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ABSTRACT

Understanding how information or influence propagates through a network—such
as during an epidemic outbreak or the spread of misinformation—is a fundamen-
tal yet challenging problem. While prior works have focused on cascade pre-
diction (forecasting future infected nodes), network inference (recovering latent
global diffusion graphs), or source localization (identifying diffusion’s origin),
these approaches do not recover the actual ”who-infected-whom” propagation
tree for a specific diffusion instance. We introduce DIPT (Deep Identification of
Propagation Trees), a probabilistic framework that infers propagation trees from
final observed node diffusion states, without knowledge of the diffusion mecha-
nism. DIPT models local influence strengths between nodes and uses a discrete-
continuous alternating optimization strategy to jointly learn the diffusion mecha-
nism and infer the propagation structure. Empirical results across eight real-world
datasets demonstrate that DIPT consistently outperforms existing approaches in
reconstructing propagation trees.

1 INTRODUCTION

Graph inverse problems aim to uncover the underlying causes of observed phenomena in net-
works (Wang et al., 2022; Ling et al., 2022). A prominent example is diffusion source localization,
which identifies the origin(s) of spread from the final infection state. Recent GNN-based models
have advanced this task (Ling et al., 2022; Yan et al., 2024; Wang et al., 2023; Ling et al., 2024).
However, source localization alone provides limited insight into the underlying diffusion dynamics.
As shown in Fig. 1(a), source localization identifies only the origin nodes among the infected(pink).
Hence, to capture the full transmission pathways—revealing not just the sources, but also the se-
quence of infections and who influenced whom as shown in Fig. 1(b), without knowing the under-
lying diffusion mechanism is a challenging problem. This paper focuses on such a problem which
we call propagation tree identification.

a) Source Localization b) Propagation Tree 
Identification

Figure 1: Given the diffused state (pink color
nodes), source localization aims to identify
the source nodes (red) only (a), while prop-
agation trees identification can further reveal
how infection spreads, as shown in blue ar-
rows (b).

Understanding diffusion pathways is crucial across
domains. In infectious disease modeling, iden-
tifying who infected whom—known as contact
tracing(Mokbel et al., 2020; Kleinman & Merkel,
2020)—enables interventions to prevent further
spread from initial carriers. In misinformation cam-
paigns, tracing how false content propagates helps
to mitigate network-wide spread(Zhou & Zafarani,
2019). In phylogenetics, mapping genetic muta-
tions reveals evolutionary lineages (Penny, 2004;
Bouckaert et al., 2014). In all cases, transmission
typically begins from a few sources and spreads in
tree or forest-like structures, where each infected
node may influence multiple others.

There are research areas and works related yet dis-
tinct from propagation tree identification. The first
type is prior-knowledge-based, such as Steiner-tree
methods, which require the diffusion mechanism, edge costs, or influence scores (Mishra et al.,
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2023). These methods typically optimize a maximum-likelihood objective over possible trees but
lack learnable components, limiting their adaptability to real-world settings. In practice, such heuris-
tics are often unavailable in domains like disease spread, e-commerce behavior, or rumor propaga-
tion. A separate line of work focuses on inferring global influence graphs from timestamped cas-
cade data (Gomez-Rodriguez et al., 2012). While these methods are learning-based, they operate on
multiple cascades and infer global diffusion networks. In contrast, a third class of learning-based
methods—closer to our setting—models cascade dynamics from final infection states. However,
they typically aim to predict node states at fixed time points, without recovering the underlying
”who-infected-whom” paths essential to propagation tree identification (Čutura et al., 2021; Yan
et al., 2024). Consequently, learning these propagation paths without assuming a specific diffusion
mechanism remains underexplored due to following nontrivial challenges: 1) Difficulty of inferring
the unknown propagation mechanism. Existing methods often rely on known diffusion models
such as Linear Threshold (LT), Independent Cascade (IC), which make strong and often unrealis-
tic assumptions about how information spreads. These models struggle to capture the complexity
of real-world diffusion, where infection dynamics also depend on node attributes—e.g., a rumor’s
transmission from user A to B might depend on their trust level, interest alignment, or social con-
text. 2) Intractable search space. The number of valid propagation trees leading to the observed
infected nodes grows exponentially with the size of the network, making joint inference over source
nodes and propagation edges highly intractable. 3) No or incomplete observation of propagation
tree during training. In realistic scenarios, only a partial observation of the diffusion process at
edge level is available. For example, in epidemiological modeling, contact tracing rarely provides
the full transmission path, making it challenging to learn from partial or no observations during
training (Rodriguez et al., 2014).

