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ABSTRACT

The rapid progress of single-task architectures has dominated recent developments
in multi-talker speech processing, prompting the need for unified approaches. This
paper introduces a unified multi-speaker encoder (UME), a novel model archi-
tecture that jointly learns representations for diarization, separation, and multi-
speaker automatic speech recognition (ASR) tasks using a shared pre-trained
foundational speech encoder. We leverage the hidden representations from mul-
tiple layers of UME to effectively use information from different semantic levels,
contributing to bottom-up alignment between tasks. This joint training approach
captures the inherent interdependencies among the tasks, enhancing overall per-
formance on overlapping speech data. Our evaluations demonstrate that UME
achieves substantial improvements over the single-task state-of-the-art (SOTA)
baselines dedicated to speaker diarization, speech separation, and multi-speaker
ASR. Notably, for speaker diarization, UME achieved SOTA performance by low-
ering the diarization error rate (DER) from 3.24 to 2.19 on the Libri2Mix dataset.
Furthermore, our results in multi-speaker ASR outperform the previous results,
reducing the concatenated minimum-permutation word error rate (cpWER) from
11.9 to 9.2 on the LibriSpeech2Mix evaluation set.

1 INTRODUCTION

Speaker diarization (SD), speech separation (SS), and multi-speaker automatic speech recognition
(ASR) are tasks of great importance that aim to comprehend and answer the question “who spoke
what and when,” with applications to transcribing meetings and interviews, among others. Pre-
vious studies in SD (Fujita et al., 2019a;b; Horiguchi et al., 2022), SS (Luo & Mesgarani, 2019;
Wang et al., 2023), and multi-speaker ASR (Qian et al., 2018; Seki et al., 2018; Chang et al., 2020)
have focused primarily on improving the quality of single-task models that operate independently
on acoustic information to separate or label speaker segments and transcribe the text in a speech-
processing system (Watanabe et al., 2020; Chen et al., 2020; Raj et al., 2021a). A key limitation of
training tasks independently is that inter-dependencies cannot be leveraged.

Most existing frameworks address this limitation by unifying speech-processing architectures
(Boeddeker et al., 2024; Kalda et al., 2024). These architectures consist of either a joint ASR/SD
(Mao et al., 2020), SS/ASR (Kanda et al., 2022), or a SD/SS (Maiti et al., 2023) task following a
fixed optimal order that can vary depending on the target scene scenario (Watanabe et al., 2020;
Chen et al., 2020; Raj et al., 2021a). These different target scenes suggest that we solve these tasks
jointly, independent of the order, so all these tasks can benefit from each other.

Lately, there has been a shift towards employing pre-trained speech foundation models (SFMs)
(Chen et al., 2022; Radford et al., 2023; Peng et al., 2024a) in end-to-end (E2E) systems, which ef-
fectively learn useful representations for various speech processing tasks (Yang et al., 2021). How-
ever they do not work well on multi-speaker conversation recognition. Additionally, it has been
demonstrated that different layers encode different types of information in SD and ASR tasks (Chen
et al., 2022). Preliminary observation from these studies shows that intermediate layers of the en-
coder extract a rich hierarchy of information, e.g., in WavLM large, initial layers and last layers are
more critical for SD and ASR tasks. Therefore, it makes sense to utilize multiple layers to jointly op-
timize all SD, SS, and ASR tasks effectively. The question, therefore, naturally arises: can we build
a unified model that leverages all encoder layers to optimize performance across multiple tasks?
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Motivated by the potential of SFMs and E2E speech processing, we propose a unified multi-speaker
encoder (UME), a novel E2E speech-processing framework. The proposed framework is generaliz-
able to use any SFM, E2E SD, SS and multi-speaker ASR task. We selected OWSMv3.1 (Peng et al.,
2024b) as the shared encoder for this framework due to its widespread recognition, reproducibility,
open-source availability, and fast, efficient encoding capabilities. EEND (Horiguchi et al., 2022)
as a SD model due to its efficient overlapped E2E speech processing and Conv-TasNet (Luo &
Mesgarani, 2019) as a SS method as it is a very well-known separation model for time-domain over-
lapped speech handling and multi-speaker ASR (Chang et al., 2020) for its superior speech recogni-
tion performance in the E2E overlapped speech recognition. UME jointly optimizes all these tasks
into a single network with multitask learning to minimize the error accumulation for a speech pro-
cessing framework. Additionally, by extracting features from all the layers of the OWSMv3.1 shared
encoder, we can effectively learn better-hidden representations from the encoder layers, bringing
better information exchange and bottom-up alignment to all the tasks from different semantic levels.
We argue that such an E2E framework should provide a shared representation space for SD, SS and
multi-speaker ASR tasks and preferably have strong generalizability and learnability.

We conduct extensive experiments on different design choices of UME using typically complete
overlapped speech from the Libri2Mix dataset. The contributions are summarized as follows:

• We propose a unified speech-processing framework to jointly optimize the performance of
SD, SS, and multi-speaker ASR tasks with hidden representations of the speech foundation
encoder.

