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ABSTRACT

In this paper, we analyze the convergence of gradient flow on a multi-layer linear
model with a loss function of the form f(W1W2 · · ·WL). We show that when
f satisfies the gradient dominance property, proper weight initialization leads to
exponential convergence of the gradient flow to a global minimum of the loss.
Moreover, the convergence rate depends on two trajectory-specific quantities that
are controlled by the weight initialization: the imbalance matrices, which measure
the difference between the weights of adjacent layers, and the least singular value
of the weight product W = W1W2 · · ·WL. Our analysis provides improved rate
bounds for several multi-layer network models studied in the literature, leading to
novel characterizations of the effect of weight imbalance on the rate of convergence.
Our results apply to most regression losses and extend to classification ones.

1 INTRODUCTION

The mysterious ability of gradient-based optimization algorithms to solve the non-convex neural
network training problem is one of the many unexplained puzzles behind the success of deep learning
in various applications (Krizhevsky et al., 2012; Hinton et al., 2012; Silver et al., 2016). A vast body
of work has tried to theoretically understand this phenomenon by analyzing either the loss landscape
or the dynamics of the training parameters.

The landscape-based analysis is motivated by the empirical observation that deep neural networks
used in practice often have a benign landscape (Li et al., 2018a), which can facilitate convergence.
Existing theoretical analysis (Lee et al., 2016; Sun et al., 2015; Jin et al., 2017) shows that gradient
descent converges when the loss function satisfies the following properties: 1) all of its local
minimums are global minima; and 2) every saddle point has a Hessian with at least one strict
negative eigenvalue. Prior work suggests that the matrix factorization model (Ge et al., 2017), shallow
networks (Kawaguchi, 2016), and certain positively homogeneous networks (Haeffele & Vidal, 2015;
2017) have such a landscape property, but unfortunately condition 2) does not hold for networks
with multiple hidden layers (Kawaguchi, 2016). Moreover, the landscape-based analysis generally
fails to provide a good characterization of the convergence rate, except for a local rate around the
equilibrium (Lee et al., 2016; Ge et al., 2017). In fact, during early stages of training, gradient descent
could take exponential time to escape some saddle points if not initialized properly (Du et al., 2017).

The trajectory-based analyses study the training dynamics of the weights given a specific initialization.
For example, the case of small initialization has been studied for various models (Arora et al., 2019a;
Gidel et al., 2019; Li et al., 2018b; Stöger & Soltanolkotabi, 2021; Li et al., 2021b;a). Under this type
of initialization, the trained model is implicitly biased towards low-rank (Arora et al., 2019a; Gidel
et al., 2019; Li et al., 2018b; Stöger & Soltanolkotabi, 2021; Li et al., 2021b), and sparse (Li et al.,
2021a) models. While the analysis for small initialization gives rich insights on the generalization of
neural networks, the number of iterations required for gradient descent to find a good model often
increases as the initialization scale decreases. Such dependence proves to be logarithmic on the scale
for symmetric matrix factorization model (Li et al., 2018b; Stöger & Soltanolkotabi, 2021; Li et al.,
2021b), but for deep networks, existing analysis at best shows a polynomial dependency (Li et al.,
2021a). Therefore, the analysis for small initialization, while insightful in understanding the implicit
bias of neural network training, is not suitable for understanding the training efficiency in practice
since small initialization is rarely implemented due to its slow convergence. Another line of work
studies the initialization in the kernel regime, where a randomly initialized sufficiently wide neural
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network can be well approximated by its linearization at initialization Jacot et al. (2018); Chizat et al.
(2019); Arora et al. (2019b). In this regime, gradient descent enjoys a linear rate of convergence
toward the global minimum (Du et al., 2019; Allen-Zhu et al., 2019; Du & Hu, 2019). However, the
width requirement in the analysis is often unrealistic, and empirical evidence has shown that practical
neural networks generally do not operate in the kernel regime (Chizat et al., 2019).

The study of non-small, non-kernel-regime initialization has been mostly centered around linear
models. For matrix factorization models, spectral initialization (Saxe et al., 2014; Gidel et al., 2019;
Tarmoun et al., 2021) allows for decoupling the training dynamics into several scalar dynamics. For
non-spectral initialization, the notion of weight imbalance, a quantity that depends on the differences
between the weights matrices of adjacent layers, is crucial in most analyses. When the initialization is
balanced, i.e., when the imbalance matrices are zero, the convergence relies on the initial end-to-end
linear model being close to its optimum (Arora et al., 2018a;b). It has been shown that having a
non-zero imbalance potentially improves the convergence rate (Tarmoun et al., 2021; Min et al.,
2021), but the analysis only works for two-layer models. For deep linear networks, the effect of
weight imbalance on the convergence has been only studied in the case when all imbalance matrices
are positive semi-definite (Yun et al., 2020), which is often unrealistic in practice. Lastly, most of the
aforementioned analyses study the l2 loss for regression tasks, and it remains unknown whether they
can be generalized to other types of losses commonly used in classification tasks.

Our contribution: This paper aims to provide a general framework for analyzing the convergence of
gradient flow on multi-layer linear models. We consider the gradient flow on a loss function of the
form L = f(W1W2 · · ·WL), where f satisfies the gradient dominance property. We show that with
proper initialization, the loss converges to its global minimum exponentially. More specifically:

• Our analysis shows that the convergence rate depends on two trajectory-specific quantities: 1) the
imbalance matrices, which measure the difference between the weights of adjacent layers, and 2)
a lower bound on the least singular values of weight product W = W1W2 · · ·WL. The former is
time-invariant under gradient flow, thus it is fully determined by the initialization, while the latter
can be controlled by initializing the product sufficiently close to its optimum.

• Our analysis covers most initialization schemes used in prior work (Saxe et al., 2014; Tarmoun
et al., 2021; Arora et al., 2018a;b; Min et al., 2021; Yun et al., 2020) for both multi-layer linear
networks and diagonal linear networks while providing convergence guarantees for a wider range
of initializations. Furthermore, our rate bounds characterize the general effect of weight imbalance
on convergence.

• Our convergence results directly apply to loss functions commonly used in regression tasks, and
can be extended to loss functions used in classification tasks with an alternative assumption on f ,
under which we show O(1/t) convergence of the loss.

Notations: For an n×m matrix A, we let AT denote the matrix transpose of A, σi(A) denote its
i-th singular value in decreasing order and we conveniently write σmin(A) = σmin{n,m}(A) and let
σk(A) = 0 if k > min{n,m}. We also let ∥A∥2 = σ1(A) and ∥A∥F =

√
tr(ATA). For a square

matrix of size n, we let tr(A) denote its trace and we let diag{ai}ni=1 be a diagonal matrix with ai
specifying its i-th diagonal entry. For a Hermitian matrix A of size n, we let λi(A) denote its i-th
eigenvalue and we write A ⪰ 0 (A ⪯ 0) when A is positive semi-definite (negative semi-definite).
For two square matrices A,B of the same size, we let ⟨A,B⟩F = tr(ATB). For a scalar-valued or
matrix-valued function of time, F (t), we write Ḟ , Ḟ (t) or d

dtF (t) for its time derivative. Additionally,
we use In to denote the identity matrix of order n and O(n) to denote the set of n× n orthogonal
matrices. Lastly, we use [·]+ := max{·, 0}.

2 OVERVIEW OF THE ANALYSIS

This paper considers the problem of finding a matrix W that solves

min
W∈Rn×m

f(W ) , (1)

with the following assumption on f .
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Assumption 1. The function f is differentiable and satisfies1:

A1: f satisfies the Polyak-Łojasiewicz (PL) condition, i.e. ∥∇f(W )∥2F ≥ γ(f(W ) − f∗),∀W .
This condition is also known as gradient dominance.

A2: f is K-smooth, i.e., ∥∇f(W ) − ∇f(V )∥F ≤ K∥W − V ∥F ,∀W,V , and f is µ-strongly
convex, i.e., f(W ) ≥ f(V ) + ⟨∇f(V ),W − V ⟩F + µ

2 ∥W − V ∥2F ,∀W,V .

While classic work (Polyak, 1987) has shown that the gradient descent update on W with proper step
size ensures a linear rate of convergence of f(W ) towards its optimal value f∗, the recent surge of
research on the convergence and implicit bias of gradient-based methods for deep neural networks
has led to a great amount of work on the overparametrized problem:

min
{Wl}L

l=1

L
(
{Wl}Ll=1

)
= f(W1W2 · · ·WL) , (2)

where L ≥ 2, Wl ∈ Rhl−1×hl , i = 1, · · · , L, with h0 = n, hL = m and min{h1, · · · , hL−1} ≥
min{n,m}. This assumption on min{h1, · · · , hL−1} is necessary to ensure that the optimal value
of (2) is also f∗, and in this case, the product

∏L
l=1 Wl can represent an overparametrized linear

network/model (Arora et al., 2018b; Tarmoun et al., 2021; Min et al., 2021)

2.1 CONVERGENCE VIA GRADIENT DOMINANCE

For problem (2), consider the gradient flow dynamics on the loss function L
(
{Wl}Ll=1

)
:

Ẇl = − ∂

∂Wl
L
(
{Wl}Ll=1

)
, l = 1, · · · , L . (3)

The gradient flow dynamics can be viewed as gradient descent with “infinitesimal” step size and
convergence results for gradient flow can be used to understand the corresponding gradient descent
algorithm with sufficiently small step size (Elkabetz & Cohen, 2021). We have the following result
regarding the time-derivative of L under gradient flow (3).
Lemma 1. Under continuous dynamics in (3), we have

L̇ = −∥∇L
(
{Wl}Ll=1

)
∥2F = −

〈
T{Wl}L

l=1
∇f(W ),∇f(W )

〉
F
, (4)

where W =
∏L

l=1 Wl, and T{Wl}L
l=1

is the following positive semi-definite linear operator on Rn×m

T{Wl}L
l=1

E =

L∑
l=1

(
l−1∏
i=0

Wi

)(
l−1∏
i=0

Wi

)T

E

(
L+1∏
i=l+1

Wi

)T ( L+1∏
i=l+1

Wi

)
,W0 = In,WL+1 = Im .

Such an expression of ∥∇L∥2F has been studied in Arora et al. (2018b), and we include a proof in
Appendix C for completeness. Our convergence analysis is as follows.

For this overparameterized problem, the minimum L∗ of (2) is f∗. Then from Lemma 1 and
Assumption A1, we have

L̇ = −
〈
T{Wl}L

l=1
∇f(W ),∇f(W )

〉
F

≤ −λmin(T{Wl}L
l=1

)∥∇f(W )∥2F (min-max theorem (Teschl, 2014)) (5)
(A1)
≤ −λmin(T{Wl}L

l=1
)γ(f(W )− f∗) = −λmin(T{Wl}L

l=1
)γ(L − L∗).

If we can find a lower bound α > 0 such that λmin(T{Wl(t)}L
l=1

) ≥ α,∀t ≥ 0, then the following
inequality holds on the entire training trajectory d

dt (L − L∗) ≤ −αγ (L − L∗). Therefore, by using
Grönwall’s inequality (Grönwall, 1919), we can show that the loss function L converges exponential
to its minimum, i.e.,

L(t)− L∗ ≤ exp (−αγt) (L(0)− L∗) ,∀t ≥ 0 . (6)
1Note that A2 assumes µ-strong convexity, which implies A1 with γ = 2µ. However, we list A1 and A2

separately since they have different roles in our analysis.
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Therefore, to show exponential convergence of the loss, we need to lower bound λmin(T{Wl(t)}L
l=1

).
Most existing work on the convergence of gradient flow/descent on linear networks implicitly
provides such a lower bound, given additional assumptions on the initialization {Wl(0)}Ll=1, though
not presented with such generality. We revisit previous analyses to see how such a problem can be
solved for two-layer linear networks, then present our new results regarding deep linear networks.

3 LESSONS FROM TWO-LAYER LINEAR MODELS

In this section, we revisit prior work through the lens of our general convergence analysis in Section
2.1. A lower bound on λmin(T{Wl(t)}L

l=1
) can be obtained from the training invariance of the gradient

flow. We first consider the following imbalance matrices:

Dl := WT
l Wl −Wl+1W

T
l+1, l = 1, · · · , L− 1 . (7)

For such imbalance matrices, we have
Lemma 2. Under the continuous dynamics (3), we have Ḋl(t) = 0,∀t ≥ 0, l = 1, · · · , L− 1.

Such invariance of weight imbalance has been studied in most work on linear networks (Arora et al.,
2018a; Du et al., 2018; Yun et al., 2020). We include the proof in Appendix C for completeness.
Since the imbalance matrices {Dl}L−1

l=1 are fixed at its initial value, any point {Wl(t)}Ll=1 on the
training trajectory must satisfy the imbalance constraints Wl(t)

TWl(t)−Wl+1W
T
l+1 = Dl(0), l =

1, · · · , L− 1. Previous work has shown that enforcing certain non-zero imbalance at initialization
leads to exponential convergence of the loss for two-layer networks (Tarmoun et al., 2021; Min et al.,
2021), and for deep networks (Yun et al., 2020). Another line of work (Arora et al., 2018a;b) has
shown that balanced initialization (Dl = 0,∀l) haves exactly λmin(T{Wl(t)}L

l=1
) = Lσ

2−2/L
min (W (t)),

where W (t) =
∏L

l=1 Wl(t). This suggests that the bound on λmin(T{Wl(t)}L
l=1

) we are looking for
should potentially depend on both the weight imbalance matrices and weight product matrix.

Indeed, for two-layer models, a re-statement2 of the results in (Min et al., 2022) provides a lower
bound on λmin(T{W1,W2}) with the knowledge of the imbalance and the product.

