∗
t)

]
≤ O(U) +O(

B−1∑
b=0

H(τb)).

Proof. Since x∗
t is generated by a stabilizing controller, we have

∥x∗
t ∥ ≤ β(t)∥x0∥+ γwmax ≤ β(0)∥x0∥+ γwmax

∥x∗
t ∥2 ≤ 2β(t)2∥x0∥2 + 2γ2w2

max ≤ 2β(0)2∥x0∥2 + 2γ2w2
max,

where the inequalities are by Cauchy-Schwarz inequality and the non-increasing property of β(·).
Then, by (9), (27), and (33), we have

ct(x
∗
t , u

∗
t) ≤ 2Lc1(∥x∗

t ∥2 + ∥u∗
t ∥2) + Lc2(∥x∗

t ∥+ ∥u∗
t ∥) + c0,max

≤ 2Lc1((1 + 2L2
π)∥x∗

t ∥2 + 2π2
0,max) + Lc2((1 + Lπ)∥x∗

t ∥+ π0,max) + c0,max

≤ 4Lc1(1 + 2L2
π)(β(0))

2∥x0∥2 + Lc2(1 + Lπ)β(0)∥x0∥+ 4Lc1(1 + 2L2
π)γ

2w2
max

+ Lc2(1 + Lπ)γwmax + 4Lc1π
2
0,max + Lc2π0,max + c0,max := M6.

(37)

In Algorithm 1, one can write∥∥∥∥ xtb

(αb)sb

∥∥∥∥ ≤ (αb)
sb+1∥x0∥+ δ

(αb)sb
≤ αb∥x0∥+ δ (38)∥∥∥∥ x∗

t

(αb)sb

∥∥∥∥ ≤ β(t)∥x0∥+ γwmax

(αb)sb
≤ β(0)∥x0∥+ γwmax, (39)

where the equalities hold for the last inequalities of (38) and (39) when sb = 0.

By Assumption 2.2, for the best stabilizing controller i∗ ∈ S and for tb ≤ t < tb+1, we have

1

(αb)2sb
|ct(xK

t (i∗), uK
t (i∗))− ct(x

∗
t , u

∗
t)|

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

≤ 1

(αb)2sb
(Lc1(max{∥xK

t (i∗)∥, ∥x∗
t ∥}+max{∥uK

t (i∗)∥, ∥u∗
t ∥}) + Lc2)(∥xK

t (i∗)− x∗
t ∥+ ∥uK

t (i∗)− u∗
t ∥)

≤ 1

(αb)2sb
(Lc1((1 + Lπ)max{∥xK

t (i∗)∥, ∥x∗
t ∥}+ π0,max) + Lc2)(1 + Lπ)∥xK

t (i∗)− x∗
t ∥

= (1 + Lπ)(Lc1(1 + Lπ)max{
∥∥∥∥xK

t (i∗)

(αb)sb

∥∥∥∥,∥∥∥∥ x∗
t

(αb)sb

∥∥∥∥}+ Lc1π0,max + Lc2

(αb)sb
)

∥∥∥∥xK
t (i∗)− x∗

t

(αb)sb

∥∥∥∥
≤ (1 + Lπ)(β(t− tb)Lc1(1 + Lπ)max{

∥∥∥∥xK
tb
(i∗)

(αb)sb

∥∥∥∥,∥∥∥∥ x∗
tb

(αb)sb

∥∥∥∥}
+

Lc1(1 + Lπ)γwmax + Lc1π0,max + Lc2

(αb)sb
) · β(t− tb)

∥∥∥∥xK
tb
(i∗)− x∗

tb

(αb)sb

∥∥∥∥
≤ Lc1(1 + Lπ)

2β(t− tb)
2

(∥∥∥∥ xtb

(αb)sb

∥∥∥∥+∥∥∥∥ x∗
tb

(αb)sb

∥∥∥∥)2

+
Lc1(1 + Lπ)γwmax + Lc1π0,max + Lc2

(αb)sb
(1 + Lπ)β(t− tb)

(∥∥∥∥ xtb

(αb)sb

∥∥∥∥+∥∥∥∥ x∗
tb

(αb)sb

∥∥∥∥)
≤ Lc1(1 + Lπ)

2β(t− tb)
2((αb + β(0))∥x0∥+ δ + γwmax)

2

+ (Lc1(1 + Lπ)γwmax + Lc1π0,max + Lc2)(1 + Lπ)β(t− tb)((αb + β(0))∥x0∥+ δ + γwmax)

≤ M7β(t− tb)
2 +M8β(t− tb), (40)

where M7 and M8 are constants determined by Lc1, Lc2, Lπ, π0,max, β(0), δ, γ, wmax and
maxb∈{0,1,...,B−1} αb. Notice that αb in Line 14 of Algorithm 1 is upper-bounded by some constant
by Lemma C.5. The second inequality is by (9), the third inequality is due to Definition 2.4 and by
leveraging the same stabilizing controller i∗ from tb for both trajectories xK

t (i∗) and x∗
t , the fourth

inequality uses xK
tb
(i∗) = xtb , and the fifth inequality is by (38) and (39). By combining (37) and

(40), we have∣∣∣∣ct(xK
t (i∗), uK

t (i∗))

(αb)2sb
− ct(x

∗
t , u

∗
t)

∣∣∣∣ =∣∣∣∣ct(xK
t (i∗), uK

t (i∗))

(αb)2sb
− ct(x

∗
t , u

∗
t)

(αb)2sb
− (αb)

2sb − 1

(αb)2sb
ct(x

∗
t , u

∗
t)

∣∣∣∣
≤ 1

(αb)2sb
|ct(xK

t (i∗), uK
t (i∗))− ct(x

∗
t , u

∗
t)|+

(αb)
2sb − 1

(αb)2sb
ct(x

∗
t , u

∗
t)

≤

{
M7β(t− tb)

2 +M8β(t− tb), if sb = 0,

M7β(t− tb)
2 +M8β(t− tb) +M6, if sb ̸= 0.

