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Abstract

The practical success of overparameterized neural networks has motivated the
recent scientific study of interpolating methods, which perfectly fit their training
data. Certain interpolating methods, including neural networks, can fit noisy
training data without catastrophically bad test performance, in defiance of standard
intuitions from statistical learning theory. Aiming to explain this, a body of recent
work has studied benign overfitting, a phenomenon where some interpolating
methods approach Bayes optimality, even in the presence of noise. In this work
we argue that while benign overfitting has been instructive and fruitful to study,
many real interpolating methods like neural networks do not fit benignly: modest
noise in the training set causes nonzero (but non-infinite) excess risk at test time,
implying these models are neither benign nor catastrophic but rather fall in an
intermediate regime. We call this intermediate regime tempered overfitting, and
we initiate its systematic study. We first explore this phenomenon in the context
of kernel (ridge) regression (KR) by obtaining conditions on the ridge parameter
and kernel eigenspectrum under which KR exhibits each of the three behaviors.
We find that kernels with powerlaw spectra, including Laplace kernels and ReLU
neural tangent kernels, exhibit tempered overfitting. We then empirically study
deep neural networks through the lens of our taxonomy, and find that those trained
to interpolation are tempered, while those stopped early are benign. We hope our
work leads to a more refined understanding of overfitting in modern learning.

1 Introduction

In the last decade, the dramatic success of overparameterized deep neural networks (DNNs) has
inspired the field to reexamine the theoretical foundations of generalization. Classical statistical
learning theory suggests that an algorithm which interpolates (i.e. perfectly fits) its training data will
typically catastrophically overfit at test time, generalizing no better than a random function.

Figure 1c illustrates the catastrophic overfitting classically expected of an interpolating method.
Defying this picture, DNNs can interpolate their training data and generalize well nonetheless
[Neyshabur et al., 2015, Zhang et al., 2017], suggesting the need for a new theoretical paradigm
within which to understand their overfitting.

⇤Co-first authors.
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Figure 1: As n ! 1, interpolating methods can exhibit three types of overfitting. (A) In
benign overfitting, the predictor asymptotically approaches the ground-truth, Bayes-optimal function.
Nadaraya-Watson kernel smoothing with a singular kernel, shown here, is asymptotically benign. (B)
In tempered overfitting, the regime studied in this work, the predictor approaches a constant test risk
greater than the Bayes-optimal risk. Piecewise-linear interpolation is asymptotically tempered. (C) In
catastrophic overfitting, the predictor generalizes arbitrarily poorly. Rank-n polynomial interpolation
is asymptotically catastrophic.

This need motivated the identification and study of benign overfitting using the terminology of [Bartlett
et al., 2020] (also called “harmless interpolation” [Muthukumar et al., 2020]), a phenomenon in which
certain methods that perfectly fit the training data still approach Bayes-optimal generalization in the
limit of large trainset size. Intuitively speaking, benignly-overfitting methods fit the target function
globally, yet fit the noise only locally, and the addition of more label noise does not asymptotically
degrade generalization. Figure 1a illustrates a simple method that is asymptotically benign2. The
study of benign overfitting has proven fruitful, leading to rich mathematical insights into high-
dimensional learning3, and benign overfitting is certainly closer to the real behavior of DNNs than
catastrophic overfitting.

That said, it requires only simple experiments to reveal that many standard DNNs do not overfit

benignly: when training on noisy data, DNNs do not diverge catastrophically, but neither do they
approach Bayes-optimal risk. Instead, they converge to a predictor that is neither catastrophic nor
optimal but rather somewhere in between, with error that increases as the noise in the data increases.
Figure 2 depicts such an experiment: a ResNet is trained on a binary variant of CIFAR-10 with
varying amounts of training label noise, and with increasing sample size n. We see from Figure 2
that greater train noise indeed results in greater test error, and this test error persists even as n grows,
converging to a non-zero asymptotic value4. This is unlike “benign overfitting,” which would produce
an asymptotically-optimal predictor at all non-trivial noise levels (depicted in blue in Figure 2). This
suggests that, in the search for a paradigm to understand modern interpolating methods, we should
identify and study a regime intermediate between benign and catastrophic.

