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ABSTRACT

The foundation model paradigm is transforming Machine Learning Force Fields
(MLFFs), leveraging general-purpose representations to perform a variety of computa-
tional chemistry tasks. Although MLFF foundation models have begun to close the accu-
racy gap relative to first-principles methods, there is still a strong need for faster inference
speed. Additionally, while model development is increasingly focused on general-
purpose models which transfer across chemical space, practitioners typically only study
a small subset of systems at a given time. This underscores the need for fast, specialized
MLFFs relevant to specific downstream applications. In this work, we introduce a
method to transfer general-purpose representations from MLFF foundation models to
smaller, faster MLFFs specialized to specific regions of chemical space. We formulate
our approach as a knowledge distillation procedure, where the smaller “student” MLFF
is trained to match the Hessians of the energy predictions of the “teacher” foundation
model. We demonstrate our approach across multiple recent foundation models, large-
scale datasets, chemical subsets, and downstream tasks. We find that our specialized
MLFFs can be up to 20 × faster than the original foundation model, while retaining, and
in some cases exceeding, its performance. Specialized models trained via our approach
also outperform those trained from scratch without Hessian distillation. We also show
that distilling from teacher models with weaker inductive biases into student models with
stronger constraints, like conservative forces, is effective. More broadly, our work sug-
gests a new paradigm for MLFF development, in which foundation models are released
along with smaller, specialized simulation “engines” for common chemical subsets.

1 INTRODUCTION

Quantum chemical calculations, such as Density Functional Theory (DFT), underpin a broad range of
applications in computational chemistry, including the discovery of new drugs (Cole & Hine, 2016),
materials (Hafner et al., 2006; Jain et al., 2016), and catalysts (Hammer & Nørskov, 2000). Machine
learning force fields (MLFFs) (Gasteiger et al., 2021; Batzner et al., 2022; Musaelian et al., 2022; Batatia
et al., 2022) based on graph neural network (GNN) architectures (Gilmer et al., 2017) have recently shown
tremendous potential to serve as fast surrogates for these quantum mechanical calculations.

Foundation models (FMs) are general-purpose models trained on large quantities of data, with the ability
to generalize to many downstream tasks with little to no fine-tuning. Mirroring advancements in the fields
of natural language processing (Achiam et al., 2023) and computer vision (Radford et al., 2021; Oquab
et al., 2023), the availability of increasingly large and diverse datasets of quantum chemical calculations
(Chanussot et al., 2021; Jain et al., 2020; Eastman et al., 2023) has enabled the creation of MLFF FMs
(Kovács et al., 2023; Batatia et al., 2023; Shoghi et al., 2023). While earlier MLFFs typically trained on
relatively narrow datasets (Schütt et al., 2018; Chmiela et al., 2017), MLFF FMs are trained across a broad
swath of chemical space, aiming to perform well across a diverse range of atomic property prediction tasks.

While MLFF FMs trained on large quantities of ab-initio data have begun to approach the accuracy of
DFT for some tasks, there are still significant challenges in improving efficiency for modeling large time
and length scales. In line with the increasing size and diversity of training data, MLFFs have steadily
grown in complexity, both in terms of raw parameter count and design choices such as the use of expensive
tensor products to enforce higher-order Euclidean symmetries (Sriram et al., 2022; Batzner et al., 2022;
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Figure 1: Proposed Hessian distillation schematic. In our proposed distillation approach, we start with
a machine learning force field (MLFF) foundation model (FM) that has been trained on a large quantity
of diverse data. We precompute energy Hessians of the FM over a specialized data subset. We then
train a series of smaller MLFFs on these subsets via our knowledge distillation loss (LKD), which aligns
selected rows of the energy Hessian of the smaller (student) models with those of the FM (teacher). We
also keep the conventional procedure of training on the ground truth energies and forces (LEF ) from the
specialized subset. The resulting MLFFs are considerably faster than the FM and can be efficiently used
in downstream applications such as MD simulation, geometry optimization, and free energy calculations.

Batatia et al., 2022; Zitnick et al., 2022). Despite efficiency efforts (Luo et al., 2024), state-of-the-art
MLFFs remain several orders of magnitude slower than alternatives such as classical force fields (Unke
et al., 2021; Wang et al., 2024). As a result, MLFF FMs are often still prohibitively expensive to use in
realistic downstream applications, such as molecular dynamics (MD) simulations with>106 timesteps.

More broadly, the increasing generality of MLFF FMs is at odds with the needs of practitioners, who are
often ultimately focused on a relatively narrow set of systems and downstream applications (perovskites,
magnesium-based electrolytes, insulators, etc.). Fine-tuning the FM for these downstream applications
is in principle straightforward, but may be computationally prohibitive for many practitioners and offers no
speedup at inference time. This motivates us to ask: how can we improve the efficiency of MLFFs for
specialized tasks while preserving the powerful general-purpose representations learned by FMs?

To address this, we introduce an approach based on knowledge distillation (KD) which learns fast,
specialized MLFFs from large, general-purpose FMs. The core of our approach is a training objective
that aligns the Hessians of the energy predictions between the foundation MLFF (teacher) and specialized
MLFF (student). The method is conceptually simple and efficient: the Hessians of the FM can
be pre-computed once and stored, while the student Hessian computation can be accelerated using
approximate sampling techniques. Unlike existing KD methods which align internal features between
the teacher and student (Kelvinius et al., 2023), our approach is entirely agnostic to model architecture,
and can be used out-of-the-box for any student-teacher pairing.

We demonstrate our approach on three state-of-the-art MLFF FMs: MACE-OFF (Kovács et al., 2023)
trained on SPICE (Eastman et al., 2023), MACE-MP-0 (Batatia et al., 2023) trained on MPtrj (Deng et al.,
2023) from the Materials Project (Jain et al., 2020), and JMP (Shoghi et al., 2023) finetuned on selected
molecules from MD22 (Chmiela et al., 2023). We learn student MLFFs specialized to subsets of the FM’s
training distribution which mimic realistic downstream applications, such as specifically modeling amino
acids or materials containing Yttrium. These specialized student models achieve inference speeds up to
20 times faster than the original FMs, and up to 50 times faster if a batch size maximizing the throughput
is chosen for each model. Our approach also achieves substantial improvements in energy and force error,
MD simulation stability, energy conservation, and geometry optimization, compared to student models
trained without distillation. In most cases, the student models also outperform the original FM. To our
knowledge, this is the first approach to create fast, specialized MLFFs from FMs.
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2 BACKGROUND AND RELATED WORK

Machine Learning Force Fields. A Machine Learning Force Field (MLFF) is a learnable function
approximator Uθ which maps a molecular configuration to a potential energy and per-atom forces.
Specifically, it takes the positions of n atoms, r = (r(1),...,r(n)) ∈ Rn×3, and their atomic numbers,
z = (z(1), ... , z(n)) ∈ Rn as inputs, and outputs a potential energy Uθ ∈ R and per-atom forces
Fθ=(f

(1)
θ ,...,f

(n)
θ )∈Rn×3. MLFFs are typically parameterized as graph neural networks (GNNs), and are

trained via the following regression loss, with supervision from a dataset of reference energies and forces:

LEF =λU |Uref(z,r)−Uθ(z,r)|2+λF
n∑
i=1

∥f(i)ref (z,r)−f
(i)
θ (z,r)∥22. (1)

MLFF Design Choices. The speed of MLFFs is affected by various design choices. MLFFs which
obtain forces by differentiating the energy output with respect to the atomic coordinates (Fθ=−∇rUθ)
guarantee conservation of the model’s energy in MD simulations, while MLFFs parameterizing the force
separately from the energy lack this guarantee but are considerably faster. Another distinction lies between
equivariant and non-equivariant networks. Equivariant networks guarantee that the forces, and possibly
internal features, rotate consistently when the positions of the input rotate, but are considerably slower than
non-equivariant models due to the reliance on expensive tensor products to handle SO(3) and spherical
harmonic representations. In §4, we demonstrate that our proposed distillation approach works well with
many combinations of teacher and student model design choices.

