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ABSTRACT

The probabilistic forecasting of time series is a well-recognized challenge, particu-
larly in disentangling correlations among interacting time series and addressing the
complexities of distribution modeling. By treating time series as temporal dynam-
ics, we introduce KooNPro, a novel probabilistic time series forecasting model that
combines variance-aware deep Koopman model with Neural Process. KooNPro
introduces a variance-aware continuous spectrum using Gaussian distributions to
capture complex temporal dynamics with improved stability. It further integrates
the Neural Process to capture fine dynamics, enabling enhanced dynamics capture
and prediction. Extensive experiments on nine real-world datasets demonstrate
that KooNPro consistently outperforms state-of-the-art baselines. Ablation stud-
ies highlight the importance of the Neural Process component and explore the
impact of key hyperparameters. Overall, KooNPro presents a promising novel ap-
proach for probabilistic time series forecasting. Code is available at this repository:
https://github.com/Rrh-Zheng/Koonpro.

1 INTRODUCTION

Time series forecasting is essential in supply chain management, finance, energy, and healthcare.
Probabilistic forecasting quantifies uncertainty, supporting robust decision-making in tasks like
inventory optimization and risk management. For instance, in supply chains, it helps businesses
anticipate demand fluctuations, optimize planning, and improve efficiency. Traditional methods
like Auto-Regressive Integrated Moving Average (ARIMA) (Said & Dickey, 1984) and the Kalman
filter family (Auger et al., 2013) struggle with the complexities of real-world time series. Deep
learning approaches for time series forecasting have evolved from Recurrent Neural Networks (RNNs)
(Salehinejad et al., 2017) to Long Short-Term Memory (LSTM) networks (Yu et al., 2019). The
introduction of the attention mechanism (Vaswani et al., 2017) further advanced the field, leading
to Transformer-based models such as Zhou et al. (2021), Wu et al. (2021), and Zhou et al. (2022).
More recently, diffusion probabilistic models (Ho et al., 2020; Rasul et al., 2021; Li et al., 2022;
Fan et al., 2024) have emerged as a promising paradigm for probabilistic forecasting, with works
like Kollovieh et al. (2024) demonstrating their potential. Moreover, foundation models for time
series forecasting, such as Ansari et al. (2024), have introduced the concept of learning a universal
representation for diverse time series tasks. Despite these advancements, many deep learning models
focus primarily on point estimation, which limits their ability to fully capture the uncertainty and
dynamics inherent in complex systems. State space models, such as Rangapuram et al. (2018a), Wang
et al. (2019) and Paria et al. (2021) offer an alternative by modeling time series as low-dimensional
latent decompositions. These methods excel at representing temporal dynamics in reduced spaces
but often rely on fixed assumptions about state transitions, which may fail to generalize to highly
nonlinear and non-stationary scenarios.

Dynamic Mode Decomposition (DMD) is a powerful tool for modeling time series as dynamic
systems (Kuttichira et al., 2017), aiming to identify the underlying dynamics and subsequently
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utilize them for prediction (Kou & Zhang, 2019; Yuan et al., 2021). However, DMD’s reliance on
discrete eigenvalues (point-spectra) restricts its ability to describe the nonlinear patterns of complex
systems. The Koopman theory offers a powerful framework for analyzing nonlinear systems by
representing them in a linear but infinite-dimensional space. The ability to decompose complex
dynamics into Koopman eigenfunctions has inspired many works to incorporate this theory into time
series modeling. Combining the Koopman theory (Koopman, 1931) with deep learning (Lusch et al.,
2018) enhances the ability to model temporal dynamics with greater sophistication, leading to more
accurate predictions. For example, models such as Liu et al. (2023) and Wang et al. (2023) enhance
predictive capabilities through deep Koopman theory by learning the continuous-spectra of dynamics.
However, these models are often affected by spectrum pollution, leading to unstable convergence
and reduced accuracy, especially in highly nonlinear systems (Colbrook & Townsend, 2024). To
address this, the concept of pseudo-spectra has been introduced. Pseudo-spectra accounts for the
latent spaces where eigenvalues may appear under different perturbation conditions, which makes
them more robust to noise and better suited for capturing continuous variations.

∙ ∙ ∙

∙

∙

∙∙ ∙∙
∙

∙
∙ ∙

∙

∙

∙
∙

∙

∙

∙
∙

Figure 1: To enhance the accuracy and robustness of probabilistic forecasting, we model time series
as dynamic evolutions in a hidden space. In our setting, the dynamic system is constrained within
unit circles. The point-spectra (purple), continuous-spectra (red), and pseudo-spectra (yellow) are
represented within unit circles. Multiple unit circles can be deemed as different time points in
the hidden space. Figure adapted from Elden Ring (© FromSoftware Inc. and Bandai Namco
Entertainment Inc.), modified and used under fair use for academic purposes.

The motivation of this work is to assemble various spectral components within a unified framework,
as illustrated in Fig. 1. Point-spectra are incorporated via Neural Process (Garnelo et al., 2018b) to
capture global temporal dynamics. Continuou-spectra are modeled using the Koopman theory to
represent local temporal dynamics. For Pseudo-spectra, we propose a variance-aware continuous-
spectra modeled by Gaussian distributions, drawing on the idea that probability distributions can
characterize pseudo-spectra within a neighborhood by quantifying overall dispersion (Colbrook et al.,
2024).

By modeling time series as dynamic systems grounded in multi-spectra representations, we propose
KooNPro, a novel probabilistic framework that combines global latent features from point-spectra
via Neural Process with variance-aware modeling of continuous-spectra. We adopt variational
inference and derive a tailored Evidence Lower Bound (ELBO) to optimize the unified model.
KooNPro achieves high predictive accuracy and robustness in high-dimensional, non-stationary
settings, demonstrating state-of-the-art performance. Our contributions are summarized as follows:

• We introduce KooNPro, a novel probabilistic prediction model that synergistically integrates
the probabilistic Koopman model with Neural Process. Drawing inspiration from perturba-
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tions in pseudo-spectra, KooNPro incorporates variance-aware continuous-spectra to learn
local temporal dynamics effectively. Additionally, it utilizes Neural Process to capture the
full point-spectra which represented the global temporal dynamics, facilitating improved
predictive capabilities.

• Extensive experiments conducted on diverse real-world datasets convincingly demonstrate
the superiority of our proposed model. It consistently achieves state-of-the-art performance,
significantly outperforming existing methods across two metrics.

• We perform comprehensive ablation studies demonstrating the ability of Neural Process to
capture temporal dynamics globally, thereby enhancing prediction performance. We also
assess the impact of key hyperparameters on model efficacy. Additionally, we provide a
detailed case study that visually illustrates the prediction performance of KooNPro, yielding
intuitive and interpretable results.

2 RELATED WORK

This work engages with three key areas: probabilistic time series prediction, the probabilistic
Koopman model, and Neural Process. While each of these fields has received considerable attention,
we limit our discussion to the most pertinent studies to ensure brevity. A more extensive version can
be found in Appendix A.