To address these challenges, we propose a probabilistic framework called DIPT (Deep Identification
of Propagation Trees), which infers latent propagation trees from final infection observations. To
tackle Challenge 1 (unknown propagation mechanisms), DIPT models markov-structured diffusion
recursively: each node’s infection probability is conditioned on its parent’s state and their node-
level features, enabling the model to learn influence without relying on rigid assumptions. For
Challenge 2 (exponential search space), we constrain inference by learning a prior over source
nodes and inferring the propagation tree that maximizes the likelihood of the observed infections.
To overcome Challenge 3, we employ a discrete-continuous alternating optimization strategy that
jointly learns the propagation tree and the diffusion model, without need for edge-level annotations.
Our main contributions are:

• We propose a graph inverse problem called propagation tree identification, which aims to infer
”who infected whom” given the final diffusion state, without assuming the underlying diffusion
mechanism.

• We formulate a mathematical problem for the propagation tree identification which is a maximum-
likelihood of a Bayesian network characterizing the diffusion process.

• We develop a discrete-continuous alternating optimization framework to jointly infer propagation
trees(discrete problem) and learn diffusion process(continuous problem) without access to ground
truth paths.

2 PREVIOUS WORK

Propagation Path Reconstruction. Early methods estimate global edge weights from historical
interactions and use heuristics like LeaderRank with probabilistic inference to recover global di-
rected graphs (Gomez-Rodriguez et al., 2012; Zhu et al., 2016). Deep models such as I3T and
DeepIS (Tai et al., 2023; Xia et al., 2021) combine GNNs, sequence encoders (e.g., Bi-LSTM), and
attention to capture structural and temporal diffusion features. Others improve scalability through
community-aware path modeling (Zhu et al., 2023), though these methods focus on forward diffu-
sion from known sources. A separate line of direction frames path reconstruction as a Steiner tree
problem, recovering cascades via minimal-cost trees over observed infections (Mishra et al., 2023;
Jang et al., 2021; Rozenshtein et al., 2016). While effective, these methods depend on heuristics
like hand-crafted cost functions, assumptions about edge weights or infection timestamps, limiting
their adaptability in realistic settings. Recent generative approaches instead aim to infer diffusion
paths from final observed node states. Qiu et al. (2023) reconstructs diffusion histories from a single
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final snapshot by estimating posterior barycenters with MCMC and GNN-guided proposals. Čutura
et al. (2021) use a Variational Autoencoder to model node trajectories, but performance degrades
as time horizons grow. DDMSL (Yan et al., 2024) employs discrete diffusion models for source
localization and snapshot prediction, yet both fail to reconstruct explicit transmission edges—i.e.,
the ”who-infected-whom” links critical for full path recovery.
Source localization. Classical approaches estimate one or more sources under SI/SIR models us-
ing full or partial observations (Prakash et al., 2012; Wang et al., 2017; Zhu et al., 2016; Zhu &
Ying, 2016; Zang et al., 2015; Zhu et al., 2017). GNN-based models (Dong et al., 2019) improved
accuracy, but often lack uncertainty quantification and incur high inference costs on large graphs.
More recent methods (Ling et al., 2022; Wang et al., 2022; 2023; Xu et al., 2024) learn latent source
distributions without strict diffusion assumptions. However, these are limited to localizing sources
or reconstructing discrete-time infection states, without recovering full propagation edges.

3 DEEP IDENTIFICATION OF PROPAGATION TREES

3.1 PROBLEM FORMULATION

Given a graph G = (V,E,y), where V is the set of nodes, E ⊆ V × V is the set of edges, and
y ∈ {0, 1}|V | is a binary infection state vector indicating whether node v is infected (yv = 1) or
not (yv = 0), the objective is to reconstruct a propagation tree T given the observed infections.
Information spreads through directed propagation trees rooted at source nodes s ∈ {0, 1}|V |, where
sv = 1 denotes that node v is a source. Each node v ∈ V is associated with a feature vector
Fv ∈ Rd, forming a node feature matrix F ∈ R|V |×d where d is the feature dimension.