MLFF Foundation Models. While early MLFFs were trained on relatively narrow datasets, foundation
models (FMs) trained across a diverse swath of chemical space are now becoming increasingly common
(Shoghi et al., 2023; Gasteiger et al., 2022; Batatia et al., 2023; Kovács et al., 2023). MACE-OFF (Kovács
et al., 2023) was primarily trained on a filtered subset of 951,000 biomolecular structures from the SPICE
(Eastman et al., 2023) dataset. MACE-MP0 (Batatia et al., 2023) was trained on 1.6 million structures
from the Materials Project (Jain et al., 2020). The JMP (Shoghi et al., 2023) FM was pre-trained on a
combined dataset consisting of OC20, OC22, ANI-1x, and Transition-1x, and later fine-tuned on several
datasets such as QM9, rMD17, and MD22. The promise of MLFFs lies in their ability to be used zero-shot
or with minimal finetuning across many downstream tasks. However, as MLFF FMs have increased in
complexity and scale to match the diversity and size of training data, speed has become a limiting factor,
particularly in modeling systems with large time and length scales (Unke et al., 2021; Wang et al., 2024).

Knowledge Distillation. Knowledge distillation (KD) (Hinton et al., 2015) aims to transfer knowledge
from a larger teacher model to a smaller student model, usually by training the student to mimic certain
properties of the teacher (Romero et al., 2015; Sanh et al., 2019; Tang et al., 2020; Gou et al., 2021).
This is typically done by minimizing a distillation objective of the form LKD=Ex||ϕT (x)−PϕS(x)||22,
where ϕT and ϕS are intermediate features of the teacher and student respectively, and P is a linear
projection that accounts for differences in dimensionality between the two models. Specializing FMs
to specific subdomains has been explored in large-scale language and vision models (Qiu et al., 2024),
but, to our knowledge, is unexplored in the context of MLFFs. Previous work on KD for MLFFs was
done in (Kelvinius et al., 2023) by aligning node and edge features across models such as GemNet-OC,
PaiNN, and SchNet on the OC-20 and COLL datasets. However, the best-performing method, referred
to as “node-to-node” (n2n), did not specialize the models, and evaluated the student and teacher models on
the same data. As we will show in §4, we demonstrate that our Hessian distillation approach consistently
outperforms the n2n distillation approach across several datasets and MLFFs.

Learning from Function Derivatives. Sobolev training (Czarnecki et al., 2017) uses function derivatives
as supervision to train neural networks, including for KD. Their work highlights numerous theoretical ben-
efits of training to match function derivatives, including better sample complexity and reduced overfitting.
To our knowledge, this form of training has not been used to specialize to a subset of the training data.

3 DISTILLING FOUNDATION MODELS WITH ENERGY HESSIANS

After reviewing background on energy Hessians in §3.1, we introduce our method for producing fast,
specialized MLFFs via knowledge distillation (KD) from the energy Hessians of pre-trained foundation
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models in §3.2. In our setting, the FM plays the role of the teacher, while the fast, specialized MLFF is
the student. We also present Hessian subsampling strategy to significantly accelerate training (§3.3).

3.1 BACKGROUND ON ENERGY HESSIANS

The Hessian of the energy is the second derivative of the energy with respect to atomic positions, or
equivalently, the negative derivative of the forces with respect to the positions. Given 3N-dimensional
unrolled force and position vectors, the Hessian H∈R3N×3N is given by H=−∂F

∂r =
∂2U
∂r2 . Accordingly,

Hij is the derivative of the ith force with respect to the jth position. The Hessian corresponds to the
curvature of the energy surface with respect to atomic displacements. The eigenvalues of the energy
Hessian are the squares of the normal mode vibrational frequencies, while the eigenvectors represent the
amplitudes of motion along each of the 3N mass-weighted Cartesian coordinates associated with each
mode (Jensen, 2017). These vibrational frequencies are crucial for understanding the thermodynamic
properties of molecules, such as heat capacity, entropy, and free energy (Jensen, 2017). These frequencies
can also be observed experimentally (Wilson et al., 1980). Energy Hessians are also directly used in
geometry optimization algorithms to relax molecular structures (Fletcher, 2000).

3.2 ENERGY HESSIAN ALIGNMENT OBJECTIVE

Given a dataset of N molecular structures paired with quantum-mechanical energy and force labels
D = {(zi,ri,Ui,Fi)}Ni=11, and a MLFF FM Tψ pretrained on D that predicts energies Uψ and forces
Fψ, we first precompute the Hessians of the FM energy predictions over the dataset D using automatic
differentiation (we demonstrate that finite differences can also be used in §A.9). This results in an
augmented dataset Daug = {(zi,ri,Ui,Fi,Hi)}Ni=1, where Hi =

∂2Uψ(zi,ri)
∂r2 . We then train a student

MLFF Sϕ, assumed to be small relative to Tψ (i.e., |ϕ|<< |ψ|), on a subset of the data, DKD⊂Daug.
This subset corresponds to a specific downstream application, such as molecules containing the element
Iodine. Crucially, in addition to matching the energies and forces of DKD, we also train the student Sϕ
to match the FM Hessians over DKD.

The complete loss function for training the student via knowledge distillation over the subset DKD is:

L(ϕ)=Ezi,ri,Hi∼DKD

[
LEF (ϕ)+λKD∥Hi+

∂Fϕ(zi,ri)

∂r
∥22
]
, (2)

where LEF is the standard energy and force-matching objective defined in Eq. 1 and λKD is a
hyperparameter controlling the strength of knowledge distillation. We highlight that for direct-force student
MLFFs, the energy Hessian is computed as the negative Jacobian of the force prediction, rather than the
second derivative of the energy prediction.

In practice, we find that the student can outperform the FM on the original objective (LEF ) due to the
reduced diversity of DKD and the regularization effect of teacher supervision. To ensure that the student
performance is not bottlenecked by the FM, we reduce the weight of the Hessian distillation loss term,
λKD, by a factor of 2 during training once the student’s validation loss on the original objective, LEF (ϕ),
becomes lower than that of the frozen FM, LEF (ψ) (see §A.10 for more details).

3.3 IMPROVING EFFICIENCY OF HESSIAN COMPUTATIONS WITH SUBSAMPLING

Obtaining the energy Hessian for a molecule via autodifferentiation requires 3N backwards passes, one per
force value. To mitigate this computational expense, we instead uniformly sample rows from the reference
Hessian on which to supervise in each training iteration. We accordingly only compute these rows of
the student’s Hessian. Each row corresponds to one Euclidean coordinate of a single atom. Formally, let
Ji⊂{1,...,3N} be the set of s randomly sampled indices corresponding to the rows of the Hessian for
a particular molecular structure: Ji=[j1,···js]. For each sample in the dataset, we supervise the student
model on the subset Ji of Hessian rows. The modified loss function becomes,

L(ϕ)=Ezi,ri,Hi∼DKD

[
LEF (ϕ)+λKD ·EJi∼Us(1,3N)

1

s

∑
j∈Ji

∥∥∥∥∥H(j)
i +

∂F
(j)
ϕ (zi,ri)

∂r

∥∥∥∥∥
2

2

]
, (3)
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where Us(1,3N) denotes the uniform distribution over subsets of s rows from the Hessian, and H
(j)
i and

F
(j)
ϕ are the j-th row of the reference Hessian and student forces, respectively. The number of backward

passes required to compute the Hessian grows as O(s), so subsampling significantly accelerates training.
Reducing the number of sampled rows to s=1 does not noticeably impact model performance (§5).

