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Abstract

In parallel with the rise of the successful value function factorization approach,
numerous recent studies on Cooperative Multi-Agent Reinforcement Learning
(MARL) have explored the application of Coordination Graphs (CG) to model
the communication requirements among the agent population. These coordination
problems often exhibit structural sparsity, which facilitates accurate joint value
function learning with CGs. Value-based methods necessitate the computation
of argmaxes over the exponentially large joint action space, leading to the adop-
tion of the max-sum method from the distributed constraint optimization (DCOP)
literature. However, it has been empirically observed that the performance of
max-sum deteriorates with an increase in the number of agents, attributed to the
increased cyclicity of the graph. While previous works have tackled this issue by
sparsifying the graph based on a metric of edge importance, thereby demonstrating
improved performance, we argue that neglecting topological considerations during
the sparsification procedure can adversely affect action selection. Consequently,
we advocate for the explicit consideration of graph cyclicity alongside edge impor-
tances. We demonstrate that this approach results in superior performance across
various challenging coordination problems.

1 Introduction

The ability for autonomous agents to collaborate is crucial, spanning applications from multi-robot
systems [7] to sensor networks [6, 16, 12]. The quest for learning effective control policies with
multi-agent reinforcement learning (MARL) [18] mirrors the strategies employed in single-agent
environments, but presents unique challenges. While learning individual action-value functions [26]
is scalable, it suffers from the issue of non-stationarity caused by the inability to predict other agents’
behaviour. On the other hand, joint action-value learning [4] mitigates non-stationarity but requires
often unavailable global information, and becomes intractable with the number of agents due to the
exponentially large joint action space. Recently, there has been a strong emphasis on value function
factorization (VFF) methods that construct the joint action-value function as a mixing of individual
agent utilities [25, 20, 21, 24, 27]. However, lacking mechanisms to explicitly model coordination,
VFF methods are shown to suffer from the relative overgeneralization pathology [1].

Tackling these problems, the formalism of Coordination Graphs (CG) [8] has experienced a recent
renaissance. CGs constitute an interpretable graphical model representing the state-dependent
coordination structure and induce a factorization of the joint action-value function as a sum of single-
agent utility functions and payoff functions for agent pairs. Whilst incorporating pairwise payoffs
into the learning process mitigates the non-stationarity issue, the use of max-sum algorithm [19]
circumvents the scaling problems ailing joint learning by providing an approximation for the greedy
joint action selection. Deep Coordination Graphs (DCG) [1] integrate CGs into the MARL framework
and show the pairwise payoffs form crucial mechanism to overcome relative overgeneralization.
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Figure 1: KINGS constructs the sparse coordination graph by iteratively considering the best edge to
prune based on the mutual influence scores and the current graph topology.

While DCG assumes a fixed structure for the coordination graph, Wang et al. [29] argue that in a wide
variety of problems the communication requirements are dynamic and sparse in terms of considering
only a subset of pairwise agent relations. They introduce a CG sparsification method that works by
ranking the payoff functions by a measure quantifying the influence between the agents belonging to
the edge. In this work, we reconsider said metric by demonstrating that especially with high sparsity
levels, omitting topological information related to the graph, has a negative impact on the max-sum
quality arising from graph disconnectivity and excessive cyclicity. The latter has been shown to be
especially detrimental to the max-sum algorithm [15, 3]. Towards mitigating these issues, we propose
a novel cyclicity aware sparsification metric for sparse CGs and demonstrate its positive effect on
sparse CG-based MARL with an evaluation on the Multi-Agent Coordination Benchmark (MACO)
[29] and the StarCraft Multi-Agent Challenge (SMAC) [23].

2 Background

The cooperative problems we consider in this work fall under the framework of DEC-POMDPs [17].
A DEC-POMDP is described via a tupleM := ⟨I,N,S,A, T,R,Ω, O, γ⟩, where I is the set of N
agents, S the state space, A the action space shared by all of the agents, T the joint transition kernel,
R the joint reward function, Ω the observation space, O the observation function and γ the discount
factor. For a given DEC-POMDP, our objective is to find a mutually independent set of policies π∗

satisfying: π∗ = argmaxa∼π Q∗
jt(s,a), where Q∗

jt(s,a) denotes the total expected future discounted
returns or the optimal joint utility function.