Probabilistic time series prediction: Recent developments in probabilistic forecasting for time series
integrate deep learning, statistical approaches, and diffusion models. Rangapuram et al. (2018b),
Salinas et al. (2020) and Li et al. (2021) combine state space model with deep learning. Feng et al.
(2023) and Tang & Matteson (2021) developed attention-based mechanism that enhance long-range
dependencies for improved forecast accuracy. Gaussian Process (GP), combined with temporal
decomposition, was used by Yan et al. (2021), Nguyen & Quanz (2021), and Salinas et al. (2019)
to better model uncertainty in multivariate settings. The data distribution-based generative model
proposed by (Gouttes et al., 2021) and the Kalman filter-based approach proposed by de Bézenac et al.
(2020), blend probabilistic techniques for better scalability and robustness. Diffusion models, such as
those proposed by Rasul et al. (2021), Li et al. (2022), and Fan et al. (2024), model forecasting as a
denoising task, excelling in high-dimensional settings.

Probabilistic Koopman model: The Koopman theory has been developed in lots of fields, the
most related work is the probabilistic Koopman model, originally proposed by Morton et al. (2019).
Han et al. (2022) designed a stochastic Koopman neural network for control, in which the latent
observables are represented through Gaussian distribution. Colbrook et al. (2024) integrates the
concept of variance into the Koopman framework by introducing variance-aware pseudo-spectra,
thereby ensuring convergence within the model. For time series tasks, Naiman et al. (2023) utilized
Koopman theory to represent the latent conditional prior dynamics via a linear map, while Mallen
et al. (2024) introduced a framework enabling probabilistic forecasting for systems with periodically
varying uncertainty.

Neural process: Neural Process (NP), first proposed by Garnelo et al. (2018a) as Conditional Neural
Process, bridges neural networks’ scalability and Gaussian Process’s ability to model uncertainty.
Garnelo et al. (2018b) provide flexible, probabilistic function approximations, making them efficient
and adaptable across tasks. Attentive Neural Process (Kim et al., 2019), Convolutional Conditional
Neural Process (Gordon et al., 2019b), Gaussian Neural Process (Bruinsma et al., 2021) and Au-
toregressive Neural Process (Bruinsma et al., 2023) deploy different methods to probe the relation
between input-output pairs. Other works extend NP to meta-learning, such as Meta-Learning Station-
ary Stochastic Process (Foong et al., 2020) and Meta-Learning Probabilistic Inference (Gordon et al.,
2019a). A comprehensive survey by Jha et al. (2022) has organized these developments, exploring
their wide applications in uncertainty-aware learning.

3 BACKGROUND

Due to space constraints, we discuss the background details in Appendix B and focus here on the
core of Koopman theory and Neural Process, which form the foundation of KooNPro.
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The spectrum decomposition of the Koopman operator is crucial for understanding dynamics. The
point-spectra reveal modal contributions via eigenvalues and corresponding eigenfunctions, which
can reveal how different modes contribute to the system’s evolution. However, many complex
systems exhibit continuous-spectra, reflecting chaotic or highly irregular behavior. In such cases,
the Koopman operator’s spectrum forms a continuum rather than isolated eigenvalues and offers a
sophisticated framework for capturing both regular and chaotic components of system dynamics.
Althrough the Koopman operator is effective for predictive modeling but is prone to spectrum
pollution, which can hinder convergence and stability. Drawing inspiration from pseudo-spectra
perturbations and the idea that probability distributions capture variable dispersion, we propose
variance-aware continuous-spectra modeled by Gaussian distributions.

Neural Process (NP) is a stochastic process p(f) that describes the predictive distribution over the
target set (xD,yD) := (xi,yi)i∈D given the context set (xC ,yC) := (xi,yi)i∈C . Garnelo et al.
(2018b) prompts use the distribution of a high-dimensional random vector S to represent p(f) as

p(yD|xD,xC ,yC) :=

∫
p(yD|xD,S)p(S|xC ,yC)dS. (1)

NP consists of two components: an encoder that maps the input-output pairs of the context set
(xC ,yC) to S for representing p(f), and a decoder that combines S with xD to generate yD. Due to
the intractable log-likelihood, NP adopts amortized variational inference and maximizes the evidence
lower bound (ELBO) of the log-likelihood as follows
log (yD|xD,yC ,xC) ≥ ES∼q(S|xD,yD)

[logp (yD|xD,S)]−DKL (q (S|xD,yD) ||p (S|xC ,yC)) .

(2)

4 METHOD

This section offers a detailed overview of KooNPro, with the complete architecture illustrated in
Fig.2. KooNPro leverages the synergistic integration of Neural Process (NP) with a probabilistic
deep Koopman model to learn temporal dynamics for probabilistic future prediction. Initially, NP
globally captures the point-spectra of temporal dynamics to govern the full time series, as indicated
by the downward arrows in Fig.2. Additionally, inspired by the concept of pseudo-spectra, we utilize
a probabilistic deep Koopman model to refine continuous-spectra, yielding variance-aware spectra
for a more nuanced representation of local temporal dynamics, as demonstrated by the shadowed box
in Fig.2.

4.1 CAPTURE TEMPORAL DYNAMICS BY NEURAL PROCESS

Dynamic Mode Decomposition (DMD) is a classical method that elucidates the relationship between
time series data and corresponding dynamics. However, DMD’s reliance on point-spectra limits
its capacity to capture the nonlinear patterns inherent in complex systems, thereby constraining its
predictive power. To address these limitations, KooNPro integrates Neural Process (NP) with DMD
to generate a stochastic process that captures the global dynamics of the whole time series more
effectively. Specifically, KooNPro identifies the distribution of the latent variable S ∈ Rs, which
integrates the underlying dynamics of a time series in Eq.1, as shown in the left part of Fig.2.

We utilize Takens’ theory like Yuan et al. (2021), define a time series z1:T ∈ RT×d×k, where T
denotes the time length, d denotes the feature dimension and k denotes the delay-embedded length,
and let x = z1:T−1, y = z2:T . To estimate the dynamics governing time series in the context set,
KooNPro employs a neural network τ to embed x̂ ∈ R(T−1)×d×1 and ŷ ∈ R(T−1)×d×1 as the initial
components of delay embedding like

τC := τ (xC ,yC) = ψ

(
1

c

c∑
i=1

vec
(
x̂†ŷ

))
, (3)

where ψ denotes a learnable Multi-Layer Perceptron (MLP), c denotes the number of items in the
context set, and the eigenvalues of x̂†ŷ can approximate the point-spectra of the corresponding time
series dynamics. We model the distribution of S by a factorized Gaussian distribution parametrized
by τC , i.e.,

p(S|xC ,yC) = N (S;µ(τC), σ(τC)). (4)
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Figure 2: The complete architecture of KooNPro: p(S|τD) and p(S|τC) are the latent representa-
tions of DMD mean over the target set and the context set respectively. Given the first time step z1 in
the target set, the encoder ϕ generates the latent variable h1. We apply the Koopman operator A to
h1 for T − 1 steps then generate the distribution of h2:T . Finally, the decoder ϕ−1 maps h2:T back
to the original space to generate the distribution of z2:T .