Computing Hessian Rows via Vector-Jacobian Products. When computing individual rows, we
wish to avoid forming the entire Hessian matrix. We achieve this by using vector-Jacobian products
(VJPs), the fundamental operation underlying reverse-mode autodifferentiation. Formally, given a function
f(x):Rdin→Rdout and a vector v∈Rdout , reverse-mode autodifferentiation computes the VJP v⊤J in
a matrix-free manner (e.g., without explicitly forming the Jacobian J=∂xf∈Rdout×din). In our setting,
the function f is the MLFF predicted force F : R3N → R3N , whose Jacobian is the energy Hessian
H∈R3N×3N . To extract the jth row from the Hessian, we construct a one-hot vector v=ej ∈R3N to
use in the VJP. Let PJ ∈Rs×3N denote the permutation matrix containing one-hot vectors corresponding
to the subset of sampled row indices in J : PJ =[ej1,···,ejs]⊤. By computing the matrix-Hessian product
PJH, which is achieved via a vmap over the rows of PJ of the force VJP, we can efficiently extract
the desired rows

(
H(j1),H(j2),...,H(js)

)⊤
from the Hessian.

3.4 ENERGY GRADIENT SUPERVISION FOR DIRECT FORCE MODELS

To improve the energy predictions of MLFFs with a direct force parameterization, we find it useful to indi-
rectly utilize the inductive bias that the force is the negative gradient of the energy. Specifically, we introduce
an additional loss term to align the negative gradient of the energy head with the true forces: L∇U=∥F+
∇rUθ∥2, with loss weightλ∇U . Here,F represents the true forces, and∇rUθ is the gradient of the predicted
energy. Importantly, no gradients of the energy head are computed at inference time (forces are derived as
usual through the separate force head), so there is no impact on inference speed. See §A.11 for more details.

4 EXPERIMENTAL RESULTS

We present the results of our Hessian distillation approach for learning fast, specialized MLFFs from large
foundation models. In §4.1, we distill the MACE-OFF FM, which was trained on the SPICE biomolecules
dataset. In §4.2, we distill the MACE-MP0 model trained on the MPtrj dataset. Finally, in §4.3, we distill
the JMP FM, which was pretrained on several large datasets and finetuned on selected MD22 molecules.
In each setting, we train fast, specialized MLFF models (students) on subsets of the original dataset
corresponding to realistic downstream applications. Motivated by the desire for efficient models without
expensive higher-order equivariant features, for SPICE and MPtrj distillation we choose the GemNet-dT
(Gasteiger et al., 2021) and PaiNN (Schütt et al., 2021) models with direct (i.e., non-conservative) force
parameterization as students. For MD22 distillation, we demonstrate results with GemNet-T, which uses
gradient-based forces, and eSCN (Passaro & Zitnick, 2023), which utilizes higher-order (l=2) equivariance.

We compare to the following baselines for training student MLFFs (more details in §A.4):

1. Undistilled: Training on the specialized data subset without Hessian supervision (i.e., λKD=0).
2. n2n: Training to match the node representations of the FM at the final layer. This is a direct

comparison to the best-performing MLFF KD technique introduced in (Kelvinius et al., 2023).
3. a2a: Training on top of a learned projection of the FM’s atom embeddings. We create this baseline

in the spirit of self-supervised learning techniques which fine-tune the representations of a large
model for specific downstream tasks (Devlin, 2018; Radford et al., 2021; Caron et al., 2021).

We measure MD simulation speed by performing inference with a batch size of 64 on a single NVIDIA
A6000 GPU and converting it to nanoseconds per day by assuming a 1 femtosecond timestep. This mimics
real-world use cases of performing parallel MD simulations, vectorized over the batch dimension, to rapidly
explore molecular phase space, or for high-throughout structure screening. We also measure speed using
a batch size which maximizes sample throughput for each model. These batch sizes are given in §A.5.

4.1 DISTILLING MACE-OFF ON SPICE

Using MACE-OFF (Kovács et al., 2023) as the teacher model, we focus on small subsets of SPICE with
limited amounts of data—monomers, solvated amino acids, and molecules containing iodine—to train
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Table 1: Results of distilling the MACE-OFF foundation model trained on SPICE into specialized MLFFs.
(FM) indicates foundation model, while (S) indicates student model. n2n is the node feature matching
baseline from (Kelvinius et al., 2023), while a2a is the atom embedding matching baseline we construct
in §A.4. Student models all have identical simulation speeds. Speedups relative to FM are given in
parentheses. The “Speed” column is calculated with a constant batch size of 64 for all models, while the
“Maximum Speed” is calculated with the batch size that maximizes throughput for each model.

Chemical
Subgroup

Dataset
Size

Model
(Parameter Count)

Distillation
Method

Force
MAE

(meV/Å)
(↓)

Energy
MAE

(meV/atom)
(↓)

Speed
(ns/day)

(↑)

Maximum
Speed

(ns/day) (↑)

Monomers 14,331

(FM) MACE-OFF Large (4.7M) – 6.6 0.65 38.0 38.1

(S) GemNet-dT (0.67M)

Undistilled 11.3 1.27
n2n 10.5 1.2
a2a 12.9 1.6
Hessian (ours) 6.3 0.4 164.5 (4.3x) 725.2 (19.0x)

(S) PaiNN (1.0M)

Undistilled 25.0 2.3
n2n 20.8 1.5
a2a 24.7 2.3
Hessian (ours) 8.77 0.48 291.5 (7.7x) 1827 (48.0x)

Solvated
Amino
Acids

805

(FM) MACE-OFF Large (4.7M) – 19.4 1.3 3.8 3.8

(S) GemNet-dT (0.67M)

Undistilled 22.4 2.2
n2n 20.7 1.6
a2a 24.4 1.6
Hessian (ours) 11.6 0.37 44.4 (11.7x) 44.4 (11.7x)

(S) PaiNN (1.0M)

Undistilled 50.1 3.3
n2n 38.3 1.7
a2a 52.4 3.7
Hessian (ours) 18.0 0.41 79.4 (20.9x) 79.4 (20.9x)

Systems
with
Iodine

11,171

(FM) MACE-OFF Large (4.7M) – 15.3 1.3 14.8 14.8

(S) GemNet-dT (0.67M)

Undistilled 23.4 2.68
n2n 23.3 2.3
a2a 23.2 2.6
Hessian (ours) 14.7 0.58 148.1 (10.0x) 220.4 (14.9x)

(S) PaiNN (1.0M)

Undistilled 51.2 3.3
n2n 43.6 2.3
a2a 50.7 3.5
Hessian (ours) 23.7 0.88 270.2 (18.3x) 440.7 (29.8x)

small, specialized GemNet-dT and PaiNN student MLFFs via our Hessian distillation approach described
in §3.2. While the FM and specialized student MLFFs are trained on different quantities of data, we report
force mean absolute error (MAE) on test data not seen by either model during training. Results are shown
in Tab. 1, with additional details and hyperparameter sweeps in §A.3 and §A.6.