• We propose using a weighted sum of the pre-trained speech foundation encoder layers to
simplify the connection between each task.

• We demonstrate the effectiveness of our framework on two-speaker and three-speaker over-
lapped speech and obtain substantial performance improvement in each diarization, sepa-
ration, and multi-speaker ASR task.

2 RELATED WORK

2.1 MULTI-LAYER FEATURE LEARNING

Multi-layer feature learning has been explored as an efficient approach for fully leveraging the infor-
mation present in various layers of neural networks to enhance the representation and generalization
abilities in single task for speech processing (Yang et al., 2021; Chen et al., 2022), natural language
processing (Peters et al., 2018; Dou et al., 2018), and computer vision (Zheng et al., 2021; Naseer
et al., 2021). In the field of computer vision, researchers (Zheng et al., 2021; Naseer et al., 2021) im-
proved semantic segmentation performance by aggregating features from different layers of visual
transformers, whereas in natural language processing, a weighted sum (Peters et al., 2018) of repre-
sentations from intermediate RNN layers or aggregation (Dou et al., 2018) of attention layers was
explored as an input for different task heads. Similar ideas have also been explored in single-task
speech processing models (Yang et al., 2021; Chen et al., 2022) to analyze the effect and contribu-
tion of intermediate layers on single downstream task performance. However, the existing weighted
sum of hidden representations from different layers of SFM is not explicitly explored for multiple
task heads in a unified speech model, and there has been no exploration into their suitability for the
end-to-end speech processing framework.

2.2 JOINT TRAINING

Joint training (Watanabe et al., 2017) approaches have achieved significant success in speech pro-
cessing. With the rapid advancements in multitask learning-based joint training methods, researchers
combined tasks like SS and SD within a single neural network (Neumann et al., 2019; Kinoshita
et al., 2020), using various task combinations. Previous works have focused on joint training of
pairs such as ASR/SD (Shafey et al., 2019; Mao et al., 2020), SS/ASR (Kanda et al., 2022), or
SS/SD (Maiti et al., 2023; Boeddeker et al., 2024). Our work represents the first effort to jointly
train the SD, SS, and multi-speaker ASR within one unified model so that all tasks can benefit from
each other.
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Figure 1: Illustration of UME framework.

To address this gap, we build UME to assess the suitability of SD, SS, and multi-speaker ASR tasks
for constructing the unified E2E speech processing framework. To the best of our knowledge, this
is the first work that utilizes an explicit pre-trained SFM in an E2E way for all three tasks, i.e., SD,
SS, and multi-speaker ASR, while also leveraging the hidden representations and allowing the flow
of information through a weighted sum of intermediate layers.

3 UNIFIED MULTI-SPEAKER ENCODER (UME)

Figure 1 shows the overall framework of UME, which leverages the hidden representations through
a weighted sum of intermediate layers that act as the bridge between SD, SS, and multi-speaker ASR
tasks to enable comprehensive and detailed interaction from each layer of the SFM encoder. Our
goal is not to develop new encoder or speech processing tasks; in principle, one can apply any SFM
encoder, SD, SS, or multi-speaker ASR tasks in the proposed speech processing framework.

3.1 INPUT SPEECH MIXTURE

We start with the T -length single-channel input speech mixture X = {xt ∈ R|t = 1, · · · , T} of C
speakers. We define the input speech mixture in an anechoic condition given by:

xt =

C∑
c=1

y(c,t)s(c,t) + nt, (1)

where, s(c,t) ∈ R|t = 1, · · · , T is the T -length source speech signal of speaker c, nt ∈ R|t =
1, · · · , T is the noise signal and yc,t ∈ R|t = 1, · · · , T is the speech activity of speaker c indicating
that y(c,t) = 1 if speaker c is talking at time t and otherwise. This creates a ground truth speaker
label sequence Y = {y(c,t) ∈ {0, 1}C |t = 1, · · · , T ′} for the SD task in Section 3.3 and will
be estimated as Ŷ = {ŷ(c,t) ∈ {0, 1}C |t = 1, · · · , T ′} where a T -length input speech signal is
subsampled to T ′-length after the feature extraction in Section 3.2.

3.2 SPEECH FOUNDATION MODEL ENCODER

Recent works (Peng et al., 2024b) show that OWSM’s encoder has strong and efficient encoding
capabilities on various downstream tasks. We can note that OWSM was trained on single-speaker
speech-to-text tasks (i.e., no speaker tasks in pre-training). But we can still adapt it to our multi-
speaker setup. The speech encoder is a stack of N E-Branchformer (Kim et al., 2023) encoder layers

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

that transforms the T -length single-channel input speech mixture X = {xt ∈ R|t = 1, · · · , T} into
a D′-dimensional subsampled T ′(< T )-length hidden state representations H(l) = {ht ∈ RD′ |t =
1, · · · , T ′} of C speakers, where l is a layer index from 1 to N . The simplified speech encoder can
be represented as:

H(l) = SpeechEncmix(X), (2)

For inclusion in the task specific models with in a joint network, all layers of the H(l) are arranged
in a single feature vector. Similar to (Yang et al., 2021), we compute a task-specific weighting of all
the intermediate layers.