Thus, one can conclude that

B−1∑
b=0

tb+1−1∑
t=tb

[
ct(x

K
t (i∗), uK

t (i∗))

(αb)2sb
− ct(x

∗
t , u

∗
t)

]
≤ M6|V|+

B−1∑
b=0

(M7 +M8)H(tb+1 − tb)

= O(U) +O(

B−1∑
b=0

H(τb)), (41)

where the first inequality uses β(·) ≤ 1 to derive
∑tb+1−1

t=tb
[β(t − tb)]

2 ≤
∑tb+1−1

t=tb
[β(t − tb)] =

H(tb+1 − tb) and the last equality uses tb+1 − tb ≤ τb and Lemma D.3. Taking expectation of (41)
with respect to KB−1:0 completes the proof.

Theorem D.8 (Restatement of Theorem 4.5, Regret Bound). In Algorithm 1, suppose that
τ1
τ0
(β(τ0))

2 < 1
2
√
2

. Then, the regret bound is as follows:

EKB−1:0

T∑
t=0

[ct(xt, ut)− ct(x
∗
t , u

∗
t)]

= O(|U|) +O(

B−1∑
b=0

H(τb)) +
Õ(|U|+ 1)

η0
+

η0N

2
[exp(O(|U|))O(τB−1H(τB−1)) +O(

B−1∑
b=0

(τb)
2)].

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Proof. By Lemma D.1, we have

EKB−1:0

T∑
t=0

ct(xt, ut) = EKB−1:0

B−1∑
b=0

tb+1−1∑
t=tb

ct(xt, ut) = EKB−1:0

B−1∑
b=0

[wb(Kb)]

= EKB−1:0

B−1∑
b=0

[Ek∼pb
[w′

b(k)]]

≤ Õ(U + 1)

η0
+

η0N

2

B−1∑
b=0

EKb−1:0
(wK

b (ib))2 + EKB−1:0

|L|∑
l=0

bl+1−1∑
b=bl

wK
b (i∗)

(αb)2sb

≤ Õ(U + 1)

η0
+

η0N

2
[exp(O(U))O(τB−1H(τB−1)) +O(

B−1∑
b=0

(τb)
2)]

+O(U) +O(

B−1∑
b=0

H(τb)) + EKB−1:0

T∑
t=0

ct(x
∗, u∗),

where the first inequality is due to Lemma D.4 and D.5, and the last inequality is due to Lemma D.6
and D.7. Using U ≤ |U| completes the proof.

Theorem D.9 (Restatement of Theorem 4.6, Regret bound with known |U|). In Algorithm 1,
let τ0 = ⌊(z

N(|U|+1))
1/2⌋ and τb = ⌈((νb+z)

N(|U|+1))
1/2⌉ for every b ≥ 1 with the constants

z, ν > 0 that satisfies τ0 > 0 and τ1
τ0
(β(τ0))

2 < 1
2
√
2

. Also, let η0 = O((|U|+1)2/3

T 2/3N1/3). When

T ≥ max{ |U|3/2
(N(|U|+1))1/2

, N(|U|+ 1)}, we have

EKB−1:0

T∑
t=0

[ct(xt, ut)− ct(x
∗
t , u

∗
t)] = Õ(T 2/3N1/3(|U|+ 1)1/3)) + o(1) exp(O(|U|)) + o(T),

which implies that we achieve a sublinear regret bound. Moreover, when H(t) ≤ O(
∑t

i=1
1
i) for all

t ≥ 1, we have

EKB−1:0

T∑
t=0

[ct(xt, ut)− ct(x
∗
t , u

∗
t)] =

[
Õ(T 2/3) + Õ(T−1/3) exp(O(|U|))

]
N1/3(|U|+ 1)1/3.

Proof. By the formulation of (τb)b≥0, we have

B−1∑
b=0

(νb+ z)1/2

(N(|U|+ 1))1/2
− 1 ≤

B−1∑
b=0

τb = T ≤
B−1∑
b=0

(νb+ z)1/2

(N(|U|+ 1))1/2
+ (B − 1),

where we can further use non-decreasing property of (·)1/2 to arrive at

z1/2 + 2
3ν [(ν(B − 1) + z)3/2 − z3/2]

(N(|U|+ 1))1/2
− 1 =

z1/2 +
∫ B−1

0
(νb+ z)1/2db

(N(|U|+ 1))1/2
− 1 ≤ T

≤
∫ B

0
(νb+ z)1/2db

(N(|U|+ 1))1/2
+ (B − 1) =

2
3ν [(νB + z)3/2 − z3/2]

(N(|U|+ 1))1/2
+ (B − 1),

(42)

thus we have B = O(T 2/3N1/3(|U|+1)1/3) from the first inequality and T = O(B3/2N−1/2(|U|+
1)−1/2) from the second inequality and T ≥ N(|U| + 1). Similarly, we can find the order of∑B−1

b=0 (τb)
2 as follows:

B−1∑
b=0

(τb)
2 ≤

B−1∑
b=0

[
(νb+ z)1/2

(N(|U|+ 1))1/2
+ 1

]2
≤

∫ B

0

[
(νb+ z)

(N(|U|+ 1))
+

2(νb+ z)1/2

(N(|U|+ 1))1/2
+ 1

]
db

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

= O(
B2

N(|U|+ 1)
) = O(T 4/3N−1/3(|U|+ 1)−1/3),

(43)

where the last equality is by B = O(T 2/3N1/3(|U|+ 1)1/3). We also have

τB−1 = ⌈((ν(B − 1) + z)

N(|U|+ 1)
)1/2⌉ = O(B1/2N−1/2(|U|+ 1)−1/2) = O(T 1/3N−1/3(|U|+ 1)−1/3).

(44)

Thus, we have

O(τB−1H(τB−1)) = o((τB−1)
2) = o(T 2/3N−2/3(|U|+ 1)−2/3) =

o(1)

η0N
, (45)

where the first equality is due to Lemma C.1. With T ≥ |U|3/2
(N(|U|+1))1/2

, we have

η0N exp(O(|U|))O(τB−1H(τB−1)) = o(1) exp(O(|U|)) (46)

O(|U|) = O(T 2/3N1/3(|U|+ 1)1/3). (47)

With (43), (45), (46), and (47), we can apply Theorem D.8 to derive

EKB−1:0

T∑
t=0

[ct(xt, ut)−ct(x
∗
t , u

∗
t)] = Õ(T 2/3N1/3(|U|+1)1/3)+o(1) exp(O(|U|))+O(

B−1∑
b=0

H(τb)).

Applying (14) to O(
∑B−1

b=0 H(τb)) achieves a sublinear regret bound.