2.1 Coordination Graphs and Max-Sum

The problem of learning the joint utility function scales very poorly in the number of agents belonging
to the task due to the exponential size of the joint action space. Luckily, most meaningful multi-agent
problems can be effectively represented by considering only pairwise interactions. To this end,
Guestrin et al. [8] introduce the concept of Coordination Graphs. A Coordination Graph (CG)
G := ⟨V, E⟩ specifies the pairwise communication requirements between the agents V via its edges E .
It induces a factorization of the total utility function into

Qjt(τ ,a) =
1

N

N∑
i=1

fi(ai|τi) +
1

|E|
∑

(i,j)∈E

fij(ai, aj |τi, τj).

Representing the total utility with CGs enables the use of the max-sum algorithm [6] for the greedy
action selection that becomes intractable to perform via exhaustive enumeration in multi-agent settings.
Max-sum is known to converge only for acyclic graphs but has been applied comprehensively in also
problems exhibiting varying levels of cyclicity.

Böhmer et al. [1] adapt the concept of CGs to Multi-Agent Deep Reinforcement Learning (MARL),
by parameterizing the set of utility and payoff functions fij with neural networks. Their approach,
known as Deep Coordination Graphs (DCG), trains each of the utility and payoff networks with
temporal difference learning in the style of DQN [14]. Whereas DCG proposes to train the joint utility
by considering the full set of pairwise interactions in each state, Kok and Vlassis [11] argue that
many practical coordination problems exhibit a certain level of sparsity, meaning that one can instead
focus on a sparse subset of pairwise factors, thus improving learning speed. This concept is first
explored in deep MARL by Wang et al. [29] who propose a state-dependent mechanism to selectively
filter out a relevant subset of edges for more efficient message passing in max-sum. Their approach,
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CASEC, suggests identifying the best edges in terms of their influence on the task at hand, which
can be defined as: ζi→j = maxai Varaj fij(ai, aj |τi, τj). Then, for an undirected edge e = (i, j),
we write the undirected mutual influence of the agents as

ζij = max{ζi→j , ζj→i}. (1)

CASEC sparsification requires defining a sparsity coefficient λsp, which takes values in the interval
[0, 1] and determines the proportion of edges in the original fully connected coordination graph to be
pruned. CASEC then ranks the edges according to their ζ-value and retains (1− λsp)(N

2 −N)/2
top scoring edges to be used by max-sum. While this simple modification demonstrates promising
results in tasks exhibiting sparsity, we argue that ignoring the topological changes caused by the
sparsification have detrimental effects on the max-sum accuracy that in turn hinders learning.

3 Related Works

Max-sum has been studied in the distributed constraint optimization (DCOP) literature, and a
reasonable amount of attention has been given to the algorithm’s lack of convergence guarantees
with cyclic graphs and its practical implications [5]. Various methods have been proposed which
either act by modifying either the graph max-sum takes in [15, 22] or modifying max-sum itself [3].
Such considerations have been considered also in the context of MARL. In addition to the work of
sparsifying CGs with mutual influence metrics [29], Yang et al. [31] have proposed limiting the joint
model’s representational capacity to only directed acyclic graphs. In this work, we instead want to
retain the possibility for cycles to exist and ask how to mitigate the negative effects of cyclicity.

In parallel to the advances made with CGs, there has been a recent surge of research activity around
value function factorization (VFF) [28]. VFF approaches train a centralized value function, a
parametric mixing of the individual agent utilities, to produce an estimate for the joint utility. When
the gradient signal originating from the environmental reward gets backpropagated, said mixing acts
as an implicit mechanism to distribute the credit amongst the population of agents. Many previous
works have focused on finding the most flexible way to parametrize the joint value function while
ensuring decomposability. The choice of the mixing function determines the representational capacity
of the joint utility model and has large implications on the performance. Value-Decomposition
Networks (VDN) [25] consider only additive mixing functions, whereas QMIX [20] extends to
the whole family of monotonic functions. More recently, a plethora of other VFF methods have
been proposed and methods that cover the entire Independent-Global-Max (IGM) space have been
introduced [24, 27].

4 Cyclicity–Regularized Coordination Graphs

In the upcoming section, we present our contribution to the learning of cyclicity-regularized sparse
coordination graphs. Section 4.1 introduces and justifies our proposed method, and Section 4.2 offers
an illustrative demonstration to provide additional motivation.