Using the distilled, specialized MLFFs, we achieve up to 20× increases in simulation speed relative to the
FM, and up to 50× increases for throughput-maximizing batch sizes. For all splits, our Hessian distillation
approach significantly outperforms training without distillation, as well as the a2a and n2n baselines, on
Energy and Force MAE. In many cases, our distilled models outperform the FM, likely because they can
focus all of their expressivity towards learning a narrower slice of chemical space. We report the times
required to train the distilled student models relative to that of the original FM in §A.3. These times are
generally nominal; when sampling 4 rows of the Hessian (s=4), training the distilled student model requires
an average of 4.0% additional compute beyond FM training. We demonstrate the downstream usefulness
of our distilled models in constant-temperature MD simulations in §A.12, finding that our distilled student
models are more stable than their undistilled counterparts. We also perform geometry optimization in
§A.13, finding that our distilled models generally converge to structures with lower energy and force norms.

4.2 DISTILLING MACE-MP-0 ON MATERIALS PROJECT

We next consider MACE-MP-0 (Batatia et al., 2023), trained on 1.6 million structures from the MPtrj
(Deng et al., 2023) dataset, as a teacher model, choosing the following subsets on which to learn specialized
Gemnet-dT and PaiNN student MLFFs: materials in the Pm3m spacegroup (which includes cubic
perovskites used in photovoltaic devices), materials containing Yttrium (used in lasers and alloys), and
materials with a band gap of greater than 5 meV (roughly corresponding to insulators). While DFT with the
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Table 2: Results of distilling the MACE-MP0 foundation model trained on MPtrj into specialized MLFFs.
(FM) indicates foundation model, while (S) indicates student model. n2n is the node feature matching
baseline from (Kelvinius et al., 2023), while a2a is the atom embedding matching baseline we construct
in §A.4. Student models all have identical simulation speeds. Speedups relative to FM are given in
parentheses. The “Speed” column is calculated with a constant batch size of 64 for all models, while the
“Maximum Speed” is calculated with the batch size that maximizes throughput for each model.

Chemical Subgroup Dataset Size Model
(Parameter Count)

Distillation
Method

Force
MAE

(meV/Å)
(↓)

Speed
(ns/day)

(↑)

Maximum
Speed

(ns/day) (↑)

Pm3m Spacegroup 9,725

(FM) MACE-MP0 (15.8 M) – 18.1 93.6 101.9

(S) GemNet-dT (0.67M)

Undistilled 15.7
n2n 14.6
a2a 16.9
Hessian (ours) 11.8 162.7 (1.7x) 260.1 (2.6x)

(S) PaiNN (1.0M)

Undistilled 21.9
n2n 19.5
a2a 23.3
Hessian (ours) 15.5 264.4 (2.8x) 451.5 (4.4x)

Systems with Yttrium 30,436

(FM) MACE-MP0 (15.8M) – 45.2 26.5 27

(S) GemNet-dT (0.67M)

Undistilled 32.5
n2n 36.5
a2a 36.5
Hessian (ours) 21.3 73 (2.8x) 73.3 (2.7x)

(S) PaiNN (1.0M)

Undistilled 55.5
n2n 37.7
a2a 49.8
Hessian (ours) 25.7 215.5 (8.1x) 267.2 (9.9x)

Band Gap ≥ 5 meV 36,150

(FM) MACE-MP0 (15.8 M) – 31.4 13.4 13.4

(S) GemNet-dT (0.67M)

Undistilled 17.1
n2n 15.1
a2a 16.3
Hessian (ours) 12.1 38.7 (2.9x) 38.7 (2.9x)

(S) PaiNN (1.0M)

Undistilled 32.6
n2n 27.5
a2a 32.2
Hessian (ours) 16.3 125.4 (9.4x) 125.4 (9.4x)

PBE functional is known to underestimate band gap (Mori-Sánchez et al., 2008), we assume this delineation
is sufficient for our purposes of creating broad chemical subgroups. The results are shown in Tab. 2.

We find that the specialized student MLFFs obtained via our Hessian KD approach are up to 10× faster
than the original FM, and consistently outperform the undistilled, n2n, and a2a baselines in Force MAE
across all splits. Interestingly, we find that the GemNet-dT student models outperform the FM even before
distillation, and Hessian KD subsequently further improves the student models. We speculate that in this
scenario, Hessian KD has a regularizing effect which enables the student to learn better representations
despite distilling from a teacher with higher Force MAE, analogous to training with soft or noisy labels
(Szegedy et al., 2016; Müller et al., 2019). We also note that the n2n and a2a methods both generally
improve over the undistilled baseline, unlike with MACE-OFF on SPICE. This suggests that improvements
from KD are not always correlated to the accuracy of the teacher model.

4.3 DISTILLING JMP ON MD22

As a final evaluation of our Hessian distillation approach, we distill JMP (Shoghi et al., 2023) FMs
finetuned on the largest molecules in MD22—the buckyball catcher and double-walled nanotube—into
various student models. This setting presents a number of unique challenges. The selected MD22
molecules, with 148 and 370 atoms respectively, are significantly larger than those considered thus far.
Additionally, the JMP models are considerably larger than the previously considered MACE FMs, with
approximately 40M and 220M learnable parameters in the small (JMP-S) and large (JMP-L) models
respectively. Unlike their MACE counterparts, the JMP FMs must therefore forgo a gradient-based force
parameterization to remain within GPU memory limits. The JMP model is also based on a GemNet
backbone, which does not utilize built-in higher-order equivariance like the MACE FMs.
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Table 3: Results of distilling JMP-Large (JMP-L) and JMP-Small (JMP-S) foundation models finetuned
on selected large MD22 molecules into specialized MLFFs. (FM) indicates foundation model, while (S)
indicates student model. Student model speedups relative to the JMP-L FM are given in parentheses. The
“Speed” column is calculated with a constant batch size of 1 for all models, while the “Maximum Speed”
is calculated with the batch size that maximizes throughput for each model.

Molecule Dataset
Size

Model
(Parameter Count)

Distillation
Method

Force
MAE

(meV/Å)
(↓)

Energy
MAE
(meV/
atom)

(↓)

Speed
(ns/day)

(↑)

Maximum
Speed

(ns/day) (↑)

Buckyball
Catcher 600

(FM) JMP-S (39.9M) – 7.8 – 0.8 1.8
(FM) JMP-L (220M) – 4.3 – 0.4 0.6

(S) GemNet-dT (0.67M)
(Direct-Forces, Invariant)

Undistilled 8.0 1.0
JMP-S Hessian (ours) 5.1 0.15
JMP-L Hessian (ours) 5.1 0.15 2.4 (6x) 18.3 (30.5x)

(S) GemNet-T (0.57M)
(Gradient-Forces, Invariant)

Undistilled 8.4 0.08
JMP-S Hessian (ours) 5.0 0.09
JMP-L Hessian (ours) 4.0 0.1 1.4 (3.5x) 9.6 (16x)

(S) eSCN (0.94M)
(Direct-Forces, l=2 Equivariant)

Undistilled 8.4 1.5
JMP-S Hessian (ours) 9.9 0.79
JMP-L Hessian (ours) 9.9 0.80 1.6 (4x) 13.5 (2.3x)

Double Walled
Nanotube 800

(FM) JMP-S (39.9M) – 23.8 – 0.5 0.7
(FM) JMP-L (220M) – 11.8 – 0.2 0.2

(S) GemNet-dT (0.67M)
(Direct-Forces, Invariant)

Undistilled 14.3 0.49
JMP-S Hessian (ours) 14.3 0.23
JMP-L Hessian (ours) 10.6 0.25 3.2 (16x) 6.4 (32x)

(S) GemNet-T (0.57M)
(Gradient-Forces, Invariant)