H =

N∑
l=1

ωtask
(l) H(l). (3)

In equation 3, ωtask
(l) are softmax-normalized learnable weights that scale the hidden state representa-

tions from different encoder layers to aid the optimization process for all the tasks during training.

3.3 SPEAKER DIARIZATION TASK

Given the robust performance of EEND (Horiguchi et al., 2022) with permutation invariant train-
ing (PIT) in estimating multi-speaker activities within an E2E framework, we adopt EEND for
the SD task in the proposed UME E2E speech processing framework. The SD involves pre-
dicting speaker activity as binary multi-class labels by estimating the speaker label sequence
Ŷ = {ŷ(c,t) ∈ {0, 1}C |t = 1, · · · , T ′}, where ŷ(c,t) = 1 indicates that speaker c is active at
time t, and ŷc,t = 0 otherwise. Unlike clustering-based methods (Bullock et al., 2020; Raj et al.,
2021b), which often show poor performance in scenarios with simultaneous speaker activity, as they
rely on distinct clusters that do not account for temporal overlap, however, the E2E approach can
effectively model overlapped speech by explicitly setting ŷ(c1,t) = 1 and ŷ(c2,t) = 1 when both
speakers are active at the same time.

Given the encoded hidden state representations H(l) from the speech encoder (Section 3.2) we map
the speaker activity probabilities pt ∈ {0, 1}C using a linear layer and an element wise sigmoid
function σ(·), i.e.,

pt = σ(Wht + b). (4)

where W and b are trainable weights and biases of the fully connected layer. We train EEND with
PIT using speaker activity probabilities and the target speaker activity labels. The binary cross
entropy-based (BCE) diarization loss (Ldiar) is optimized for all set of possible permutations.

Ldiar = min
ϕ∈Φ(C)

∑
BCE(yϕ

t ,pt). (5)

where Φ(C) contains a set of all possible speaker permutations C and vector yϕ
t contains the per-

muted reference of speaker labels.

3.4 SPEECH SEPARATION TASK

Speech separation is the task of predicting the separated speech signals ŝ1, · · · ŝC ∈ R|t = 1, · · · , T
for C number of speakers for a given input speech mixture (Section 3.1). Since Conv-TasNet (Luo
& Mesgarani, 2019) is a well-known time-domain speech separation architecture, we adopt Conv-
TasNet as our speech separation task. It predicts the separated speech signals of C speakers using a
fully convolutional encoder, separation, and decoder network. The input speech mixture is first en-
coded through a 1-D convolutional encoder, resulting in M -dimensional hidden state representations
H ′

(l) = {h′
t ∈ RM |t = 1, · · · , T}.

H ′
(l) = ConvEnc(X). (6)

To take full advantage of the pre-trained OWSMv3.1 speech encoder and increase the resolution
of the speech separation task, we concatenate the upsampled weighted sum of hidden state repre-
sentations (H(l)) extracted in Section 3.2 of the speech encoder with the encoded features H ′

(l) of

4
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the Conv-TasNet in the separator network at the last layer (l = N ) where they are further pro-
cessed by a repeated stack of 1-D dilated temporal convolutional networks (TCNs) and extracts an
E-dimensional embeddings et ∈ RE :

Hconcat
(l) = TCNs(Concat(H ′

(l),upsample(H(l)))), (7)

et = TCNs(Conv1×1(LayerNorm(Hconcat
(l) ))). (8)

The separation network then estimates the masks m(c,t) ∈ [0, 1]M in equation 9 and computes the
representation for each source d(c,t) ∈ RM using element wise multiplication ⊙ in equation 10.

m(c,t) = σ(Conv1×1(PReLU(et))), (9)

d(c,t) = hconcat
t ⊙m(c,t). (10)

Finally, the Decoder recovers the separated audio signals ŝ(c,t) using a 1-D transposed convolutional
layer.

ŝ(c,t) = Decoder(d(c,t)). (11)
The separation task is trained with the SI− SDR loss (Lsep) as defined below:

Lsep = −10log10

∥∥∥∥ ⟨ŝc,sc⟩sc∥∥sc∥∥2

∥∥∥∥∥∥∥∥ŝc − ⟨ŝc,sc⟩sc
sc

∥∥∥∥2
(12)

3.5 MULTI-SPEAKER ASR TASK

The multi-speaker ASR task, as adopted from (Chang et al., 2020), extends a joint connectionist
temporal classification (CTC)/attention-based framework to recognize speech from multiple speak-
ers within an E2E neural network. In the UME architecture, the input hidden state representations
(Section 3.2) from the speech encoder are first encoded. Subsequently, each speaker’s speech is ex-
tracted through J speaker-differentiating encoder blocks (SpeakerEncSD). These speaker-dependent
features are then transformed into D′′-dimensional subsampled T ′′(< T ′)-length hidden state rep-
resentations Hj

(l) = {hj
t ∈ RD′′ |t = 1, · · · , T ′′}, where j = {1, · · · , J} for each speaker.