Lemma 3 (re-stated from Min et al. (2022)). When L = 2, given weights {W1,W2} with imbalance
matrix D = WT

1 W1 −W2W
T
2 and product W = W1W2, define

∆+=[λ1(D)]+−[λn(D)]+ ,∆−=[λ1(−D)]+−[λm(−D)]+ ,∆=[λn(D)]++[λm(−D)]+ . (8)

Then for the linear operator T{W1,W2} defined in Lemma 1, we have

λmin

(
T{W1,W2}

)
≥ 1

2

(
−∆+ +

√
(∆+ +∆)2 + 4σ2

n (W )−∆− +
√

(∆− +∆)2 + 4σ2
m (W )

)
.

(9)

Min et al. (2022) include a detailed discussion on the bound, including tightness. For our purpose,
we note the following:

Effect of imbalance: It follows from (9) that λmin

(
T{W1,W2}

)
≥ ∆ since σmin(W ) ≥ 0. Therefore,

∆ is always a lower bound on the convergence rate. This means that, for most initializations, the
fact that the imbalance matrices are bounded away from zero (characterized by ∆ > 0) is already
sufficient for exponential convergence.

Effect of product: The role of the product in (9) is more nuanced: Assume n = m for simplicity
so that σn(WWT ) = σm(WTW ) = σ2

min(W ). We see that the non-negative quantities ∆+,∆−
control how much the product affects the convergence. More precisely, the lower bound in (9) is
a decreasing function of both ∆+ and ∆−. When ∆+ = ∆− = 0, the lower bound reduces to√
∆2 + 4σ2

min(W ), showing a joint contribution to convergence from both imbalance and product.
However, as ∆+,∆− increases, the bound decreases towards ∆, which means that the effect of

2In Min et al. (2022), there is no general idea of lower bounding λmin

(
T{W1,W2}

)
, but their analyses

essentially provide such a bound.
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imbalance always exists, but the effect of the product diminishes for large ∆+,∆−. We note that
∆+,∆− measure how the eigenvalues of the imbalance matrix D are different in magnitude, i.e.,
how “ill-conditioned" the imbalance matrix is.

Implication on convergence: Note that (9) is almost a lower bound for λmin

(
T{W1(t),W2(t)}

)
, t ≥ 0,

as the imbalance matrix D is time-invariant (so are ∆+,∆−,∆), except the right-hand side of (9)
also depends on σmin(W (t)). If f satisfies A2, then f has a unique minimizer W ∗. Moreover,
one can show that given a initial product W (0), W (t) is constrained to lie within a closed ball{
W : ∥W −W ∗∥F ≤

√
K
µ ∥W (0)−W ∗∥F

}
. That is, the product W (t) does not get too far away

from W ∗ during training. We can use this to derive the following lower bound on σmin(W (t)):

σmin(W (t)) ≥

[
σmin(W

∗)−

√
K

µ
∥W (0)−W ∗∥F

]
+

:= margin (See Appendix A). (10)

This margin term being positive guarantees that the closed ball excludes any W with σmin(W ) = 0.
With this observation, we find a lower bound λmin

(
T{W1(t),W2(t)}

)
, t ≥ 0 that depends on both the

weight imbalance and margin, and the exponential convergence of loss L follows:

Theorem 1. Let D be the imbalance matrix for L = 2. The continuous dynamics in (3) satisfy

L(t)− L∗ ≤ exp (−α2γt) (L(0)− L∗),∀t ≥ 0 , (11)

where

1. If f satisfies only A1, then α2 = ∆ ;

2. If f satisfies both A1 and A2, then

α2 = −∆+ +

√
(∆+ +∆)2 + 4

( [
σn (W ∗)−

√
K/µ∥W (0)−W ∗∥F

]
+

)2
−∆− +

√
(∆− +∆)2 + 4

( [
σm (W ∗)−

√
K/µ∥W (0)−W ∗∥F

]
+

)2
, (12)

with W (0) =
∏L

l=1 Wl(0) and W ∗ equal to the unique optimizer of f .

Please see Appendix E for the proof. Theorem 1 is new as it generalizes the convergence result in Min
et al. (2022) for two-layer linear networks, which is only for l2 loss in linear regression. Our result
considers a general loss function defined by f , including the losses for matrix factorization (Arora
et al., 2018a), linear regression (Min et al., 2022), and matrix sensing (Arora et al., 2019a). Addition-
ally, Arora et al. (2018a) first introduced the notion of margin for f in matrix factorization problems
(K = 1, µ = 1), and we extend it to any f that is smooth and strongly convex.

Towards deep models: So far, we revisited prior results on two-layer networks, showing how
λmin(TW1,W2

) can be lower bounded by weight imbalance and product, from which the convergence
result is derived. Can we generalize the analysis to deep networks? The main challenge is that even
computing λmin(T{Wl}L

l=1
) given the weights {Wl}Ll=1 is complicated: For L = 2, λmin(TW1,W2) =

λn(W1W
T
1 ) + λm(WT

2 W2), but such nice relation does not exist for L > 3, which makes the search
for a tight lower bound as in (9) potentially difficult. On the other hand, the findings in (9) shed light
on what can be potentially shown for the deep layer case:

1. For two-layer networks, we always have the bound λmin

(
T{W1,W2}

)
≥ ∆, which depends only

on the imbalance. Can we find a lower bound on the convergence rate of a deep network that
depends only on an imbalance quantity analogous to ∆? If yes, how does such a quantity depend
on network depth?

2. For two-layer networks, the bound reduces to
√
∆2 + 4σ2

min(W ) when the imbalance is “well-
conditioned" (∆+,∆− are small). For deep networks, can we characterize such joint contribution
from the imbalance and product, given a similar assumption?

We will answer these questions as we present our convergence results for deep networks.
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4 CONVERGENCE RESULTS FOR DEEP LINEAR MODELS

4.1 THREE-LAYER MODEL

Beyond two-layer models, the convergence analysis for imbalanced networks not in the kernel regime
has only been studied for specific initializations (Yun et al., 2020). In this section, we derive a novel
rate bound for three-layer models that applies to a wide range of imbalanced initializations. For ease
of presentation, we denote the two imbalance matrices for three-layer models, D1 and D2, as

−D1 = W2W
T
2 −WT

1 W1 := D21 , D2 = WT
2 W2 −W3W

T
3 := D23. (13)

Our lower bound on λmin

(
T{W1,W2,W3}

)
comes after a few definitions.

Definition 1. Given two real symmetric matrices A,B of order n, we define the non-commutative
binary operation ∧r as A∧rB := diag{min{λi(A), λi+1−r(B)}}ni=1 , where λj(·) = +∞,∀j ≤ 0.

Definition 2. Given imbalance matrices (D21, D23) ∈ Rh1×h1 × Rh2×h2 , define

D̄h1
=diag{max{λi(D21), λi(D23), 0}}h1

i=1, D̄h2
=diag{max{λi(D21), λi(D23), 0}}h2

i=1, (14)

∆21=tr(D̄h1)− tr(D̄h1 ∧n D21), ∆
(2)
21 =tr(D̄2

h1
)− tr

(
(D̄h1 ∧n D21

)2
), (15)

∆23=tr(D̄h2
)− tr(D̄h2

∧m D23), ∆
(2)
23 =tr(D̄2

h2
)− tr

(
(D̄h2

∧m D23

)2
). (16)

Theorem 2. When L = 3, given weights {W1,W2,W3} with imbalance matrices (D21, D23), then
for the linear operator T{W1,W2,W3} defined in Lemma 1, we have

λmin

(
T{W1,W2,W3}

)
≥ 1

2
(∆

(2)
21 +∆2

21) + ∆21∆23 +
1

2
(∆

(2)
23 +∆2

23) (17)

Proof Sketch. Generally, it is difficult to directly work on λmin

(
T{W1,W2,W3}

)
, and we use

the lower bound λmin

(
T{W1,W2,W3}

)
≥ λn(W1W2W

T
2 WT

1 ) + λn(W1W
T
1 )λm(WT

3 W3) +

λm(WT
3 WT

2 W2W3). We show that given D21, D23, the optimal value of

min
W1,W2,W3

λn(W1W2W
T
2 WT

1 ) + λn(W1W
T
1 )λm(WT

3 W3) + λm(WT
3 WT

2 W2W3) (18)

s.t. W2W
T
2 −WT

1 W1 = D21, WT
2 W2 −W3W

T
3 = D23

is ∆∗(D21, D23) =
1
2 (∆

(2)
21 +∆2

21) + ∆21∆23 +
1
2 (∆

(2)
23 +∆2

23), the bound shown in (17). Please
see Appendix F for the complete proof and a detailed discussion on the proof idea.

With the theorem we immediately have the following corollary.
Corollary 1. When L = 3, given initialization with imbalance matrices (D21, D23) and f satisfying
A1, the continuous dynamics in (3) satisfy

L(t)− L∗ ≤ exp (−α3γt) (L(0)− L∗),∀t ≥ 0 , (19)

where α3 = 1
2 (∆

(2)
21 +∆2

21) + ∆21∆23 +
1
2 (∆

(2)
23 +∆2

23).

We make the following remarks regarding the contribution.

Optimal bound via imbalance: First of all, as shown in the proof sketch, our bound should be
considered as the best lower bound on λmin(T{W1(t),W2(t),W3(t)}) one can obtain given knowledge
of the imbalance matrices D21 and D23 only. More importantly, this lower bound works for ANY
initialization and has the same role as ∆ does in two-layer linear networks, i.e., (17) quantifies the
general effect imbalance on the convergence. Finding an improved bound that takes the effect of
product σmin(W ) into account is an interesting future research direction.

Implication on convergence: Corollary 2 shows exponential convergence of the loss L(t) if α3 > 0.
While it is challenging to characterize all initialization such that α3 > 0, the case n = m = 1 is
rather simpler: In this case, D̄h1 ∧1 D21 = D21 and D̄h2 ∧1 D23 = D23. Then we have

∆21 = tr(D̄h1
)− tr(D21) =

h1∑
i=1

(λi(D̄h1
)− λi(D21)) + λh1

(D̄h1
)− λh1

(D21) ≥ −λh1
(D21) ,
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and similarly we have ∆23 ≥ −λh2
(D23). Therefore, α3 ≥ ∆21∆23 ≥ λh1

(D21)λh2
(D23) > 0

when both D21 and D23 have negative eigenvalues, which is easy to satisfy as both D21 and D23

are given by the difference between two positive semi-definite matrices. Such observation can be
generalized to show that α3 > 0 when D21 has at least n negative eigenvalues and D23 has at least
m negative eigenvalues. Moreover, we show that α3 > 0 under certain definiteness assumptions on
D21 and D23, please refer to the remark after Theorem 3 in Section 4.2. A better characterization of
the initialization that has α3 > 0 is an interesting future research topic.

Technical contribution: The way we find the lower bound in (17) is by studying the generalized eigen-
value interlacing relation imposed by the imbalance constraints. Specifically, W2W

T
2 −WT

1 W1 =
D21 suggests that λi+n(W2W

T
2 ) ≤ λi(D21) ≤ λi(W2W

T
2 ),∀i because W2W

T
2 −D21 is a matrix of

at most rank-n. We derive, from such interlacing relation, novel eigenvalue bounds (See Lemma F.6)
on λn(W

T
1 W1) and λn(W1W2W

T
2 W1) that depends on eigenvalues of both W2W

T
2 and D21. Then

the eigenvalues of W2W
T
2 can also be controlled by the fact that W2 must satisfy both imbalance

equations in (13). Since imbalance equations like those in (13) appear in deep networks and certain
nonlinear networks Du et al. (2018); Le & Jegelka (2022), we believe our mathematical results are
potentially useful for understanding those networks.

Comparison with prior work: The convergence of multi-layer linear networks under balanced
initialization (Dl = 0,∀l) has been studied in Arora et al. (2018a;b), and our result is complementary
as we study the effect of non-zero imbalance on the convergence of three-layer networks. Some
settings with imbalanced weights have been studied: Yun et al. (2020) studies a special initialization
scheme (Dl ⪰ 0, l = 1, · · · , L − 2, and DL−1 ⪰ λIhL−1

) that forces the partial ordering of the
weights, and Wu et al. (2019) uses a similar initialization to study the linear residual networks.
Our bound works for such initialization and also show such partial ordering is not necessary for
convergence.

4.2 DEEP LINEAR MODELS

The lower bound we derived for three-layer networks applies to any initialization. However, the bound
is a fairly complicated function of all the imbalance matrices that is hard to interpret. Searching for
such a general bound is even more challenging for models with arbitrary depth (L ≥ 3). Therefore,
our results for deep networks will rely on extra assumptions on the weights that simplify the lower
bound to facilite interpretability. Specifically, we consider the following properties of the weights:
Definition 3. A set of weights {Wl}Ll=1 with imbalance matrices {Dl := WT

l Wl −Wl+1W
T
l+1}

L−1
l=1

is said to be unimodal with index l∗ if there exists some l∗ ∈ [L] such that
Dl ⪰ 0, for l < l∗ and Dl ⪯ 0, for l ≥ l∗ .

We define its cumulative imbalances {d̃(i)}L−1
i=1 as d̃(i) =

{∑i
l=l∗ λm(−Dl), i ≥ l∗∑l∗−1
l=i λn(Dl), i < l∗

.

Furthermore, for weights with unimodality index l∗, if additionally, Dl = dlIhl
, l = 1, · · · , L− 1 for

dl ≥ 0, for l < l∗ and dl ≤ 0, for l ≥ l∗ ,

then those weights are said to have homogeneous imbalance.