3.2 OBJECTIVE FUNCTION

We formulate propagation tree identification as a maximum a posteriori (MAP) estimation problem.
The goal is to jointly infer the source distribution s̃ and propagation tree T̃ that maximize the joint
probability P (s,y | T , G) of observed infections:

s̃, T̃ = argmaxs,T P (s,y | T , G) (1)

However, equation 1 cannot be solved directly. Since the infection state y is influenced by the graph
topology G, source nodes, s, and the propagation tree T , we can decompose the problem. This
reformulation simplifies the Maximum A Posteriori (MAP) estimation as follows:

P (s,y | T , G) = P (y | s, T , G) · P (s) (2)

where P (s) represents prior distribution over source nodes and P (y | s, T , G) represents likelihood
of observed infections given the source nodes and propagation tree. We model the likelihood and
prior using parameterized functions: Pψ(y | s, T , G) captures the diffusion process by learning
edge-level influence, and Pϕ(s) encodes a learnable prior over source node distributions. This leads
to the following training objective:

maxT ,ϕ,ψ Pψ(y | s, T , G) · Pϕ(s) (3)

As T is unobserved and intractable, we optimize the objective in Eq. 3 by alternately updating
(1) the propagation structure T given current model parameters (Section 3.4), and (2) the model
parameters (ϕ, ψ) given the inferred propagation tree. This alternating optimization is summarized
in Algorithm 1 and its convergence is discussed in Theorem 2 in Appendix D.2.

3.3 ESTIMATING THE DIFFUSION PROCESS

We model the likelihood term Pψ(y | s, T , G) in equation 3 using a recursive diffusion process
along the inferred propagation tree T . The joint infection probability is factorized as a product of
local conditionals over the tree structure:

Pψ(y | s, T , G) =
∏

v∈V \s

Pψ
(
yv
∣∣ yPa(v,T )

)
, (4)

where V \ s denotes the set of non-source nodes, and Pa(v, T ) denotes the parent of node v in
the tree T . This factorization imposes a tree-structured Markov property in which each node is
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Algorithm 1 DIPT Training via Alternating Optimization
Input: G = (V,E), features F , infections y, steps K, epochs E, weights λ, µ
Output: ψ, ϕ
Init ψ, ϕ; for e = 1 to E do

Iuv = fψ(Fu, Fv), ∀(u, v) ∈ E ; // equation 5
Sample s ∼ Pϕ(s) ; // Sec. 3.5

P
(0)
inf (v) = Pϕ(sv); for k = 1 to K do
P

(k)
inf (v) = max

(
P

(k−1)
inf (v), maxu∈C(v) P

(k−1)
inf (u)Iuv

)
, ∀v

end
pv = argmaxu∈C(v) P

(K)
inf (u)Iuv for yv=1, v /∈ s; T ∗ = {(pv, v)} ; // (10)

Pψ(y | s, T ∗, G) =
∏
v/∈s Pψ(yv | ypv ) ; // equation 4

Compute Ldiff,LELBO; if Tobs: Lobs = −
∑

(u,v)∈Tobs
logPψ(yv | yu) ; // equation 13

L = λLdiff + LELBO + µLobs ; // equation 14
Update ψ, ϕ via∇L

end
return ψ, ϕ

conditionally dependent only on its parent. Each local conditional is parameterized by a learnable
edge transmission produced from node features:

mψ

(
Pa(v)→v

)
:= fψ

(
Fv, FPa(v)

)
∈ (0, 1), (5)

where Fv and FPa(v) denote the feature vectors of node v and its parent, respectively, and
mψ(Pa(v)→ v) is the edge transmission probability. The marginal infection probability of a child
depends recursively on the marginal of its parent:
Pψ
(
yv=1

∣∣ s, T , G) = Pψ
(
yPa(v)=1

∣∣ s, T , G) mψ

(
Pa(v)→v

)
, with Pψ(yu=1 | s, T , G) = 1 for u ∈ s.