4.1 Kirchoff Index Guided Sparsification

While the ζ-metric, defined in Eq. (1) is appealing in that it ties the edge importance to the variation
in the payoff functions, we argue that such sparsification criterion can be problematic for two reasons.
First, it has been observed that the performance of max-sum deteriorates when increasing the number
of agents due to increased overall cyclicity of the graph [15, 22, 3], which is overlooked by ζ-
sparsification. Secondly, when the sparsity level is set high, many nodes can become disconnected
from the rest of the coordination graph impairing communication. This can be especially catastrophic
in situations where all agents need to have knowledge of others’ intentions to make a decision for
themselves. Motivated by these issues, we propose that one should instead search for sparse graphs
that, in addition to valuing edges with high mutual influence, 1) retain connectedness ensuring proper
flow of information between all agents and 2) are minimally cyclic. Towards these objectives, we
propose to iteratively sparsify the graph edges according to a modified mutual influence metric

ξij =
ζij

Aij − Ωij
, (2)
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where Aij is the adjacency matrix of the CG and Ωij is called the effective resistance matrix [10].
The effective resistance is a quantity that describes the commute time of a random walk between two
nodes i and j in a resistor network whose topology is given by A and each edge is replaced with a
unit resistor. Let us denote the graph Laplacian as L and a full ones matrix of shape N ×N as Φ.
With these definitions we can compute the entries of Ω as

Ωij = Γii − Γjj − 2Γij where Γ =

(
L+

1

N
Φ

)−1

. (3)

When the effective resistance Ωij is compared to the nominal resistance given by Aij as in the
denominator of Eq. (2), one obtains a quantity called the resistance deficit which has been used in
graph theory to assess an edge’s contribution to the total cyclicity of a graph [9, 32]. Thus, resistance
deficit penalization weights down the edge scores proportional to how much they increase the total
cyclicity of the graph. As Γ changes every time an edge is pruned, computing the final sparse graph
must be done by computing current ξij , dropping the edge with the lowest ξ-value, repeating until
target sparsity is reached. Such iterative procedure aims to maximize the Kirchhoff Index [13] of
the final graph. The following proposition, establishes a theoretical justification for the proposed
approach.
Proposition 1. CG sparsification with the ξ-metric is guaranteed to keep the graph connected for
λsp ∈ [0, 1 − 2/N ]. When λsp ∈ [1 − 2/N, 1], the final graph be a forest enabling max-sum to
converge to a fixed point in finite number of iterations.

Proof. Assume input graph G := ⟨V, E⟩. When the final graph sparsity is λsp ∈
[
0, 1− 2

N

]
, the

graph is guaranteed to be connected. To see this, we analyze the graph topology at iteration t of the
iterative sparsification procedure. Let us divide the nodes in two sets: the ones with only 1 edge
connected to them and the ones that have more than 1 edge connected and mark the sets V− and V+,
respectively. For edge (i, j), i ∈ V−, j ∈ V− ∪ V+, we have that Aij − Ωij = 0 =⇒ ξij → ∞.
In words, when an edge describes the only possible path between two nodes, the corresponding
resistance deficit for that edge is 0, leading to an unbounded ξ-value. As a result, only edges connected
exclusively to V+, will have bounded ξ-values. As also the lowest scoring edge is sparsified, V− will
still remain connected to the rest of the graph.

A direct consequence of the connectedness is that when λsp = 1 − 2
N the final sparse graph will

be a spanning tree for G. Even further increasing sparsity thus leads into a spanning forest for G.
Using the results from Pearl [19], we can also note that max-sum on graphs with λsp ≥ 1− 2/N is
guaranteed to converge.

Algorithm 1 KINGS
Input: N , fij , λsp, budget I , adjacency Aij

ζij ← mutual_influence(fij) # Eq. (1)
Mij ← 1N×N

C ← λsp
N2−N
2·I

if C > 1 then
M ← NOT(max_spanning_tree(ζij))

for i ∈ [0, . . . , I] do
Ωij ← eff_resistance(Aij) # Eq.

(3)
ξij ← ζij/((Aij − Ωij)⊙M)
# Prune C worst scoring edges
e− ← topk(−ξij , k = C)
Aij ← remove(Aij , e

−)

return Aij

Importantly, this result shows that ξ-sparsification
leads to desirable graphs – ones that are connected
when sparsity level allows, or ones that are optimal
from the perspective of max-sum. While the conver-
gence guarantees can be given when λsp > 1− 2/N ,
we also expect that simply reducing the amount of
cyclicity in the graph can be helpful for max-sum
based on the results of Cerquides et al. [3]. We ver-
ify this supposition in the subsequent subsection by
examining the max-sum accuracy as a function of the
sparsity coefficient. Finally, by incorporating ζ in the
construction, ξ-graphs also aim to select graphs that
are maximally influential.