Denote p(S|τC) := p(S|xC , yC) for any set C, thus p(S) represents the distribution of underlying
dynamics according to different time series sets. The ELBO in Eq.2 can be reformulated as follows

log(yD|xD,yC ,xC) ≥ ES∼q(S|τD)
[logp(yD|xD,S)]−DKL(q(S|τD)||p(S|τC)). (5)

The second term on the right of Eq.5 captures the difference in the distribution of S, reflecting the
diversity of temporal dynamics across different time series. Although we employ τ to embed the
point-spectra that characterize the global temporal dynamics, it provides only a coarse approximation.
For the first term on the right side of Eq.5, we maximize it using a probabilistic deep Koopman model,
which provides a more nuanced representation of the local temporal dynamics through the lens of the
pseudo-spectra.

4.2 PROBABILISTIC DEEP KOOPMAN MODEL

The proposed probabilistic deep Koopman model shown in the shadowed box of Fig.2 concentrates
on explaining local characteristics of time series with variance-aware continuous-spectra. This
approach offers a deeper understanding of temporal dynamics behavior over time, leading to improved
predictive capabilities. In essence, estimating the true temporal dynamics is equivalent to maximizing
the expectation Eq(S|τD)

[logp(yD|xD,S)].

For simplicity, we discuss only the data in the target set and omit the index D. Following Lusch
et al. (2018), we compose KooNPro by three MLPs: an encoder ϕ : Rd×k → Rn and a decoder
ϕ−1 : Rn → Rd×k to identify an appropriate linear space, along with an auxiliary κ : Rn+s → Rn

to learn the continuous-spectra of the corresponding temporal dynamics in linear space. Firstly,
KooNPro vectorized the delay-embedded time series x = z1:T−1 from size (T − 1) × d × k to
(T − 1)× (d · k)× 1, then applies the encoder as h1:T−1 = ϕ(x). We hypothesize the latent space
created by ϕ possesses linear characteristics, thus the dynamics in such space can be described as
follows

ht+1 = eλt∆tht. (6)

We assume ht represents the eigenvalue of the dynamics, consisting of a pair of conjugate numbers,
and λt to be pure imaginary like Lange et al. (2021), let λt = jωt, thus we have

Re(ht+1) = Re(ht)⊙ cos(ωt∆t)− Im(ht)⊙ sin(ωt∆t), (7)
Im(ht+1) = Re(ht)⊙ sin(ωt∆t) + Im(ht)⊙ cos(ωt∆t), (8)
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where ⊙ is the element-wise product. We can simplify Eq.7 and Eq.8 to

ht+1 := A(ht,ωt). (9)

In order to learn the Koopman operator A, which is conditioned on the global temporal dynamics
representation S, KooNPro utilizes the auxiliary κ to project the concatenation of ht and S to κt,

κ :

[
ht

S

]
7→ κt. (10)

Drawing on the theory of pseudo-spectra, KooNPro aims to learn dynamic information not only from
the eigenvalues but also from their neighborhoods. To facilitate this, KooNPro employs the auxiliary
network to generate the corresponding Gaussian distribution of ωt parameterized by κt as

p(ωt|ht,S) = N (ωt;µ(κt), σ(κt)). (11)

To simplify KooNPro, we assume the independence of h1:T−1 on the linear space. Consequently, we
can describe the uncertain dynamics as

p(ω1:T−1|h1:T−1,S) =

T−1∏
t=1

N (ωt;µ(κt), σ(κt)). (12)

Since ht = A(ht−1,ωt−1), it yields that p(hT |ω1:T−1,h1:T−1,S) = 1. Thus, the variance-aware
continuous-spectra in the linear space can be characterized within the framework of the Gaussian
distribution like

p(h2:T |h1:T−1,S) = p(hT |ω1:T−1,h1:T−1,S)p(ω1:T−1|h1:T−1,S) (13)

=

T−1∏
t=1

N (ωt;µ(κt), σ(κt)). (14)

Utilizing the decoder ϕ−1, KooNPro maps the temporal dynamic evolution from the linear space
back to the original space, as follows

p(z2:T |h2:T ) =

T∏
t=2

N (zt;µ(ϕ
−1(ht)), σ(ϕ

−1(ht))). (15)

The likelihood p(y|x,S) in Eq.5, where x = z1:T−1 and y = z2:T , can be derived as

p(y|x,S) = p(z2:T |h1:T−1,S) = p(z2:T |h2:T )p(h2:T |h1:T−1,S), (16)

given that the encoder ϕ is a deterministic function. Insert Eq.14 and Eq.15 to Eq.16, we can draw
the expectation as

ES∼q(S|τD)
[logp(yD|xD,S)] = ES∼q(S|τD)

[

T∑
t=2

log(p(zt|ht)) +

T−1∑
t=1

log(p(ht+1|ht,S))]. (17)

The first term can be interpreted as the prediction loss, while the second term represents the linear
loss, as described in Lusch et al. (2018). By maximizing the ELBO in Eq.5, we derive that SC

approximates the dynamics for each time series present during the training phase. Consequently, our
predictions in the test phase commence with the initial z1 ∈ R1×d×k like

zT̃ = ϕ−1(AT̃−1(ϕ(z1),SC)). (18)

It is crucial to note that the time length T during the training stage is distinct from the prediction
horizon T̃ , with the input history length solely determined by the delay-embedded length k. This
enables us to train KooNPro once and then forecast future values of arbitrary length.

5 EXPERIMENTS

In this section, we conduct comprehensive experiments on nine real-world datasets to evaluate the
performance of KooNPro against state-of-the-art baselines. We demonstrate Neural Process’s ability
to enhance KooNPro’s predictive performance and investigate the impact of key hyperparameters
through ablation studies. Finally, we visualize the prediction results for the Solar dataset and
analyze the relationship between prediction error and variance.
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5.1 SETTINGS

Datasets. We consider nine real-world datasets characterized by a range of temporal dynamics,
namely ETTs, Solar, Electricity, Traffic, Taxi, and KDD-cup. The data is recorded at
intervals of 15 minutes, 30 minutes, 1 hour, or 1 day frequencies. Refer to Appendix C for details.
All datasets are split chronologically and adopt the same train/validation/test ratios, i.e., 7:1:2.

Evaluation Metrics. Following previous work (Fan et al., 2024), we assess our model and all
baselines using CRPSsum (Continuous Ranked Probability Score), a widely used metric for proba-
bilistic time series forecasting, as well as NRMSEsum (Normalized Root Mean Squared Error).
The details of metrics are shown in Appendix D.

Baselines. We assess the predictive performance of KooNPro in comparison with multivariate time
series forecasting models, including GP-Copula (Salinas et al., 2019), Transformer-MAF (Rasul et al.,
2021), TimeGrad (Rasul et al., 2021), TACTiS (Ashok et al., 2023), D3VAE (Li et al., 2023), DPK
(Mallen et al., 2024), and MG-TSD (Fan et al., 2024). The more details of baselines can be found in
Appendix E.