The unimodality assumption enforces an ordering of the weights w.r.t. the positive semi-definite cone.
This is more clear when considering scalar weights {wl}Ll=1, in which case unimodality requires
w2

l to be descending until index l∗ and ascending afterward. Under this unimodality assumption,
we show that imbalance contributes to the convergence of the loss via a product of cumulative
imbalanaces. Furthermore, we also show the combined effects of imbalance and weight product when
the imbalance matrices are “well-conditioned" (in this case, homogeneous). More formally, we have:
Theorem 3. For weights {Wl}Ll=1 with unimodality index l∗, we have

λmin

(
T{Wl}L

l=1

)
≥

L−1∏
l=1

d̃(i) . (20)

Furthermore, if the weights have homogeneous imbalance, then

λmin

(
T{Wl}L

l=1

)
≥

√√√√(L−1∏
l=1

d̃(i)

)2

+
(
Lσ

2−2/L
min (W )

)2
, W =

L∏
l=1

Wl . (21)
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We make the following remarks:

Connection to results for three-layer: For three-layer networks, we present an optimal bound

λmin(TW1,W2,W3
) ≥ 1

2
(∆

(2)
21 +∆2

21) + ∆21∆23 +
1

2
(∆

(2)
23 +∆2

23) ,

given knowledge of the imbalance. Interestingly, when comparing it with our bound in (20), we have:
Claim. When L = 3, for weights {W1,W2,W3} with unimodality index l∗,

1. If l∗ = 1, then 1
2 (∆

(2)
23 +∆2

23) =
∏L−1

l=1 d̃(i) and 1
2 (∆

(2)
21 +∆2

21) = ∆21∆23 = 0;

2. If l∗ = 2, then ∆21∆23 =
∏L−1

l=1 d̃(i) and 1
2 (∆

(2)
21 +∆2

21) =
1
2 (∆

(2)
23 +∆2

23) = 0;

3. If l∗ = 3, then 1
2 (∆

(2)
21 +∆2

21) =
∏L−1

l=1 d̃(i) and 1
2 (∆

(2)
23 +∆2

23) = ∆21∆23 = 0.
We refer the readers to Appendix G for the proof. The claim shows that the bound in (20) is optimal
for three-layer unimodal weights as it coincides with the one in Theorem 2. We conjecture that (20)
is also optimal for multi-layer unimodal weights and leave the proof for future research. Interestingly,
while the bound for three-layer models is complicated, the three terms 1

2 (∆
(2)
23 + ∆2

23), ∆21∆23,
1
2 (∆

(2)
21 +∆2

21), seem to roughly capture how close the weights are to those with unimodality. This
hints at potential generalization of Theorem 2 to the deep case where the bound should have L terms
capturing how close the weights are to those with different unimodality (l∗ = 1, · · · , L).

Effect of imbalance under unimodality: For simplicity, we assume unimodality index l∗ = L. The
bound

∏L−1
i=1 d̃(i), as a product of cumulative imbalances, generally grows exponentially with the

depth L. Prior work Yun et al. (2020) studies the case Dl ⪰ 0, l = 1, · · · , L−2, and DL−1 ⪰ λIhL−1
,

in which case
∏L−1

i=1 d̃(i) ≥ λL−1. Our bound
∏L−1

i=1 d̃(i) suggests the dependence on L could
be super-exponential: When λn(Dl) ≥ ϵ > 0, for l = 1, · · · , L − 1, we have

∏L−1
i=1 d̃(i) =∏L−1

i=1

∑L−1
l=i λn(Dl) ≥

∏L−1
l=1 lϵ = ϵL−1(L − 1)!, which grows faster in L than λL−1 for any λ.

Therefore, for gradient flow dynamics, the depth L could greatly improve convergence in the presence
of weight imbalance. One should note, however, that such analysis can not be directly translated into
fast convergence guarantees of gradient descent algorithm as one requires careful tuning of the step
size for the discrete weight updates to follow the trajectory of the continuous dynamics (Elkabetz &
Cohen, 2021).

With our bound in Theorem 3, we show convergence of deep linear models under various initialization:

Convergence under unimodality: The following immediately comes from Theorem 3:
Corollary 2. If the initialization weights {Wl(0)}Ll=1 are unimodal, then the continuous dynamics in
(3) satisfy

L(t)− L∗ ≤ exp (−αLγt) (L(0)− L∗),∀t ≥ 0, (22)
where

1. If f satisfies A1 only, then αL =
∏L−1

i=1 d̃(i) ;

2. If f satisfies both A1, A2, and the weights additionally have homogeneous imbalance, then

αL =

√√√√(L−1∏
i=1

d̃(i)

)2

+

(
L
( [

σmin (W ∗)−
√
K/µ∥W (0)−W ∗∥F

]
+

)2−2/L
)2

,

with W (0) =
∏L

l=1 Wl(0) and W ∗ equal to the unique optimizer of f .

Spectral initialization under l2 loss: Suppose f = 1
2∥Y −W∥2F and W =

∏L
l=1 Wl. We write

the SVD of Y ∈ Rn×m as Y = P

[
ΣY 0
0 0

] [
Q
0

]
:= P Σ̃Y Q̃, where P ∈ O(n), Q ∈ O(m) .

Consider the spectral initialization W1(0) = RΣ1V
T
1 , Wl(0) = Vl−1ΣlV

T
l , l = 2, · · · , L − 1,

WL(0) = VL−1ΣLQ̃, where Σl, l = 1, · · · , L are diagonal matrices of our choice and Vl ∈ Rn×hl ,
l = 1, · · · , L− 1 with V T

l Vl = Ihl
. It can be shown that (See Appendix D.1 for details)

W1(t) = RΣ1(t)V
T
1 , Wl(t) = Vl−1Σl(t)V

T
l , l = 2, · · · , L− 1, WL(t) = VL−1ΣL(t)Q̃. (23)

8
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Moreover, only the first m diagonal entries of Σl are changing. Let σi,l, σi,y denote the i-th diagonal
entry of Σl, and Σ̃Y respectively, then the dynamics of {σi,l}Ll=1 follow the gradient flow on

Li({σi,l}Ll=1) =
1
2

∣∣∣σi,y −
∏L

l=1 σi,l

∣∣∣2 for i = 1, · · · ,m, which is exactly a multi-layer model with

scalar weights: f(w) = |σi,y − w|2/2, w =
∏L

l=1 wl. Therefore, spectral initialization under l2 loss
can be decomposed into m deep linear models with scalar weights, whose convergence is shown
by Corollary 2. Note that networks with scalar weights are always unimodal, because the gradient
flow dynamics remain the same under any reordering of the weights, and always have homogeneous
imbalance, because the imbalances are scalars. The aforementioned analysis also applies to the linear
regression loss f = 1

2∥Y −XW∥2F , provided that {X,Y } is co-diagonalizable (Gidel et al., 2019),
we refer the readers to Appendix D.1 for details.

Diagonal linear networks: Consider f a function on Rn satisfying A1 and L = f(w1 ⊙ · · · ⊙ wL),
where wl ∈ Rn and ⊙ denote the Hadamard (entrywise) product. The gradient flow on L can not
be decomposed into several scalar dynamics as in the previous example, but we can show that (See
Appendix D.2 for details) L̇ = −∥∇L∥2F ≤ −(min1≤i≤n λmin(T{wl,i}L

l=1
))γ(L − L∗) , where wl,i

is the i-th entry of wl. Then Theorem 3 gives lower bound on each λmin(T{wl,i}L
l=1

). Again, here the
scalar weights {wl,i}Ll always have homogeneous imbalance.

Assumptions Arora et al. (2018a) Yun et al. (2020) Ours
Unimodal
weights N/A λL−1

∏L−1
l=1 d̃(i)

Homogeneous
imbalance N/A λL−1 √

(
∏L−1

l=1 d̃(i))2 + (Lσ
2−2/L
min (W ))2

Balanced Lσ
2−2/L
min (W ) N/A

Table 1: Compare our rate bound with prior work on deep networks.

Comparison with prior work: Regarding unimodality, Yun et al. (2020) studies the initialization
scheme Dl ⪰ 0, l = 1, · · · , L − 2 and DL−1 ⪰ λIhL−1

, which is a special case (l∗ = L) of ours.
The homogeneous imbalance assumption was first introduced in Tarmoun et al. (2021) for two-layer
networks, and we generalize it to the deep case. We compare, in Table 1, our bound to the existing
work (Arora et al., 2018a; Yun et al., 2020) on convergence of deep linear networks outside the kernel
regime. Note that Yun et al. (2020) only studies a special case of unimodal weights (l∗ = L with
d̃(i) ≥ λ > 0,∀i). For homogeneous imbalance, Yun et al. (2020) studied spectral initialization
and diagonal linear networks, whose initialization necessarily has homogeneous imbalance, but the
result does not generalize to the case of matrix weights. Our results for homogeneous imbalance
works also for deep networks with matrix weights, and our rate also shown the effect of the product
Lσ

2−2/L
min (W ), thus covers the balanced initialization (Arora et al., 2018a) as well.

Remark 1. Note that the loss functions used in Gunasekar et al. (2018); Yun et al. (2020) are
classification losses, such as the exponential loss, which do not satisfy A1. However, they do satisfy
Polyak-Łojasiewicz-inequality-like condition ∥∇f(W )∥F ≥ γ(f(W )− f∗),∀W ∈ Rn×m, which
allows us to show O

(
1
t

)
convergence of the loss function. We refer readers to Section 4.3 for details.

4.3 CONVERGENCE RESULTS FOR CLASSIFICATION TASKS

As we discussed in Remark 1, the loss functions used in classification tasks generally do not satisfy
our assumption A1 for f . Suppose instead we have the following assumption for f .

Assumption 2. f satisfies (A1’) ∥∇f(W )∥F ≥ γ(f(W )− f∗),∀W ∈ Rn×m.

Then we can show O
(
1
t

)
convergence of the loss function, as stated below.

Theorem 4. Given initialization {Wl(0)}Ll=1 such that λmin(T{Wl(t)}L
l=1

) ≥ α, ∀t ≥ 0 , and f

satisfying (A1´), then

L(t)− L∗ ≤ L(0)− L∗

(L(0)− L∗)αγ2t+ 1
. (24)

9
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We refer readers to Appendix B for the proof. The lower bound on λmin(T{Wl(t)}L
l=1

) can be obtained
for different networks by our results in previous sections. The exponential loss satisfies A1´ (see
Appendix D.2)and is studied in Gunasekar et al. (2017); Yun et al. (2020) for diagonal linear networks.

5 CONCLUSION AND DISCUSSION

In this paper, we study the convergence of gradient flow on multi-layer linear models with a loss of
the form f(W1W2 · · ·WL), where f satisfies the gradient dominance property. We show that with
proper initialization, the loss converges to its global minimum exponentially. Moreover, we derive a
lower bound on the convergence rate that depends on two trajectory-specific quantities: the imbalance
matrices, which measure the difference between the weights of adjacent layers, and the least singular
value of the weight product W = W1W2 · · ·WL. Our analysis applies to various types of multi-layer
linear networks, and our assumptions on f are general enough to include loss functions used for
both regression and classification tasks. Future directions include extending our results to analyzing
gradient descent algorithms as well as to nonlinear networks.

Convergence of gradient descent: Exponential convergence of the gradient flow often suggests a
linear rate of convergence of gradient descent when the step size is sufficiently small, and Elkabetz
& Cohen (2021) formally establishe such a relation. Indeed, Arora et al. (2018a) shows linear rate
of convergence of gradient descent on multi-layer linear networks under balanced initialization. A
natural future direction is to translate the convergence results under imbalanced initialization for
gradient flow to the convergence of gradient descent with a small step size.

Nonlinear networks: While the crucial ingredient of our analysis, invariance of weight imbalance,
no longer holds in the presence of nonlinearities such as ReLU activations, Du et al. (2018) shows the
diagonal entries of the imbalance are preserved, and Le & Jegelka (2022) shows a stronger version
of such invariance given additional assumptions on the training trajectory. Therefore, the weight
imbalance could still be used to understand the training of nonlinear networks.
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A CONTROLLING PRODUCT WITH MARGIN

Most of our results regarding the lower bound on λminT{Wl}L
l=1

are given as a value that depends

on 1) the imbalance of the weights; 2) the minimum singular value of the product W =
∏L

l=1. The
former is time-invariant, thus is determined at initialization. As we discussed in Section 3, we require
the notion of margin to lower bound σmin(W (t)) for the entire training trajectory.

The following Lemma that will be used in subsequent proofs.
Lemma A.1. If f satisfies A2, then the gradient flow dynamics (3) satisfies

σmin (W (t)) ≥ σmin (W
∗)−

√
K

µ
∥W (0)−W ∗∥F ,∀t ≥ 0

where W (t) =
∏L

l=1 Wl(t) and W ∗ is the unique minimizer of f .

Proof. From Polyak (1987), we know if f is µ-strongly convex, then it has unique minimizer W ∗

and
f(W )− f∗ ≥ µ

2
∥W −W ∗∥2F .

Additionally, if f is K-smooth, then

f(W )− f∗ ≤ K

2
∥W −W ∗∥2F .

This suggests that for any t ≥ 0,

K

2
∥W (t)−W ∗∥2F ≥ L(t)− L∗ ≥ µ

2
∥W −W ∗∥2F .

Therefore we have the following

σmin (W (t)) = σmin (W (t)−W ∗ +W ∗)

(Weyl’s inequality (Horn & Johnson, 2012, 7.3.P16)) ≥ σmin(W
∗)− ∥W (t)−W ∗∥2

≥ σmin(W
∗)− ∥W (t)−W ∗∥F

(f is µ-strongly convex) ≥ σmin(W
∗)−

√
2

µ
(L(t)− L∗)

(L(t) non-decreasing under (3)) ≥ σmin(W
∗)−

√
2

µ
(L(0)− L∗)

(f is K-smooth) ≥ σmin(W
∗)−

√
K

µ
∥W (0)−W ∗∥2F

= σmin (W
∗)−

√
K

µ
∥W (0)−W ∗∥F .