While modulating the original ζ-scores with struc-
tural information is beneficial, we acknowledge that
this procedure can become costly when graph sizes
grow. This is because we are required to recompute Γ at each iteration, which involves inverting the
N ×N graph Laplacian. In order to scale the cyclicity minimizing sparsification to deep MARL,
we instead sparsify the original coordination graph in chunks of edges: instead of pruning the graph
one edge at a time, we fix the sparsification iteration budget I , and at each iteration prune as many
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edges are needed to reach the target sparsity within the required number of iterations. This way we
are trading off the accuracy of assessing the graph cyclicity for computation speed. To ensure final
graph connectedness, we require that the final graph contains the edges that belong to the maximum
spanning tree (MaxST) of edge weights ζij , which we expect to be an important path in terms of
utility estimate communication carried out by max-sum. For further discussion on the sparsification
budget, we refer the reader to Section 5.3. We call this final version of the iterative sparsification
procedure Kirchhoff Index Guided Sparsification (KINGS). Pseudocode 1 summarizes the algorithm.

4.2 Motivating Example

Figure 2: Max-sum greedy action selec-
tion accuracy on random CGs sparsified
with either ζ- or ξ-metrics

To illustrate the effect of the modified sparsification metric,
we randomly generate 1000 fully connected coordination
graphs. The exact generation process is described in detail
in Appendix A. Each graph features 11 agents, all of which
can take 3 distinct actions. We then heavily sparsify all
of the graphs by sliding λsp over the interval [0.7, 1] using
both ζ- and ξ-metrics. We will refer to the graphs sparsi-
fied with ξ and ζ as ξ-graphs and ζ-graphs, respectively.
To measure the impact of sparsification on max-sum, we
exhaustively search for the maximum Q-value and the
corresponding optimal action for each of the sparsified
graphs. Then, we compare the result to the action selected
by running max-sum on the corresponding graph for 100
iterations to compute the max-sum accuracy. Figure 2
shows that ξ-graphs enjoy a markable edge in max-sum accuracy compared to ζ-graphs, hinting
at the benefit of integrating topological information into the pruning procedure. As expected from
previous discussion, the accuracy for ξ-graphs reaches 1 at λsp = 9/11 ≈ 0.82, which is also when
the sparsified graph is a spanning tree for the 11 nodes, in contrast with ζ-graphs that still sustain
over 5% error for the same level of sparsity.

5 Experiments

To understand the effectiveness of the our method, we evaluate KINGS in two cooperative multi-agent
task suites, Multi-Agent Coordination Benchmark (MACO) [29] and Starcraft Multi-Agent Challenge
(SMAC) [23]. The key questions we aim to answer are: (I) How does KINGS fare against the state-
of-the-art cooperative MARL methods in difficult coordination tasks? (II) Fixing communication
bandwidth, does cyclicity-awareness improve sparse CG learning? (III) What qualitative insights can
we gain regarding the scenarios in which pruning with topological information proves advantageous?
(IV) What is the impact of the sparsification budget assumed by KINGS? For all of the results in this
paper, we plot the mean performance along with the standard error bounds computed over 5 random
seeds.

The overall hyperparameters are as in the previous work [25, 20, 1, 29]. All tasks employ a discount
factor γ = 0.99. Each network is trained using an RMSProp optimizer with a learning rate of
5× 10−3. A first-in-first-out (FIFO) replay buffer stores the experiences of at most 5000 episodes,
and a batch of 32 episodes are sampled from the buffer during the training phase. The target network
undergoes periodic updates every 200 episodes. We implement ϵ-greedy exploration, with ϵ linearly
annealing from 1.0 to 0.05 over 50K time-steps. To ensure a fair comparison, our method and all the
baselines presented in this paper are implemented using the open-sourced codebase PyMARL [23].
All the CG based methods perform 5 iterations for max-sum.