Implementation details. The training process is early stopped within 5 epochs using the Adam
optimizer with a fixed learning rate of 10−5. The mini-batch size is set to 128. Additional hyper-
parameters, such as time length T , delay-embedded length k, and layers of MLPs are detailed in
Appendix F. All models are trained and tested on a single NVIDIA RTX4070Ti 12GB GPU.

5.2 RESULTS

In this section, we compare the performance of KooNPro with baselines using CRPSsum and
NRMSEsum. More comprehensive results, including long-term predictions (Appendix G), per-
formance in different noisy scenarios (Appendix H), and the relationship between performance and
memory consumption (Appendix I), can be found in the appendix.

Table 1: Comparison of CRPSsum (denoted as C-s, smaller is better) and NRMSEsum (denoted
as N-s, smaller is better) across nine real-world datasets. The means and standard errors are based on
10 independent runs of retraining and evaluation. The best performances are highlighted in red and
the second are in blue.

Model Metric ETTh1 ETTh2 ETTm1 ETTm2 Solar Electricity Traffic Taxi Cup

GP-Copula
C-s 0.537±0.019 0.264±0.023 0.241±0.043 0.147±0.019 0.305±0.024 0.078±0.035 0.199±0.008 0.286±0.066 0.217±0.000

N-s 0.835±0.032 0.383±0.032 0.424±0.088 0.172±0.027 0.671±0.034 0.122±0.058 0.293±0.018 0.412±0.115 0.346±0.010

Trans-MAF
C-s 0.800±0.049 0.223±0.012 0.379±0.029 0.228±0.040 0.964±0.013 0.144±0.046 0.477±0.021 0.403±0.046 0.257±0.013

N-s 1.285±0.188 0.315±0.024 0.577±0.082 0.356±0.065 1.665±0.022 0.245±0.079 0.762±0.031 0.598±0.029 0.390±0.010

Timegrid
C-s 0.547±0.022 0.241±0.002 0.227±0.029 0.212±0.015 0.594±0.011 0.044±0.010 0.455±0.020 0.327±0.058 0.271±0.087

N-s 0.889±0.039 0.325±0.000 0.363±0.072 0.291±0.018 1.081±0.015 0.072±0.014 0.560±0.016 0.498±0.095 0.341±0.097

TACTIS
C-s 0.601±0.004 0.208±0.002 0.634±0.009 0.142±0.015 1.871±0.022 0.254±0.012 0.456±0.003 0.981±0.013 0.276±0.008

N-s 0.907±0.010 0.320±0.006 1.013±0.010 0.320±0.006 2.309±0.528 0.391±0.016 1.871±0.003 1.170±0.013 0.403±0.013

D3VAE
C-s 0.445±0.023 0.266±0.016 0.219±0.009 0.177±0.017 0.312±0.035 0.198±0.020 0.265±0.027 0.257±0.008 0.243±0.035

N-s 0.662±0.029 0.479±0.027 0.257±0.058 0.263±0.007 0.642±0.070 0.253±0.104 0.926±0.103 0.391±0.038 0.501±0.005

DPK
C-s 0.718±0.011 0.471±0.024 0.556±0.018 0.341±0.062 0.753±0.035 0.784±0.008 0.827±0.007 0.843±0.009 0.728±0.029

N-s 1.026±0.012 0.725±0.040 0.887±0.023 0.391±0.157 1.130±0.040 1.062±0.005 1.160±0.007 1.165±0.010 1.147±0.056

MG-TSD
C-s 0.430±0.038 0.174±0.009 0.254±0.054 0.129±0.009 0.298±0.025 0.107±0.055 0.528±0.057 0.250±0.073 0.323±0.015

N-s 0.693±0.083 0.220±0.017 0.394±0.076 0.292±0.046 0.623±0.026 0.155±0.063 0.710±0.058 0.347±0.078 0.638±0.056

KooNPro
C-s 0.328±0.037 0.149±0.051 0.165±0.057 0.081±0.020 0.211±0.033 0.057±0.006 0.184±0.022 0.226±0.041 0.204±0.017

N-s 0.520±0.045 0.224±0.065 0.225±0.028 0.122±0.034 0.313±0.044 0.095±0.012 0.289±0.025 0.330±0.078 0.308±0.030

Tab.1 presents the CRPSsum and NRMSEsum values, averaged over 10 independent runs. In
comparison, traditional baseline models (e.g., GP-Copula and Timegrid) have higher CRPSsum

values on most datasets, which indicates their difficulty in handling complex time series data.
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Compared to modern deep generative models (e.g., D3VAE and TACTIS), KooNPro achieves a better
balance between predictive stability and accuracy. Although MG-TSD shows a slight advantage in
NRMSEsum on certain datasets (e.g., ETTs), its CRPSsum fluctuates significantly, suggesting
an inadequate characterization of distributional uncertainty. KooNPro introduces the variance-
aware spectrum to enhance global pattern capturing, avoiding spectrum instability caused by local
perturbations, thus achieving higher stability and accuracy in handling complex nonlinear patterns.
This demonstrates its effectiveness in high-dimensional time series forecasting.

5.3 ABLATION STUDY

In this section, we conduct an ablation study to identify the factors contributing to KooNPro’s success
in prediction tasks. We first examine the role of the Neural Process (NP), which primarily learns and
represents the underlying dynamics across whole time series within S. We track the KL divergence
between SD and SC during the training phase (Fig. 3, upper) on the ETTh1 dataset. It decreases
over time, converging with the validation set around the 70th epoch, indicating effective learning of
time series dynamics. To assess generalization, we compute the KL divergence between SC and 150
test time series (Fig. 3, lower). The low divergence suggests SC reliably captures temporal dynamics,
even for previously unseen data.
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Figure 3: The upper section illustrates the KL-divergence between SD and SC during the training
phase, with training epochs on the x-axis and an exponential scale on the y-axis. The lower section
analyzes 150 test dataset time segments, displaying their KL-divergence with SC , with the x-axis
using an exponential scale and the y-axis showing time series counts.

Table 2: Prediction performance when replacing Neural Process (NP) with Attention Neural Process
(ANP), Gaussian Process (GP), or removing NP version (denoted as with-ANP, with-GP, and without-
NP, respectively).