Moreover, when limt→∞ H(t) < ∞, there exists a constant q1 that upper-bounds H(t); i.e., H(t) ≤
q1 for all t ≥ 0. Then, we have

B−1∑
b=0

H(τb) ≤ q1B = O(B) = O(T 2/3N1/3(|U|+ 1)1/3). (48)

Also, (45) and (46) can be modified to

τB−1H(τB−1) ≤ q1τB−1 = O(T 1/3N−1/3(|U|+ 1)−1/3),

η0N exp(O(|U|)))O(τB−1H(τB−1)) = O(T−1/3N1/3(|U|+ 1)1/3) · exp(O(|U|)). (49)

Similarly, when H(t) = O(
∑t

i=1
1
i) for all t ≥ 1, we have

B−1∑
b=0

H(τb) ≤ BH(τB−1) = O(B log τB−1) = Õ(T 2/3N1/3(|U|+ 1)1/3), (50)

η0N exp(O(|U|)))O(τB−1H(τB−1)) = Õ(T−1/3N1/3(|U|+ 1)1/3) · exp(O(|U|)). (51)

Using (48), (49), (50), and (51) completes the proof.

Small modification provides the regret bound for the intermediate step "Dynamic Batching" mentioned
in Appendix A.
Corollary D.10. Consider "Dynamic Batching" strategy without adaptive learning rate, i.e. sb = 0
for all b = 0, . . . , B − 1 in Algorithm 1. Let τ0, . . . , τB−1 and η0 be the same quantity with Theorem

D.9. When T ≥ max{ |U|3/2
(N(|U|+1))1/2

, N(|U|+ 1)}, the term o(1) exp(O(|U|)) in the regret bound of

Theorem D.9 is replaced by o(T 1/3) exp(O(|U|)).

Proof. Since sb = 0 for all b, we need to modify Lemma D.7. Equation (40) is modified to

|ct(xK
t (i∗), uK

t (i∗))− ct(x
∗
t , u

∗
t)| ≤ Lc1(1 + Lπ)

2β(t− tb)
2(∥xtb∥+ ∥x∗

tb
∥)2 + Lc1(1 + Lπ)γwmax

+ Lc1π0,max + Lc2(1 + Lπ)β(t− tb)(∥xtb∥+ ∥x∗
tb
∥),

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

which incurs
tb+1−1∑
t=tb

|ct(xK
t (i∗), uK

t (i∗))− ct(x
∗
t , u

∗
t)| ≤ O(H(τb)∥xtb∥2) +O(H(τb)∥xtb∥) +O(H(τb)).

Thus, it follows that

B−1∑
b=0

tb+1−1∑
t=tb

|ct(xK
t (i∗), uK

t (i∗))− ct(x
∗
t , u

∗
t)| ≤ exp(O(|U|))(∥x0∥2 + ∥x0∥) + exp(O(|U|))H(τB−1)

= exp(O(|U|)) · o(T 1/3),

where the last equality is by the choice of τB−1 = O(B1/2) = O(T 1/3) and applying Lemma 4.3.
This shows that o(1) exp(O(|U|)) in Theorem D.9 should be replaced by o(T 1/3) exp(O(|U|)) in
the algorithm without adaptive learning rate.

E REGRET PROOF FOR ALGORITHM 2

Theorem E.1 (Restatement of Theorem 4.10, Regret bound with unknown |U|). In Algorithm 2,
let τ0 = ⌊(z

N)1/2⌋ and τb = ⌈((νb+z)
N)1/2⌉ for every b ≥ 1 with the constants z, ν > 0 that

satisfies τ0 > 0 and τ1
τ0
(β(τ0))

2 < 1
2
√
2

. Also, let η0 = O(1
T 2/3N1/3) and y = 1

2 . When T ≥

max{ |U|3/2
N1/2(|U|+1)3/4

, N}, we have

EKB−1:0

T∑
t=0

[ct(xt, ut)−ct(x
∗
t , u

∗
t)] = Õ(T 2/3N1/3(|U|+1)1/2)+o(1) exp(O(|U|))(|U|+1)1/2+o(T),

which implies that we achieve a sublinear regret bound. Moreover, when H(t) ≤ O(
∑t

i=1
1
i) for all

t ≥ 1, we have

EKB−1:0

T∑
t=0

[ct(xt, ut)− ct(x
∗
t , u

∗
t)] =

[
Õ(T 2/3) + Õ(T−1/3) exp(O(|U|))

]
N1/3(|U|+ 1)1/2

Proof. By the formulation of (τb)b≥0, as in (42), we can derive

B = O(T 2/3N1/3) and T = O(B3/2N−1/2)

when T ≥ N . We can also obtain
B−1∑
b=0

(τb)
2 = O(T 4/3N−1/3) and O(τB−1H(τB−1)) = o(T 2/3N−2/3)

similar to (43) and (45). Now, define η0,r := η0(r + 1)y = η0
√
r + 1. Let Br denote the set of

batches where µb = r; i.e., Br = {0 ≤ b ≤ B − 1, b ∈ Z+ : µb = r}. Then, one can write

N

2

U∑
r=0

∑
b∈Br

η0,rEKb−1:0
(wK

b (ib))2 ≤ η0N

2

U∑
r=0

∑
b∈Br

√
U + 1EKb−1:0

(wK
b (ib))2

=
√
U + 1 ·O(T−2/3N2/3)[exp(O(U))O(τB−1H(τB−1)) +O(

B−1∑
b=0

(τb)
2)]

≤
√
|U|+ 1 · [o(1) exp(O(|U|)) +O(T 2/3N1/3)], (52)

where the first equality holds by Lemma D.6 and the second inequality holds by U ≤ |U|.
Recall the definition and the cardinality of L = {0 ≤ b ≤ B − 1, b ∈ Z+ : sb+1 ̸= sb}
and V = {0 ≤ b ≤ B − 1, b ∈ Z+ : sb ̸= 0} in Lemma D.3. We focus on the mix loss and the
mixability gap with the denominator η0,r; i.e., − 1