5.1 Performance Evaluation

5.1.1 MACO

We begin the performance evaluation with a focus on the Multi-Agent Coordination Benchmark
(MACO) [29], which consists of temporally extended versions of 6 classical coordination games
compiled in Castellini et al. [2]. The reward structure in each environment is either factored or
non-factored, depending on whether an explicit decomposition of global rewards is present. Crucially,

5



Figure 3: Performance evaluation of KINGS in the MACO benchmark against the baseline methods.

MACO tasks test the algorithms’ ability to overcome the relative overgeneralization pathology [1]
and sustain cooperation that extends over multiple timesteps. As relevant baselines, we demonstrate
the results of VDN [25] and QMIX [20] for value function factorization methods and DCG [1] and
CASEC [29] for coordination graph-based approaches.

Table 1 summarizes the sparsity coefficients as percentages for CASEC and KINGS in each envi-
ronment of MACO. For CASEC, we used the λsp values provided in the original paper, whereas for
KINGS we find the best sparsity coefficient that is greater or equal to the one of CASEC. However, as
we want to retain connectedness, we stop at 1− 2/15 ≈ 0.867 in Sensor. The sparsification budgets
are chosen from the range [0, 3] ensuring that the computation times stay within reasonable limits.
The exact values used are provided in Table 2. The results for the MACO environments are shown in
Figure 3. Both QMIX and VDN perform very badly due to their inability to overcome the relative
overgeneralization pathology. In contrast, all the CG-based approaches provide much better results
in these environments. Second point to note is that in most of the environments enforcing sparse
inputs to max-sum seems beneficial as demonstrated by both KINGS and CASEC in relation to DCG.
Convincingly, there is a noticeable difference between the performances of KINGS and CASEC,
supporting our claim on the importance of topological information in sparsification. While the results
of CASEC and KINGS are rather similar on the Gather environment, it is crucial to consider that
CASEC is able to achieve such solution only when it is allowed to retain 70% of the original graph
edges. In contrast we achieve similar final performance with only 40% of the original edges, hinting
that KINGS enables the population to learn more effective patterns of communication.

Aloha Pursuit Hallway Sensor Gather Disperse
80% 70% 50% 87%|90% 60%|30% 60%

Table 1: Sparsity coefficients used on MACO. Blue for KINGS, Red for CASEC, Black for both.

5.1.2 SMAC

To get a more thorough understanding of the utility of integrating topological information to the
sparsification on learning as well as the scalability to very complex multi-agent problems, we test
KINGS against the same baselines on SMAC benchmark [23] which is based on the real time strategy
game StarCraft II. As the results are not directly comparable across different versions of StarCraft,
we use the version 2.4.6.2.69232 specified in the original SMAC paper. Specifically, we benchmark
the different methods on 2 SMAC maps: 1c3s5z and 10m_vs_11m. We employ λsp = 0.65 in
10m_vs_11m and λsp = 0.75 in 1c3s5z for both KINGS and CASEC. These were the highest values
of sparsity for which either of the sparse CG methods worked reasonably well in our tests, and they
were found by performing a rough sweep over the values {0.3, 0.4, 0.5, 0.65, 0.75} for both maps.
The sparsification budget for KINGS is set to 2 in both of the SMAC environments.
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Figure 4: Performance on SMAC. The sparsity coefficients for KINGS and CASEC are 0.65 and
0.75 for 10m_vs_11m and 1c3s5z, respectively.

As observed by Böhmer et al. [1], Wang et al. [29], Yang et al. [31], learning the payoff functions fij
is difficult due to the quadratic number of output heads in the output layer. Performing Q-learning
style training with such networks can cause many of the output connections to remain unchanged
for long periods which causes inaccuracies in the Qjt-estimation. This problem is exacerbated by
the fact that ζ-metric used both by KINGS and CASEC relies on the accuracy of the learned payoff
functions. To circumvent this problem, we apply action representation learning [29] when training
KINGS, CASEC and DCG. We also present impact of this architectural modification for MACO
environments in Appendix C.

Figure 4 presents the results on the tested environments. In contrast to MACO environments, fully
decomposed methods VDN and QMIX demonstrate strong performance on each of the tasks. Despite
the apparent lack of performance enhancement due to sparsity enforcement, a notable distinction
emerges in the sparsity tolerance of KINGS when compared to CASEC. KINGS maintains higher
performance under a fixed sparsity level, implying a more effective communication capability in
these environments.