Undistilled 13.6 0.07
JMP-S Hessian (ours) 12.9 0.05
JMP-L Hessian (ours) 10.8 0.06 1.8 (9x) 3.3 (16.5x)

(S) eSCN (0.94M)
(Direct-Forces, l=2 Equivariant)

Undistilled 19.2 0.50
JMP-S Hessian (ours) 16.1 0.40
JMP-L Hessian (ours) 16.1 0.47 2.6 (13x) 5.4 (27x)

Using JMP-S and JMP-L FMs as teachers, we perform Hessian distillation on the selected MD22
molecules to obtain specialized GemNet-dT, GemNet-T, and eSCN student MLFFs. GemNet-T uses a
gradient-based force parameterization, while eSCN uses higher-order (l=2) equivariance. We find that
the our specialized MLFFs are up to 30× times faster than the original FMs, and considerably outperform
the undistilled baselines in Force and Energy MAE on both molecules (Table 3). We highlight that
our distillation procedure is effective when distilling from a FM with a direct-force parameterization
into a student model with gradient-based forces (GemNet-T) and higher-order equivariance (eSCN). We
capitalize on this property by running constant energy (NVE) simulations of the buckyball catcher for
100 ps using the trained GemNet models. We find that distillation produces a GemNet-dT model which
conserves energy better than its undistilled counterpart and the original JMP-L FM (Figure 2a). We
also find that our GemNet-T student MLFF, employing gradient-based forces and distilled with JMP-L
Hessians, is able to conserve energy and simulate stably for the entire duration of the 100 ps simulation,
while the JMP-L energy gradually drifts throughout the simulation (Figure 2b). We finally highlight that
distilling with Hessians from JMP-L leads to better performance than distilling from JMP-S, suggesting
that continued scaling of FMs has the potential to further improve student model performance.

5 ABLATIONS

We conduct ablation studies on various aspects of our approach, namely: the size of the student MLFF
model, and the Hessian subsampling frequency used during training. In §A.7, we additionally examine
role of teacher Hessians vs. forces in the KD objective, and find that distilling with teacher forces is
significantly inferior to our approach of distilling with Hessians.

Student MLFF Size. To understand the effect of student MLFF expressivity, we vary the GemNet-dT
student model parameter count by reducing the node and edge embedding dimensions from 128 to 8. For
each model, we train with Hessian distillation on the Monomers subset of SPICE. We also train on the
same subset without Hessian distillation for comparison. To measure student MLFF speed, we use a larger

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) (b) (c)

Figure 2: Energy Conservation in NVE MD Simulations of Buckyball Catcher. We plot the change
in the model predicted energy over the trajectory for 5 independent initial conditions. Some simulations
become unstable before 100 ps (denoted by ×). (a) Hessian distillation improves the energy conservation of
GemNet-dT models, which outperforms that of JMP-L. (b) Our student GemNet-T models conserve energy
due to using conservative forces, while the JMP-L FM energy steadily drifts, broadly suggesting that large-
scale models with few constraints can be effectively distilled into smaller, constrained models. (c) Change in
energy plotted against test force MAE. Distillation into a GemNet-T student combines the general-purpose
representations and accuracy of JMP-L with the physical inductive biases of conservative forces.

(a) (b)

Figure 3: Parameter count and Hessian subsampling ablations. (a) Force MAE on the Monomers
split of SPICE as a function of the GemNet-dT student MLFF simulation speed. The size of the dots
indicates the relative number of trainable parameters in the each model. Compared to the undistilled model,
Hessian distillation improves the speed-accuracy tradeoff. (b) Force MAE on the Solvated Amino Acid
split of SPICE as a function of the number of rows of the energy Hessian subsampled at each training
iteration. The size of the dots and text indicates the time required per step of training, relative to training
without distillation. The amount of rows sampled, down to s=1, does not have a detrimental effect on
model accuracy, and results in more efficient training.

inference batch size of 2048, which is the point of memory saturation on a NVIDIA A6000 GPU. For
the MACE-OFF teacher, we use a batch size of 128, which maximizes its throughput. We find that Hessian
distillation significantly improves the trade-off between speed and accuracy at all student MLFF sizes
(Fig. 3 a). The differences in speed between the FM and student MLFFs are more dramatic at larger batch
sizes, suggesting that speed benefits from distillation are magnified when parallelizing across more samples.
Interestingly, Hessian KD also appears to unlock better scaling properties: without distillation, the force
MAE plateaus after scaling to 0.28M parameters, while using Hessian KD yields continual improvements
up to the maximum student size of 2.3M parameters. We speculate that the Hessian supervision term
may have a regularizing effect on larger models. The improvement from Hessian distillation becomes
more marginal as the student size decreases, indicating that insufficiently expressive students may struggle
to minimize the multi-term Hessian KD objective.

Hessian Subsampling Quantity. We vary the number of rows s sampled from the MACE-OFF FM’s
reference Hessian during training on the solvated amino acid split of SPICE. We find that increasing s does

9
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not reliably lead to a decrease in Force MAE, and in some cases leads to a slight increase. The training
cost, measured in GPU-seconds per training step, increases approximately linearly with s (Fig. 3b). With
s=1, distillation incurs a 1.6× and 2× increase in training cost relative to undistilled training for PaiNN
and GemNet-dT, respectively. We speculate that smay play a similar role as the batch size in conventional
training. Small values of s add variance to the knowledge distillation gradient estimates, facilitating escape
from local minima in the loss landscape, while large values may lead to generalization gaps, similar to
what has been observed for large batch sizes (Keskar et al., 2016).

6 CONCLUSION

Key Takeaways. We have presented Hessian distillation, which is to our knowledge the first technique
to derive fast, specialized MLFFs by training them to match the energy Hessian of FMs trained on large,
diverse datasets. By subsampling rows of the Hessian to supervise the student model at each training
iteration, we ensure that Hessian distillation incurs only a nominal cost relative to training the original FM.
The specialized student MLFFs derived from our distillation approach are up to 20× faster at predicting
energies and forces than the original FMs. Despite having far fewer parameters, and in some cases
foregoing inductive biases like higher-order equivariance and conservative forces, our distilled student
models are consistently superior to models trained with other distillation methods or no distillation. All
of the demonstrated improvements readily extend to geometry optimizations and MD simulations, where
our distilled models are more stable and conserve energy better over time. Our observation that the student
MLFFs often outperform the original FM on the specialized data subset, sometimes even without any
distillation, suggests that the field has not yet converged on an effective training recipe for large-scale MLFF
FMs, as scaling data and model size should in principle lead to better downstream performance (Kaplan
et al., 2020; Hoffmann et al., 2022). We find that our Hessian KD approach still yields improvements over
undistilled models in this scenario, suggesting that even when the FM forces are inaccurate, its Hessians
still provide effective regularization to make significant improvements in student force accuracy.

Limitations. The main drawback of our method is that training with Hessian distillation adds training
overhead that scales with the number of sampled rows s. However, since choosing s=1 has an empirically
negligible impact on performance (§5), we can limit the training overhead to around twice that of the
undistilled models. Since student models tend to be much smaller than FMs, the training overhead relative
to that of the corresponding foundation model is quite small. We also demonstrate that it is possible to
accelerate Hessian computation using finite difference approximations in §A.9.