η0,r
log(Ek∼pb

exp(−ηbw
′
b(k))) and Ek∼pb

[w′
b(k)]+

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

1
η0,r

log(Ek∼pb
exp(−ηbw

′
b(k))). Considering that ηb

η0,r
still remains to be 1

(αb)
2sb

as in Algorithm 1,
Lemma D.4 can be modified to

EKB−1:0

U∑
r=0

∑
b∈Br

− 1

η0,r
log(Ek∼pb

exp(−ηbw
′
b(k))) ≤

U∑
r=0

ρlr logN

η0,r
+ EKB−1:0

|L|∑
l=0

bl+1−1∑
b=bl

wK
b (il)

(αb)2sb
,

(53)

where ρlr denotes the number of batches in Br ∩ L. Similarly, considering that η0,r now depends on
the value of r, Lemma D.5 can be modified to

EKB−1:0

U∑
r=0

∑
b∈Br

Ek∼pb
[w′

b(k)] +
1

η0,r
log(Ek∼pb

exp(−ηbw
′
b(k)))

≤
U∑

r=0

ρvr
2η0,r

+
N

2

U∑
r=0

∑
b∈Br

η0,rEKb−1:0
(wK

b (ib))2, (54)

where ρvr denotes the number of batches in Br ∩ V . Now, our goal is to upper-bound
∑U

r=0
ρl
r

η0,r
=

1
η0

∑U
r=0

ρl
r logN√
r+1

in (53) and
∑U

r=0
ρv
r

η0,r
= 1

η0

∑U
r=0

ρv
r√

r+1
in (54). It is straightforward to infer that

ρl0+ρl1+ · · ·+ρlU ≤ 2U+1 by Lemma D.3 and (24), which also leads to ρl0+ρl1+ · · ·+ρlr ≤ 2r+1

for r = 0, . . . , U . Similarly, we can infer that ρv0 = 0 and ρv1+· · ·+ρvU ≤ (2U−1)⌈
log(αb+

δ
∥x0∥)

− log β(τ0)
⌉ by

Lemma D.3 and (26), which also leads to ρv1 + · · ·+ ρvr ≤ (2r− 1)⌈
log(αb+

δ
∥x0∥)

− log β(τ0)
⌉ for r = 1, . . . , U .

Define M9 := ⌈
log(αb+

δ
∥x0∥)

− log β(τ0)
⌉ and consider the following maximization problems to get the upper

bound.

l∗ = max
ρl
0,...,ρ

l
U

U∑
r=0

ρlr√
r + 1

v∗ = max
ρv
1 ,...,ρ

v
U

U∑
r=1

ρvr√
r + 1

s.t. ρl0 ≤ 1 s.t. ρv1 ≤ M9

ρl0 + ρl1 ≤ 3 ρv1 + ρv2 ≤ 3M9

.

ρl0 + ρl1 + · · ·+ ρlU ≤ 2U + 1, ρv1 + ρv2 + · · ·+ ρvU ≤ (2U − 1)M9.

We can easily achieve an optimal point of each linear programming (LP) problem by the well-known
Karush-Kuhn-Tucker (KKT) conditions. There exist positive constants λ0, . . . , λU , κ1, . . . , κU such
that

[1
1√
2

. . .
1√

U + 1
] = [

U∑
r=0

λr

U∑
r=1

λr . . . λU] (55)

[
1√
2

1√
3

. . .
1√

U + 1
] = [

U∑
r=1

κr

U∑
r=2

κr . . . κU], (56)

which yields λU = κU = 1√
U+1

, λr = κr = 1√
r+1

− 1√
r+2

> 0 for r = 1, . . . , U − 1, and
λ0 = 1− 1√

2
. Since every dual variable is positive, complementary slackness tells that there is no

slack for every inequality at the optimal solution. Thus, the optimal solutions are

ρl0 = 1, ρlr = 2, r = 1, . . . , U.

ρv1 = M9, ρvr = 2M9, r = 2, . . . , U,

where the corresponding optimal objective values are

l∗ = 1 +

U∑
r=1

2√
r + 1

≤ 1 +
√
2 + 2

∫ U

1

1√
r + 1

dr = O(
√
U + 1)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

v∗ =
M9√
2
+

U∑
r=2

2M9√
r + 1

≤ M9√
2
+

2M9√
3

+ 2M9

∫ U

2

1√
r + 1

dr = O(
√
U + 1),

where we leverage the non-increasing property of 1√
r+1

for the inequalities. Thus, we have both
1
η0

∑U
r=0

ρl
r logN√
r+1

= Õ(T 2/3N1/3(U + 1)1/2) and 1
η0

∑U
r=0

ρv
r√

r+1
= O(T 2/3N1/3(U + 1)1/2).

Combining (52), (53), and (54) with Lemma D.7 and U ≤ |U|, one can write

EKB−1:0

T∑
t=0

[ct(xt, ut)− ct(x
∗
t , u

∗
t)]

= Õ(T 2/3N1/3(|U|+ 1)1/2) + o(1) exp(O(|U|))(|U|+ 1)1/2 +O(|U|) +O(

B−1∑
b=0

H(τb))

= Õ(T 2/3N1/3(|U|+ 1)1/2) + o(1) exp(O(|U|))(|U|+ 1)1/2 +O(

B−1∑
b=0

H(τb)),

where the second equality holds when T ≥ |U|3/2
N1/2(|U|+1)3/4

. Using (14) shows a sublinear regret

bound. When H(t) ≤ O(
∑t

i=1
1
i) for all t ≥ 1, (48) and (49) are modified to

B−1∑
b=0

H(τb) ≤ O(BH(τB−1)) = Õ(T 2/3N1/3),

τB−1H(τB−1) ≤ τB−1O(log(τB−1)) = Õ(T 1/3N−1/3),

η0N exp(O(|U|)))O(τB−1H(τB−1)) = Õ(T−1/3N1/3) · exp(O(|U|)).

Applying this equality to re-derive (52) completes the proof.

F APPLICATIONS: SWITCHED SYSTEMS

So far, we have used the best stabilizing controller i∗ ∈ S for all time steps t = 0, . . . , T as the
baseline of regret. However, the proofs of the theorems stated above imply one can even use any
set of controllers {i0, i1, . . .} ⊆ S as a baseline, where the controller is switched from il to il+1

whenever the cumulative weight W (·) resets. This motivates the application of our DBAR algorithm
to scenarios such as the switched systems (Tousi et al., 2008; Zhao et al., 2022) for which the
transition dynamics and the associated controller pool may undergo changes, as well as the ballooning
problem (Ghalme et al., 2021) where the controller pool may expand up to some finite set. We
propose Algorithm 3, the switching version of DBAR, which resets the weight whenever the system is
faced with a finite number of O(U) switches. Here, we consider the regret with switching costs where
the unit cost d ≥ 1 is additionally incurred when the controller is switched; i.e., d

∑T
t=1 I(it ̸=it−1)

done in Altschuler & Talwar (2018) and Arora et al. (2019).