Lemma A.1 directly suggests

σmin(W (t)) ≥

[
σmin (W

∗)−

√
K

µ
∥W (0)−W ∗∥F

]
+

:= margin ,

and the margin is positive when the initial product W (0) is sufficiently close to the optimal W ∗.
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B CONVERGENCE ANALYSIS FOR CLASSIFICATION LOSSES

In this section, we consider f that satisfies, instead of A1, the following
Assumption 3. f satisfies (A1´) the Łojasiewicz inequality-like condition

∥∇f(W )∥F ≥ γ(f(W )− f∗),∀W ∈ Rn×m .

Theorem 4 (Restated). Given initialization {Wl(0)}Ll=1 such that

λminT{Wl(t)}L
l=1

≥ α, ∀t ≥ 0 ,

and f satisfying (A1´), then

L(t)− L∗ ≤ L(0)− L∗

(L(0)− L∗)αγ2t+ 1
.

Proof. When f satisfies (A1´), then (5) becomes

L̇ = −
〈
T{Wl}L

l=1
∇f(W ),∇f(W )

〉
F

≤ −λmin

(
T{Wl}L

l=1

)
∥∇f(W )∥2F

(A1′) ≤ −λmin

(
T{Wl}L

l=1

)
γ2(f(W )− f∗)2 = −λmin

(
T{Wl}L

l=1

)
γ2(L − L∗)2 .

This shows
− 1

(L − L∗)2
d

dt
(L − L∗) ≥ λmin

(
T{Wl}L

l=1

)
γ2 ≥ αγ2 .

Take integral
∫
dt on both sides, we have for any t ≥ 0,

1

L − L∗

∣∣∣∣t
0

≥ αγ2t ,

which is

L(t)− L∗ ≤ L(0)− L∗

(L(0)− L∗)αγ2t+ 1
.

Following similar argument as in Yun et al. (2020), we can show that exponential loss on linearly
separable data satisfies A1´.

Claim. Let f(w) =
∑N

i=1 exp
(
−yi · (xT

i w)
)
, if there exists z ∈ Sn−1 and γ > 0 such that

yi(x
T
i z) ≥ γ , ∀i = 1, · · · , N ,

then
∥∇f(w)∥F ≥ γf(w) ,∀w ∈ Rn .

Proof. Using the linear separability, we have

∥∇f(w)∥2F =

∥∥∥∥∥
N∑
i=1

exp
(
−yi · (xT

i w)
)
yixi

∥∥∥∥∥
2

F

(Cauchy-Schwarz inequality) ≥

∣∣∣∣∣
〈
z,

N∑
i=1

exp
(
−yi · (xT

i w)
)
yixi

〉∣∣∣∣∣
2

≥

∣∣∣∣∣
N∑
i=1

exp
(
−yi · (xT

i w)
)
γ

∣∣∣∣∣
2

= |f(w)γ|2 ,

as desired.

Therefore, our convergence results applies to classification tasks with exponential loss.
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C PROOFS IN SECTION 2

First we prove the expression for L̇ in Lemma 1

Lemma 1 (Restated). Under continuous dynamics in (3), we have

L̇ = −∥∇L
(
{Wl}Ll=1

)
∥2F = −

〈
T{Wl}L

l=1
∇f(W ),∇f(W )

〉
F
,

where W =
∏L

l=1 Wi, and T{Wl}L
l=1

is a positive semi-definite linear operator on Rn×m with

T{Wl}L
l=1

E =

L∑
l=1

(
l−1∏
i=1

Wi

)(
l−1∏
i=1

Wi

)T

E

(
L+1∏
i=l+1

Wi

)T ( L+1∏
i=l+1

Wi

)
,W0 = In,WL+1 = Im .

Proof. The gradient flow dynamics (3) satisfies

d

dt
Wl = − ∂

∂Wl
L
(
{Wl}Ll=1

)
= −

(
l−1∏
i=1

Wi

)T

∇f(W )

(
L+1∏
i=l+1

Wi

)T

, (C.1)

where W =
∏L

l=1 Wi and W0 = In,WL+1 = Im.

Therefore

L̇ =

L∑
l=1

〈
∂

∂Wl
L
(
{Wl}Ll=1

)
,
d

dt
Wl

〉
F

= −
L∑

l=1

∥∥∥∥ ∂

∂Wl
L
(
{Wl}Ll=1

)∥∥∥∥2
F

= −
L∑

l=1

〈(
l−1∏
i=1

Wi

)T

∇f(W )

(
L+1∏
i=l+1

Wi

)T

,

(
l−1∏
i=1

Wi

)T

∇f(W )

(
L+1∏
i=l+1

Wi

)T〉
F

= −
L∑

l=1

〈(
l−1∏
i=1

Wi

)(
l−1∏
i=1

Wi

)T

∇f(W )

(
L+1∏
i=l+1

Wi

)T ( L+1∏
i=l+1

Wi

)
,∇f(W )

〉
F

= −

〈
L∑

l=1

(
l−1∏
i=1

Wi

)(
l−1∏
i=1

Wi

)T

∇f(W )

(
L+1∏
i=l+1

Wi

)T ( L+1∏
i=l+1

Wi

)
,∇f(W )

〉
F

= −
〈
T{Wl}L

l=1
∇f(W ),∇f(W )

〉
F
.

Next, we prove that the imbalance matrices are time-invariant

Lemma 2 (Restated). Under continuous dynamics (3), we have Ḋl(t) = 0,∀t ≥ 0, l = 1, · · · , L−1.

Proof. Each imbalance matrix is defined as

Dl = WT
l Wl −Wl+1W

T
l+1, l = 1, · · · , L− 1

We only need to check that d
dt

(
WT

l Wl

)
and d

dt

(
Wl+1W

T
l+1

)
are identical.
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From the following derivation, for l = 1, · · · , L− 1,

d

dt

(
WT

l Wl

)
= ẆT

l Wl +WT
l Ẇl

= −

(
L+1∏
i=l+1

Wi

)
∇T f(W )

(
l−1∏
i=1

Wi

)
Wl −WT

l

(
l−1∏
i=1

Wi

)T

∇f(W )

(
L+1∏
i=l+1

Wi

)T

= −

(
L+1∏
i=l+1

Wi

)
∇T f(W )

(
l∏

i=1

Wi

)
−

(
l∏

i=1

Wi

)T

∇f(W )

(
L+1∏
i=l+1

Wi

)T

,

d

dt

(
Wl+1W

T
l+1

)
= Ẇl+1W

T
l+1 +Wl+1Ẇ

T
l+1

= −

(
l∏

i=1

Wi

)T

∇f(W )

(
L+1∏
i=l+2

Wi

)T

WT
l+1 −Wl+1

(
L+1∏
i=l+2

Wi

)
∇T f(W )

(
l∏

i=1

Wi

)

= −

(
l∏

i=1

Wi

)T

∇f(W )

(
L+1∏
i=l+1

Wi

)T

−

(
L+1∏
i=l+1

Wi

)
∇T f(W )

(
l∏

i=1

Wi

)

we know d
dt

(
WT

l Wl

)
= d

dt

(
Wl+1W

T
l+1

)
, therefore Ḋl(t) = 0, l = 1, · · · , L− 1

17
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D LINEAR MODELS RELATED TO SCALAR DYNAMICS

D.1 SPECTRAL INITIALIZATION UNDER l2 LOSS

The spectral initialization Saxe et al. (2014); Gidel et al. (2019); Tarmoun et al. (2021) considers the
following:

Suppose f = 1
2∥Y −XW∥2F and we have overparametrized model W =

∏L
l=1 Wl. Additionally,

we assume Y ∈ RN×m, X ∈ RN×n (n ≥ m) are co-diagonalizable, i.e. there exist P ∈ RN×n

with PTP = In and Q ∈ O(m), R ∈ O(n) such that we can write the SVDs of Y,X as Y =

P

[
ΣY 0
0 0

] [
Q
0

]
:= P Σ̃Y Q̃ and X = PΣXRT .

Remark 2. In Section 4, we discussed the case f = 1
2∥Y −W∥2F , which is essentially considering

the aforementioned setting with N = n and X = In.

Given any set of weights {Wl}Ll=1 such that

W1 = RΣ1V
T
1 , Wl = Vl−1ΣlV

T
l , l = 2, · · · , L− 1, WL = VL−1ΣLQ̃ ,

where Σl, l = 1, · · · , L are diagonal matrices and Vl ∈ Rn×hl , l = 1, · · · , L− 1 with V T
l Vl = Ihl

.
The gradient flow dynamics requires

Ẇ1 = − ∂L
∂W1

= −XT (Y −XW )WT
L WT

L−1 · · ·WT
2

= −RΣXPT · (P Σ̃Y Q̃− PΣXRT ·R
L∏

l=1

ΣLQ̃) · Q̃TΣLVL−1 · VL−1ΣL−1V
T
L−2 · · ·V2Σ2V

T
1

= −R

(
ΣX

(
ΣY − ΣX

L∏
l=1

Σl

)
Q̃Q̃T

L∏
l=2

Σl

)
V T
1

= −R

(
ΣX

(
ΣY − ΣX

L∏
l=1

Σl

)[
Im 0
0 0

] L∏
l=2

Σl

)
V T
1 ,

which shows that the singular space R, V1 for W1 do not change under the gradient flow, and the
singular values σi,1of W1 satisfies

σ̇i,1 =

(
σi,y − σi,x

L∏
l=1

σi,l

)
σi,x

L∏
l=2

σi,l , i = 1, · · · ,m ,

and σ̇i,1 = 0, i = m+ 1, · · · , n.

Similarly, we can show that

Ẇl = Vl−1

ΣX

(
ΣY − ΣX

L∏
i=1

Σi

)[
Im 0
0 0

]∏
i ̸=l

Σi

V T
l , l = 2, · · · , L− 1 ,

ẆL = VL−1

ΣX

(
ΣY − ΣX

L∏
i=1

Σi

)[
Im 0
0 0

]∏
i̸=L

Σi

 Q̃ .

Overall, this suggests that the singular space of {Wl}Ll=1 do not change under the gradient flow, and
their singular values satisfies, for i = 1, · · · ,m,

σ̇i,l =

(
σi,y − σi,x

L∏
k=1

σi,k

)
σi,x

L∏
k ̸=l

σi,k , l = 1, · · · , L .

Each dynamic equation is equivalent to the one from gradient flow on Li({σi,l}Ll=1) =

1
2

∣∣∣σi,y − σi,x

∏L
l=1 σi,l

∣∣∣2 . Therefore, under spectral initialization, the dynamics of the weights
are decoupled into at most m dynamics discussed in Section 4.2.
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D.2 DIAGONAL LINEAR NETWORKS

The loss function of diagonal linear networks Gunasekar et al. (2017); Yun et al. (2020) is of the form
f(w1 ⊙ · · · ⊙ wL), we write

L({wl}Ll=1) = f(w1 ⊙ · · · ⊙ wL) = f(w(1), · · · , w(n)) = f

(
L∏

l=1

wl,1 , · · · ,
L∏

l=1

wl,n

)
,

i.e. f takes n variables w(1), · · · , w(n) and each variable w(i) is overparametrized into
∏L

l=1 wl,i.

Then we can show that

L̇ = −∥∇{wl}L
l=1

L∥2F

=

n∑
i=1

L∑
l=1

∣∣∣∣ ∂L
∂wl,i

∣∣∣∣2

=

n∑
i=1

L∑
l=1

∣∣∣∣ ∂f

∂w(i)

∣∣∣∣2 ∣∣∣∣∂w(i)

∂wl,i

∣∣∣∣2

=

n∑
i=1

∣∣∣∣ ∂f

∂w(i)

∣∣∣∣2 L∑
l=1

∣∣∣∣∂w(i)

∂wl,i

∣∣∣∣2

=

n∑
i=1

∣∣∣∣ ∂f

∂w(i)

∣∣∣∣2 τ{wl,i}L
l=1

≤ −
(

min
1≤i≤n

τ{wl,i}L
l=1

) n∑
i=1

∣∣∣∣ ∂f

∂w(i)

∣∣∣∣2
(f satisfies A1) ≤ −

(
min

1≤i≤n
τ{wl,i}L

l=1

)
γ(f − f∗) = −

(
min

1≤i≤n
τ{wl,i}L

l=1

)
γ(L − L∗) .

Moreover, the imbalances {d(i)l := w2
l,i − w2

l+1,i}
L−1
l=1 are time-invariant for each i = 1, · · · , n

by Lemma 2. Therefore, we can lower bound each τ{wl,i}L
l=1

using the imbalance {d(i)l }L−1
l=1 as in

Proposition 3, from which one obtain the exponential convergence of L.
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E PROOF FOR TWO-LAYER MODEL

Using Lemma 3, we can prove Theorem 1

Theorem 1 (Restated). Let D be the imbalance matrix for L = 2. The continuous dynamics in (3)
satisfy

L(t)− L∗ ≤ exp (−α2γt) (L(0)− L∗),∀t ≥ 0 , (E.2)

where

1. If f satisfies only A1, then α2 = ∆ ;

2. If f satisfies both A1 and A2, then

α2 = −∆+ +

√
(∆+ +∆)2 + 4

( [
σn (W ∗)−

√
K/µ∥W (0)−W ∗∥F

]
+

)2
−∆− +

√
(∆− +∆)2 + 4

( [
σm (W ∗)−

√
K/µ∥W (0)−W ∗∥F

]
+

)2
, (E.3)

with W (0) =
∏L

l=1 Wl(0) and W ∗ equal to the unique optimizer of f .

Proof. As shown in (5) in Section 2. We have

d

dt
(L(t)− L∗) ≤ −λminT{W1(t),W2(t)}γ(L(t)− L∗) .

Consider any {W1(t),W2(t)} on the trajectory, we have, by Lemma 3,

λminT{W1(t),W2(t)}
Lemma 3
≥ 1

2

(
−∆+ +

√
(∆+ +∆)2 + 4σ2

n (W (t))

−∆− +
√
(∆− +∆)2 + 4σ2

m (W (t))
)

≥ 1

2

(
−∆+ +

√
(∆+ +∆)2 −∆− +

√
(∆− +∆)2

)
= ∆ := α2 .