Future Work and Outlook. In the future, MLFFs could be specialized in ways beyond chemical
subgroups, such as performing high-temperature simulations (Stocker et al., 2022) or modeling phase
transitions (Jinnouchi et al., 2019) using Hessian-based KD. Exploring techniques like sketching (Woodruff
et al., 2014) and stochastic estimators (Hutchinson, 1989) to accelerate Hessian computation would also be
a fruitful direction. Additionally, applying sampling techniques when pre-computing the teacher Hessians
would reduce the upfront cost of our approach. More broadly, our work sets a precedent for future MLFF
development: as training data and model parameter counts continue to grow, new MLFF FM releases
should be accompanied by a set of small, specialized “engines” for common downstream tasks. We further
speculate that in the future, practitioners may rarely, if ever, actually perform inference with MLFF FMs
directly. Instead, FMs could serve as a reservoir for general-purpose representations, which are subsequently
distilled into small models specialized for the task at hand. In particular, the energy conservation results
in §4.3 suggest a recipe in which large FMs are trained with minimal inductive biases to facilitate scalable
and general-purpose training, followed by distillation into specialized student models with inductive biases
tailored to the downstream task (e.g., conservative forces for constant energy MD simulations). This
paradigm would enable widespread adoption of MLFFs, and move the field closer to the longstanding
dream of force fields with the speed of classical methods and the accuracy of quantum mechanical methods.

6.1 REPRODUCIBILITY STATEMENT

We have built our implementation of Hessian distillation around the Fairchem Github Repository. Our
implementation works with any model or dataset compatible with Fairchem. We plan to release the
code after acceptance of the paper. Details on datasets, models, and hyperparmeters used for training and
evaluation are provided in the Appendix.
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model for atomistic materials chemistry, 2023.

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai Kornbluth,
Nicola Molinari, Tess E. Smidt, and Boris Kozinsky. E(3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials. Nature Communications, 13(1), 5 2022. doi:
10.1038/s41467-022-29939-5.

Erik Bitzek, Pekka Koskinen, Franz Gähler, Michael Moseler, and Peter Gumbsch. Structural relaxation
made simple. Physical review letters, 97(17):170201, 2006.
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A APPENDIX

A.1 FOUNDATION MODELS

For the foundation (teacher) models, we use the publicly available, pretrained weights. For MACE-OFF
and MACE-MP, we perform no additional finetuning/modifications. For MACE-OFF, the energy MAE
values we obtained using the pretrained checkpoint are slightly higher than what is reported in the original
paper Kovács et al. (2023), while the force MAE values are identical. For the JMP models, we finetune
the publicly available, pretrained weights of both JMP-S and JMP-L on the buckyball catcher and double
walled nanotube separately, using the exact configurations and hyperparameters provided in the JMP repo.
While we were not able to exactly reproduce the force MAE results reported in the JMP paper (Shoghi
et al., 2023) (our obtained losses are slightly higher), we did not perform further tuning or experimentation
due to limited computational resources.

We note that MACE-MP-0 was trained on the entirety of MPtrj, and an official held-out test set is not
publicly available. We created our own MPtrj train/validation/test splits for the student models. The
reported Force MAEs are measured on our created test split, which was seen by the FM model during
its training, but not by our student models.

Below we provide the links to repositories where the foundation model weights were obtained, as well
as the training data:
Mace-OFF repository
Mace-MP repository
JMP repository
Spice Dataset
MPtrj Dataset

We report the foundation model training times in Table A.1 , and selected distillation training times in
Table 11, both in GPU hours.

Table 4: Training Times for Foundation Models (trained on A100 GPUs)
Model Dataset GPU hours
MACE-OFF Large SPICE 336 (Kovács et al., 2023)
MACE-MP Large MPtrj 1920 (Batatia et al., 2023)
JMP-Small (Pretraining) QM9 + ANI-1x + OC20 + Trans1x 5700 (Shoghi et al., 2023)
JMP-Small (Finetuning) Buckyball Catcher 9 (trained ourselves)
JMP-Small (Finetuning) Double Walled Nanotube 20 (trained ourselves)
JMP-Large (Pretraining) QM9 + ANI-1x + OC20 + Trans1x 34400 (Shoghi et al., 2023)
JMP-Large (Finetuning) Buckyball Catcher 15 (trained ourselves)
JMP-Large (Finetuning) Double Walled Nanotube 41 (trained ourselves)

A.2 STUDENT MLFF ARCHITECTURE DETAILS

We provide details on the architectures of the GemNet-dT, GemNet-T, PaiNN, and eSCN MLFFs used
as student models in this work. A slashed value indicates that different values were used across datasets.
In this case, the values correspond to the ordering: SPICE, MD22, MPtrj. Since PaiNN was only used
for SPICE and MPtrj, in that case the ordering is SPICE, MPtrj.

Table 5: Hyperparameters for PaiNN student models.
Parameter Value
Hidden Channels 128
Layers 4
Radial Basis Functions 128
Cutoff 12.0 / 6.0
Maximum Neighbors 50
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Within a dataset, hyperparameters for GemNet-dT and GemNet-T models are identical. The only difference
is that GemNet-T computes forces as the negative gradient of the energy prediction, while GemNet-dT
employs a direct force parameterization.

Table 6: Hyperparameters for GemNet-dT and GemNet-T student models.
Parameter Value
Number of Spherical 7
Radial Basis Functions 6
Blocks 4
Atom Embedding Size 64
Edge Embedding Size 64
Triplet Embedding Size 32
RBF Embedding Size 16
CBF Embedding Size 16
Bilinear Triplet Embedding Size 64
Number Before Skip 1
Number After Skip 1
Number of Concatenations 1
Number of Atoms 2
Cutoff 5.0 / 5.0 / 6.0
Maximum Neighbors 50
RBF Function Gaussian
Envelope Function Polynomial (Exponent: 5)
CBF Function Spherical Harmonics
Output Initialization HeOrthogonal
Activation Function SiLU

A.3 STUDENT MLFF TRAINING DETAILS

We use the FAIR-chem repository https://github.com/FAIR-Chem/fairchem, implemented
with PyTorch, for model training and evaluation. We include the training details below.

Table 7: Optimization hyperparameters for student models.
Parameter GemNet-dT/GemNet-T/eSCN PaiNN
Initial Learning Rate 0.001 0.001
Optimizer AdamW AdamW
Weight Decay 0.000002 0.000002
Amsgrad True True
Adam epsilon 1.e-7 1.e-7
Scheduler ReduceLROnPlateau ReduceLROnPlateau
Patience 5 10
Factor 0.8 0.8
Minimum Learning Rate 0.000001 0.000005
EMA Decay 0.999 0.999
Clip Gradient Norm 10 10

We chose batch size and number of Hessian rows primarily based on dataset and system sizes and how
these would affect training times.

We report training times for our Hessian distillation approach as a percentage of the original foundation
model training time. The caveat is that MACE foundation models were trained on faster, NVIDIA RTX
A100 GPUs, while the disilled runs were trained on slower NVIDIA RTX A6000 GPUs. Therefore, these
percentages are likely overestimates.
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Table 8: Loss Weights by Chemical Subset. The same energy and force weights are used for undistilled
and distilled training, as well as all baselines.

Training Set λU λF λKD λ∇U

Monomers 5 100 400 5
Solvated Amino Acids 5 100 400 5
Structures with Iodine 5 100 400 5
Pm3m Spacegroup 0 100 200 0
Structures with Yttrium 0 100 200 0
Bandgap ≥ 5meV 0 100 200 0
Buckyball Catcher 5 100 400 5
Double Walled Nanotube 5 100 400 5

Table 9: Training Batch Size for Student Models by Chemical Subset. The same batch sizes are used
for undistilled and distilled training.