1.1 Summary of Contributions

In this work we formally identify an intermediate regime between benign and catastrophic overfitting.
We call this intermediate behavior tempered overfitting because the noise’s harmful effect is tempered
but still nonzero. We find that both DNNs trained to interpolation and (ridgeless) kernel regression
(KR) using certain common kernels fall into this intermediate regime even as the number of training

examples n approaches infinity, as do common methods like 1-nearest-neighbors and piecewise-
linear interpolation (as in Figure 1b). Our tempered regime completes the taxonomy of overfitting:
essentially any learning procedure is either benign, tempered, or catastrophic in the asymptotic limit.

2As a first hint that important practical methods may not be benign (at least in low dimension), note that, in
order to be benign, the predicted function in Figure 1a has to take this spiky shape. On the other hand, very wide
and deep neural network may indeed be spiky Radhakrishnan et al. [2022].

3A partial list of works here include Advani and Saxe [2017], Bahri et al. [2020, 2021], Bartlett et al. [2020,
2021], Belkin et al. [2018a,b, 2019a], Cao et al. [2022], Chatterji and Long [2021], Chatterji et al. [2021],
d’Ascoli et al. [2020], Frei et al. [2022], Goldt et al. [2019], Hastie et al. [2019], Koehler et al. [2021], Liang and
Rakhlin [2018, 2020], Mei and Montanari [2019], Muthukumar et al. [2020], Rakhlin and Zhai [2019], Tsigler
and Bartlett [2020], Zhang et al. [2017, 2021].

4It is well-known and is perhaps unsurprising that interpolating DNNs are harmed by label noise (e.g. Zhang
et al. [2017]); our new observation is that this persists even as n ! 1.
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We begin in Section 2 with preliminaries, formal definitions of the three regimes, and a taxonomy
of some common ML methods according to these regimes. In Section 3, we study these three
regimes for kernel regression (KR). Using recent spectral theories characterizing the expected test
error of KR, we obtain conditions on the ridge parameter and kernel eigenspectrum under which
KR falls into each of the three regimes. Importantly, we find that ridgeless kernels with powerlaw
spectra, including the Laplace kernel and ReLU fully-connected neural tangent kernels (NTKs), are
asymptotically tempered, not benign. We confirm our theory with experiments on synthetic data.
In Section 4, we empirically study overfitting for DNNs. We give evidence that standard DNNs
trained to interpolation exhibit tempered overfitting, not benign overfitting, motivating the further
study of tempered overfitting in the pursuit of understanding modern machine learning methods. We
additionally study the time dynamics of overfitting, and the effect of early-stopping. We conclude
with discussion in Sections 5 and 6.

1.2 Relation to Prior Work
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Figure 2: DNNs trained on image data ex-
hibit tempered overfitting, not benign over-
fitting. Curves show test classification error
vs. training label flip probability for a Wide
ResNet 28 ⇥ 10 trained to interpolation on
binary CIFAR-10 (animals vs. vehicles) for
different training sizes n. These curves are
noise profiles, as discussed in Section 2.

Our work is inspired by recent developments in the
theory and empirics of interpolating methods [Bartlett
et al., 2020, Belkin et al., 2018a, 2019c,d, Devroye
et al., 1998, Ji et al., 2021, Koehler et al., 2021, Liang
and Rakhlin, 2018, 2020, Muthukumar et al., 2020,
Rakhlin and Zhai, 2019, Tsigler and Bartlett, 2020].
Many of these works prove that certain interpolating
estimators are statistically consistent in certain set-
tings, demonstrating benign overfitting. In contrast,
we argue that a wide range of interpolators, includ-
ing DNNs used in practice, are not benign. Our work
is compatible with prior work because we consider
different settings—erring more on the side of realism—
which leads us to different conclusions. The empirical
observation that interpolating DNNs for classification
are inconsistent, and thus not benign, was made in
Nakkiran and Bansal [2020], which in part inspired
the present work.