For an event A, I(A) denotes an indicator function, where I(A) = 1 if an event A occurs and I(A) = 0
otherwise. Pr(A) denotes the probability of an event A. Let x′

t and u′
t denote the state and action

sequence generated by our set of best stabilizing controllers {i′0, . . . , i′|L|} ⊆ S. We consider a

regret with switching cost where the unit switching cost is d ≥ 1; i.e., EKB−1:0

[∑T
t=0[ct(xt, ut)−

ct(x
′
t, u

′
t)] + d

∑B−1
b=1 I(Kb ̸=Kb−1) − d

∑|L|
l=1 I(i′l ̸=i′l−1)

]
.

Algorithm 3 can easily be generalized to the situation where we have O(U) number of system
switches or controller pool switches. In fact, we can simply add i′|L|+1, . . . , i

′
|L|+O(U) ∈ S to the

set of best stabilizing controllers {i′0, . . . , i′|L|} ⊆ S, where |L| = O(U) by Lemma D.3. Thus, it
suffices to derive the regret bound of Algorithm 3, even in the context of general switched systems or
ballooning problem. We first provide a useful lemma to construct a regret bound.

Lemma F.1. In Algorithm 3, let τ0 = ⌊(z
N(|U|+1))

1/2⌋ and τb = ⌈((νb+z)
N(|U|+1))

1/2⌉ for every
b ≥ 1 with the constants z, ν > 0 that satisfies τ0 > 0 and τ1

τ0
(β(τ0))

2 < 1
2
√
2

. When

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Algorithm 3 DBAR-switching
// Modification: Use this IF-ELSE Statement to select the current policy in Line 2 in Algorithm 1.
if b > 0 and sb = sb−1 and Pb = Pb−1 then

Pick Kb = Kb−1 with probability exp(−ηbWb(Kb−1))

exp(−ηb−1Wb−1(Kb−1))
. Sample Kb from a distribution pb with

probability 1− exp(−ηbWb(Kb−1))

exp(−ηb−1Wb−1(Kb−1))
.

else
Sample Kb from a distribution pb. Terminate the algorithm if Pb is empty.

end if

T ≥ (o(1)exp(O(|U|)))3/2
(N(|U|+1))1/2

, we have

EKB−1:0

B−1∑
b=1

I(Kb ̸=Kb−1) = O(|U|) +O(η0NT).

Proof. For all b = 1, . . . , B − 1 such that sb = sb−1, given Kb−1, . . . ,K0, we have

Pr(Kb ̸= Kb−1) ≤ 1− exp(−ηbWb(Kb−1))

exp(−ηb−1Wb−1(Kb−1))
≤ 1− exp(−ηb−1Wb(Kb−1))

exp(−ηb−1Wb−1(Kb−1))

= 1− exp(−ηb−1w
′
b−1(Kb−1)) ≤ 1− exp(−η0w

′
b−1(Kb−1))

≤ η0w
′
b−1(Kb−1) = η0

wb−1(Kb−1)

pb−1(Kb−1)
, (57)

where the second inequality is because ηb = ηb−1 when sb = sb−1, the third inequality uses η0 ≥ ηb
for all b ≥ 0, and the last inequality uses 1 + x ≤ ex for all x ∈ R. Now, given a set of controllers
ib ∈ Pb for b = 0, . . . , B − 1, we can upper-bound

∑B−2
b=0 wb(i

b) by tb+1 − tb ≤ τb as follows:

B−2∑
b=0

wb(i
b) =

B−2∑
b=0

tb+1−1∑
t=tb

ct(xt, ut) ≤
B−2∑
b=0

tb+1−1∑
t=tb

2Lc1(∥xt∥2 + ∥ut∥2) + Lc2(∥xt∥+ ∥ut∥) + c0,max

≤
B−2∑
b=0

tb+1−1∑
t=tb

2Lc1((1 + 2L2
π)∥xt∥2 + 2π2

0,max) + Lc2((1 + Lπ)∥xt∥+ π0,max) + c0,max

≤
B−2∑
b=0

2Lc1(1 + 2L2
π)H(τb)∥xtb∥2 + Lc2(1 + Lπ)H(τb)∥xtb∥+ τb[4Lc1π

2
0,max + Lc2π0,max + c0,max]

= O(exp(O(|U|))H(τbU)) +O(

B−2∑
b=0

H(τb)) +O(

B−2∑
b=0

τb), (58)

where the first inequality is due to (27), the second inequality is by (9) and (33), the third inequality
is due to using β(·) ≤ 1 to derive

∑tb+1−tb
t=0 [β(t)]2 ≤

∑tb+1−tb
t=0 [β(t)] = H(tb+1 − tb), and the last

equality can be derived in the same fashion with (36). With T ≥ (o(1)exp(O(|U|)))3/2
(N(M+1))1/2

, we obtain by
(44) that

O(exp(O(|U|))H(τbU)) +O(

B−2∑
b=0

H(τb)) +O(

B−2∑
b=0

τb) ≤ O(T). (59)

Thus, one can write

EKB−1:0

B−1∑
b=1

I(Kb ̸=Kb−1) =

B−1∑
b=1

EKb:0
I(Kb ̸=Kb−1) =

B−1∑
b=1

EKb−1:0
EKb

[I(Kb ̸=Kb−1) |Kb−1:0]

=

B−1∑
b=1

EKb−1:0
Pr(Kb ̸= Kb−1 |Kb−1:0)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

=

B−1∑
b=1

EKb−1:0
[Pr(sb = sb−1,Pb = Pb−1 |Kb−1:0)Pr(Kb ̸= Kb−1 | sb = sb−1,Pb = Pb−1,Kb−1:0)

+ Pr(sb ̸= sb−1 or Pb ̸= Pb−1 |Kb−1:0)Pr(Kb ̸= Kb−1 | sb ̸= sb−1 or Pb ̸= Pb−1,Kb−1:0)]