Training Set GemNet-dT/GemNet-T PaiNN eSCN
Monomers 4 8 –
Solvated Amino Acids 4 8 –
Structures with Iodine 4 8 –
Pm3m Spacegroup 16 16 –
Structures with Yttrium 16 16 –
Bandgap ≥ 5meV 32 32 –
Buckyball Catcher 4 – 4
Double Walled Nanotube 4 – 4

Table 10: Number of rows sampled from Hessian
Training Set GemNet-dT/GemNet-T PaiNN eSCN
Monomers 4 4 –
Solvated Amino Acids 1 1 –
Structures with Iodine 4 4 –
Pm3m Spacegroup 4 4 –
Structures with Yttrium 1 4 –
Bandgap ≥ 5meV 1 4 –
Buckyball Catcher 1 – 1
Double Walled Nanotube 1 – 1

Table 11: Training Times in GPU-hours for Selected Distilled Runs. Percentages indicate the fraction
of time the training run took compared to the training time of the relevant foundation model.

Training Subset GemNet-dT PaiNN
Monomers 72.5 (21.5%) 30.5 (9.1%)
Solvated Amino Acids 15.2 (4.5%) 9.3 (2.8%)
Structures with Iodine 68.3 (20.3%) 29.8 (8.8%)
Pm3m Spacegroup 14.8 (0.8%) 7.5 (0.4%)
Structures with Yttrium 57.1 (3.0%) 65.0 (3.4%)
Bandgap ≥ 5meV 82.2 (4.3 %) 48.7 (2.5%)
Buckyball Catcher 87 (0.25 %) –
Double Walled Nanotube 144 (0.42 %) –
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A.4 BASELINES

We provide additional details on the n2n and a2a baselines against which we compare our Hessian
distillation approach.

Node feature supervision (n2n). The n2n approach, introduced in (Kelvinius et al., 2023), seeks to
align the node features of the student MLFF with that of the teacher. Specifically, given node features
h
(l)
T ∈Rdt and h(l)S ∈Rds from the lth message-passing layer of the teacher and student respectively, the

distillation loss is formulated as

LKD=Ex||h(l)T (x)−Ph(l)S (x)||22,

where P ∈Rdt×ds is a learnable linear projection from the student to teacher representation space. The
projection weights are discarded at inference time. (Kelvinius et al., 2023) found that that using the
final layer node representation (l=L) yielded the best results, so we chose the same. As in the Hessian
distillation setting, we pre-compute and save the teacher’s final node features over the dataset prior to
training. We found via a sweep over λKD={10,100,1000,10000,100000} that λKD=10000 yields the
best results with GemNet-dT on the Solvated Amino Acid split of SPICE (results shown below). Due
to a limited computed budget, we do not perform sweeps over each individual split, and use this same
value for all subsequent splits and models.

Table 12: Validation energy MAE (meV) and force MAE (meV/A) of the n2n baseline on the Solvated
Amino Acid split of SPICE, using different values of λKD. Energy MAE is total MAE, so there is not
a one-to-one correspondence between the per-atom MAE results reported in the main text.

λKD Force MAE (meV/A) Energy MAE (meV)
0 (Undistilled) 22.4 162
10 22.1 163
100 22.1 169
1000 21.7 142
10000 21.1 117
100000 28.1 144

Atom embedding initialization (a2a). In GNN-based MLFFs, the initial node features h(0) are
parameterized as a learnable dictionary of embeddings for each atomic element. In the a2a approach,
we precompute the teacher’s atom embeddings h(0)T , and parameterize the student atom embeddings as
h
(0)
S =Ph

(0)
T , where P ∈Rds×dt is a learnable linear projection from the teacher to student representation

space. We train the MLFF using the original energy/force matching objective, with no distillation (i.e
λKD=0). There are no hyperparameters to tune for the a2a baseline.

A.5 EVALUATION DETAILS

Reporting of Maximum Simulation Speed. We calculate maximum simulation speeds by performing
energy/force inference with the batch size that maximizes throughout for each model. We report these
batch sizes below.

We convert inference speed from samples/second to nanoseconds/day by adopting a MD simulation
timestep of 1 femtosecond, and assuming that energy/force inference dominates simulation time.

A.6 SENSITIVITY TO KNOWLEDGE DISTILLATION WEIGHT

We assess the sensitivity of our Hessian distillation approach to the knowledge distillation loss weight λKD
used during training. We vary the weight across λKD={10,100,400,1000} on the Solvated Amino Acids
split of SPICE with a GemNet-dT model. We find that a value of λKD=400 achieves the best balance of
force and energy performance (full results below).
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Table 13: Throughput-maximizing batch sizes
Training Set GemNet-dT PaiNN MACE GemNet-T eSCN JMP-S JMP-L
Monomers 1024 1024 128 – – – –
Solvated Amino Acids 64 64 32 – – – –
Structures with Iodine 512 512 64 – – – –
Pm3m Spacegroup 512 512 512 – – – –
Structures with Yttrium 128 512 128 – – – –
Bandgap ≥ 5meV 64 64 64 – – – –
Buckyball Catcher 64 – – 24 32 4 4
Double Walled Nanotube 8 – – 8 12 4 4

Table 14: Validation energy MAE (meV) and force MAE (meV/A) achieved by Hessian distillation on
the Solvated Amino Acid split of SPICE, using different values of λKD. Energy MAE is total MAE, so
there is not a one-to-one correspondence between the per-atom MAE results reported in the main text.

λKD Force MAE (meV/A) Energy MAE (meV)
0 (Undistilled) 22.4 162
10 20.2 145
100 14.0 168
400 12.3 155
1000 13.7 181

We performed a similar sweep for MPTrj and found that λKD=100 was optimal in that setting. Increasing
the KD weight generally helps up to a certain point, after which performance saturates and eventually
degrades. This is an important hyperparameter that we recommend be tuned for each dataset independently.

A.7 EFFECT OF TEACHER HESSIANS VERSUS FORCES.

To isolate the benefit of the FM Hessians, we formulate an alternative knowledge distillation objective where
the student is trained to match the FM force predictions instead of its energy Hessians. We simply replace
the ground truth forces in Eq. 1 with the foundation model (teacher) forces with a weight of λF =100 (the
same weight previously used for the ground truth forces). Concretely, the new loss function becomes,

L=λU |Uref(z,r)−Uθ(z,r)|2+λF
n∑
i=1

∥f(i)FM(z,r)−f
(i)
θ (z,r)∥22 (4)

where fFM denotes the teacher forces and as per usual, Uref denotes the ground truth energies.

Results on selected splits of the SPICE dataset are presented in Tab. 15. Distilling with the teacher forces is
consistently inferior to distilling with the teacher Hessians, indicating that the richer information contained
in the latter helps the model better match the true forces. In fact, force distillation leads to worse performing
models than training without distillation, similar to the observation that the n2n and a2a baselines were
inferior to undistilled training on SPICE (§4.1).

A.8 COMPARISON OF HESSIAN DISTILLATION TO CONSERVATIVE FORCE TRAINING

We compare the benefits obtained from Hessian distillation of direct force student models (GemNet-dT)
with training gradient-based MLFFs (GemNet-T) without distillation. Results on SPICE splits are shown
in Tab. A.8.

Although training with gradient-based forces yields benefits over training with direct forces in the undistilled
setting on 2 out of the 3 chemical subsets, we find that the improvements are less than those achieved
by Hessian distillation. We hypothesize that while the inductive bias of conservative forces is beneficial,
the extra supervision provided by Hessian distillation is a stronger learning signal to learn on chemical
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Table 15: Ablation study looking at distilling with MACE-OFF forces on selected splits of the SPICE
dataset. This approach is consistently inferior to our approach of distilling with MACE-OFF Hessians.