To learn the diffusion process, we optimize the following negative log-likelihood over observed
infection states:

Ldiff = −
∑
v∈V \s

[
yv log

(
Pψ
(
yPa(v) | s, T , G

)
mψ

(
Pa(v)→v

))
+ (1− yv) log

(
1− Pψ

(
yPa(v) | s, T , G

)
mψ

(
Pa(v)→v

))]
.

(6)
This loss enables the model to learn localized influence patterns across the tree structure and gener-
alize the underlying diffusion dynamics from observed infection outcomes.

3.4 OPTIMIZING PROPAGATION TREES

Since the true propagation tree is unobserved during training, we estimate T ∗ by maximizing equa-
tion 3 while keeping the model parameters fixed with respect to T . The inferred tree consists of
directed edges linking seed nodes s to observed infected nodes y:

T ∗ = argmaxT Pψ(y | s, T , G) · Pϕ(s). (7)

To approximate this structure, we first compute edge-level influence scores using fψ for all edges in
G (equation 5), forming a sparse influence matrix1 with entries Iuv = fψ(Fu,Fv) = mψ(u → v),
where each entry represents the learned transmission strength along edge (u, v).

Propagation scores are then updated iteratively in a monotonic increasing way. At iteration k = 0,
initial infection probabilities are given by the source prior:

P
(0)
inf (v) = Pϕ(sv). (8)

At iteration k ≥ 1, the probability of node v being infected is updated by

P
(k)
inf (v) = max

(
P

(k−1)
inf (v), max

u∈C(v)
P

(k−1)
inf (u) Iuv

)
, (9)

1We do not store a full influence matrix I ∈ R|V |×|V |; influence scores are computed only for existing
edges (u, v) ∈ E.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where C(v) denotes the set of candidate parents of v, i.e. its infected neighbours in G. Because
improvements can only be inherited from nodes that improved in the previous iteration, this induces
a topological order on updates. Consequently, the set of parent selections defines a directed diffusion
tree. Monotonicity and acyclicity proof are discussed in Theorem 1 (Appendix D.1,D.4). After K
iterations, the propagation tree T ∗ is constructed by assigning to each infected node v the parent that
maximizes its inherited likelihood under the monotone update from neighbors that became infected
in earlier iterations2,

pv = arg max
u∈C(v) : t(u)<t(v)

Pψ(yu)mψ(u→ v), (10)

which, by construction, respects the topological order induced by the updates and yields an acyclic
propagation tree.

3.5 LEARNING THE PRIOR OF SEED NODES

The intrinsic patterns of the prior over seed nodes, P (s), are hard to model and often high di-
mensional, which leads to intractability. To tackle it, we map s to a latent embedding z in lower
dimensional space representing the abstract semantics. A variational inference framework is used
to learn an approximation of P (s), capturing its structure and variability. It consists of a generative
process PϕD

(s | z)3 that reconstructs s from z, and a simple prior P (z), typically a standard Gaus-
sian N (0, I), which regularizes the latent space. The variational posterior qϕE

(z | s) approximates
the intractable P (z | s) and serves as the encoder. Variational inference is introduced to efficiently
approximate the intractable posterior P (z | s) by optimizing the Evidence Lower Bound (ELBO),
ensuring that the latent variables z capture the variability of s while maintaining regularization
through the prior P (z). The objective is to maximize the Evidence Lower Bound for P (s):

LELBO = EqϕE
(z|s) [logPϕD

(s | z)]− KL (qϕE
(z | s)∥P (z)) . (11)

The first term ensures accurate reconstruction of s, while the second term regularizes the latent dis-
tribution to match the prior P (z). Learning prior over source nodes directly addresses the challenge
of intractable search space (Challenge 2). In real-world diffusion, source nodes are often sparse,
learning a prior provides a compact representation of source configurations, enabling the model to
learn a distribution over plausible sparse source sets. Sampling from this learned prior avoids the
need to enumerate an exponential number of candidate sources, thereby narrowing the joint search
space over source nodes and propagation trees.