Briefly, many prior works assume that the target task
always lies in “high enough dimension” relative to the
number of samples n, while our work considers the
limit n ! 1 for tasks of fixed dimension d, the real-
istic asymptotic in practice. For example, in the linear
regression setting, Bartlett et al. [2020] highlight that
benign overfitting occurs most robustly when input

dimension grows faster than the sample size. Other
works explicitly scale the ambient problem dimension and sample size to infinity together at a
proportional rate [Hastie et al., 2019, Liang and Rakhlin, 2018, Mei and Montanari, 2019]. This joint
scaling is also often considered in statistical physics approaches to learning dynamics (see Zdeborová
and Krzakala [2016] and references therein). Taking a different approach, Frei et al. [2022] prove
that interpolating two-layer networks can achieve close to optimal test error on certain distributions,
but require an assumption that n  ⌦(d). And Koehler et al. [2021] state a generalization bound for
interpolators that decays to 0 with n, but also requires n  d. In summary, a bulk of prior benign
overfitting results apply in the regime where n is large, but still restricted to be smaller than the
dimension of the problem, whereas we do not consider such restrictions.

Our work is also compatible with prior works which observe that excess risk of certain interpolating
methods decays with ambient dimension, interpreted as high-dimensional problems enjoying a
“blessing of dimensionality.” For example, the simplicial interpolation scheme of Belkin et al. [2018a]
has excess risk that decays as O(2�d) for ambient dimension d, and Rakhlin and Zhai [2019] show
that kernel ridgeless regression with the Laplace kernel is inconsistent in any fixed dimension, but
with a lower bound on risk that decays with dimension. We find an explicit result to this effect when
studying KR: for Laplace kernels and ReLU NTKs, asymptotic excess mean squared error decays
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like ⇥(1/d). These phenomena support our claim that many interpolating methods are tempered on
real distributions, which have fixed dimension.

2 The Three Types of Overfitting

Here we formally present our taxonomy of overfitting, delineating the three types of asymptotic
behaviors which learning procedures can exhibit.

2.1 Definitions

We consider a fairly generic in-distribution supervised learning setting. For simplicity, we present
definitions for regression, but these are readily extended to classification. We wish to learn a function
bf : X ! R from a size-n dataset of i.i.d. samples Dn ⌘ {(xi, yi)}ni=1 ⇠ D, where D is a joint
distribution over X ⇥ R, and X is the input domain. We shall generally assume nonzero target
noise, with Var[yi|xi] > 0. We evaluate the generalization performance of bf by the mean squared

error (MSE): R( bf) := Ex,y⇠D

h
( bf(x) � y)2

i
. The Bayes-optimal regression function is given by

f
⇤ := argminf R(f), where the minimization is over all measurable functions, and has risk R

⇤

which is called the irreducible risk. The excess risk of any function bf is given by R( bf) := R( bf)�R
⇤.

We say an estimator achieves interpolation if bfn(xi) = yi for all (xi, yi) 2 Dn. These definitions
are readily generalized to classification, using classification error in place of MSE.

Learning Procedure. The objects of study in our taxonomy are learning procedures. Our definition
of a learning procedure is quite general, allowing discussion of methods from DNNs to 1-nearest-
neighbors. Informally, a learning procedure is simply a specification of which model to output on a
given train set of a given size.

Formally, a learning procedure A := {An}n is a sequence of (potentially stochastic) functions,
indexed by sample size n 2 N. At each n, the function An : Dn 7! bfn inputs a train set Dn and
outputs a “model” bfn : X ! R. Note that this n-dependence allows learning procedures to be
non-uniform, varying the learning algorithm with sample size n. For example, it allows procedures
which scale up a DNN or narrow a kernel bandwidth as n grows. The expected risk of a learning
procedure on n examples from distribution D is Rn := EAn,Dn [R(An(Dn))].

2.2 The Taxonomy

We shall categorize learning procedures in terms of their asymptotic expected risk. We handle
regression and K-class classification settings separately, due to their different loss scalings. As the
number of samples n ! 1, the sequence of expected risks {Rn}n can behave in three different
ways, as listed in Table 1. These three limiting behaviors define our taxonomy.

Regression Classification
Benign limn!1 Rn = R

⇤ limn!1 Rn = R
⇤

Tempered limn!1 Rn 2 (R⇤
,1) limn!1 Rn 2 (R⇤

, 1 �
1
K )

Catastrophic limn!1 Rn = 1 limn!1 Rn = 1 �
1
K

Table 1: Our taxonomy of (over)fitting.