= |L|+ U +

B−1∑
b=1

EKb−1:0
[Pr(sb = sb−1,Pb = Pb−1 |Kb−1:0)Pr(Kb ̸= Kb−1 | sb = sb−1,Pb = Pb−1,Kb−1:0)

≤ |L|+ U +

B−1∑
b=1

EKb−1:0
Pr(Kb ̸= Kb−1 | sb = sb−1,Pb = Pb−1,Kb−1:0)

≤ |L|+ U +

B−1∑
b=1

EKb−1:0
η0

wb−1(Kb−1)

pb−1(Kb−1)

= |L|+ U +

B−1∑
b=1

EKb−2:0
EKb−1

[
η0

wb−1(Kb−1)

pb−1(Kb−1)
|Kb−2:0

]

= |L|+ U +

B−1∑
b=1

η0EKb−2:0

∑
Kb−1∈Pb−1

pb−1(Kb−1)
wb−1(Kb−1)

pb−1(Kb−1)

≤ |L|+ U +

B−1∑
b=1

η0NEKb−2:0
wb−1(i

b−1) (60)

for the controller ib−1 = argmaxi∈Pb−1
wb−1(i). The first equality is because KB−1, . . . ,Kb+1

does not affect on I(Kb ̸=Kb−1) and the second inequality is by (57). Taking expectation of (58) with
respect to Kb−1:0 and applying it to (60) yields

EKB−1:0

B−1∑
b=1

I(Kb ̸=Kb−1) = |L|+ U +O(η0NT)

by (59). Using |L| = O(U) in Lemma D.3 and U ≤ |U| completes the proof.

Algorithm 3 uses the same distribution with Algorithm 1 if b = 0 or sb ̸= sb−1 or Pb ̸= Pb−1. It
turns out that even if sb = sb−1 and Pb = Pb−1, the distribution of policy from Algorithm 1 and 3
are indeed the same, which is motivated by Anava et al. (2015). For the sake of completeness, we
state the lemma in this paper.
Lemma F.2. Let pb and p̃b denote the distribution of policy at batch b = 0, . . . , B − 1 resulting from
Algorithm 1 and 3, respectively. Then, p and p̃ are the same distribution.

Proof. For b = 0, p0(k) = p̃0(k) =
1
N for all k ∈ P0. For all b = 1, . . . , B − 1 such that sb ̸= sb−1

or Pb ̸= Pb−1, it holds that pb = p̃b. Thus, it suffices to prove the induction step for b = 1, . . . , B−1
such that sb = sb−1 and Pb = Pb−1. Define Yb :=

∑
k∈Pb

exp(−ηbWb(k)) and suppose that
pb−1 = p̃b−1. Thus, we have

p̃b(k) = p̃b−1(k) ·
exp(−ηbWb(k))

exp(−ηb−1Wb−1(k))
+ pb(k) ·

∑
i∈Pb

(1− exp(−ηbWb(i))

exp(−ηb−1Wb−1(i))
) · p̃b−1(i)

= pb−1(k) ·
exp(−ηbWb(k))

exp(−ηb−1Wb−1(k))
+ pb(k) ·

∑
i∈Pb

(1− exp(−ηbWb(i))

exp(−ηb−1Wb−1(i))
) · pb−1(i)

=
exp(−ηb−1Wb−1(k))

Yb−1
· exp(−ηbWb(k))

exp(−ηb−1Wb−1(k))

+
exp(−ηbWb(k))

Yb

∑
i∈Pb

(1− exp(−ηbWb(i))

exp(−ηb−1Wb−1(i))
)
exp(−ηb−1Wb−1(k))

Yb−1

=
exp(−ηbWb(k))

Yb−1
+

exp(−ηbWb(k))

Yb

∑
i∈Pb

exp(−ηb−1Wb−1(i))− exp(−ηbWb(i))

Yb−1

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

=
exp(−ηbWb(k))

Yb−1
+

exp(−ηbWb(k))

Yb
· Yb−1 − Yb

Yb−1
=

exp(−ηbWb(k)) · Yb−1

Yb · Yb−1
= pb(k),

where the first equality is due to the law of total probability, the second equality is due to the induction
hypothesis, and the fifth equality is by Pb = Pb−1. Notice that sb = sb−1 yields ηb = ηb−1 and
Wb(k) ≥ Wb−1(k), and thus 0 ≤ exp(−ηbWb(k))

exp(−ηb−1Wb−1(k))
≤ 1; i.e., the probability distribution is properly

defined for every batch. This completes the proof.

Theorem F.3 (Regret with switching costs bound with known |U|). In Algorithm 3, let τ0 =

⌊(z
N(|U|+1))

1/2⌋ and τb = ⌈((νb+z)
N(|U|+1))

1/2⌉ for every b ≥ 1 with the constants z, ν > 0 that

satisfies τ0 > 0 and τ1
τ0
(β(τ0))

2 < 1
2
√
2

. Also, let η0 = O((|U|+1)2/3

T 2/3N1/3d1/3). When T ≥

max{ (o(1)exp(O(|U|)))3/2
(N(|U|+1))1/2

, |U|3/2d
(N(|U|+1))1/2

, N(|U|+ 1)d}, we have

EKB−1:0

[
T∑

t=0

[ct(xt, ut)− ct(x
′
t, u

′
t)] + d

B−1∑
b=1

I(Kb ̸=Kb−1) − d

|L|∑
l=1

I(i′l ̸=i′l−1)

]
= Õ(T 2/3N1/3(|U|+ 1)1/3d1/3) + o(T),

which implies that we achieve a sublinear regret bound. Moreover, when limt→∞ H(t) < ∞ and

T ≥ max{ exp(O(|U|))
d2/3 , |U|3/2d

(N(|U|+1))1/2
, N(|U|+ 1)d}, we have

EKB−1:0

[
T∑

t=0

[ct(xt, ut)−ct(x
′
t, u

′
t)]+d

B−1∑
b=1

I(Kb ̸=Kb−1)−d

|L|∑
l=1

I(i′l ̸=i′l−1)

]
= Õ(T 2/3N1/3(|U|+1)1/3d1/3).