When f also satisfies A2: we need to prove

σn (W (t)) ≥
[
σn (W

∗)−
√
K/µ∥W (0)−W ∗∥F

]
+
, (E.4)

σm (W (t)) ≥
[
σm (W ∗)−

√
K/µ∥W (0)−W ∗∥F

]
+
. (E.5)

When n = m, both inequalities are equivalent to

σmin(W (t)) ≥
[
σmin(W

∗)−
√

K/µ∥W (0)−W ∗∥F
]
+
,

which is true by Lemma A.1.

When n ̸= m, one of the two inequalities become trivial. For example, if n > m, then (E.4) is
trivially 0 ≥ 0, and (E.5) is equivalent to

σmin(W (t)) ≥
[
σmin(W

∗)−
√

K/µ∥W (0)−W ∗∥F
]
+
,

which is true by Lemma A.1.
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Overall, we have

λminT{W1(t),W2(t)}
Lemma 3
≥ 1

2

(
−∆+ +

√
(∆+ +∆)2 + 4σ2

n (W (t))

−∆− +
√

(∆− +∆)2 + 4σ2
m (W (t))

)
≥ 1

2

−∆+ +

√
(∆+ +∆)2 + 4

([
σn (W ∗)−

√
K/µ∥W (0)−W ∗∥F

]
+

)2

−∆− +

√
(∆− +∆)2 + 4

([
σm (W ∗)−

√
K/µ∥W (0)−W ∗∥F

]
+

)2


:= α2 .

Either case, we have d
dt (L(t)− L∗) ≤ −α2γ(L(t)− L∗), and by Grönwall’s inequality, we have

L(t)− L∗ ≤ exp(−α2γt)(L(0)− L∗) .
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F PROOFS FOR THREE-LAYER MODEL

In Section F.1, we discuss the proof idea for Theorem 2, then present the proof afterwards. In Section
G, we show a simplified bound when the weights can be ordered w.r.t. positive-semidefiniteness.

F.1 PROOF IDEA

We first discuss the proof idea behind Theorem 2, then provide the complete proof. Consider
the case when n = m = 1, we use the following notations for the weights {wT

1 ,W2, w3} ∈
R1×h1 × Rh1×h2 × Rh2×1. The quantity we need to lower bound is

λminT{wT
1 ,W2,w3} = wT

1 W2W
T
2 w1 + wT

1 w1 · wT
3 w3 + wT

3 W
T
2 W2w3

= ∥WT
2 w1∥2 + ∥w1∥2∥w3∥2 + ∥W2w3∥2 ,

where our linear operator T{wT
1 ,W2,w3} reduces to a scalar. The remaining thing to do is to find

min
wT

1 ,W2,w3

∥WT
2 w1∥2 + ∥w1∥2∥w3∥2 + ∥W2w3∥2 (F.6)

s.t. W2W
T
2 − w1w

T
1 = D21

WT
2 W2 − w3w

T
3 = D23

i.e., we try to find the best lower bound on λminT{wT
1 ,W2,w3} given the fact that the weights have to

satisfies the imbalance constraints from D21, D23, and λminT{wT
1 ,W2,w3} is related to the norm of

some weights ∥w1∥, ∥w3∥ and the “alignment” between weights ∥WT
2 w1∥, ∥W2w3∥.

The general idea of the proof is to lower bound each term ∥WT
2 w1∥2, ∥w1∥2, ∥w3∥2, ∥W2w3∥2

individually given the imbalance constraints, then show the existence of some {wT
1 ,W2, w3} that

attains the lower bound simultaneously. The following discussion is most for lower bounding
∥w1∥, ∥WT

2 w1∥ but the same argument holds for lower bounding other quantities.

Understanding what can be chosen to be the spectrum of W2W
T
2 (WT

2 W2) is the key to derive
an lower bound, and the imbalance constraints implicitly limit such choices. To see this, notice
that W2W

T
2 − w1w

T
1 = D21 suggests an eigenvalue interlacing relation (Horn & Johnson, 2012,

Corollary 4.39) between W2W
T
2 and D21, i.e.

λh1
(D21) ≤ λh1

(W2W
T
2 ) ≤ λh1−1(D21) ≤ · · · ≤ λ2(W2W

T
2 ) ≤ λ1(D21) ≤ λ1(W2W

T
2 ) .

Therefore, any choice of {λi(W2W
T
2 )}h1

i=1 must satisfy the interlacing relation with {λi(D21)}h1
i=1.

Similarly, {λi(W
T
2 W2)}h2

i=1 must satisfy the interlacing relation with {λi(D23)}h2
i=1. Moreover,

{λi(W2W
T
2 )}h1

i=1 and {λi(W
T
2 W2)}h2

i=1 agree on non-zero eigenvalues. In short, an appropriate
choice of the spectrum of W2W

T
2 (WT

2 W2) needs to respect the interlacing relation with the eigenval-
ues of D21 and D23.

The following matrix is defined

D̄h1
:= diag{max{λi(D21), λi(D23), 0}}h1

i=1

to be the “minimum” choice of the spectrum of W2W
T
2 (WT

2 W2) in the sense that any valid choice
of {λi(W2W

T
2 )}h1

i=1 must satisfies

λi(W2W
T
2 ) ≥ λi(D̄h1) ≥ λi(D21) , i = 1, · · · , h1 .

That is, the spectrum of D̄h1
“lies between” the one of W2W

T
2 and of D21. Now we check the

imbalance constraint again W2W
T
2 − w1w

T
1 = D21, it shows that: using a rank-one update w1w

T
1 ,

one obtain the spectrum of D21 starting from the spectrum of W2W
T
2 , and more importantly, we

require the norm ∥w1∥2 to be (taking the trace on the imbalance equation)

tr(W2W
T
2 )− ∥w1∥2 = tr(D21) ⇒ ∥w1∥2 = tr(W2W

T
2 )− tr(D21) .

Now since D̄h1 “lies inbetween”, we have

∥w1∥2 = tr(W2W
T
2 )− tr(D21)

= (changes from λi(W2W
T
2 ) to λi(D21))

= (changes from λi(W2W
T
2 ) to λi(D̄h1

)) + (changes from λi(D̄h1
) to λi(D21))

≥ (changes from λi(D̄h1
) to λi(D21)) = tr(D̄h1

)− tr(D21) ,
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which is a lower bound on ∥w1∥2. It is exactly the ∆21 in Theorem 2 (It takes more complicated
form when n > 1).

A lower bound on ∥WT
2 w1∥2 requires carefully exam the changes from the spectrum of D̄h1 to the

one of D21. If λh1(D21) < 0, then “changes from λi(D̄) to λi(D21)” has two parts

1. (changes from λi(D̄) to [λi(D21)]+) through the part where w1 is “aligned" with WT
2 ,

2. (changes from 0 to λh1
(D21)) through the part where w1 is “orthogonal" to WT

2 .

Only the former contributes to ∥WT
2 w1∥2 hence we need the expression ∆

(2)
21 +∆2

21, which excludes
the latter part. Using similar argument we can lower bound ∥w3∥2, ∥W2w3∥2. Lastly, the existence
of {wT

1 ,W2, w3} that attains the lower bound is from the fact that D̄h1 (D̄h2 ) is a valid choice for the
spectrum of W2W

T
2 (WT

2 W2).

The complete proof of the Theorem 2 follows the same idea but with a generalized notion of
eigenvalue interlacing, and some related novel eigenvalue bounds.

F.2 PROOF OF THEOREM 2

Theorem 2 is the direct consequence of the following two results.
Lemma F.1. Given any set of weights {W1,W2,W3} ∈ Rn×h1 × Rh1×h2 × Rh2×m, we have

λminT{W1,W2,W3} ≥ λn(W1W2W
T
2 WT

1 ) + λn(W1W
T
1 )λm(WT

3 W3) + λm(WT
3 WT

2 W2W3) .

(Note that λminT{W1,W2,W3} does not have a closed-form expression. One can only work with its
lower bound λn(W1W2W

T
2 WT

1 ) + λn(W1W
T
1 )λm(WT

3 W3) + λm(WT
3 WT

2 W2W3).)
Theorem F.2. Given imbalance matrices pair (D21, D23) ∈ Rh1×h1 × Rh2×h2 , then the optimal
value of

min
W1,W2,W3

2
(
λn(W1W2W

T
2 WT

1 ) + λn(W1W
T
1 )λm(WT

3 W3) + λm(WT
3 WT

2 W2W3)
)

s.t. W2W
T
2 −WT

1 W1 = D21

WT
2 W2 −W3W

T
3 = D23

is
∆∗(D21, D23) = ∆

(2)
21 +∆2

21 + 2∆21∆23 +∆
(2)
23 +∆2

23 .

Combining those two results gets λminT{W1,W2,W3} ≥ ∆∗(D21, D23)/2, as stated in Theorem 2.

The Lemma F.1 is intuitive and easy to prove:

Proof of Lemma F.1. Notice that T{W1,W2,W3} is the summation of three positive semi-definite linear
operators on Rn×m, i.e.

T{W1,W2,W3} = T12 + T13 + T23 ,
where

T12E = W1W2W
T
2 WT

1 E, T13E = W1W
T
1 EWT

3 W3, T23E = EWT
3 WT

2 W2W3 ,

and λminT12 = λn(W1W2W
T
2 WT

1 ), λminT13 = λn(W1W
T
1 )λm(WT

3 W3), λminT23 =
λm(WT

3 WT
2 W2W3).

Therefore, let Emin with ∥Emin∥F = 1 be the eigenmatrix associated with λminT{W1,W2,W3}, we
have

λminT{W1,W2,W3} =
〈
T{W1,W2,W3}, Emin

〉
F

= ⟨T12, Emin⟩F + ⟨T13, Emin⟩F + ⟨T23, Emin⟩F
≥ λminT12 + λminT13 + λminT23 .

The rest of this section is dedicated to prove Theorem F.2

We will first state a few Lemmas that will be used in the proof, then show the proof for Theorem F.2,
and present the long proofs for the auxiliary Lemmas in the end.
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F.3 AUXILIARY LEMMAS

The main ingredient used in proving Theorem F.2 is the notion of r-interlacing relation between
the spectrum of two matrices, which is a natural generalization of the interlacing relation as seen in
classical Cauchy Interlacing Theorem (Horn & Johnson, 2012, Theorem 4.3.17).
Definition 4. Given real symmetric matrices A,B of order n, write A ⪰r B, if

λi+r(A) ≤ λi(B) ≤ λi(A) ,∀i
where λj(·) = +∞, j ≤ 0 and λj(·) = −∞, j > n. The case r = 1 gives the interlacing relation.
Claim. We only need to check

λi+r(A) ≤ λi(B) ≤ λi(A) ,∀i ∈ [n] ,

for showing A ⪰r B.

Proof. Any inequality regarding index outside [n] is trivial.

The following Lemma is a direct concequence of Weyl’s inequality (Horn & Johnson, 2012, Theorem
4.3.1), and stated as a special case of (Horn & Johnson, 2012, Corollary 4.3.3)
Lemma F.3. Given real symmetric matrices A,B of order n, if A−B is positive semi-definite and
rank(A−B) ≤ r, then A ⪰r B

The converse is also true
Lemma F.4. Given real symmetric matrices A,B of order n, if A ⪰r B, then there exists a
positive semi-definite matrix XXT with rank(XXT ) ≤ r and a real orthogonal matrix V such that
A−XXT = V BV T .

Proof. The case r = 1 is proved in (Horn & Johnson, 2012, Theorem 4.3.26). The case r > 1 is
proved in (Wang & Zheng, 2019, Theorem 1.3) by induction.

Specifically for our problem, we also need the following (D̄h1 and D̄h2 are defined in Section 4)
Lemma F.5. Given imbalance matrices pair (D21, D23) ∈ Rh1×h1 ×Rh2×h2 , we have D̄h1

⪰n D21

and D̄h2
⪰m D23.

In our analysis, the weights W1,W2,W3 are “constrained” by the imbalance D21, D23, such con-
straints leads to some special eigenvalue bounds (The operation ∧r was defined in Section 4):
Lemma F.6. Given an positive semi-definite matrix A of order n, and Z ∈ Rr×n with r ≤ n, when

A− ZTZ = B ,

we have
λr(ZZT ) ≥ tr(A)− tr(A ∧r B) ,

and
2λr(ZAZT ) ≥ tr

(
A2
)
− tr

(
(A ∧r B)2

)
+ (tr(A)− tr(A ∧r B))

2

and this bound is actually tight
Lemma F.7. Given two real symmetric matrices A,B of order n, if A ⪰r B (r ≤ n), then there
exist Z ∈ Rr×n and some orthogonal matrix V ∈ O(n), such that

A− ZTZ = V BV T ,

and

λr(ZZT ) = tr(A)− tr(A ∧r B) ,

2λr(ZAZT ) = tr
(
A2
)
− tr

(
(A ∧r B)2

)
+ (tr(A)− tr(A ∧r B))

2
.

Remark 3. To see how Lemma F.6 is used, let A = W2W
T
2 and Z = W1, B = D21, one obtain a

lower bound on λr(W1W
T
1 ) that depends on the entire spectrum of W2W

T
2 and D21. This bound

is strictly better than λr(W2W
T
2 ) − λ1(D21), the one from Weyl’s inequality (Horn & Johnson,

2012). This should not be suprising because we have “more information” on W2W
T
2 and D21 (entire

spectrum v.s. certain eigenvalue).
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F.4 PROOF OF THEOREM F.2

With these Lemmas, we are ready to prove Theorem F.2.

Proof of Theorem F.2. The proof is presented in two parts: First, we show ∆∗(D21, D23) is a lower
bound on the optimal value; Then we construct an optimal solution (W ∗

1 ,W
∗
2 ,W

∗
3 ) that attains

∆∗(D21, D23) as the objective value.