There is technically a fourth option – that the limit does not exist – but, to our knowledge, this does not
describe any non-pathological algorithms. All together, this set of behaviors is exhaustive, describing
every possible learning procedure. Note that the definitions for classification and regression are
identical, except for the bounds at 1 replaced by the error of the predictor choosing a uniformly5

random label (1 �
1
K ).

5We assume balanced classes throughout, for notational simplicity. The definitions can be modified appropri-
ately for imbalanced classes.
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Figure 3: Examples of Benign and Tempered Fitting. Noise profiles for several different methods on
the Binary-MNIST classification task, showing clean test error as a function of train label noise as the
train set n grows. Left: two methods which exhibit benign overfitting, with performance converging
to Bayes optimal as n ! 1. Right: two methods which exhibit tempered overfitting, with test error
that remains bounded away from 0. The two “tempered” methods here are interpolating, while the
two “benign” methods are not. Both the benign and the tempered MLP use identical architectures;
one is trained for one epoch, and the other trained to interpolation. Details in Appendix C.3.

Benign Tempered Catastrophic

• Early-stopped DNNs
• KR with ridge
• k-NN (k ⇠ log n)
• Nadaraya-Watson kernel

smoothing with Hilbert ker-
nel

• Interpolating DNNs
• Laplace KR
• ReLU NTKs
• k-NN (constant k)
• Simplicial interpolation

• Gaussian KR
• Critically-parameterized

regression

Table 2: A taxonomy of models under the three types of fitting identified in this work. BOLD are
results from our work, others are known or folklore results.

2.3 Noise Profiles

To study asymptotic risk, we use a tool we call a noise profile. A noise profile characterizes the
sensitivity of a learning procedure to noise in the training set. For a given learning procedure A

and data distribution D, a noise profile PA describes how the asymptotic risk varies with respect to
�, the level of artificial noise added to training targets. Formally, the noise profile PA is PA(�) =
limn!1 EAn;Dn(�) R(An(Dn(�))), where Dn(�) denotes n i.i.d. samples from the distribution D,
with �-level of label noise added. The label noise � 2 R denotes a kind of noise that depends on the
problem setting: � is the variance of additive Gaussian noise for regression settings, or the label-flip
probability for classification settings. We cannot empirically evaluate the n ! 1 limit exactly, so
we estimate it using asymptotics from finite but large sample sizes. As shown in Figure 2, noise
profiles are easily plotted and reveal at a glance whether an learning procedure is benign, tempered,
or catastrophic.

2.4 Applying Our Taxonomy

Our taxonomy handles general learning procedures, even those which do not interpolate their train
sets6. Thus, we can apply it to describe many existing methods in machine learning. In doing so,
we refine the language around statistical consistency: many methods were known to be statistically
inconsistent (i.e. not benign), but we highlight that there are two distinct ways to be inconsistent:
tempered and catastrophic.

To illustrate our taxonomy, we give several examples of known results in Table 2. Any statistically
consistent method is by definition benign: this includes non-interpolating methods such as early-

6We use “overfitting” to describe interpolating methods, and “fitting” to describe general methods.
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stopped DNNs [Ji et al., 2021] and k-nearest-neighbors with k ⇠ log n [Chaudhuri and Dasgupta,
2014, Cover and Hart, 1967], as well as interpolating methods such as Nadarya-Watson kernel
smoothing [Devroye et al., 1998] and k-NN schemes [Belkin et al., 2018a, 2019c].

Many catastrophic learning procedures are also known. Parametric models which are “critically-
parameterized” (i.e. at the double descent peak) overfit catastrophically: this includes random feature
regression with number of features p = n [Mei and Montanari, 2019], and, more generally, for a broad
class of linear and random feature methods [Holzmüller, 2021]. Generic empirical-risk-minimization
for a hypothesis class with VC-dimension > n will also overfit catastrophically in the worst case. It
turns out that RBF kernel regression under natural assumptions also catastrophically overfits, as we
show in Section 3.