Proof. The distribution of policy is the same for Algorithm 1 and 3 by Lemma F.2. Thus, we can use
Theorem D.8 with Lemma F.1 to achieve

EKB−1:0

[
T∑

t=0

[ct(xt, ut)− ct(x
′
t, u

′
t)] + d

B−1∑
b=1

I(Kb ̸=Kb−1) − d

|L|∑
l=1

I(i′l ̸=i′l−1)

]

≤ Õ(|U|+ 1)

η0
+

η0N

2
[exp(O(|U|))O(τB−1H(τB−1)) +O(

B−1∑
b=0

(τb)
2)]

+O(

B−1∑
b=0

H(τb)) +O(d|U|) +O(dη0NT), (61)

since d ≥ 1 and
∑L

l=1 I(i′l ̸=i′l−1)
≥ 0. Notice that (τb)b≥0 is the same for Algorithm 1 and 3.

Accordingly, we still have B = O(T 2/3N1/3(|U|+1)1/3) by (42) and T ≥ N(|U|+1)d ≥ N(|U|+
1). We also still have (43) and (44). Thus, with T ≥ (o(1)exp(O(|U|)))3/2

(N(|U|+1))1/2
and T ≥ |U|3/2d

(N(|U|+1))1/2
, we

obtain that
η0N exp(O(|U|))O(τB−1H(τB−1)) = o(d−1/3) exp(O(|U|)) = O(T 2/3N1/3(|U|+ 1)1/3d−1/3).

O(d|U|) = O(T 2/3N1/3(|U|+ 1)1/3d1/3).

Also, with T ≥ N(|U|+ 1)d, we have

O(dη0NT) = O(T 2/3N1/3(|U|+ 1)1/3d1/3).

Combining all the above equalities with (61), one can write

EKB−1:0

[
T∑

t=0

[ct(xt, ut)− ct(x
′
t, u

′
t)] + d

B−1∑
b=1

I(Kb ̸=Kb−1) − d

|L|∑
l=1

I(i′l ̸=i′l−1)

]

= O(T 2/3N1/3(|U|+ 1)1/3d1/3) +O(

B−1∑
b=0

H(τb)).

Using (14) shows a sublinear regret bound. When limt→∞ H(t) < ∞, (49) is modified to

η0N exp(O(|U|))O(τB−1H(τB−1)) = O(T 2/3N1/3(|U|+ 1)1/3d1/3),

only with T ≥ exp(O(|U|))
d2/3 . This completes the proof.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

G NUMERICAL EXPERIMENT DETAILS

In the two following subsections, we will present experiment details on linear and nonlinear systems,
respectively. Since our Algorithm 1 only hinges on the system state norm as a context, we can avoid
computational burden; thus, Apple M1 Chip with 8-Core CPU is sufficient for the experiments. The
error bars (shaded area) in all the figures in the paper report 95% confidence intervals based on the
standard error. We calculate the standard error by randomly sampling 100 seeds to consider the
variability of our experimental results. The first factor of variability is the randomness of selecting the
policy determined by the probability calculated in Algorithm 1. The second factor is the randomness
of adversarial disturbances stated in each experiment. For example, sinusoidal noise does not involve
any randomness but the uniform random walk contains the randomness in the difference between two
consecutive noises.

G.1 EXPERIMENTS FOR THE LINEAR SYSTEM

In this subsection, we introduce the implementation details and present more experiments on the
linear system (3) discussed in Example 1 of Section 5.

We consider three different noises for the experiments. To perform a fair comparison, the bounding
constant wmax is set to 1.

(a) Sanity check: Gaussian noise with mean 0.3 and standard deviation 0.1, truncated to[−0.4, 1]

(b) Sinusoidal noise wt =
[
sin

(t

5π

)
, sin

(t

11π

)]′
(c) Uniform random walk, where w0 = Uniform

[
1

3
− 2

3T
,
1

3
+

2

3T

]2
and wt − wt−1 follows Uniform

[
− 2

3T
,
2

3T

]2
,

where T is time horizon. One can easily see that for uniform random walk, |wT | ≤ 1 for any T .
Notice that we use statistical (Gaussian) noise for the sanity check, and the rest are the adversarial
disturbances.

We perform the ablation study of Algorithm 1, which means that we consider four scenarios: (fixed,
dynamic) batch length and (fixed, adaptive) learning rate. For all the experiments implementing
the algorithm, we use T = 3000, η0 = 0.025, γ = 2.5, α0 = 1.01, and x0 = [100, 200]′. For
the dynamic batch length, we consider τ0 = 11 and τb = ⌈τ0 · (b+10

10)0.5⌉. It is well known that
every (asymptotically) stabilizing controller in the linear system is indeed exponentially stabilizing
controller (Khalil, 2015). Hence, we use β(t) = 0.99t without relaxing the assumptions on stabilizing
controllers. Finally, we use δ = γwmax

1−β(τ0)
. Since the sinusoidal noise case is already presented in

Figure 2, we only present truncated Gaussian noise case and uniform random walk case here.

In Figures 2, 5, and 6, we observe that each component of DBAR, a dynamic batch length and an
adaptive learning rate, jointly improves both the stability and the regret regardless of the noise form.
For example, a dynamic batch length delays the time that large state norms occur during learning,
but does not necessarily stabilize that state norm by itself (see Figures 6(a) and 6(b)). However,
when applied together with an adaptive learning rate, a potential multiplicative exponential term is
mitigated (see Remark 4.8) and the state norm is thus stabilized. This can be observed in Figures
2(d), 5(d), and 6(d) when comparing fixed and dynamic batch lengths under an adaptive learning
rate. This results from using a non-decreasing batch length where the increasing ratio between two
consecutive batch lengths is determined to converge to 1 (see Assumption 3.1). On the other hand,
an adaptive learning rate effectively lowers the state norm at the time that large state norms occur
without delay, since the learning rate adaptively decreases whenever the agent faces large state norm.
This can be seen in 2(c), 5(c), and 6(c), the ablation study about the comparison between fixed and
adaptive learning rates under a dynamic batch length. Thus, DBAR effectively stabilizes the state
norm below γwmax and minimizes the regret, where the two components support each other.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

(a) Stability analysis (b) Regret analysis (c) Adaptive learning rate
under dynamic batch length

(d) Dynamic batch length
under adaptive learning rate

Figure 5: The stability and the regret in the linear system under truncated Gaussian noise. Ablation
study of the algorithm is presented.