Hj
(l) = SpeakerEncjSD(H). (13)

The attention-based decoder generates the U -length output sequence Y j
(l) = {yju ∈ V|u =

1, · · · , U}, where yu is an output token at position u in the vocabulary V for speakers j = 1, · · · , J .
PIT (Section 3.3) is employed to control the reference sequences Y j

(l) permutation. Specifically, PIT
is applied to the CTC loss (Lctc) immediately after the encoder.

π̂ = argmin
π∈P

J∑
j=1

Lctc(y
π̂(j)
u , Hj

(l)). (14)

where P is the set of all perumtaions on speakers 1, · · · , J , and π̂(j) is the j-th element of peru-
mutation π.This ensures that the model is invariant to the order of the speaker labels, enhancing
its ability to recognize and differentiate between multiple speakers accurately. Finally, the loss for
the multi-speaker ASR (Lasr) task is optimized using CTC and cross-entropy loss of the attention
decoder (Latt):

Lasr = λctcLctc(y
π̂(j)
u , Hj

(l)) + (1− λctc)Latt(y
π̂(j)
u , Hj

(l)). (15)

3.6 TRAINING OBJECTIVE

The UME framework optimizes all the three tasks using a multi-task learning loss function.

Lall = λdiarLdiar + λsepLsep + λasrLasr. (16)

The loss function is a weighted sum of Ldiar in equation 5, Lsep in equation 12 and Lasr in equation 15.
λdiar,λsep, and λasr are the weighting hyperparameters which are optimized empirically.
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4 EXPERIMENTS

4.1 DATASET

In UME, we aim to optimize all three tasks: diarization, separation, and multi-speaker ASR, using
multi-task learning in a unified framework. We require three ground truths to objectively evalu-
ate performance, i.e., diarization labels, separated sources, and text for each speaker. While real-
world multiparty datasets (Carletta et al., 2006; Horiguchi et al., 2021; Kamo et al., 2024) exist for
diarization-only tasks, they often need separated sources and text. Therefore, we employ simulated
conversation-like open-source datasets for training and evaluation. For training, we utilized the Lib-
riMix (Cosentino et al., 2020) dataset. For evaluation, we employed both LibriMix and LibriSpeech-
Mix (Kanda et al., 2020) datasets. LibriMix is a simulated dataset that generates speech mix-
tures using samples from LibriSpeech (train-clean100/train-clean360/dev-clean/test-clean) (Panay-
otov et al., 2015) and noise samples from WHAM! (Wichern et al., 2019). This dataset includes
training, validation, and testing sets for two-speaker (Libri2Mix) and three-speaker (Libri3Mix) mix-
tures. This study reports results solely on Libri2Mix (two-speaker) and Libri3Mix (three-speaker) to
effectively manage computational resources and reduce carbon footprint. This work used a 16kHz
sampling rate, the “mixboth (i.e., includes speaker mixtures and WHAM noise)” method, and the
“max” mode with 100% overlap. We choose the “max” mode as the ASR task is unfeasible com-
pared to the “min” mode due to the truncation of speech signals on minimum-length sequences. We
evaluated our system using the Libri2Mix and Libri3Mix datasets with a complete 100% overlap, as
well as the LibriSpeech2Mix and LibriSpeech3Mix datasets, which include a partial random overlap
of at least 0.5 seconds. The minimum, maximum, and average durations of the utterances for the
training and evaluation sets are shown in Table 1. Additionally, a more comprehensive analysis of
the characteristics of the training and evaluation sets is provided in Appendix A.2.

Table 1: The minimum, maximum, and average durations of utterances in the training and evaluation
sets reported in seconds (s).

Datasets Minimum (s) Maximum (s) Average (s)
Libri2Mix - training set 3.12 29.73 14.55
Libri3Mix - training set 4.21 29.74 15.13
Libri2Mix - test set 3.08 21.26 8.41
Libri3Mix - test set 3.23 20.91 9.00
LibriSpeech2Mix - test set 2.58 51.26 11.98
LibriSpeech3Mix - test set 3.32 56.77 16.23

4.2 EVALUATION METRICS

We evaluate diarization performance using the diarization error rate (DER%) (Fiscus et al., 2006)
with a collar tolerance of 0.0 seconds and median filtering applied over 11 frames. For the sep-
aration task, we evaluate using five objective metrics and report the results in source-to-distortion
ratio improvement (SDRi (dB)) (Vincent et al., 2006), scale-invariant source-to-distortion ratio im-
provement (SI-SDRi (dB)) (Roux et al., 2019), scale-invariant signal-to-noise ratio improvement
(SI-SNR), short-time objective intelligibility (STOI) (Taal et al., 2010), and signal to artifacts ra-
tio (SAR) Vincent et al. (2006) along with signal-to-interference ratio (SIR) (Vincent et al., 2006).
We report the multi-speaker ASR performance using the concatenated minimum-permutation word
error rate (cpWER) metric following prior work on permutation invariant training-based (PIT) multi-
speaker ASR methods (Chang et al., 2020; Kanda et al., 2020). It involves selecting the lowest word
error rate (WER) from the concatenated utterances of permuted speaker references and hypothesis
files. Unlike the method in (Watanabe et al., 2020), our cpWER computation is independent of the
speaker diarization branch, similar to (Chang et al., 2020), ensuring minimum error accumulation in
the multi-speaker ASR process.