Finally, many methods, from classical to modern, exhibit tempered overfitting. First, it is well-known
that 1-nearest-neighbors (1-NN) converges to an asymptotic risk that is finite but bounded away from
Bayes optimal7, which is tempered behavior. Further, any “underfitting” method, such as empirical
risk minimization over a hypothesis class with VC-dimension ⌧ n, will be tempered if the hypothesis
class does not contain the ground-truth function. In Section 4, we empirically demonstrate that many
standard DNNs exhibit tempered overfitting when trained to interpolation. We complement this
with theoretical results in Section 3, showing that kernel regression with the Laplace kernel, as well
as with the ReLU NTK (which describes the training of an infinite-width ReLU fully-connected
network [Jacot et al., 2018]), exhibits tempered overfitting. Our new category of tempered overfitting
is thus not merely a theoretical possibility but in fact captures many natural and widely-used learning
methods.

In Figure 3 we demonstrate our taxonomy experimentally for two benign methods (k-NN and early-
stopped MLPs) and two tempered methods (1-NN and interpolating MLPs) on a binary classification
version of MNIST, with varying noise in the train labels. We plot test classification error on the clean
test set against the proportion of flipped labels in the training set. As n grows, the benign methods
approach zero test error even at nonzero train noise, while the tempered methods converge to a test
error bounded away from zero.

3 Overfitting in Kernel Regression

We begin with a study of kernel regression (KR), a widely-used nonparameteric learning algorithm
which, we will see, is sufficiently rich to exhibit all three regimes of overfitting, yet sufficiently simple
that this can be shown analytically. Theoretical interest in this algorithm has increased significantly
in recent years due to the discovery that trained DNNs converge to ridgeless KR in the infinite-width
and infinite-time limit [Jacot et al., 2018], implying that insights into KR simultaneously shed light
on overparameterized DNNs. The overparameterized linear regression setting of Bartlett et al. [2020]
is equivalent to KR, and we will make a direct comparison with their results at the end of the section.

KR is fully specified by a positive-semidefinite kernel function K : Rd
⇥ Rd

! R and a ridge
parameter � � 0. We allow the training set Dn to contain n samples (xi, yi) ⇠ D, and we assume
that yi = f

⇤(xi) + ⌘i with true function f
⇤ and noise ⌘i ⇠ N (0,�2). KR returns the predicted

function bf given by
bf(x) = K(x,Dn) (K(Dn,Dn) + �In)

�1
Y, (1)

where K(Dn,Dn) is the “data-data kernel matrix” with components K(Dn,Dn)ij = K(xi, xj),
K(x,D) is a row vector with components K(x,D)i = K(x, xi), and Y is a column vector of targets.

Existing literature provides examples of KR exhibiting all three asymptotic behaviors. Benign
overfitting has been analyzed for overparameterized linear regression [Advani and Saxe, 2017,
Bartlett et al., 2020, Belkin et al., 2019b, Hastie et al., 2019, Muthukumar et al., 2020], a special case
of KR. It is well-known that KR with a positive ridge value (with appropriate scaling conventions) is
consistent and thus benign [Christmann and Steinwart, 2007]. Furthermore, in 1D, a Laplace kernel
approaches piecewise linear interpolation as n ! 1 [Belkin et al., 2018a], which is easily shown
to exhibit tempered overfitting, and Rakhlin and Zhai [2019] proved that the Laplace kernel does
not overfit benignly in (fixed) dimension greater than one (though did not say whether it was in fact
tempered or catastrophic). Finally, it is known in experimental folklore (though not theoretically, to
our knowledge) that KR with a Gaussian kernel and zero ridge tends to yield poorly-conditioned

7In fact, the excess test MSE converges to the variance of the observation noise.
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kernel matrices and catastrophic behavior. Here we derive fairly general conditions under which KR
falls into each regime, solidifying these various observations into a unified picture.

As our chief tool for obtaining these conditions, we use a recently-derived closed-form approximation
for the expected test MSE of KR [Bordelon et al., 2020, Canatar et al., 2021, Jacot et al., 2020, Simon
et al., 2021]. By simply taking the n ! 1 limit of this expression, we can classify a given kernel
into one of our three regimes.

The expression we will use gives test MSE in terms of the eigenspectrum of the kernel (as given
by the Mercer decomposition) and the eigendecomposition of the target function. The nonnegative
eigenvalues �1 � �2 � ... � 0 and orthonormal eigenfunctions {�i}

1
i=1 are given by

Ex0⇠p[K(x, x0)�i(x
0)] = �i�i(x), where Ex⇠p[�i(x)�j(x)] = �ij . (2)

We note that a kernel must be positive semidefinite and that
P

i �i = Tr[K] = Ex⇠p[K(x, x)], which
we assume is finite. Because the eigenfunctions form a complete basis, we are free to decompose the
target function as f⇤(x) =

P
i vi�i(x), where {vi}

1
i=1 are eigencoefficients.