5.2 Tolerance to Sparsity

As demonstrated in earlier sections, KINGS consistently outperforms CASEC when the sparsity is
fixed. Here, we reinforce this observation with additional results, selecting Hallway and Gather
as illustrative examples of factored and non-factored MACO environments. For both, we study
the final performances of KINGS and CASEC in the range of sparsity coefficients [λlo

sp, λ
hi
sp], where

λlo
sp are optimal values for CASEC and λhi

sp are the values after which CG can’t be kept connected.
We discretize these ranges into 4 values and plot the results for each one. Figures 5 demonstrate
that KINGS is able to better withstand sparsity, especially in Gather where performance gradually
increases with λsp, giving support to the idea that reducing cyclicity can help learning in max-sum
based approaches. While KINGS remains unaffected by sparsity up to λsp = 0.7 in Hallway, Figure
6 reveals that both methods suffer from increased sparsity in their learning speeds to a similar extent.

Figure 5: The effect of λsp on KINGS and CASEC in Gather and Hallway environments. In most
cases, KINGS achieves a higher performance for a given level of sparsity.
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Figure 6: Performance for two sparsity levels for KINGS and CASEC in Hallway and Gather. The
advantage of KINGS is clear in Gather, where the CG connectedness is integral to solving the task.

Aloha Pursuit Hallway Sensor Gather Disperse
0 2 3 0 6 2

Table 2: Sparsification budgets used in the MACO evaluation.

5.3 Effect of Sparsification Budget

Like stated in Section 4.1, the practical implementation of KINGS needs a fixed sparsification budget.
Algorithmically, increasing the budget means that one has more iterations to reach the target sparsity
λsp, which enables pruning the graph in a more fine-grained manner. Contrarily, decreasing the
budget means that in order to reach the target sparsity, one needs to sparsify more edges at once. As
mentioned, Table 2 shows the choices of the sparsification budgets in different MACO environments.
In Aloha and Sensor, we are sparsifying the fully connected graph down to a spanning tree, which
can be seen from their corresponding λsp, and thus we directly take the maximum spanning tree –
this is equivalent to running KINGS with sparsification budget 0. In Gather we afford to apply the
procedure edge by edge due to the small size of the fully connected graph, which has (52−5)/2 = 10
edges, thus 6 sparsification iterations. For Pursuit and Disperse we tested both budgets 2 and 3
observing little difference between them two choices.

Figure 7: The effect of the sparsification bud-
get on Hallway.

The only environment, where we observed the cho-
sen budget to have a more noticeable impact was
Hallway, with λsp = 0.5. The chosen sparsity coeffi-
cient translates to pruning 33 edges from the original
fully connected CG. In this setting, we tested KINGS
with budgets 1, 2 and 3. This corresponds to sparsi-
fying the original graph in chunks of sizes 33, 16/17
or 11, respectively. The results are shown in Figure 7.
While the distribution of final performances is about
the same for all of the tested budgets, we see that
the learning speed is slightly affected as we make the
pruning coarser. Conversely, tightening the budget
from 1 to 2 translates to about 20% speedup in the
total run time while retaining. Additionally, Table 3
presents the comparisons for the speeds between CG-based methods over 1000 action selections.
This observation provides support for the supposed trade-off between the sparsification accuracy and
computational requirements for this environment. An interesting avenue for future work would be to
study formally the changes different sparsification budgets have on the final graph cyclicity.

DCG CASEC KINGS, budget=1 KINGS, budget=2 KINGS, budget=3
2.2 2.5 2.9 3.1 3.4

Table 3: Time taken in seconds for 1000 action selections with DCG, CASEC and KINGS with
different sparsification budgets in Hallway and λsp = 0.5.
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5.4 Qualitative Analysis on Gather