Model Metric ETTh1 ETTh2 ETTm1 ETTm2 Solar Elec. Traffic Taxi Cup

KooNPro
C-s 0.328±0.037 0.149±0.051 0.165±0.057 0.081±0.020 0.211±0.033 0.057±0.006 0.184±0.022 0.226±0.041 0.204±0.017

N-s 0.520±0.045 0.224±0.065 0.225±0.028 0.122±0.034 0.313±0.044 0.095±0.012 0.289±0.025 0.330±0.078 0.308±0.030

with-ANP
C-s 0.334±0.061 0.194±0.063 0.195±0.029 0.107±0.019 0.201±0.062 0.067±0.022 0.197±0.016 0.213±0.056 0.306±0.008

N-s 0.541±0.084 0.300±0.093 0.350±0.061 0.182±0.033 0.371±0.052 0.127±0.033 0.308±0.030 0.314±0.081 0.497±0.008

with-GP
C-s 0.912±0.067 0.613±0.056 0.579±0.023 0.438±0.067 0.304±0.052 0.125±0.033 0.231±0.023 0.349±0.029 0.413±0.159

N-s 1.210±0.061 0.791±0.058 0.861±0.029 0.622±0.075 0.467±0.067 0.205±0.052 0.388±0.016 0.501±0.033 0.655±0.252

without-NP
C-s 0.390±0.083 0.218±0.120 0.332±0.068 0.155±0.042 0.341±0.059 0.093±0.027 0.313±0.051 0.252±0.068 0.674±0.224

N-s 0.609±0.117 0.318±0.169 0.511±0.103 0.243±0.056 0.531±0.065 0.144±0.036 0.590±0.095 0.380±0.092 1.058±0.341

To evaluate the contribution of NP further, we compare different methods for generatingSC , including
cases without it. For clarity, we label the methods as follows: With-ANP (using Attention Neural
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Figure 4: The top axis shows the increase in time length T , while the bottom axis indicates the
increase in delay-embedded length k. The orange and transparent orange curves represent the
CRPSsum and NRMSEsum for increasing T . The blue and transparent blue curves correspond
to these metrics for increasing k. Error bars reflect the standard error from 10 independent retraining
and evaluation runs.

Process), With-GP (using GP), and Without-NP (no NP). Implementation details are provided in
Appendix J. As shown in Tab.2, the overall performance of With-ANP is comparable to KooNPro,
with predictive performance improving as data dimensionality increases. Notably, on the taxi
dataset, the highest-dimensional dataset, With-ANP outperforms KooNPro on both metrics. However,
ANP incurs higher computational complexity, increasing from O(n+m) for NP to O(n(n+m)) (Kim
et al., 2019). With-GP demonstrates significantly degraded performance, even worse than Without-
NP. This phenomenon may be attributed to the critical influence of prior knowledge in defining
the kernel function. Furthermore, the non-learnable parameters may impede SD from adequately
capturing the temporal dynamics governing the entire time series.

Next, we investigate the impact of the hyperparameter time length T and delay-embedded length k on
the prediction performance. In Fig.4, we analyze the impact of hyperparameters on the ETTh1 dataset.
The orange and transparent orange curves illustrate changes in CRPSsum and NRMSEsum as
T increases. We observe that KooNPro’s prediction accuracy improves significantly with T until
T = 30, beyond which further increases yield no additional benefits despite higher computational
costs. A similar trend is seen when varying k, as shown by the blue and transparent blue curves. This
suggests that temporal dynamics in time series cannot be fully captured simply by extending the
learning time segment. Additional ablation studies across various datasets are presented in Appendix
K.

5.4 CASE STUDY

The predictive capability of KooNPro arises from its ability to capture the underlying dynamics
of time series data effectively, we illustrate this using the Solar dataset, which comprises hourly
measurements from 137 solar plants located in Alabama state. The dataset exhibits a clear diurnal
pattern: values are non-zero from 6:00 to 18:00 and zero at night. In probabilistic prediction, large
errors often correspond to high variance, indicating uncertainty. We assess this by analyzing the
correlation between prediction variance and accuracy, measured by the mean absolute error (MAE)
of the predicted mean relative to the true value. A scatter plot of MAE versus prediction variance
(Fig.5, left) shows a correlation of 0.94 with a significance level near zero, confirming that KooNPro
effectively captures temporal dynamics and ensures reliable predictions. The right panel visualizes
the ground truth and predictions for the first eight plants over 24 hours. The results demonstrate that
KooNPro accurately captures the temporal fluctuations in Solar energy generation: The prediction
mean approaches zero during the transition from nighttime to daylight and vice versa for each plant.
Furthermore, the prediction intervals expand during sunlight and night periods, aligning with the
peaks and troughs of Solar fluctuations, indicating the reliability of the predictions.
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Figure 5: The left panel illustrates the correlation between the MAE of the prediction means relative
to the true values and the prediction variance. The title indicates that the correlation achieves 0.95
and the significant level is 6.74 × 10−13. The right panel visualizes the changes in the first eight
dimensions of the Solar dataset over 24 hours.

6 CONCLUSION

This paper presents KooNPro, a novel probabilistic forecasting model that treats time series as
temporal dynamics. KooNPro integrates Neural Process for global temporal dynamics modeling
and variance-aware continuous-spectra inspired by pseudo-spectra for local temporal dynamics,
enhancing learning capabilities. Extensive experiments on nine real-world datasets demonstrate
KooNPro’s superior performance compared to state-of-the-art methods. Comprehensive ablation
studies explore the origins of KooNPro’s predictive power, while visualizations of Solar dataset
predictions showcase its accuracy and reliability.
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A APPENDIX: RELATED WORK

This work engages with three key areas: probabilistic time series prediction, the probabilistic
Koopman model, and Neural Process. While each of these fields has received considerable attention
in recent literature. Here we talk only about the most related works:

Probabilistic time series prediction: Recent developments in probabilistic forecasting for time
series integrate deep learning, statistical approaches, and diffusion models. State space models have
been significantly enhanced by deep learning, as seen in (Rangapuram et al. (2018b)), (Salinas et al.
(2020)) and (Li et al. (2021)), where they effectively capture temporal dynamics and handle missing
data. (Feng et al. (2023)) and (Tang & Matteson (2021)) developed attention-based mechanism that
enhance long-range dependencies for improved forecast accuracy. Gaussian Process (GP), combined
with temporal decomposition, were used by (Yan et al. (2021)) and (Nguyen & Quanz (2021)) to
better model uncertainty in multivariate settings. (Salinas et al. (2019)) proposed a Gaussian copula
process, and (Ashok et al. (2023)) combines Gaussian copula and the attention mechanism for
capturing dependencies in high-dimensional multivariate forecasting. The data distribution-based
generative model proposed by (Gouttes et al. (2021)) and the Kalman filter-based approach of (de
Bézenac et al. (2020)), blend probabilistic technique for better scalability and robustness. Diffusion
models, such as those proposed by (Rasul et al. (2021)), (Li et al. (2022)), and (Fan et al. (2024)),
model forecasting as a denoising task, excelling in high-dimensional settings. For faster training
and prediction, (Shen & Kwok (2023)) introduced non-autoregressive diffusion model. (Wen et al.
(2024)) introduced spatio-temporal diffusion model, extending these methods to spatial dependencies.