The above-mentioned works derive equivalent closed-form expressions for the test MSE of KR in
terms of this spectral information using methods from the statistical physics literature. These methods
are nonrigorous and rely on approximations (see Appendix A for a discussion), but they are expected
to become exact in the large-n limit, and comparison with empirical KR generally confirms a close
match even at modest n. Here we use the framework of Simon et al. [2021], which expresses the
final result in terms of “modewise learnabilities" {Li}

1
i=1, a set of scores in [0, 1] which indicate how

well each eigenmode is learned at a given n. This choice of variables will simplify our proofs.

Simon et al. [2021] find that test MSE Rn is approximated by

Rn ⇡ En ⌘ E0

 
X

i

(1 � Li)
2
v
2
i + �

2

!
, where E0 ⌘

n

n �
P

j L2
j

,

Li ⌘
�i

�i + 
, and  � 0 satisfies

X

i

�i

�i + 
+

�


= n.

(3)

This MSE includes noise on test labels; to instead compute a value for excess risk, one would simply
subtract �2.

Here we study the asymptotic behavior of En as n ! 1 for varying eigenspectra and ridge values.
The fitting regime of the kernel is then given by this limit: (a) if limn!1 En = �

2 (the Bayes-
optimal MSE), then fitting is benign, (b) if limn!1 En 2 (�2

,1), then fitting is tempered, and (c)
if limn!1 En = 1, then fitting is catastrophic. We obtain conditions on the kernel eigenspectrum
under which KR falls into each of these three regimes.

Our proofs rely on several (quite weak) technical assumptions on {�i}i and {vi}i, the most important
of which is that the target function does not place weight in zero-eigenvalue modes (i.e. outside the
kernel’s RKHS). We defer enumeration and discussion of these conditions to Appendix A, where
they are listed as Assumption A.1. Our result is the following:
Theorem 3.1 (KR trichotomy). For {�i}

1
i=1 and {vi}

1
i=1 satisfying Assumption A.1, �

2
> 0, and

En given by Eq. 3,

(a) If � > 0 or �i = i
�1 log�↵

i for some ↵ > 1, then lim
n!1

En = �
2
.

(b) If � = 0 and �i = i
�↵

for some ↵ > 1, then lim
n!1

En = ↵�
2
.

(c) If � = 0 and �i = i
� log i

, or more generally if
�i

�i+1
�

i� log i

(i+1)� log(i+1) for all i, then

lim
n!1

En = 1.

We defer the proof to Appendix A. The proof proceeds by first showing that asymptotic MSE is
dominated by the noise, not the true function, and then computing limn!1 E0 in each of the three
cases.

Theorem 3.1 can be summarized as follows: a ridge parameter or extremely slow eigendecay leads to
benign fitting, powerlaw decay of eigenvalues leads to tempered overfitting, and eigenvalue decay at
least as fast as i� log i leads to catastrophic overfitting. This theorem strongly suggests the satisfying
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heuristic that decay slower than any ↵ > 1 powerlaw is benign, powerlaw decay itself is tempered,
and decay faster than any powerlaw is catastrophic8. As ↵ grows in (1,1), powerlaw spectra fully
interpolate between benign and catastrophic, suggesting we have not missed any regime of interest
to our taxonomy. The fact that the asymptotic MSE from a powerlaw spectrum is simply ↵�

2 is a
pleasant surprise.

Theorem 3.1 has several consequences for KR with familiar kernels and the training of infinite-
width networks. For illustrative purposes, we contrast the Gaussian (RBF) kernel KG(x1, x2) =

e
�w�2||x1�x2||22 with the Laplace kernel KL(x1, x2) = e

�w�1||x1�x2||2 , where w is a bandwidth
parameter. With data drawn from a d-dimensional manifold, the Gaussian and Laplace kernels have
eigenspectra that decay like �i ⇠ e

�i2/d (as can be seen by taking a Fourier transform of KG) and
�i ⇠ i

�(d+1)/d [Bietti and Bach, 2020], respectively. We note that ReLU NTKs, restricted to the
hypersphere, have the same eigendecay as the Laplace kernel [Chen and Xu, 2020, Geifman et al.,
2020]. The implications of Theorem 3.1 include the following:

• KR with a fixed positive ridge parameter will fit any function in the kernel’s RKHS benignly
as n ! 1.