6
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4.3 IMPLEMENTATION DETAILS

UME employs a pre-trained supervised SFM encoder, OWSMv3.1 (Peng et al., 2024b) medium, the
feature extractor for all three tasks. We simplify the integration of the tasks following the evaluation
in SUPERB (Yang et al., 2021) and WavLM (Chen et al., 2022) and provide learnable weights (Sec-
tion 3.2) as input so that all the layers of the OWSMv3.1 contribute to the optimization of the tasks.
Firstly, for the EEND (Section 3.3) task, we directly input the weighted sum of the extracted features
with a frame length of 400 and a frameshift of 640 samples to the 1-layer RNN-based attractor with
a hidden size of 1024. The EEND task thereby has an input-output dimension of 1024. Secondly,
for the separation task (Section 3.4), we concatenate the 1024-dimensional hidden representations
of the OWSMv3.1 with the 256-dimensional encoded features of the 1-D convolutional encoder in
Conv-TasNet (Luo & Mesgarani, 2019). Since the OWSMv3.1 has a downsampling rate of 40ms,
introducing a mismatch in the time dimension, we upsample the pre-trained representations for each
time step to increase the resolution and ease the concatenation process. Following the concatena-
tion, we input the 1280-dimensional concatenated features into the stack of three TCN blocks with
eight convolutional layers with a hidden states dimension 512 for mask estimation. Finally, using a
linear projection layer, we project the 1024-dimensional OWSMv3.1 features for the multi-speaker
ASR task (Section 3.5) to 128 dimensions. We then introduce a Transformer-based post-encoder
and decoder (Chang et al., 2020) with four speaker-differentiating encoder blocks (SpeakerEncSD)
and six decoder blocks, each having 2048 linear units with an input dimension of 256. Before
the post-encoder, we encode the OWSMv3.1 features by a convolutional layer with a subsampling
factor of four. During training in UME, we initialize the encoder parameters with the pre-trained
OWSMv3.1 medium encoder and fine-tune the encoder layers for 70 epochs, while all task-specific
parameters have a flat start (i.e., no parameter initialization for task-specific layers) and are trained
for 70 epochs. For the ASR-initialized UME version, the multi-speaker ASR model is pre-trained
separately for 30 epochs, and then the ASR-specific head in the UME model is initialized from this
pre-trained model. This results in a total of 70 epochs of fine-tuning for the OWSMv3.1 encoder
layers, 70 epochs of training for the diarization and separation tasks, and 70 epochs of fine-tuning
for the ASR task. We use the AdamW optimizer (Loshchilov & Hutter, 2019) with an initial learn-
ing rate of 4e − 4 (optimized empirically) and weight decay 1e − 06. The learning rate is warmed
up for 10,000 steps and then decayed linearly to zero for the rest of the training steps. Four A100
80GB GPUs are used during training, and the batch size is dynamically adjusted based on the input
length using the numel batch type in the ESPnet toolkit (Watanabe et al., 2018). In our experiments,
the average batch size was 44, and it took six days to train the model for up to 70 epochs. For task-
specific weights, we adopted a weighted-sum scalarization (Ehrgott, 2000) approach to simplify the
multi-objective optimization problem into a single-objective (Bazgan et al., 2022) one by assigning
equal weights to all task-specific losses (Section 3.6) (i.e., λasr = 0.33, λdiar = 0.33 , λsep = 0.34).
This approach assumes that the tasks are cooperative rather than conflicting, particularly in our
two-speaker and three-speaker scenarios, and reflects their equal importance in our framework. Fur-
thermore, we explored a two-stage strategy to optimize task-specific weights, inspired by the 4D
ASR work by (Sudo et al., 2023). However, as discussed in Section 5.2, this strategy resulted in
performance degradation for one or more tasks. Since the primary goal of this study is to develop a
unified framework capable of integrating multiple tasks rather than optimizing individual task per-
formance, we propose an equal-weighting strategy that assigns equal importance to all tasks. This
approach is validated by experimental results in Section 5.2, which demonstrate that simple equally
weighted scalarization achieves state-of-the-art performance.

5 MAIN RESULTS

Tables 2, 4, and 3 show the performance of UME compared with previous works on downstream
single task frameworks. With only 460 hours of simulated input speech mixture for training, UME
achieves state-of-the-art performance, particularly 2.19% of DER on a 100% overlap Libri2Mix
evaluation set, outperforming the previous state-of-the-art (SOTA) model WavLM (Chen et al.,
2022). A similar trend of improvement also occurs for the SS and multi-speaker ASR tasks, which
achieve the best performance. In this work, we also compare our results and report the findings by
explicitly setting the multi-task learning weights of the individual tasks to zero in our unified frame-
work for an unbiased comparison, providing more insights about the flexibility of our proposed
method. In the following sections, we discuss the experimental results in detail.