Showing ∆∗(D21, D23) is a lower bound: Given any feasible triple (W1,W2,W3), the imbalance
equations

W2W
T
2 −WT

1 W1 = D21 , (F.7)

WT
2 W2 −W3W

T
3 = D23 , (F.8)

implies W2W
T
2 ⪰n D21 and WT

2 W2 ⪰m D23 by Lemma F.3. These interlacing relation shows

λi(W2W
T
2 ) ≥ λi(D21), λi(W

T
2 W2) ≥ λi(D23),∀i ,

which is
λi(W2W

T
2 ) = λi(W

T
2 W2) ≥ max{λi(D21), λi(D21), 0} = λi(D̄h1

) ≥ 0 ,∀i ∈ [h1] (F.9)
Now by Lemma F.6, imbalance equation (F.7) suggests

λn(W1W
T
1 ) ≥ tr(W2W

T
2 )− tr(W2W

T
2 ∧n D21) ,

and
2λn(W1W2W

T
2 WT

1 )

≥ tr
(
(W2W

T
2 )2

)
− tr

(
(W2W

T
2 ∧n D21)

2
)
+
(
tr(W2W

T
2 )− tr(W2W

T
2 ∧n D21)

)2
.

Notice that
λr(W1W

T
1 ) ≥ tr(W2W

T
2 )− tr(W2W

T
2 ∧n D21)

=

h1∑
i=1

λi(W2W
T
2 )−min{λi(W2W

T
2 ), λi+1−n(D21)}

=

h1∑
i=1

max{λi(W2W
T
2 )− λi+1−n(D21), 0}

≥
h1∑
i=1

max{λi(D̄h1
)− λi+1−n(D21), 0}

= tr(D̄h1
)− tr(D̄h1

∧n D21) = ∆21 , (F.10)
where the inequality holds because (F.9) and the fact that ReLU function f(x) = max{x, 0} is a
monotonically non-decreasing function.

Since ∆21 can be viewed as summation of ReLU outputs, it has to be non-negative, then (F.10) also
suggests (

tr(W2W
T
2 )− tr(W2W

T
2 ∧n D21)

)2 ≥ ∆2
21 . (F.11)

Next we have
2λn(W1W2W

T
2 WT

1 )

≥ tr
(
(W2W

T
2 )2

)
− tr

(
(W2W

T
2 ∧n D21)

2
)
+
(
tr(W2W

T
2 )− tr(W2W

T
2 ∧n D21)

)2
(F.11)
≥ ∆2

21 + tr
(
(W2W

T
2 )2

)
− tr

(
(W2W

T
2 ∧n D21)

2
)

= ∆2
21 +

h1∑
i=1

λ2
i (W2W

T
2 )−

(
min{λi(W2W

T
2 ), λi+1−n(D21)}

)2
≥ ∆2

21 +

h1∑
i=1

λ2
i (D̄h1

)−
(
min{λi(D̄h1

), λi+1−n(D21)}
)2

= ∆2
21 + tr

(
D̄2

h1

)
− tr

(
(D̄h1 ∧n D21)

2
)
= ∆2

21 +∆
(2)
21 ,
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where the last inequality is because (F.9) and the fact that the function

g(x) = x2 − (min{x, a})2 =

{
0, x ≤ a

x2 − a2, x > a
,

is monotonically non-decreasing on R≥0 for any constant a ∈ R.

At this point, we have shown

λn(W1W
T
1 ) ≥ ∆21 , 2λn(W1W2W

T
2 WT

1 ) ≥ ∆2
21 +∆

(2)
21 . (F.12)

We can repeat the proofs above with the following replacement

W2 → WT
2 ,W1 → WT

3 , D21 → D23, D̄h1
→ D̄h2

,

and obtain
λm(WT

3 W3) ≥ ∆23 , 2λm(WT
3 WT

2 W2W3) ≥ ∆2
23 +∆

(2)
23 . (F.13)

These inequalities (F.12)(F.13) show that

∆∗(D21, D23) = ∆
(2)
21 +∆2

21 + 2∆21∆23 +∆
(2)
23 +∆2

23 .

is a lower bound on the optimal value of our optimization problem. Now we proceed to show
tightness.

Constructing optimal solution:

By Lemma F.5, we know D̄h1
⪰n D21, and by Lemma F.7, there exists Z1 ∈ Rn×h1 and orthogonal

V1 ∈ O(h1) such that
D̄h1

− ZT
1 Z1 = V1D21V

T
1 , (F.14)

and most importantly,

λn(Z1Z
T
1 ) = ∆21, 2λn(Z1D̄h1

ZT
1 ) = ∆

(2)
21 +∆2

21 . (F.15)

Similarly, by Lemma Lemma F.5, we know D̄h2
⪰m D23, and by Lemma F.7, there exists Z3 ∈

Rm×h2 and orthogonal V3 ∈ O(h2) such that

D̄h2
− ZT

3 Z3 = V3D23V
T
3 , (F.16)

and most importantly,

λm(Z3Z
T
3 ) = ∆23, 2λm

(
Z3D̄h2

ZT
3

)
= ∆

(2)
23 +∆2

23 . (F.17)

Let

W ∗
2 =


V T
1

[
D̄

1
2 0h1×(h2−h1)

]
V3, h2 ≥ h1

V T
1

[
D̄

1
2

0(h1−h2)×h2

]
V3, h2 < h1

,

where D̄ = diag{max{λi(D21), λi(D21), 0}}min{h1,h2}
i=1 , and

W ∗
1 = Z1V1, W ∗

3 = V T
3 ZT

3 ,

we have

W ∗
2 (W

∗
2 )

T − (W ∗
1 )

TW ∗
1 = V T

1 D̄h1
V1 − V T

1 ZT
1 Z1V1 = D21

(W ∗
2 )

TW ∗
2 −W ∗

3 (W
∗
3 )

T = V T
3 D̄h2V3 − V T

3 Z3Z
T
3 V3 = D23 ,

and

λr(W
∗
1 (W

∗
1 )

T ) = λr(Z1Z
T
1 ) = ∆21 ,

λm((W ∗
3 )

TW ∗
3 ) = λm(ZT

3 Z3) = ∆23 ,

2λr(W
∗
1W

∗
2 (W

∗
2 )

T (W ∗
1 )

T ) = λr(Z1D̄h1
ZT
1 ) = ∆

(2)
21 +∆2

21 ,

2λm((W ∗
3 )

T (W ∗
2 )

TW ∗
2W

∗
3 ) = λm(ZT

3 D̄h2
Z3) = ∆

(2)
23 +∆2

23 ,

Therefore the lower bound ∆∗(D21, D23) is tight.

26



Under review as a conference paper at ICLR 2023

F.5 PROOFS FOR AUXILIARY LEMMAS

We finish this section by providing the proofs for auxiliary lemmas we used in the last section.

Proof of Lemma F.5. Since (D21, D23) is a pair of imbalance matrices, there exists W2W
T
2 , such

that
W2W

T
2 ⪰n D21,W

T
2 W2 ⪰m D23 , (F.18)

because at least our weight initialization W1(0),W2(0),W3(0) have to satisfy W2(0)W2(0)
T −

WT
1 (0)W1(0) = D21,W

T
2 (0)W2(0)−W3(0)W

T
3 (0) = D23.

Therefore, for 0 < i ≤ h1 − n,

λi+n(D̄h1
) = max{λi+n(D21), λi+n(D23), 0} ≤ λi+n(W2W

T
2 ) ≤ λi(D21) ≤ λi(D̄h1

) ,

where the first two inequalities uses (F.18) and the fact that λi+n(W2W
T
2 ) = λi+n(W

T
2 W2). Also

the last inequality is from the fact that λi(D̄h1
) = max{λi(D21), λi(D23), 0},∀i ∈ [h1].

For h1 ≥ i > h1 − n, we still have

−∞ = λi+n(D̄h1
) ≤ λi(D21) ≤ λi(D̄h1

) ,

Overall, we have
λi+n(D̄h1

) ≤ λi(D21) ≤ λi(D̄h1
) ,∀i ,

which is exactly D̄h1
⪰n D21.

Similarly, for 0 < i ≤ h2 −m,

λi+m(D̄h2
) = max{λi+m(D21), λi+m(D23), 0} ≤ λi+m(WT

2 W2) ≤ λi(D23) ≤ λi(D̄h2
) ,

where the first two inequalities uses (F.18) and the fact that λi+m(W2W
T
2 ) = λi+m(WT

2 W2). Also
the last inequality is from the fact that λi(D̄h2

) = max{λi(D21), λi(D23), 0},∀i ∈ [h2].

For h2 ≥ i > h2 −m, we still have

−∞ = λi+m(D̄h2
) ≤ λi(D23) ≤ λi(D̄h2

) ,

Overall, we have
λi+m(D̄h2

) ≤ λi(D23) ≤ λi(D̄h2
) ,∀i ,

which is exactly D̄h2
⪰m D23.

Proof of Lemma F.6. Notice that rank(ZTZ) ≤ r, hence we consider the eigendecomposition

ZTZ =

r∑
i=1

λi(Z
TZ)viv

T
i ,

where vi are unit eigenvectors of ZTZ. Then we can write

A− λr(Z
TZ)viv

T
i −

r−1∑
i=1

λi(Z
TZ)viv

T
i = B

We let D = A − λr(Z
TZ)viv

T
i , then by Lemma F.3, we know A ⪰1 D, and D ⪰r−1 B, which

suggests that ∀i,

λi+1(A) ≤ λi(D) ≤ λi(A) (F.19)
λi+r−1(D) ≤ λi(B) ≤ λi(D) . (F.20)

In particular, we have λi(D) ≤ λi(A) from (F.19) and λi(D) ≤ λi+1−r(B) from (F.20), which
suggests

λi(D) ≤ min{λi(A), λi+1−r(B)} = λi (A ∧r B) ,∀i .
Hence

tr(A ∧r B) ≥ tr(D) = tr(A)− λr(Z
TZ)tr(viv

T
i ) = tr(A)− λr(Z

TZ) .

This proves the first inequality.
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For the second the inequality, let x be the unit eigenvector associated with λr(ZAZT ), then
λr(ZAZT ) = xTZAZTx. Now write

A− ZxxTZT − Z(I − xxT )ZT = B .

Let D̃ = A− ZxxTZT , then again by Lemma F.3 we have A ⪰1 D̃, and D̃ ⪰r−1 B.

Notice that

D̃2 = (A− ZxxTZT )2

= A2 + (ZxxTZT )2 −AZxxTZT − ZxxTZTA .

Taking trace on both side of this equation and using the cyclic property of trace operation lead to

tr(D̃2) = tr
(
A2
)
+ ∥Zx∥4 − 2λr(ZAZT ) . (F.21)

We only need to lower bound ∥Zx∥4 − tr(D̃2), for which we write the eigendecomposition D̃ using
eigenpairs {(λi(D̃), ui)}ni=1 as

D̃ =

n∑
i=1

λi(D̃)uiu
T
i =

n−1∑
j=1

λi(D̃)uiu
T
i + λn(D̃)unu

T
n .

Then we have

∥Zx∥2 = tr(ZxxTZT ) = tr(A)− tr(D̃)

= tr(A)−
n−1∑
j=1

λj(D̃)− λn(D̃)

≥ tr(A)−
n−1∑
j=1

λj(A ∧r B)− λn(D̃)

= tr(A)− tr(A ∧r B) + λn(A ∧r B)− λn(D̃) ,

where the inequality follows similar argument in the previous part of the proof and uses

λi(D̃) ≤ min{λi(A), λi+1−r(B)} = λi (A ∧r B) , (F.22)

from the fact that A ⪰1 D̃, and D̃ ⪰r−1 B.

Now examine the right-hand side carefully: The first component tr(A)− tr(A∧r B) is non-negative
because λi(A) ≥ λi(A ∧r B),∀i. The second component λn(A ∧r B)− λn(D̃) is non-negative as
well by (F.22). Therefore the right-hand side is non-negative and we can take square on both sides of
the inequality, namely,

∥W1x∥4 ≥
(
tr(A)− tr(A ∧r B) + λn(A ∧r B)− λn(D̃)

)2
. (F.23)

We also have

tr(D̃2) =

n−1∑
i=1

λ2
i (D̃) + λ2

n(D̃)

≤
n−1∑
i=1

λ2
i (A ∧r B) + λ2

n(D̃)

= tr
(
(A ∧r B)2

)
− λ2

n(A ∧r B) + λ2
n(D̃) , (F.24)

The inequality holds because for i = 1, · · · , n− 1,

0 ≤ λi+1(A) ≤ λi(D̃) ≤ λi(A ∧r B) ,

where the inequality on the left is from A ⪰1 D̃ and the inequality on the right is due to (F.22).
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With those two inequalities (F.23)(F.24), we have (For simplicity, denote λ∧ := λn(A ∧r B), λ̃ :=

λn(D̃))

∥W1x∥4 − tr(D̃2)−
[
(tr(A)− tr(A ∧r B))

2 − tr
(
(A ∧r B)2

)]
≥ λ2

∧ + λ̃2 − 2λ∧λ̃+ 2(λ∧ − λ̃)(tr(A)− tr(A ∧r B)) + λ2
∧ − λ̃2

= 2λ2
∧ − 2λ∧λ̃+ 2(λ∧ − λ̃)(tr(A)− tr(A ∧r B))

= 2(λ∧ − λ̃)(tr(A)− tr(A ∧r B) + λ∧) ≥ 0 ,

where the last inequality is due to the facts that λ∧ ≥ λ̃ by (F.22) and

tr(A)− tr(A ∧r B) + λ∧

=

n−1∑
i=1

(λi(A)− λi(A ∧r B)) + λn(A) ≥ 0 .

This shows
∥Zx∥4 − tr(D̃2) ≥ (tr(A)− tr(A ∧r B))

2 − tr
(
(A ∧r B)2

)
.