• Ridgeless KR with Laplace kernels or ReLU NTKs will exhibit tempered overfitting with
⇥(1/d) excess MSE, approaching benignness as dimension grows.

• Ridgeless KR with the Gaussian kernel will exhibit catastrophic overfitting.

• The asymptotic behavior of KR with non-ReLU NTKs depends on the activation function.
Virtually any kernel on the d-sphere (including the Gaussian kernel) can be realized as the
NTK of a wide network with a proper choice of activation function [Simon et al., 2022], and
thus there exist choices of activation function that yield catastrophic as well as tempered
overfitting.

• Early stopping is known to act as an effective ridge parameter for wide networks [Ali et al.,
2019], and thus we should expect that early-stopped wide networks will fit benignly.

We provide experiments illustrating Theorem 3.1 with Gaussian and Laplace kernels in Section 4.
We additionally check Theorem 3.1b with several subsequent experiments: Figure 5 shows that, in
synthetic KR with Gaussian eigenfunctions and exact powerlaw spectra, limn!1 En is ↵�2. And
Figure 6 in Appendix B shows that, as predicted, Laplace kernels indeed appear to have asymptotic
risk that decays like ⇥(1/d).

We note that, to our knowledge, no well-known kernel has an eigendecay slower than all ↵ > 1
powerlaws in finite dimension, and finding one in closed form — yielding ridgeless KR which overfits
benignly — is an interesting open problem.

4 Experiments

Having demonstrated the three types of fitting theoretically in KR, we now present a series of
experimental results illustrating these regimes in both KR and deep neural networks (DNNs). We
provide full experimental details in Appendix C.

4.1 Experiments on Kernel Regression

In Figure 4, we run KR on the following synthetic data distribution: the inputs x are sampled from
the unit sphere S

d�1, and the targets y are zero-mean Gaussian noise (y ⇠ N (0, 1)). This is an
extremely simple regression setting: we are just trying to learn the constant-0 function under Gaussian
observation noise. We run KR with three choices of kernel: (A) Gaussian kernel with ridge, (B)
Laplace kernel without ridge, and (C) Gaussian kernel without ridge. Figure 4 shows that as we
increase the sample size, these three settings exhibit benign, tempered, and catastrophic behavior.
This agrees with the spectral predictions of Theorem 3.19.

8We leave a complete proof of this heuristic as an open problem.
9Though not reported here, we find the ridged Laplace kernel also exhibits benign fitting as expected.

8



101 102 103 104

Train Samples

10�3

10�2

10�1

100

T
es

t
M

S
E

A

Ridged Gaussian Kernel
(Benign)

101 102 103 104

Train Samples

10�3

10�2

10�1

100

B

Ridgeless Laplacian Kernel
(Tempered)

101 102 103 104

Train Samples

100

103

106

109
C

Ridgeless Gaussian Kernel
(Catastrophic)

d = 5 d = 10 d = 15

Figure 4: Kernel regression can exhibit all three fitting regimes with proper choice of ridge
parameter and kernel. Plots show learning curves for KR with data {xi} sampled uniformly from
the unit sphere S

d�1, trained with pure noise target labels yi ⇠ N (0, 1). Test MSE is computed
with respect to a clean test set. (a) KR with a Gaussian kernel and nonzero ridge is asymptotically
benign. A ridge value of � = 0.1 was used. (b) Ridgeless KR with a Laplace kernel exhibits tempered
overfitting. (c) Ridgeless KR with a Gaussian kernel exhibits catastrophic overfitting.

In Appendix B, we report KR experiments using synthetic kernels with exact powerlaw spectra
trained on noisy data. We find that as the spectral decay ↵ varies, the (asymptotic) test MSE is indeed
approximately ↵�

2 in agreement with part (b) of Theorem 3.1.