7
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Table 2: DERs (%) for two-speaker and three-speaker evaluations. No collar tolerance was allowed.
Bold: the proposed method outperforms the baseline. Underlined: the best result.

Method Model Libri2Mix Libri3Mix

EEND (Horiguchi et al., 2022)

Self-supervised pretrained (Yang et al., 2021) -
HuBERT Large (Hsu et al., 2021) 5.75 -
wav2vec 2.0 Large (Baevski et al., 2020) 5.62 -
WavLM Large (Chen et al., 2022) 3.24 -
Other models in SUPERB(Yang et al., 2021) 6.59-10.54 -

EEND (Horiguchi et al., 2022)

Without weighted sum
Reproduced 4.62 -
UME (λdiar = 1.0) 2.91 3.26
UME (λasr = 0.1, λdiar = 0.1, λsep = 0.8) 2.28 (diverged)

With weighted sum
UME (λasr = 0.33, λdiar = 0.33, λsep = 0.34) 2.26 (diverged)

+ ASR initialized 2.45 3.15
UME (λasr = 0.1, λdiar = 0.1, λsep = 0.8) 2.19 (diverged)

+ ASR initialized - 2.84

5.1 END-TO-END SPEAKER DIARIZATION RESULTS

Table 2 shows that the most impressive result for the UME is SD, which outperforms WavLM (Chen
et al., 2022) by 32% relatively in a 100% overlapped task setting for Libri2Mix. Furthermore,
UME also achieved state-of-the-art results on Libri3Mix. Notably, WavLM is trained using over-
lapped speech mixtures, whereas OWSMv3.1 (Peng et al., 2024b) is trained solely on clean speech.
Despite this, OWSMv3.1, adapted as the multi-speaker encoder having an improved architecture,
outperforms WavLM. We hypothesize that the additional training losses from SS and multi-speaker
ASR tasks provide additional granularity during the training in the multi-task learning framework.
We verified this hypothesis by conducting an ablation study that explicitly set the weights of the SS
(λsep) and multi-speaker ASR (λasr) losses to zero (i.e., λdiar = 1) (Section 3.6), resulting in a sub-
stantial performance drop of the UME for the SD task. This indicates that the SS and multi-speaker
ASR tasks enhance performance in the overlapped speech task.

Table 3: Since PIT does not enforce a fixed speaker order, the results are presented using cpWER
(↓) for multi-speaker ASR on Libri2Mix, LibriSpeech2Mix, Libri3Mix and LibriSpeech3Mix eval-
uation sets. Bold: the proposed method outperforms the baseline. Underlined: the best result.

Model Libri2Mix LibriSpeech2Mix Libri3Mix LibriSpeech3Mix
Without weighted sum

Multi-speaker Transformer (Chang et al., 2020) (reproduced) 29.7 16.2 - -
+ Speed perturbation (reproduced) 24.4 12.7 - -

PIT LSTM-AED (Kanda et al., 2020) - 11.9 - 52.3
SOT (Kanda et al., 2020) - 11.2 - 24.0
UME (λasr = 1.0) 25.0 13.0 26.4 16.0
UME (λasr = 0.33, λdiar = 0.33, λsep = 0.34) 22.7 11.0 (diverged) (diverged)

+ ASR initialized 21.1 9.2 26.5 15.7
UME (λasr = 0.1, λdiar = 0.1, λsep = 0.8) 22.4 11.9 (diverged) (diverged)

+ ASR initialized - - 27.3 20.3
With weighted sum

UME (λasr = 0.1, λdiar = 0.1, λsep = 0.8) 25.5 12.8 (diverged) (diverged)

5.2 MULTI-SPEAKER ASR RESULTS

For the multi-speaker ASR task, we input the OWSMv3.1 extracted features through a shallow
speaker-differentiating encoder trained with CTC, attention, and PIT losses without using the SD
and SS tasks. Similar to a previous study (Chang et al., 2020) which is our reproducible baseline,
we initialized the SpeakerEncSD blocks (Section 3.5) with a pre-trained model from the ESPnet
recipe for training stability. For the multi-speaker ASR task in UME, we observe that the initial-
ization of the ASR model provides training stability and outperforms the strong baselines in Table
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31 both for 100% overlap (Libri2Mix & Libri3Mix) and partial overlap task (LibriSpeech2Mix &
LibriSpeech3Mix). The LibriSpeech2Mix evaluation results demonstrate that initializing the ASR
model leads to a 22.7% relative cpWER improvement compared to the PIT-based LSTM-AED
(Kanda et al., 2020) method and a 17.9% relative cpWER improvement compared to the SOT-based
(Kanda et al., 2020) approach, highlighting the robustness of our UME framework for multi-speaker
speech recognition tasks. Moreover, the LibriSpeech3Mix evaluation results showed a 34.6% rel-
ative cpWER improvement compared to the SOT-based method. Our experiments further indicate
that initializing the three-speaker model with a pre-trained two-speaker model is essential, as train-
ing the three-speaker model without such initialization consistently resulted in divergence. Notably,
the UME framework was trained using the “mixboth” Libri2Mix and Libri3Mix training set, which
combines two-speaker and three-speaker mixtures with WHAM noise, but was evaluated on the
LibriSpeech2Mix and LibriSpeech3Mix evaluation set containing only clean speech. This demon-
strates its superior generalization ability across datasets with varying data modeling characteristics.
We also find that using a weighted sum of hidden state representations for multi-speaker ASR tasks
results in performance degradation, as discussed in the following Section 5.4.