To conclude the experiments, we emphasize the significance of topological information through
a specific case in Gather, which extends classical cooperative Climb Game [30] by introducing
temporal complexity and stochasticity, requiring agents to learn cooperative policies instead of atomic
actions. The map for the environment is a 3× 5 grid, where agents spawn randomly. In each episode,
a target goal for the population is randomly selected among three goal states: g1, g2 and g3. These
three states are all placed on the 2nd row, at 1st, 3rd and 5th columns, respectively. Agents near the
target goal are the only ones aware of its optimality and thus need to communicate this knowledge to
the others. The episode ends either after 8 steps or when all agents have gathered to a single goal
state. To earn a reward, all agents must simultaneously be located at some goal state. Achieving the
target goal results in a high reward of 10, gathering at other goals yields 5, and a minimum reward of
−5 is assigned if only some agents gather at the optimal goal, increasing the difficulty. Thus, solving
the environment implies maintaining CG connectedness as all agents must reach their designated
goal together to avoid penalties for the entire population. As shown in left of Figure 6, CASEC with
λsp = 0.6 fails to achieve learn the task properly. We load the best seed of CASEC with λsp = 0.6
and investigate what happens when it fails to solve the task. A typical failure case is visualized in the
left side of Figure 8, that shows a partial slice of the Gather environment’s map. Agents 1 and 2 need
to join the rest of the group at g1 to obtain the maximum reward of 10. In this scenario, CASEC fails
to make such a transition. As a diagnostic, we visualize the agents overlain with the state-specific
coordination graph and see that in this scenario the population indeed suffers from disconnectedness
of the communication. Agent 1 cannot know what the rest of the agents are planning to do and thus it
tries to achieve another goal by going to g2 which causes the failure. When we manually force the
sparsification to be done with ξ-metric as in KINGS, we observe that agent 1 is able to take the right
action leading to the highest reward of 10, as shown on the right side of Figure 8 highlighting the
core idea of our topologically informed sparsification.

Figure 8: A visual example showing the importance of keeping the CG connected. (Left) CASEC
disconnects agent 1 from the rest of the group, failing to obtain the optimal solution. (Right) ξ-
sparsification employed by KINGS ensures that the group stays connected and arrives at g1.

6 Conclusion

Our work enhances the mutual influence metric for deep Coordination Graph (CG) sparsification
by incorporating cyclicity regularization. The method removes edges iteratively based on their
mutual influence score while considering their significance for the entire graph’s information flow.
Integrating this metric into CG-based methods proves advantageous compared to topology-oblivious
sparsification in many difficult coordination tasks. A notable limitation in current sparse coordination
methods is the assumption of a static sparsity coefficient. Dynamically adjusting the number of active
CG edges based on the state could offer a balanced solution, addressing max-sum constraints and
optimizing the representational capacity of the joint utility model. Further research could explore
more suitable distributed constraint optimization algorithms for CGs with high cyclicity.
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A Motivating Example Description

For the motivating example discussed in Section 4.2, we choose the number of agents to be 11 and
the action space to be of size 3. Then we take 1000 random seeds and for each one a fully connected
CG induces a random joint utility function. We set individual utilities fi to 0 and generate the
payoff matrices fij by sampling values uniformly for each action pair (ai, aj) from the set {−1, 0, 1}.
Finally we add noise to these sampled values from the standard normal distribution.

B Further Results on Changing Sparsity Coefficient

Figure 9: The effect of sparsity coefficient λsp on KINGS and CASEC. KINGS is in most cases able
to achieve a higher performance for a fixed λsp.

As suggested originally by Wang et al. [29], Aloha and Sensor environments of the MACO bench-
mark are learned with very high levels of sparsity as shown in Table 1. In this part, we additionally
test how the discussed sparsification methods behave with smaller values of λsp on these tasks. For
Aloha, we plot the distribution of final performances for λsp ∈ {0.5, 0.6, 0.7}. For Sensor the
corresponding set is {0.7, 0.75, 0.8}. The used sparsification budgets are 2 and 3 for Aloha and
Sensor, respectively. Figure 9 presents the results. Generally, the final performance exhibits lower
variance with KINGS, and especially in Sensor, it retains higher performance. The denser the graphs
become, the less pronounced the difference between CASEC and KINGS is.

C Effect of ρ-formulation in MACO

Figure 10: The effect of ρ-formulation.

Following Wang et al. [29], we formulate the payoff
functions as a sum of a residual term ρij and the in-
dividual utilities: fij = fi + fj + ρij . In this setting,
we are learning individual utilities and the residual
term ρij instead of directly learning payoff functions
fij . While being a minor detail that is not discussed
in the work that presents this architectural choice, it
seems to have quite a strong effect on learning in
MACO environments. Figure 10 presents illustrative
results on this issue. The box plot demonstrates the
final performance in Sensor for two different spar-
sity coefficients 0.7 and 0.75 when learning fij or via the residual formulation. Similar behaviour is
observable for other MACO environments as well but we did not perform an extensive check on this.
For fair comparison all the CG based approaches are implemented with this modification. Finally,
due to computational constraints, we do not evaluate the significance of this choice on SMAC but
instead adopt the choice learning fij directly as done by Wang et al. [29].
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