Probabilistic Koopman model: Over the past two decades, Koopman techniques have garnered
substantial attention, with applications spanning analysis (Brunton et al. (2016)), (Takeishi et al.
(2017)), (Lusch et al. (2018)), (Azencot et al. (2019)); control Abraham et al. (2017), Korda & Mezić
(2018), Kaiser et al. (2021), (Narasingam et al. (2023)); optimization (Dogra & Redman (2020)),
(Manojlović et al. (2020)), (Naiman & Azencot (2021)), (Redman et al. (2021)), and forecasting
Azencot et al. (2020), Lange et al. (2021), (Wang et al. (2023)), (Liu et al.), (Tayal et al. (2023)).
(Brunton et al. (2021)) comprehensively discusses these advances and highlights future research
directions. The most closely related work to ours is the probabilistic Koopman model, originally
proposed by (Morton et al. (2019)). (Han et al. (2022)) designed a stochastic Koopman neural
network for control, in which the latent observables are represented through Gaussian distribution.
(Colbrook et al., 2024) integrates the concept of variance into the Koopman framework by introducing
variance-pseudo-spectra, thereby ensuring convergence within the model. For time series tasks,
(Naiman et al. (2023)) utilized Koopman theory to represent the latent conditional prior dynamics via
a linear map, while (Mallen et al. (2024)) introduced a framework enabling probabilistic forecasting
for systems with periodically varying uncertainty.

Neural process: Neural Process (NP), first proposed by (Garnelo et al. (2018a)) as Conditional
Neural Process, bridges neural networks’ scalability and Gaussian Process’s ability to model uncer-
tainty. (Garnelo et al. (2018b)) provide flexible, probabilistic function approximation, making them
efficient and adaptable across tasks, but struggled with long-range dependencies and flexible function
distributions. Various models have since emerged to address these limitations. Attentive Neural
Process (Kim et al. (2019)) introduced the attention mechanism to handle long-range dependencies
better. Convolutional Conditional Neural Process (Gordon et al. (2019b)) adapted convolutional layers
to process images and time series data more effectively. Gaussian Neural Process (Bruinsma et al.
(2021)) combined NP with Gaussian inference, improving performance in regression tasks by leverag-
ing Gaussian uncertainty. (Lee et al. (2023)) refined uncertainty quantification of NP, providing better
posterior estimation. Other works extend NP to meta-learning, such as Meta-Learning Stationary
Stochastic Process (Foong et al. (2020)) and Meta-Learning Probabilistic Inference (Gordon et al.
(2019a)), both addressing generalization to unseen tasks. Recent works focus on expanding NP
applications to complex data structures. Group Equivariant Conditional Neural Process (Kawano
et al. (2021)) and Versatile Neural Process (Guo et al. (2023)) improved the handling of symmetry
and representation, enhancing NP’s capacity to model equivariant and implicit functions. To improve
generation ability further, (Nguyen & Grover (2022)) and (Mohseni & Duffield (2024)) combine NP
with Transformer and Neural Operator respectively. A comprehensive survey by (Jha et al. (2022))
has organized these developments, exploring their wide applications in uncertainty-aware learning.
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B BACKGROUND

B.1 KOOPMAN THEORY AND PSEUDO-SPECTRA

The spectrum decomposition of the Koopman operator is a powerful tool for understanding the
underlying dynamics. If the operator has a discrete spectrum, it can be expressed in terms of its
eigenvalues λj and eigenfunctions ϕj , where Kϕj = λjϕj . This decomposition reveals how different
modes contribute to the system’s evolution. However, many complex systems exhibit continuous-
spectra, indicating chaotic or highly irregular behavior. In such cases, the Koopman operator’s
spectrum is not composed of isolated eigenvalues but rather a continuum, requiring a more nuanced
analysis. The operator can be represented through a spectrum measure σ and an integral over the
continuous-spectra: Kg(x) =

∫
σ
eiωtdE(ω)g(x), where E(ω) is a projection-valued measure. This

spectrum approach provides a comprehensive framework for capturing both regular and chaotic
components of a system’s dynamics. While the Koopman operator effectively models dynamics for
predictive purposes, it is prone to spectrum pollution, which can impede convergence and stability.
Inspired by perturbations in pseudo-spectra and the notion that probability distributions characterize
variables through overall dispersion, we propose variance-aware continuous-spectra and model it
using Gaussian distribution. This method ensures that eigenvalue perturbations are influenced not
only by local disturbances but also by the Gaussian distribution over the dynamics.

B.2 NEURAL PROCESS

A stochastic process can be viewed as a random function F : X → Y where inputs can be regarded
as indexing the output random variables. With a relaxed use of notation, we employ p(f) in denoting
a stochastic process, where f map inputs x ∈ X to y ∈ Y . When fulfilling exchangeability and
consistency as stated by Kolmogorov’s extension theorem (Oksendal, 2013), Neural Process (NP)
cited by Garnelo et al. (2018a) is a stochastic process that describes the predictive distribution over
the target set (xD,yD) := (xi,yi)i∈D given the context set (xC ,yC) := (xi,yi)i∈C . Garnelo et al.
(2018b) prompts use the distribution of a high-dimensional random vector S to represent p(f) as

p(yD|xD,xC ,yC) :=

∫
p(yD|xD,S)p(S|xC ,yC)dS. (19)

NP consists of two components: an encoder that maps the input-output pairs of the context set
(xC ,yC) to S for representing p(f), and a decoder that combines S with xD to generate yD. Due
to the intractable log-likelihood, NPs adopt amortized variational inference as Kingma & Welling
(2014) and maximize the evidence lower bound (ELBO) of the log-likelihood as follows

log (yD|xD,yC ,xC) ≥ ES∼q(S|xD,yD)
[logp (yD|xD,S)]−DKL (q (S|xD,yD) ||p (S|xC ,yC)) .

(20)

C BENCHMARK DATASETS

For our experiments, we use ETTs, Solar, Electricity, Traffic, Taxi, and KDD-cup
open-source datasets, with their properties listed in Tab.C. The dataset can be obtained through the
links below.

(i) ETTs: https://github.com/zhouhaoyi/ETDataset

(ii) Solar: https://www.nrel.gov/grid/solar-power-data.html

(iii) Electricity: https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014

(iv) Traffic: https://pems.dot.ca.gov

(v) Taxi: https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

(vi) KDD-cup: https://www.kdd.org/kdd2018/kdd-cup
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Table 3: Datasets detail

Name Frequency Dimensions Input length Prediction length

ETTh1 1 hour 7 10 24
ETTh2 1 hour 7 10 24
ETTm1 15 min 7 10 24
ETTm2 15 min 7 10 24

Solar 1 hour 137 15 24
Electricity 1 hour 370 10 24

Traffic 1 hour 862 10 24
Taxi 30 min 1214 15 24

D APPENDIX: EVALUATION METRIC

We consider two metrics: CRPSsum and NRMSEsum, the first one can describe the predictive
distribution, and the second can describe the distance between truth value and prediction mean, more
details can be found in Gluonts documentation (Alexandrov et al. (2020)).

CRPSsum: CRPS is a univariate, strictly proper scoring rule that quantifies the compatibility of a
cumulative distribution function F with an observed value x ∈ R as:

CRPS =

∫
R
(F(y)− I(x ≤ y))2dy, (21)

where I(x ≤ y) denotes the indicator function. The CRPS achieves the minimum value when
predictive prediction F same as the data distribution. CRPS can be extend to CPRSsum to
evaluate multivariate distribution:

CRPSsum = Et[CPRS(F−1
sum,

∑
i

xi
t)], (22)

where F−1
sum is computed by aggregating samples across dimensions and subsequently sorting them

to obtain quantiles. A smaller CRPSsum indicates more accurate predictions.