4.2 Experiments on Deep Neural Networks

Interpolating DNNs. Figure 2 and Figure 8a show the noise profiles for ResNets trained to
interpolation on two-class and ten-class versions of CIFAR-10, respectively. In both settings,
interpolating DNNs do not approach Bayes optimality, and instead exhibit tempered overfitting. This
tempered behavior is widespread across even much simpler DNN settings. For example, in Figure 8b,
we train a three-layer interpolating MLP for binary classification on an extremely simple synthetic
dataset: with inputs drawn from S

9 and ground-truth labels as the constant function f
⇤(x) = 1.

Even in this simple setting, at large sample size, interpolating DNNs are not benign—they do not
successfully learn the constant function in the presence of even slight label noise. Note that although
this experiment is outside the technical scope of Theorem 3.1, it is heuristically consistent: wide
ReLU MLPs tend to have NTKs with powerlaw spectra, and thus will exhibit tempered overfitting
when trained in the NTK regime.

Early-stopped DNNs. We now consider DNNs that have been optimally early-stopped. Figure
9 shows noise profiles for Wide ResNets trained on a binary version of SVHN, both stopped early

(Figure 9a) and trained to interpolation (Figure 9b). The early-stopped ResNets approach benign
fitting as n grows, with low error even at sizable noise levels, while the ResNets trained to interpolation
quickly converge to a tempered noise profile. This mirrors the behavior of MLPs on binary MNIST,
after one epoch of training and after interpolation, shown earlier in Figure 3. Although these benign
DNN results are outside the formal scope of known theoretical results, it is heuristically consistent
with results such as Ji et al. [2021], which show that certain wide and shallow ReLU MLPs are
consistent when early-stopped.

The above discussion suggests that as a single DNN is trained, it exhibits benign fitting early in
training (when it has not fit the noise in its train set), and then transitions to tempered overfitting late
in training (as it eventually fits the noise). In Appendix E, we show a simple experiment in which an
MLP trained on synthetic noisy data clearly exhibits this transition between regimes.

5 Limitations

In this paper, we have presented a taxonomy of overfitting, presented empirical evidence that DNNs
trained to interpolation exhibit tempered overfitting, and identified spectral conditions under which

9



KR, a toy model for DNNs, falls into each regime. This is a first study into this regime, and many
questions await careful exploration. We detail several here.

First, our DNN results are entirely empirical, and there is room for complementary theoretical
studies into the overfitting regimes of shallow networks and wide networks with NTK and mean-field
parameterization. Second, while we have used several real and synthetic datasets, all are of at most
moderate size, and a study at large scale — using correspondingly large models — is potentially
interesting. Third, we have found that in some realistic settings, interpolating DNNs are tempered,
but it remains open whether there might exist settings or tasks for which interpolating DNNs overfit
benignly or catastrophically. Fourth, Theorem 3.1 required a “universality” assumption which ought
to be checked for each kernel. Finally, our KR results suggest that input or manifold dimension
should play a role in the degree of tempered overfitting, and the effect of dimensionality on overfitting
is yet to be disentangled.

6 Conclusion

In this paper we study the nature of overfitting in learning methods which interpolate their training data.
Much of contemporary theory and experimental work categorizes overfitting as either catastrophic
or benign. In contrast, we observe that many natural learning procedures, including DNNs used in
practice, overfit in a manner that is neither benign nor catastrophic— but rather in an intermediate
regime. We identify and formally define this regime, which we call tempered overfitting. We present
empirical evidence of learning procedures that exhibit tempered overfitting, on both synthetic and
natural data, using kernel machines and deep neural networks. We show tempered overfitting can
be quantified in terms of noise profiles, which measure how asymptotic performance depends on
noise in the train distribution. For kernel regression, we provide a theoretical result in the form of a
trichotomy: conditions on problem parameters which yield each of the three regimes of overfitting.

Our work presents an initial study of tempered overfitting and lays the framework for future study
of what we believe is a rich and relevant regime for modern learning. We hope this framework
inspires further investigation into tempered overfitting for more complex models, both theoretically
and experimentally. For example, it is open to understand which conditions on neural network
architecture, training hyperparameters and data distribution lead to benign, tempered, or catastrophic
overfitting, in analogy to our “kernel trichotomy”, and an answer might shed light on practical DNNs.
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