(a) Stability analysis (b) Regret analysis (c) Adaptive learning rate
under dynamic batch length

(d) Dynamic batch length
under adaptive learning rate

Figure 6: The stability and the regret in the linear system under Uniform random walk. Ablation
study of the algorithm is presented.

G.2 EXPERIMENTS FOR THE NONLINEAR SYSTEM

In this subsection, we introduce the implementation details and present more experiments on the
nonlinear ball-beam system introduced in Example 2 of Section 5. To study this continuous-time
nonlinear system, we first derive the first-order state representation of the leader system (4) with the
states (y1, y2, y3, y4) = (x, ẋ,−9.81Bθ,−9.81Bθ̇) ∈ R4 and the action v = −9.81Bux:

ẏ1 = y2, ẏ2 = 9.81B sin
(y3
9.81B

)
+

y1y
2
4

B(9.81)2
+ 3w, ẏ3 = y4, ẏ4 = v,

where wx is a sinusoidal noise sin
(

t
7π

)
and wmax = 1. A nested saturating control policy is known to

successfully stabilize the leader ball-beam system if the correct parameters are given, but it does not
necessarily exponentially stabilize the system (Barbu et al., 1997). This necessitates our approach of
extending the notion of stabilizing controllers beyond exponential assumptions. In this experiment,
we aim to learn the parameters of the best stabilizing controller. We choose a nested saturating control
policy v′ determined by three positive parameters (p, k1, k2):

ϵ =
1√

1 + y21 + y22
, p1 = p, p2 =

p

ϵ
, p3 =

p

ϵ2
, p4 =

p

ϵ3
,

z1 = y1 + k1y2 + k1y3 + y4, z2 = y2 + k2y3 + y4, z3 = y3 + y4, z4 = y4,

v′ = σp4
(z4 + σp3

(z3 + σp2
(z2 + σp1

(z1)))),

where σp(z) is the saturating function defined as p if z > p, −p if z < −p, and z if |z| ≤ p. We
consider the controller pool

V ′ = {v′ : p ∈ {2, 16, 30, 44, 58, 72, 86, 100}, k1 ∈ {2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5},
k2 ∈ {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5}},

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

(a) Stability analysis: β1(t) (b) Regret analysis: β1(t) (c) Stability analysis: β2(t) (d) Regret analysis: β2(t)

Figure 7: The stability and the regret in the noise-injected ball-beam system under sinusoidal noise
and the choice of β1(t) or β2(t).

which has a total of 800 controllers. Moreover, the follower systems are formulated by generating A, Ã
in (5) as random matrices, where each entry is independently sampled from Unif[0, 1]. For the action
uz of the follower systems, we consider a linear policy as in Example 1. Then, the action is parameter-
ized by uz = Kzz, where Kz ∈ R96×96. We let Kz be a multiple of identity matrix, and the diagonal
entry is selected from the pool {−45,−47.5,−50,−52.5,−55,−60,−70,−80,−90,−100}. Thus,
considering the actions of both leader and followers, the controller pool contains 8000 controllers.
Among them, we do not know if each controller stabilizes the system.

For simplicity, we perform forward-Euler discretization on the system with a sampling time 0.01.
The resulting discrete-time states and actions are denoted by [yt, zt] and [vty, v

t
z] at tth sampling time.

We use the cost function ct(y
t, zt, vty, v

t
z) = ∥yt∥2 + ∥zt∥2 + ∥vty∥2 + ∥vtz∥2 to stabilize the ball

position and the beam angle towards 0. We again perform the ablation study of Algorithm 1. For
the experiments implementing the algorithm, we use T = 5000, η0 = 0.25, γ = 1.5, α0 = 1.01,
y0 = [−32, 24, 5.6, 24], and z0 = [10, 10, . . .] ∈ R96. For the dynamic batch length, we consider
τ0 = 9 and τb = ⌈τ0 · (b+41

40)0.5⌉.

Unlike the choice of β(t) in Section G.1, we select the stabilizing controller only to satisfy (asymp-
totic) ISS in Definition 2.3, instead of exponential ISS. To deeply study this notion, we consider
different polynomially decreasing series (which is not exponentially decreasing) to be the candidates
for β(t):

β1(t) = min

{
10

t1.05
, 1

}
, β2(t) = min

{
10

t1.08
, 1

}
.

Figures 3(b) and 3(c) show the stability and regret analysis of the system under β1(t). For the
completeness, we present the same pictures in Figures 7(a) and 7(b).

In our experiment, there are 3400 controllers out of 8000 controllers that induces the system to
explode, starting from the initial state. However, there exist far more destabilizing controllers within
this pool, since most of 5600 controllers are only locally stabilizing controllers, meaning that the
system is stabilized only at some initial states. With only few stabilizing controllers in the pool,
Figure 7 illustrates that a dynamic batch length by itself still suffers from a multiplicative exponential
term regarding a series of destabilizing controllers. However, for both β1(t) and β2(t), even though
H(t) and O(

∑t
i=1

1
i) are close, one can observe that the combination of the two components of

DBAR effectively resolves this malignant term and the resulting closed-loop system enjoys both
asymptotic system stability and the improved regret (see Table 1).

The behaviors of β1(t) and β2(t) are slightly different, in the sense that while DBAR still performs
well, the system already appears stabilized even without some components of DBAR with β2(t).
This stems from the amount of discarding the destabilizing controllers. β2(t) removes the controller
with more strict criteria than β1(t) since 1.08 > 1.05. This prevents the explosion of the nonlinear
system by eliminating potential destabilizing controllers not yet seen in an unstable region in advance.
However, in practice, if the given candidate controller set had not included any controller satisfying
the strict assumptions, the algorithm would have terminated, failing to keep the system running. This
finding again demonstrates why it is crucial to allow a broader class of controllers and still achieve a

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

tight regret bound. Moreover, the experimental results strongly support that our algorithm DBAR
performs well for any choice of β(t), which determines the scope of stabilizing controllers.

38

	Introduction
	Problem Formulation
	Algorithm Description
	Main Results
	Stability
	Regret

	Numerical Experiments
	Conclusion
	Necessity of DBAR under weaker stability notion of required controllers
	Glossary
	Stability Proof
	Regret Proof for Algorithm 1
	Regret Proof for Algorithm 2
	Applications: Switched systems
	Numerical Experiment Details
	Experiments for the Linear system
	Experiments for the Nonlinear system