NRMSEsum: NRMSEsum is an adaptation of the Root Mean Squared Error (RMSE) that
accounts for the scale of the target values. It is defined as follows:

NRMSEsum =

√
mean((Ŷ −Y)2)

mean(|Y|)
, (23)

where Ŷ represents the predicted time series, and Y represents the true target time series.
NRMSEsum quantifies the average squared difference between predictions and true values across
all dimensions, normalized by the mean absolute magnitude of the target values. A smaller
NRMSEsum indicates more accurate predictions.

E DETAILS ON TRAINING BASELINES

We train baselines by open code which is reported in corresponding papers, and follow the default
setting. The code for the baseline methods is obtained from the following sources.

• GP-Copula: https://github.com/mbohlkeschneider/gluon-ts/tree/mvrelease

• Transfomer-MAF:https://github.com/zalandoresearch/pytorch-
ts/tree/master/pts/model/transformertempflow

• Timegrad: https://github.com/zalandoresearch/pytorch-ts

• TACTIS: https://github.com/servicenow/tactis

• D3VAE: https://github.com/ramber1836/d3vae
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• DPK: https://github.com/AlexTMallen/koopman-forecasting

• MG-TSD: https://github.com/Hundredl/MG-TSD

1.GP-Copula (2019): A method combining Gaussian Process with Copulas to model complex
dependencies between variables in multivariate time series, providing uncertainty estimates and
capturing nonlinear correlations.

2. Transformer-MAF (2021) Combines Transformers with Masked Autoregressive Flow (MAF)
to model long-term dependencies and the conditional probability distribution of time series data
effectively.

3. TimeGrad (2021) A diffusion model-based approach for time series forecasting, which progres-
sively generates samples to capture complex dynamics and uncertainty in the data.

4. TACTiS (2023) A probabilistic autoregressive model leveraging Transformers to handle non-
stationary time series, focusing on dynamic structures and probabilistic predictions.

5. D3VAE (2023) A deep variational autoencoder (VAE)-based model designed for time series,
featuring a dynamic decoder to effectively capture and predict complex temporal structures.

6. DPK (2024) Dynamic Probabilistic Kernel (DPK) models probabilistic dependencies in time series
using a dynamic kernel-based approach, balancing flexibility and efficiency for multivariate data.

7. MG-TSD (2024) Multi-Granularity Time Series Decomposition (MG-TSD) decomposes time
series into components of varying frequencies or trends, modeling each with a probabilistic framework
to capture multi-scale patterns.

F APPENDIX: IMPLEMENTATION DETAILS

In Tab.4, we show the hyperparameters of KooNPro include time length T , delay-embedded length k,
layers of the encoder ϕ, layers of the decoder ϕ−1, layers of the auxiliary κ, layers of ψ shown in
Eq.3. Note that the choice of T and k is based on the ablation study showcased in Appendix K.

Table 4: Hyperparameters of KooNPro

Name T k ϕ ϕ−1 κ ψ

ETTh1 30 10 4 4 4 2
ETTh2 20 10 4 4 4 2
ETTm1 20 10 4 4 4 2
ETTm1 20 10 4 4 4 2

Solar 30 15 8 8 8 3
Electricity 30 10 4 4 4 2

Traffic 20 10 4 4 4 2
Taxi 30 15 6 6 6 3

KDD-cup 10 10 4 4 4 2

G APPENDIX: LONG-TERM PREDICTION

To assess KooNPro’s predictive capability in capturing hidden temporal dynamics within time series,
we evaluate its performance under extended prediction length, as detailed in Tab.5. According to the
results in Tab.6, KooNPro exhibits the least degradation across both metrics compared to baseline
methods. This outcome highlights the effectiveness of KooNPro in learning and leveraging the
temporal dynamics of time series for accurate prediction.
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Table 5: Datasets detail

Name Frequency Dimensions Context length Prediction length

ETTh1 1 hour 7 10 48
ETTh2 1 hour 7 10 48
ETTm1 15 min 7 10 48
ETTm2 15 min 7 10 48

Solar 1 hour 137 15 48
Electricity 1 hour 370 10 48

Traffic 1 hour 862 10 48
Taxi 30 min 1214 15 48

KDD-cup 1 hour 270 10 72

Table 6: Comparison of CRPSsum (denoted as C-s, smaller is better) and NRMSEsum (denoted
as N-s, smaller is better) across nine real-world datasets. The means and standard errors are based on
10 independent runs of retraining and evaluation. The best performances are highlighted in red and
the second are in blue. A block marked with ’-’ denotes a numerical issue encountered during model
training with longer prediction lengths.

Model Metric ETTh1 ETTh2 ETTm1 ETTm2 Solar Electricity Traffic Taxi Cup

GP-Copula
C-s 0.611±0.031 0.381±0.034 0.646±0.056 0.558±0.054 0.465±0.089 0.234±0.047 0.529±0.006 1.007±0.025 0.731±0.025

N-s 0.909±0.033 0.610±0.062 0.762±0.138 0.844±0.093 0.709±0.085 0.382±0.103 0.713±0.014 1.464±0.057 1.073±0.056

Trans-MAF
C-s 1.271±0.051 0.507±0.014 1.045±0.085 0.279±0.007 - 0.198±0.069 0.596±0.031 0.769±0.046 0.410±0.073

N-s 1.571±0.144 0.780±0.027 1.797±0.122 0.485±0.127 - 0.397±0.127 0.872±0.046 0.936±0.010 0.515±0.083

Timegrid
C-s 0.796±0.084 0.477±0.007 0.458±0.059 0.346±0.010 0.886±0.036 0.263±0.028 0.726±0.050 0.791±0.021 0.421±0.059

N-s 0.953±0.102 0.697±0.009 0.588±0.104 0.455±0.014 1.243±0.056 0.423±0.077 0.932±0.055 0.971±0.195 0.522±0.098

TACTIS
C-s 0.752±0.004 0.401±0.001 1.331±0.013 0.261±0.023 3.786±1.708 0.360±0.004 0.552±0.067 1.368±0.014 0.390±0.018

N-s 0.943±0.004 0.522±0.002 1.853±0.030 0.422±0.023 5.615±2.168 0.498±0.002 0.751±0.023 1.591±0.020 0.505±0.022

D3VAE
C-s 0.916±0.036 0.626±0.044 0.598±0.021 0.737±0.064 0.725±0.064 0.408±0.048 0.704±0.069 0.814±0.035 -

N-s 1.265±0.078 0.861±0.041 0.768±0.067 0.951±0.031 0.919±0.141 0.601±0.051 1.126±0.139 1.308±0.164 -

DPK
C-s 0.891±0.027 0.744±0.071 0.824±0.040 0.519±0.092 0.938±0.004 0.997±0.012 1.131±0.002 0.969±0.006 0.900±0.015

N-s 1.262±0.032 0.998±0.138 1.349±0.070 0.592±0.202 1.301±0.004 1.263±0.013 1.478±0.005 1.213±0.005 1.309±0.024