Finally from (F.21) we have

2λr(ZAZT ) = tr
(
(A)2

)
+ ∥Zx∥4 − tr(D̃2)

≥ tr
(
(A)2

)
− tr

(
(A ∧r B)2

)
+ (tr(A)− tr(A ∧r B))

2
.

To proof Lemma F.7, we need one final lemma
Lemma F.8. Given two real symmetric matrices A,B of order n, for any r ≤ n, if A ⪰r B, then
A ⪰1 (A ∧r B) and (A ∧r B) ⪰r−1 B.

Proof. Denote D := A ∧r B, we show A ⪰1 D and D ⪰r−1 B. The following statements holds for
any index i ∈ [n].

First of all, we have
λi(D) = min{λi(A), λi+1−r(B)} ≤ λi(A) , (F.25)

and
λi+1(A) ≤ min{λi(A), λi+1−r(B)} = λi(D) , (F.26)

where λi+1(A) ≤ λi+1−r(B) is from A ⪰r B. (F.25)(F.26) together show A ⪰1 D.

Next, notice that
λi(B) ≤ min{λi(A), λi+1−r(B)} = λi(D) , (F.27)

where λi(B) ≤ λi(A) is from A ⪰r B, and

λi+r−1(D) = min{λi+r−1(A), λi(B)} ≤ λi(B) (F.28)

(F.27)(F.28) together show D ⪰r−1 B.

Then we are ready to prove Lemma F.7

Proof of Lemma F.7. Denote D := A ∧r B. We have shown in Lemma F.8 that A ⪰1 D and
D ⪰r−1 B.

With the two interlacing relations, we know there exist x ∈ Rn×1, X ∈ Rn×(r−1) and some
orthogonal matrices V1, V2 ∈ O(n) such that

A− xxT = V1DV T
1 , D −XXT = V2BV T

2 , (F.29)

then let V := V1V2, we have

A− xxT − V1XXTV T
1 = V1V2BV T

2 V T
1 = V BV T . (F.30)
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Notice that

xxT + V1XXTV T
1 = [x V1X]

[
xT

XTV T
1

]
,

then with ZT := [x V1X] ∈ Rn×r, we can write

A− ZTZ = V1V2BV T
2 V T

1 = V BV T .

It remains to show λr(ZZT ) and 2λr(ZAZT ) have the exact expressions as stated.

Notice that A− xxT = V1DV T
1 , then we have

∥x∥2 = tr(xxT ) = tr(A− V1DV T
1 ) = tr(A)− tr(D) . (F.31)

Moreover, taking trace on both sides of (A− xxT )2 = (V1DV T
1 )2 yields

tr
(
(A)2

)
− 2xTAx+ ∥x∥4 = tr(D2) ,

from which we have

2xTAx = tr(A)− tr(D2) + ∥x∥4 = tr(A)− tr(D2) + (tr(A)− tr(D))
2
. (F.32)

Finally, notice that the first diagonal entry of

ZZT =

[
xT

XTV T
1

]
[x V1X] =

[
∥x∥2 xTX
XTx XTX

]
is ∥x∥2, we have, by (Horn & Johnson, 2012, Corollary 4.3.34),

λr(ZZT ) ≤ ∥x∥2 = tr(A)− tr(D) = tr(A)− tr(A ∧r B) .

Since we have already shown in Lemma F.6 that

λr(ZZT ) ≥ tr(A)− tr(A ∧r B) ,

we must have the exact equality λr(ZZT ) = tr(A)− tr(A ∧r B).

Similarly, the first diagonal entry of

ZAZT =

[
xT

XTV T
1

]
A [x V1X] =

[
xTAx xTAX
XTAx XTAX

]
is xTAx, then we have, by (Horn & Johnson, 2012, Corollary 4.3.34),

2λr(ZAZT ) ≤ 2xTAx = tr
(
A2
)
− tr

(
(A ∧r B)2

)
+ (tr(A)− tr(A ∧r B))

2
.

Again, Lemma F.6 shows the inequality in the opposite direction, hence one must take the equality

2λr(ZAZT ) = xTAx = tr
(
A2
)
− tr

(
(A ∧r B)2

)
+ (tr(A)− tr(A ∧r B))

2
.
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G SIMPLIFICATION OF THE BOUND IN THEOREM 2 UNDER UNIMODALITY
ASSUMPTION

Consider weights {W1,W2,W3} with unimodality index l∗, there are three cases:

l∗ = 1: D21 ⪰ 0, D23 ⪯ 0

Definiteness of imbalance matrix put rank constraints on the weight matrices:

Since WT
2 W2 −W3W

T
3 = D23 ⪯ 0, rank(W3W

T
3 ) ≤ m implies rank(D23) ≤ m. (D23 can only

have negative, if non-zero, eigenvalues and any negative eigenvalue is contributed from W3W
T
3 .)

rank(D23) ≤ m and D23 ⪯ 0 together implies rank(WT
2 W2) ≤ m (WT

2 W2 having positive
invariant subspace with dimension larger than m will give positive eigenvalue to D23), which is
equivalent to rank(WT

2 W2) ≤ m.

rank(WT
2 W2) ≤ m forces rank(D21) ≤ m. (D22 can only have positive, if non-zero, eigenvalues

and any positive eigenvalue is contributed from WT
2 W2.)

In summary, we have rank(D23) ≤ m and rank(D21) ≤ m, which implies,

λi(D23) =

{
= 0, 1 ≤ i < h2 −m+ 1

≤ 0, h2 −m+ 1 ≤ i ≤ h2
, λi(D21) =

{
≥ 0, 1 ≤ i < m

= 0, m+ 1 ≤ i ≤ h1
.

We also have

D̄h1
= diag{max{λi(D21), 0}}h1

i=1 = diag{λi(D21)}h1
i=1, D̄h2

= diag{max{λi(D21), 0}}h2
i=1 ,

Then

D̄h1 ∧n D21 = D̄h1 , D̄h2 ∧m D23 =


λi(D21), 1 ≤ i ≤ m− 1

0, m ≤ i < h2

λh2+1−m(D23), i = h2

.

hence ∆21 = ∆
(2)
21 = 0, and

∆23 = λm(D21)− λh2+1−m(D23)

∆
(2)
23 = λ2

m(D21)− λ2
h2+1−m(D23)

∆2
23 +∆

(2)
23 = 2λm(D21)(λm(D21)− λh2+1−m(D23)) .

l∗ = 3: D23 ⪰ 0, D21 ⪯ 0

Similar to previous cases, (by considering unimodal weights {WT
3 ,WT

2 ,WT
1 })

∆23 = ∆
(2)
23 = 0,∆2

21 +∆
(2)
21 = 2λr(D23) (λn(D23)− λh1+1−n(D21)) .

l∗ = 2: D23 ⪯ 0, D21 ⪯ 0

D23, D21 being negative semi-definite implies rank(D21) ≤ n, rank(D23) ≤ m.

In this cases,
D̄h1

= 0, D̄h2
= 0 ,

and

D̄h1
∧nD21 =

{
0, 1 ≤ i < h1

λh1+1−n(D21), i = h1
, D̄h2

∧mD23 =

{
0, 1 ≤ i < h2

λh2+1−m(D23), i = h2
,

then

∆21 = −λh1+1−n(D21), ∆23 = −λh2+1−m(D23),

∆
(2)
21 = −λ2

h1+1−n(D21), ∆
(2)
23 = −λ2

h2+1−m(D23) = 0 .

Therefore

2∆21∆23 = 2 (−λh1+1−n(D21)) (−λh2+1−m(D23)) ,∆
2
21 +∆

(2)
21 = ∆2

23 +∆
(2)
23 .
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H PROOFS FOR DEEP MODELS

We prove Theorem 3 in two parts: First, we prove the lower bound under the unimodality assumption
in Section H.1. Then we show the bound for the weights with homogeneous imbalance in Section
H.2.

H.1 LOWER BOUND ON λmin(T{Wl}L
l=1

) UNDER UNIMODALITY

We need the following two Lemmas (proofs in Section H.3):
Lemma 4. Given A ∈ Rn×h, B ∈ Rh×m, and D = ATA − BBT ∈ Rh×h. If rank(A) ≤ r and
D ⪰ 0, then

1. rank(B) ≤ r, and rank(D) ≤ r.

2. There exists Q ∈ Rh×r with QTQ = Ir, such that
AQQTB = AB, AQQTAT = AAT , BTQQTB = BTB ,

and λi(Q
TDQ) = λi(D), i = 1, · · · , r.

Lemma 5. For W1 ∈ Rn×h1 ,W2 ∈ Rh1×h2 · · · ,WL−1 ∈ RhL−2×hL−1 and WL ∈ RhL−1×hL such
that

Dl = WT
l Wl −Wl+1W

T
l+1 ⪰ 0 , l = 1, · · · , L− 1

we have

λn(W1W2 · · ·WL−1W
T
L−1 · · ·WT

2 WT
1 ) ≥

L−1∏
i=1

L−1∑
l=i

λn(Dl) .

Then we can prove the following:
Theorem H.1. For weights {Wl}Ll=1 with unimodality index l∗, we have

λmin

(
T{Wl}L

l=1

)
≥

L−1∏
l=1

d̃(i) . (H.33)

Proof. Recall that

T{Wl}L
l=1

E =

L∑
l=1

(
l−1∏
i=1

Wi

)(
l−1∏
i=1

Wi

)T

E

(
L+1∏
i=l+1

Wi

)T ( L+1∏
i=l+1

Wi

)
,W0 = In,WL+1 = Im .

For simplicity, define p.s.d. operators

TlE :=

(
l−1∏
i=1

Wi

)(
l−1∏
i=1

Wi

)T

E

(
L+1∏
i=l+1

Wi

)T ( L+1∏
i=l+1

Wi

)
, l = 1, · · · , L

Then T{Wl}L
l=1

=
∑L

l=1 Tl.

When l∗ = L, we have, by Lemma 5,

λmin(T{Wl}L
l=1

) ≥ λmin(TL) = λn(W1 · · ·WL−1W
T
L−1 · · ·WT

1 ) ≥
L−1∏
i=1

L−1∑
l=i

λn(Dl) =

L−1∏
l=1

d̃(i) .

When l∗ = 1, we have, again by Lemma 5,

λmin(T{Wl}L
l=1

) ≥ λmin(T1) = λm(WT
L · · ·WT

2 W2 · · ·WL) ≥
L−1∏
i=1

L−1∑
l=i

λm(−DL−l)

=

L−1∏
i=1

L−i∑
l=1

λm(−Dl)

=

L−1∏
i=1

i∑
l=1

λm(−Dl) =

L−1∏
l=1

d̃(i) .
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(To see Lemma 5 applies to the case l∗ = 1, consider the following

WT
L → W1, · · · ,WT

L−l+1 → Wl, · · · ,WT
1 → WL ,

and this naturally leads to −DL−l → Dl. The expressions on the right-hand side of the arrow are
those appearing in Lemma 5.)

Now for unimodality index 1 < l∗ < L, we have

λmin(T{Wl}L
l=1

) ≥ λmin(Tl∗) = λn(W1 · · ·Wl∗−1W
T
l∗−1 · · ·W1)λm(WT

L · · ·WT
l∗+1Wl∗+1 · · ·WL) .

Now apply Lemma 5 to both {W1, · · · ,Wl∗−1,Wl∗} and {WT
L , · · · ,WT

l∗+1,W
T
l∗}, we have

λn(W1 · · ·Wl∗−1W
T
l∗−1 · · ·W1) ≥

l∗−1∏
i=1

l∗−1∑
l=i

λn(Dl) =

l∗−1∏
i=1

d̃(i) , (H.34)

and

λm(WT
L · · ·WT

l∗+1Wl∗+1 · · ·WL) ≥
L−l∗∏
i=1

L−l∗∑
l=i

λm(−DL−l)

=

L−l∗∏
i=1

L−i∑
l=l∗

λm(−Dl)

=

L−1∏
i=l∗

i∑
l=l∗

λm(−Dl) =

L−1∏
i=l∗

d̃(i) . (H.35)

Combining (H.34) and (H.35), we have

λn(W1 · · ·Wl∗−1W
T
l∗−1 · · ·W1)λm(WT

L · · ·WT
l∗+1Wl∗+1 · · ·WL) ≥

L−1∏
i=1

d̃(i) , (H.36)

which leads to λmin(T{Wl}L
l=1

) ≥
∏L−1

i=1 d̃(i). The proof is complete as we have shown

λmin(T{Wl}L
l=1

) ≥
∏L−1

i=1 d̃(i) for any unimodality index l∗ ∈ [L].

H.2 LOWER BOUND ON λmin(T{Wl}L
l=1

) UNDER HOMOGENEOUS IMBALANCE

We need the following Lemma (proof in Section H.3):
Lemma H.2. Given any set of scalars {wl}Ll=1 such that d(i) := w2

i − w2
L ≥ 0, i = 1, · · · , L− 1,

we have
L∑

l=1

∏
i̸=l

w2
i =

L∑
l=1

w2

w2
l

≥

√√√√(L−1∏
i=1

d(i)

)2

+
(
Lw2−2/L

)2
, (H.37)

where w =
∏L

l=1 wl.

Then we can prove the following:
Theorem H.3. For weights {Wl}Ll=1 with homogeneous imbalance, we have

λmin

(
T{Wl}L

l=1

)
≥

√√√√(L−1∏
l=1

d̃(i)

)2

+
(
Lσ

2−2/L
min (W )

)2
, W =

L∏
l=1

Wl . (H.38)

Proof. When all imbalance matrices are zero matrices, this is the balanced case (Arora et al., 2018b)
and λmin

(
T{Wl}L

l=1

)
= Lσ

2−2/L
min (W ). Here we only prove the case when some dl ̸= 0.