Chemical Subgroup Student Model Distillation Method Force MAE (meV/A)(↓)

Monomers

GemNet-dT
Undistilled 11.3
Forces 14.2
Hessian (ours) 6.3

PaiNN
Undistilled 25.0
Forces 25.0
Hessian (ours) 8.77

Systems with Iodine

GemNet-dT
Undistilled 23.4
Forces 26.1
Hessian (ours) 14.7

PaiNN
Undistilled 51.2
Forces 51.7
Hessian (ours) 23.7

Table 16: Force MAE (meV/A) of conservative force training (GemNet-T) on SPICE test splits, as
compared with undistilled and distilled training with GemNet-dT.
Chemical Subset GemNet-dT (Undistilled) GemNet-T (Undistilled) GemNet-dT (Distilled)
Monomers 11.3 8.8 6.3
Solvated Amino Acids 22.4 31.0 11.6
Systems with Iodine 22.6 16.0 14.7

subsets with potentially limited data. We could also combine both of these elements and distill with a
gradient-based student model to yield greater improvements. We have shown that this is possible in §4.3 on
selected MD22 molecules. We finally note that the improvements from adding conservative forces incurs
roughly a 2 × increase in inference time due to the extra backpropagation step to compute forces, while the
distilled GemNet-dT model has the identical architecture as the undistilled model and incurs no such cost.

A.9 COMPUTING HESSIANS WITH FINITE DIFFERENCES

In situations where computing the Hessian via autodifferentiation is unfeasible, such as for extremely large
foundation models (FMs), models employing attention kernels that are not twice-differentiable (Lefaudeux
et al., 2022), or conservative student models where training would require 3rd order gradients, a finite
difference approach can be used instead.

In this scheme, molecular structures are perturbed in Euclidean space and energy/force derivatives are
obtained via a discretized stencil (in this case, a right difference scheme). While this work focuses on
cases where autodifferentiation is feasible, we also demonstrate that the finite difference approach is a
viable alternative. We provide results on the Solvated Amino Acids split in Tab. 17 as a proof of concept,
showing that the method accelerates training for conservative force student models. The difference in
final Force MAE achieved by the two methods is negligible.

Table 17: Computing Hessian with Autodifferentiation vs Finite Differences with GemNet-T (conservative
forces) on Solvated Amino Acids.

Computation Method Training Speed (Epoch/Min)
Autodifferentiation 1.27
Finite Differences 1.67
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A.10 EFFECTS OF ADDING A LOSS SCHEDULER TO HESSIAN DISTILLATION

While training via Hessian distillation, we reduce the distillation loss coefficient λKD by 1/2 when the
student model exceeds the teacher model’s accuracy. This approach dynamically adjusts the training
process to focus more on matching the ground truth energies and forces rather than the foundation
model’s Hessians. Below, we compare Hessian distillation with and without the scheduler on a dataset,
demonstrating that the scheduler provides small but consistent improvements in Force MAE. We apply
the same scheduling to the n2n and a2a baselines, but in practice the baselines never exceed the teacher
accuracy, so the scheduling criterion is not met.

Table 18: Comparison of Hessian Distillation with and without a Loss Scheduler, training with GemNet-dT
on Solvated Amino Acids.

Scheduler Force MAE
Without Scheduler 12.2

With Scheduler 11.6

A.11 ISOLATING THE EFFECT OF HESSIAN DISTILLATION ON ENERGY ACCURACY

It is of interest to see how Hessian distillation alone, without our energy gradient supervision term described
in §3.4, affects energy accuracy. Below in Tab. 19, we compare a training run using only Hessian distillation
with one that combines Hessian and energy gradient supervision. While Hessian distillation alone improves
Energy MAE, the addition of energy gradient supervision leads to even greater improvements.

Table 19: Ablation investigating the effects of the Hessian and Energy gradient supervision terms when
training PaiNN on Solvated Amino Acids.

Distillation Method Energy MAE
Undistilled 3.3

Hessian Distillation only 2.9
Hessian Distillation + Energy Gradient Supervision 0.41

A.12 NVT MD SIMULATIONS WITH STUDENT MODELS

To further evaluate the distilled, specialized MLFFs from §4.1, we run 100 picosecond, constant-
temperature (NVT) MD simulations with systems from the Solvated Amino Acid split, with molecules
containing 79-96 atoms each. We choose 5 random structures from the held-out test set as initial conditions.
We perform Langevin dynamics at a temperature of 300K, a timestep of 1.0 fs, and a friction coefficient
of 0.01 fs−1, for 100,000 steps, corresponding to 100 ps. Consistent with (Fu et al., 2022), we use
a maximum bond length deviation metric, which measures unphysical bond stretching or collapse, to
measure stability. According to this criterion, a simulation becomes unstable at time T if,

max
(i,j)∈B

|(∥ri(T)−rj(T)∥−bi,j)|>∆,

where B is the set of all bonds, i,j are the two endpoint atoms of the bond, and bi,j is the equilibrium
bond length computed from the training dataset. Following (Fu et al., 2022), we set ∆=0.5A. Since
we are simulating non-reactive systems at ambient conditions, bond deviations exceeding this amount
are indicative of simulation failure.

Results are shown in Fig. 4. We find that the improvements in Force MAE between the distilled and undis-
tilled MLFFs shown in Tab. 1 translate to considerably improved stability over time. We reiterate that both
the GemNet-dT and PaiNN student models lack a conservative force parameterization, which is generally
considered crucial for stable MD simulations. Our results thus may indicate that distillation from a FM
teacher employing conservative forces may be sufficient to achieve stable simulation without this inductive
bias. We leave a more complete analysis of the performance of distilled MLFFs in MD simulations, includ-
ing the capturing of observables over long timescales (Fu et al., 2022; Raja et al., 2024), for future work.
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(a) (b)

Figure 4: Stability of Constant Temperature MD Simulations. Results of constant temperature (NVT)
MD simulations using the distilled GemNet-dT and PaiNN student MLFFs. We plot the maximum bond
length deviation during NVT simulations of 5 selected systems from the SPICE Solvated Amino Acid
split. × denotes the point at which the simulation becomes unstable. Our distilled models are considerably
more stable than their undistilled counterparts, both for (a) GemNet-dT and (b) PaiNN.

A.13 GEOMETRY OPTIMIZATION WITH STUDENT MODELS

As an additional evaluation of the usefulness of our student MLFFs, we perform geometry optimization
with our GemNet-dT student models using the FIRE (Bitzek et al., 2006) optimizer in the Atomic
Simulation Environment (ASE). We select 100 structures from the Monomers split of the SPICE dataset,
and run optimization until all the per-atom force norms are below 0.05 eV/A. Finally, we compute the
energy and per-atom forces using Density Functional Theory (DFT) at the ωB97M-D3BJ/def2-TZVPPD
level of theory (the same level used to generate the dataset in (Eastman et al., 2023)). We run DFT
calculations with the default settings in the psi4 Python package (Turney et al., 2012).

We find that our distilled GemNet-dT model generally converges to structures with lower energy and mean
per-atom force norms than its undistilled counterpart. While the FIRE optimizer does not explicitly use
energy Hessians, many quasi-Newton algorithms like BFGS (Bitzek et al., 2006) do. It would be interesting
to explore whether our Hessian distillation approach leads to even greater gains for these optimizers.

(a) (b)

Figure 5: Geometry optimization with GemNet-dT student MLFFs. (a) Difference in energy of the
final, relaxed structure obtained via the distilled and undistiled models. On average, the distilled model
converges to lower energy structures. (b) Mean per-atom force norm of the final, relaxed structure obtained
via the distilled and undistiled models. On average, the distilled model converges to lower structures with
lower force norms.
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