5.3 END-TO-END SPEECH SEPARATION RESULTS

Unlike previous studies (Yang et al., 2021; Chen et al., 2022) which report the separation results
in “min mode”, UME requires overlapped mixtures in “max mode” during the training process
due to the unification of the ASR task, as discussed in Section 4.1. For this reason, we evaluate
the UME on 100% overlapped mixtures in “max mode” with our fully reproduced Conv-TasNet
model following the similar setup in Section 4.3 without the concatenated features. Experimental
results in Table 4 show that the improvement for SS task is not as substantial compared with the
SD (Table 2) and multi-speaker ASR (Table 3) tasks. However, we see a consistent improvement
compared to the separation-only tasks in Table 4, indicating that concatenating encoded features
with the upsampled hidden representations of the OWSMv3.1 encoder in the TCN block (Section
3.4) improves separation performance, resulting in an improved performance in the overall speech
processing framework. An example of the effect of the concatenated features for two-speaker case
in the separation task is shown in Figure 2, illustrating that the separation task shows improved
performance in recovering the speaker activity without using an additional diarization branch. We
also provide recovered speech examples for the three-speaker case in Appendix A.3.

Table 4: Speech separation results on the evaluation sets of Libri2Mix and Libri3Mix, using the
“max mode” setting. The metrics STOI, SAR, SDR, SIR, and SI-SNRi are used to evaluate speech
separation performance, with all values reported in decibels (dB). Bold: the proposed method out-
performs the baseline. Underlined: the best result.

Model Libri2Mix Libri3Mix

STOI SAR SDR SIR SI-SNRi STOI SAR SDR SIR SI-SNRi
Without weighted sum

ConvTasNet (Luo & Mesgarani, 2019) 87.63 11.80 11.48 25.88 10.93 - - - - -
UME (λsep = 1.0) 89.13 12.60 12.39 27.67 11.81 85.31 10.61 10.16 22.45 9.53
UME (λasr = 0.1, λdiar = 0.1, λsep = 0.8) 90.49 13.34 13.18 29.39 12.64 (diverged)

With weighted sum
UME (λasr = 0.33, λdiar = 0.33, λsep = 0.34) 90.29 13.22 13.05 29.11 12.51 (diverged)

+ ASR initialized 89.82 12.88 12.68 28.48 12.12 86.48 11.05 10.69 23.43 10.07
UME (λasr = 0.1, λdiar = 0.1, λsep = 0.8) 90.82 13.55 13.39 29.70 12.84 (diverged)

5.4 EFFECT OF LAYER WEIGHTS

For the unification of SD (Section 3.3), SS (Section 3.4), and multi-speaker ASR (Section 3.5) tasks,
we weighted sum the hidden state representations of the intermediate layers of the OWSMv3.1 en-
coder as an input for each task. Experimental results in Table 2 and Table 4 show that weighted sum
representations improve the SD and SS performance while degrading the multi-speaker ASR task in
Table 3. From the layer weights shown in Appendix A.1, we observe that the initial and final layers

1We excluded the results reported by (Meng et al., 2024), despite their better WER performance, because
they trained their model on the “clean” subsets of Libri2Mix and Libri3Mix, while our study used the noisy
“mix both” subset (Section 4.1).
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(a) Input speech mixture (speaker1 + speaker2 + noise)

(b) Ground truth speaker1 (c) Recovered speaker1

(d) Ground truth speaker2 (e) Recovered speaker2

Figure 2: An example of the effect of concatenation with OWSMv3.1 features on separated signals
in UME. (a) Input speech mixture of two speakers and WHAM noise (speaker1, speaker2 and noise)
with 100% overlap. (column 1) Ground truth for separated signals. (column 2) Recovered speech
signals using separation branch output (after concatenation)

generally contribute more for all these tasks, obtaining higher weights. One possible explanation
is that the parallel branch architecture (Peng et al., 2022) of the OWSMv3.1 encoder is effective at
combining local and global information, giving higher weight to the top and bottom layers. As local
signal information is necessary for speech reconstruction tasks, the SD and SS tasks must completely
exploit the information contained in all the intermediate layers for speech reconstruction. However,
sequence-to-sequence tasks like ASR, which requires long-term dependencies to learn contextually
relevant features in the attention mechanism (Vaswani et al., 2017), perform poorly on weighted
sum features as the maximum path length between any two input and output positions in networks
composed of the different layers may be distorted by averaging the layer weights. This finding is
consistent with the existing studies (Yang et al., 2021; Chen et al., 2022) on downstream tasks using
single-task self-supervised speech frameworks.