Notice that given the homogeneous imbalance constraint

WT
l Wl −Wl+1W

T
l+1 = dlI ,
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WT
l Wl and Wl+1W

T
l+1 must be co-diagonalizable: If we have QTQ = I such that QTWT

l WlQ is
diagonal, then QTWl+1W

T
l+1Q must be diagonal as well since QTWT

l WlQ−QTWl+1W
T
l+1Q =

dlI .

Moreover, if the diagonal entries of QTWT
l WlQ are in decreasing order, then so are those of

QTWl+1W
T
l+1Q because the latter is the shifted version of the former by dl.

This suggests that all Wl, l = 1, · · · , L have the same rank and one has the following decomposition
of the weights:

Wl = Ql−1ΣlQ
T
l , (H.39)

Here, Σl, l = 1, · · · , L are diagonal matrix of size k = min{n,m} whose entries are in decreasing
order. And Ql ∈ Rhl×min{n,m} with QT

l Ql = I . (h0 = n, hL = m). From such decomposition, we
have

W = W1 · · ·WL = Q0Σ1Q
T
1 Q1Σ2Q

T
2 · · ·QL−1ΣLQ

T
L = Q0

(
L∏

l=1

Σl

)
QT

L , (H.40)

thus

σmin(W ) =

L∏
l=1

λmin(Σl) . (H.41)

Regarding the imbalance, we have

QT
l (W

T
l Wl −Wl+1W

T
l+1)Ql = dlI ⇒ Σ2

l − Σ2
l+1 = dlI , (H.42)

which suggests that

λ2
min(Σl)− λ2

min(Σl+1) = dl, l = 1, · · · , L− 1 . (H.43)

Now consider the set of scalars {wl}Ll=1:

wl = λmin(Σl), l = 1, · · · , l∗ − 1

wl = λmin(Σl+1), l = l∗, · · · , L− 1

wL = λmin(Σl∗) .

Then {wl}Ll=1 satisfy the assumption in Lemma H.2:

w2
i − w2

L = d̃(i) ≥ 0, i = 1, · · · , L− 1 , (H.44)

where d̃(i) is precisely the cumulative imbalance. Then Lemma H.2 gives ((H.41) is also used here)

L∑
l=1

∏
i̸=l

w2
i ≥

√√√√(L−1∏
i=1

d̃(i)

)2

+
(
Lσ

2−2/L
min (W )

)2
(H.45)

Recall that

T{Wl}L
l=1

E =

L∑
l=1

(
l−1∏
i=0

Wi

)(
l−1∏
i=0

Wi

)T

E

(
L+1∏
i=l+1

Wi

)T ( L+1∏
i=l+1

Wi

)
,W0 = In,WL+1 = Im .

For simplicity, define p.s.d. operators

TlE :=

(
l−1∏
i=0

Wi

)(
l−1∏
i=0

Wi

)T

E

(
L+1∏
i=l+1

Wi

)T ( L+1∏
i=l+1

Wi

)
, l = 1, · · · , L

Then T{Wl}L
l=1

=
∑L

l=1 Tl.

Notice that the summand
∏

i ̸=l w
2
i exactly corresponds to one of λmin(Tl). For example,

λmin(T1) = λmin(W
T
L · · ·WT

2 W2 · · ·WL) = λmin

(
QT

L

(
L∏

l=2

Σ2
l

)
QL

)
=
∏
i ̸=1

w2
i . (H.46)
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More precisely, we have

λmin(Tl) =
∏
i̸=l

w2
i , l < l∗

λmin(Tl) =
∏

i ̸=l−1

w2
i , l > l∗

λmin(Tl) =
∏
i ̸=L

w2
i , l = l∗ .

Therefore, we finally have

λmin(T{Wl}L
l=1

) ≥
L∑

l=1

λmin(Tl) =
L∑

l=1

∏
i ̸=l

w2
i ≥

√√√√(L−1∏
i=1

d̃(i)

)2

+
(
Lσ

2−2/L
min (W )

)2
. (H.47)

H.3 PROOFS FOR AUXILIARY LEMMAS

Proofs for Lemma 5. The proof is rather simple when n = h1 = h2 = · · · = hL−1: Notice that

λn(W1W2 · · ·WL−1W
T
L−1 · · ·WT

2 WT
1 )

≥ λn(WL−1W
T
L−1) · λn(W1W2 · · ·WL−2W

T
L−2 · · ·WT

2 WT
1 )

≥ λn(WL−1W
T
L−1) · λn(WL−2W

T
L−2) · λn(W1W2 · · ·WL−3W

T
L−3 · · ·WT

2 WT
1 )

· · ·

≥
L−1∏
i=1

λn(WiW
T
i ) .

Then it remains to show that λn(WiW
T
i ) ≥

∑L−1
l=i λn(Dl) for i = 1, · · · , L− 1.

Suppose λn(WkW
T
k ) ≥

∑L−1
l=k λl(D) for some k ∈ [L− 1], then we have

λn(Wk−1W
T
k−1) = λn(W

T
k−1Wk−1)

= λn(WkW
T
k +Dk−1)

≥ λn(WkW
T
k ) + λn(Dk−1)

≥
L−1∑
l=k

λn(Dl) + λn(Dk−1) =

L−1∑
l=k−1

λn(Dl) .

Therefore, we only need to show λn(WL−1W
T
L−1) ≥ λn(DL−1) then the rest follows by the

induction above. Indeed

λn(WL−1W
T
L−1) = λn(W

T
L−1WL−1) = λn(WLW

T
L +DL−1) ≥ λn(DL−1) ,

which finishes the proof for the case of n = h1 = h2 = · · · = hL−1.

When the above assumptions does not hold, Lemma 4 allows us to related the set of weights {Wl}Ll=1

to the one {W̃l}Ll=1 that satisfy the equal dimension assumption. More specifically, apply Lemma 4
using each imbalance constraint

Dl = WT
l Wl −Wl+1W

T
l+1 ⪰ 0 , l = 1, · · · , L− 1 ,

to obtain a Ql ∈ Rhl×n that has all the property in Lemma (4). Use these Ql, l = 1, · · · , L− 1 to
define

W̃l = QT
l−1WlQl , l = 1, · · · , L,

D̃l = W̃T
l W̃l − W̃T

l+1W̃l+1 , l = 1, · · · , L− 1 ,
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where Q0 = I,QL = I . Now {W̃l}Ll=1 satisfies the assumption that n = h1 = · · · = hL−1, then

λn(W̃1W̃2 · · · W̃L−1W̃
T
L−1 · · · W̃T

2 W̃T
1 ) ≥

L−1∏
i=1

L−1∑
l=i

λn(D̃l) . (H.48)

Using the properties of Ql ∈ Rhl×n, l = 1, · · · , L− 1, we have

λn(W̃1W̃2 · · · W̃L−1W̃
T
L−1 · · · W̃T

2 W̃T
1 )

= λn(W1Q1Q
T
1 W2Q2 · · ·QT

L−2WL−1QL−1Q
T
L−1W

T
L−1Q

T
L−2 · · ·QT

2 W
T
2 Q1Q

T
1 W

T
1 )

= λn(W1W2 · · ·WL−1W
T
L−1 · · ·WT

2 WT
1 ) ,

and
L−1∏
i=1

L−1∑
l=i

λn(D̃l) =

L−1∏
i=1

L−1∑
l=i

λn(Q
T
l DlQl) =

L−1∏
i=1

L−1∑
l=i

λn(Dl) .

Therefore, (H.48) is exactly

λn(W1W2 · · ·WL−1W
T
L−1 · · ·WT

2 WT
1 ) ≥

L−1∏
i=1

L−1∑
l=i

λn(Dl) . (H.49)

Proofs for Lemma 4. Since rank(A) ≤ r, A has a compact SVD A = PΣAQ
T such that Q ∈ Rh×r

and QTQ = Ir.

This is exactly Q we are looking for. Let Q⊥Q
T
⊥ = Ih −QQT be the projection onto the subspace

orthogonal to the columns of Q. Then

D = ATA−BBT ⇒ QT
⊥DQ⊥ = QT

⊥A
TAQ⊥ −QT

⊥BBTQ⊥ ⇒ QT
⊥DQ⊥ +QT

⊥BBTQ⊥ = 0 .

QT
⊥DQ⊥ and QT

⊥BBTQ⊥ are two p.s.d. matrices whose sum is zero, which implies

QT
⊥DQ⊥ = 0, DQ⊥ = 0, QT

⊥BBTQ⊥ = 0, BTQ⊥ = 0 .

QT
⊥DQ⊥ = 0 shows that the nullspace of D has at least dimension h− r, i.e., rank(D) ≤ r.

Moreover

AQQTB = A(Ih −Q⊥Q
T
⊥)B = AB

AQQTAT = A(Ih −Q⊥Q
T
⊥)A

T = AAT

BTQQTB = BT (Ih −Q⊥Q
T
⊥)B = BTB

The last equality BTB = BTQQTB shows that rank(B) ≤ r.

Lastly, we have, for i = 1, · · · , r,

λi(Q
TDQ) = λi(QQTD) = λi((Ih −Q⊥Q

T
⊥)D) = λi(D) .

Before proving Lemma H.2, we state a Lemma that will be used in the proof.
Lemma H.4. Given positive xi, i = 1, · · · , n, we have

n∑
i=1

xi ≥ n

(
n∏

i=1

xi

)1/n

.

Proof. This is from the fact that arithmetic mean of {xi}ni=1 is greater than the geometric mean of
{xi}ni=1.

We are ready to prove Lemma H.2.
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Proof of Lemma H.2. We denote

τ{wl}L
i=1

:=

L∑
l=1

∏
i ̸=l

w2
i (H.50)

Notice that w2
i = w2

L +
∑L−1

j=i (w
2
j −w2

j+1) = w2
L + d(i). Let d(L) = 0, we write the expression for

τ as

τ{wl}L
i=1

=

L∑
l=1

∏
i ̸=l

w2
i =

L∑
l=1

∏
i̸=l

(
w2

L + d(i)
)
:= τ(w2

L; {d(i)}L−1
i=1 ) .

Therefore, when fixing {d(i)}L−1
i=1 , τ can be viewed as a function of w2

L.

When w = 0: one of wl must be zero, and because w2
L has the least value among all the weights, we

know w2
L = 0. Then

τ{wl}L
i=1

= τ(0; {d(i)}L−1
i=1 ) =

L−1∏
i=1

d(i) ,

i.e. we actually have equality when w = 0.

When w ̸= 0: then w2 ̸= 0 and we write

w2 =

L∏
l=1

w2
l = w2

L

L−1∏
l=1

(
w2

L + d(l)
)
:= p(w2

L; {d(i)}L−1
i=1 ) ,

which shows w2 is a function of w2
L when {d(i)}L−1

i=1 are fixed. Here we use p to denote w2 for
simplicity. Moreover, function p: R≥0 → R≥0 has differentiable inverse p−1 as long as p > 0,
because

dp

dw2
L

=

L∑
l=1

∏
i̸=l

(
w2

L + d(i)
)
=

L∑
l=1

∏
i̸=l

w2
i

(Lemma H.4)
≥ L

(
pL−1

)1/L
> 0 ,

and inverse function theorem (Rudin, 1953) shows the existence of differentiable inverse. Whenever,
p−1 exists, it derivative is

dw2
L

dp
=

 L∑
l=1

∏
i ̸=l

(
w2

L + d(i)
)−1

= τ−1 .

Now pick any 0 < p0 ≤ w2 we have, by Fundamental Theorem of Calculus,

τ2{wl}L
l=1

= τ2(p−1(w2); {d(i)}L−1
i=1 )

= τ2(p−1(p0); {d(i)}L−1
i=1 ) +

∫ p−1(w2)

p−1(p0)

d

dw2
L

τ2(w2
L; {d(i)}L−1

i=1 )dw2
L

For the first part, we have

τ2(p−1(p0); {d(i)}L−1
i=1 )

=

 L∑
l=1

∏
i ̸=l

(
p−1(p0) + d(i)

)2

≥

∏
i ̸=L

(
p−1(p0) + d(i)

)2

≥

(
L−1∏
i=1

d(i)

)2

,
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and for the second part, we have∫ p−1(w2)

p−1(p0)

d

dw2
L

τ2dw2
L

=

∫ p−1(w2)

p−1(p0)

2τ
d

dw2
L

τdw2
L

=

∫ p−1(w2)

p−1(p0)

2τ

L∑
l=1

∑
i ̸=l

∏
j ̸=i,j ̸=l

(w2
L + d(j))dw

2
L

=

∫ p−1(w2)

p−1(p0)

2τ

L∑
l=1

∑
i ̸=l

p

w2
iw

2
l

dw2
L

(Lemma H.4) ≥
∫ p−1(w2)

p−1(p0)

2τL(L− 1)

 L∏
l=1

∏
i̸=l

p

w2
iw

2
l

 1
L(L−1)

dw2
L

=

∫ p−1(w2)

p−1(p0)

2τL(L− 1)

(
pL(L−1)

p2L−2

) 1
L(L−1)

dw2
L

=

∫ p−1(w2)

p−1(p0)

2τL(L− 1)p1−2/Ldw2
L

(dw2
L = τ−1dp) =

∫ w2

p0

2L(L− 1)p1−2/Ldp = L2p2−2/L
∣∣∣w2

p0

=
(
Lw2−2/L

)2
− L2p

2−2/L
0 .

Overall, for any 0 < p0 ≤ w2, we have

τ2{wl}L
l=1

≥

(
L−1∏
i=1

d(i)

)2

+
(
Lw2−2/L

)2
− L2p

2−2/L
0 .

Let p0 → 0, we have τ2 ≥
(∏L−1

i=1 d(i)

)2
+
(
Lw2−2/L

)2
, i.e.

τ ≥

√√√√(L−1∏
i=1

d(i)

)2

+
(
Lw2−2/L

)2
.
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