MG-TSD
C-s 0.619±0.056 0.435±0.099 0.371±0.085 0.269±0.005 1.000±0.001 0.174±0.027 0.617±0.045 0.409±0.051 0.590±0.091

N-s 0.967±0.071 0.627±0.117 0.539±0.109 0.318±0.050 1.610±1.286 0.283±0.035 0.882±0.053 0.621±0.068 0.767±0.073

KooNPro
C-s 0.488±0.025 0.376±0.025 0.365±0.018 0.227±0.002 0.417±0.021 0.165±0.017 0.401±0.014 0.396±0.023 0.327±0.014

N-s 0.746±0.044 0.541±0.035 0.564±0.023 0.343±0.034 0.657±0.040 0.287±0.017 0.715±0.030 0.658±0.042 0.457±0.021
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H APPENDIX: ROBUSTNESS OF PERFORMANCE

To assess the robustness of KooNPro’s predictive performance, we evaluate it under varying Signal-
to-Noise Ratio (SNR) conditions (20dB, 40dB, and 60dB). During training, KooNPro is trained with
ground truth data. In the testing phase, Gaussian noise is added to the input data, and predictions
are compared to the ground truth. As shown in Tab.7, the performance degradation with decreasing
SNR remains within acceptable limits, demonstrating KooNPro’s robust predictive capability across
different noise levels.

Table 7: KooNPro represents robust performance across various noisy-add scenarios, with SNR
ranging from 20dB to 60dB. Note that KooNPro is trained once on noise-free data and then tested on
different noisy-add data.

Model Metric ETTh1 ETTh2 ETTm1 ETTm2 Solar Elec. Traffic Taxi Cup

KooNPro
C-s 0.328±0.037 0.149±0.051 0.165±0.057 0.081±0.020 0.211±0.033 0.057±0.006 0.184±0.022 0.226±0.041 0.204±0.017

N-s 0.520±0.045 0.224±0.065 0.225±0.028 0.122±0.034 0.313±0.044 0.095±0.012 0.289±0.025 0.330±0.078 0.308±0.030

60dB
C-s 0.367±0.023 0.195±0.029 0.183±0.017 0.111±0.012 0.229±0.032 0.074±0.008 0.192±0.023 0.248±0.017 0.217±0.055

N-s 0.586±0.023 0.284±0.032 0.380±0.021 0.132±0.015 0.323±0.042 0.118±0.014 0.333±0.029 0.337±0.021 0.339±0.105

40dB
C-s 0.385±0.028 0.221±0.021 0.271±0.033 0.152±0.001 0.243±0.039 0.192±0.052 0.213±0.019 0.274±0.015 0.229±0.019

N-s 0.608±0.049 0.317±0.024 0.565±0.048 0.162±0.003 0.359±0.038 0.283±0.061 0.344±0.029 0.380±0.012 0.352±0.031

20dB
C-s 0.432±0.021 0.251±0.010 0.311±0.018 0.194±0.017 0.269±0.047 0.287±0.058 0.268±0.016 0.285±0.026 0.249±0.020

N-s 0.687±0.034 0.331±0.028 0.491±0.026 0.245±0.019 0.385±0.056 0.415±0.049 0.369±0.024 0.384±0.012 0.395±0.036

I APPENDIX: THE PARAMETERS OF LEARNED MODELS

The backbone of KooNPro is based on MLPs, with the number of parameters determined by the
input data dimensions, as well as the depth and width of the MLP. Tab. 8 compares the memory
consumption of KooNPro to baseline methods. Furthermore, Fig.6 illustrates the relationship between
memory consumption and predictive performance for each model on the ETTm2 dataset. The results
indicate that KooNPro achieves the best performance with the fewest memory consumption.

Table 8: Comparison of memory consumption for different models’ parameters across nine datasets
(in MB).

Model ETTh1 ETTh2 ETTm1 ETTm2 Solar Elec. Traffic Taxi Cup

Trans-MAF 9.69 9.69 9.69 9.69 12.21 16.73 26.26 33.08 14.79

Timegrid 4.22 4.22 4.22 4.22 25.93 29.32 37.83 45.06 27.82

TACTIS 7.48 7.48 7.48 7.48 7.49 7.49 7.50 7.51 7.49

D3VAE 58.41 58.41 58.41 58.41 58.72 59.29 60.50 61.36 59.05

DPK 0.17 0.17 0.17 0.17 0.25 0.40 0.70 0.92 0.34

MG-TSD 2.41 2.41 2.41 2.41 3.05 6.33 14.60 21.65 5.87

KooNPro 1.73 1.73 1.73 1.73 10.23 7.18 14.42 17.50 5.60
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Figure 6: The plot illustrates the relationship between memory consumption and prediction perfor-
mance of each model on ETTm2. The x-axis indicates memory consumption (in MB), and the y-axis
represents CRPSsum. Optimal performance is achieved as the marker approaches the bottom-left
corner.

J IMPLEMENTATION OF NEURAL PROCESS THROUGH DIFFERENT WAYS

This section details the implementation of various methods for generating SD, represented the point-
spectra globally and learned by Neural Process. We introduce three KooNPro variants: Without-NP,
With-ANP, and With-GP.

• Without-NP closely follows the KooNPro procedure. To isolate the impact of SD, the
training process adheres to Sec. 4.2, omitting S generated in Sec.4.1. The test procedure is
outlined as follows

zT̃ = ϕ−1(AT̃−1(ϕ(z1))). (24)

• With-ANP, following the Attention Neural Process (ANP) (Kim et al., 2019) and integrating
it with our work, employs the attention mechanism to generate SD, which governs the
temporal dynamics of the entire time series. In this process, we set the Key K as xC , the
Value V as SC , and the Query Q as xD, then compute SD.

• With-GP employs the Gaussian process to predict SD at the target set xD using context
set xC and their corresponding outputs SC by modeling a joint Gaussian distribution. The
procedure can be summarized as follows

KC = k(zC , zC) + σ2
n, (25)

KD = k(zD, zD), (26)
KCD = k(zC , zD), (27)

where k we choose the radial basis function kernel. Consequently, the distribution of
SD ∼ N (µ,Σ) can be calculated by

µ = K⊤
CDK−1

C SC , (28)

Σ = KD −K⊤
CDK−1

C KCD, (29)

where µ is mean and Σ is covariance.
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K APPENDIX: ABLATION STUDY

We conduct ablation studies on the time length T and delay-embedded length k across several datasets.
The results indicate that merely extending the learning time segment is insufficient to reveal the
temporal dynamics underlying the time series, as discussed in Sec.5.3. The choices for T and k
presented in Tab.4 are guided by the results of this ablation study.
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Figure 7: Ablation study on ETTh2 dataset.
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Figure 8: Ablation study on ETTm1 dataset.
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Figure 9: Ablation study on ETTm2 dataset.
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Figure 10: Ablation study on Solar dataset.
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Figure 11: Ablation study on Electricity dataset.
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Figure 12: Ablation study on Taxi dataset.
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Figure 13: Ablation study on KDD-cup dataset.
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