6 CONCLUSION

In this paper, we propose UME, a unified framework for end-to-end speech processing, which in-
tegrates speaker diarization, speech separation, and multi-speaker ASR with a weighted sum of
hidden states of the intermediate layers. UME substantially outperforms strong baselines and previ-
ous works and achieves state-of-the-art performance on speaker diarization task. In the future, we
are interested in evaluating the performance on real datasets and extending it to a multilingual UME.
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7 LIMITATIONS

While the proposed UME leveraging the weighted sum of hidden state representations of the in-
termediate layers as the bridge between speaker diarization, speech separation, and multi-speaker
ASR tasks simultaneously achieving substantial improvements over previous works, it still has some
limitations: (1) the absence of ground truth for all three tasks in real-world data makes it challeng-
ing to objectively evaluate the UME framework’s performance. Therefore, we focus on simulated
datasets, where ground truth is available, to ensure accurate comparisons. We acknowledge this lim-
itation and plan to explore real-world datasets in future work as they become more accessible and
standardized. (2) the current method employs a supervised pre-trained encoder, trained on clean and
non-overlapped speech with a low time resolution of 40ms and shows suboptimal performance on
the separation task; (3) the proposed UME only supports two-speaker and three-speaker tasks, and
it would be nice to able to support unlimited number of speaker tasks; (4) we have to pre-train an
independent model for speaker-differentiating heads to get optimal multi-speaker ASR performance
due to small amount of simulated dataset in the current method, which is time and resource inef-
ficient; (5) the effectiveness of applying UME to other speech domains (e.g., child speech, dialect
speech) needs further investigation.

8 ETHICS STATEMENT

This work presents UME, utilizing an open-source pre-trained speech foundation model encoder
OWSMv3.1 for unifying speaker diarization, speech separation, and multi-speaker ASR tasks. We
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A APPENDIX

A.1 EFFECT OF LAYER WEIGHTS

Figure 3 illustrates a detailed analysis of the weight distributions observed under various training
configurations, comparing joint training and single-task setups.

(a) Trained with λasr = 0.1, λdiar = 0.1, λsep = 0.8

(b) Trained with λasr = 0.33, λdiar = 0.33, λsep = 0.34

(c) Single-task models trained independently

Figure 3: Weight analysis for different training configurations.
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A.2 AUDIO DURATIONS

Figure 4 presents a comprehensive overview of the characteristics of the training and evaluation
datasets used in this study. It provides insights into statistics such as the minimum, maximum, and
average durations of utterances, as well as the total number of examples in each dataset, as discussed
in Section 4.1.

(a) Libri2Mix (training set) (b) Libri3Mix (training set)

(c) Libri2Mix (test set) (d) Libri3Mix (test set)

(e) LibriSpeech2Mix (test set) (f) LibriSpeech3Mix (test set)

Figure 4: The number of examples in the training and evaluation sets, providing a comprehensive
analysis of utterance durations in each set.
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A.3 SPEECH SEPARATION RESULTS FOR THREE SPEAKERS

Figure 5 presents the results of recovered speech obtained using the separation branch of the UME
framework when trained on a three-speaker scenario (Libri3Mix dataset). The figure provides a
detailed evaluation of the framework’s performance, demonstrating its ability to accurately separate
and recover individual speaker signals from a noisy speech mixture. These findings underline the
practical applicability of the UME framework in real-world multi-speaker speech processing tasks.

(a) Input speech mixture (speaker1 + speaker2 + speaker3 + noise)

(b) Ground truth speaker1 (c) Recovered speaker1

(d) Ground truth speaker2 (e) Recovered speaker2

(f) Ground truth speaker3 (g) Recovered speaker3

Figure 5: An example of the effect of concatenation with OWSMv3.1 features on separated signals
in UME. (a) Input speech mixture of three speakers and WHAM noise (speaker1, speaker2, speaker3
and noise) with 100% overlap. (column 1) Ground truth for separated signals. (column 2) Recovered
speech signals using separation branch output (after concatenation)

18


	Introduction
	Related work
	Multi-Layer Feature Learning
	Joint Training

	Unified Multi-Speaker Encoder (UME)
	Input Speech Mixture
	Speech Foundation Model Encoder
	Speaker Diarization Task
	Speech Separation Task
	Multi-speaker ASR Task
	Training objective

	Experiments
	Dataset
	Evaluation metrics
	Implementation details

	Main Results
	End-to-end speaker diarization results
	Multi-speaker ASR results
	End-to-end speech separation results
	Effect of layer weights

	Conclusion
	Limitations
	Ethics Statement
	Appendix
	Effect of layer weights
	Audio durations
	Speech separation results for three speakers