3.6 INCORPORATING PARTIAL PROPAGATION PATH OBSERVATIONS

The propagation tree is unobservable during training in our problem setting, so the diffusion process
is inferred solely from the observed infection states y. However, in some scenarios when partial
observations of the propagation tree Tobs ⊂ T are available, DIPT can also incorporate such super-
vision to improve training. In such setting, the objective function in Eq. 1 is extended to:

P (s,y | Tobs, Tunobs, G) = P (y | s, Tobs ∪ Tunobs, G) · P (Tobs | s,y, G) · P (s) (12)

The unobserved portion Tunobs is inferred as before, while observed edges (u, v) ∈ Tobs provide a
supervised loss signal and maximize the conditional probability Pψ(yu | yv):

Lobs = −
∑

(u,v)∈Tobs
logPψ(yv | yu) (13)

This objective encourages the model to assign higher likelihood to edges consistent with known
propgation tree edges using direct supervision. When supervision is available, the training loss
becomes:

Ltotal = LELBO + λ · Ldiff + µ · Lobs (14)

where λ and µ are hyperparameters. This formulation enables DIPT to transition smoothly between
unsupervised and partially supervised training.

2Here t(v) denotes the iteration index at which node v first becomes infected, i.e., the first iteration where
P

(k)
inf (v) strictly increases.

3ϕD and ϕE represents decoder and encoder respectively

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

d) Ground Truthc) DIPTb) DDMSLa) DDMIX

Figure 2: Predicted vs. ground truth propagation trees on Memetracker. Correctly predicted edges
are shown in blue, incorrect ones in orange. Source nodes are marked in red, and infected nodes in
pink.

3.7 TEST TIME INFERENCE OF PROPAGATION TREE

At inference time, we aim to infer the optimal propagation tree given an observed infection state y.
A learnable latent vector ẑ is initialized, which is optimized while freezing model parameters ϕ and
ψ. This enables test-time optimization of Pϕ(s) through z rather than sampling directly. The latent
vector ẑ is initialized as the empirical average z̄ over the training set and optimized to maximize the
expected likelihood of observed infections:

Linf = maxẑ Es∼PϕD
(s|ẑ) [Pψ(y | s, T ∗, G)]− γ · ∥ẑ − z̄∥2 (15)

The regularization term constrains ẑ to remain close to the training distribution, mitigating test-time
drift. The propagation tree T ∗ is inferred from s ∼ PϕD

(s | ẑ) using the same inferring propagation
tree inference process described in training(see Eq. (8-11)). The constrained objective function
Eq. equation 15 cannot be computed directly, so we provide a practical version of the inference
objective function: since the diffused observation y fits the Gaussian distribution and the seed set s
fits the Bernoulli distribution(check Appendix B.1), we can simplify Eq. (16) as:

L∗
inf = minẑ

[
−

N∑
i=1

log
(
fϕD

(ẑ)si · (1− fϕD
(ẑ))1−si

)
+

1

2
∥ŷ − y∥2 + λ∥ẑ − z̄∥2

]
Here, the first term captures the Bernoulli likelihood of the seed nodes, and the second term repre-
sents the Gaussian likelihood. The test-time inference process does not introduce any new training
objective. Instead, it optimizes the latent source representation ẑ given the observed diffused state y,
while keeping the learned diffusion model fixed. This enables instance-specific adaptation through
the same likelihood computation and propagation tree inference steps used during training (see Al-
gorithm 2 in Appendix B), and a theoretical analysis of the error correction of propagation tree is
provided in Appendix D.3.

4 EXPERIMENTAL EVALUATION

4.1 DATASETS AND EVALUATION METRICS

We evaluate DIPT and baselines on eight real-world graph datasets. Memetracker (Rodriguez et al.,
2011) captures real diffusion via hyperlink cascades across online articles. We use a subnetwork
with 583 sites and 6.7k cascades, extracting source nodes as the earliest 5% per cascade and each
cascade is converted into a propagation tree. Cora-ML (Rossi & Ahmed, 2015), CiteSeer (Wu et al.,
2016), and Power Grid (Watts & Strogatz, 1998) provide the node features and topology of the ci-
tation networks and infrastructure grids respectively. Cascades are obtained by simulating diffusion
by randomly selecting 10% of nodes as sources and running the SI model for 200 steps until con-
vergence. Twitter and Weibo are large-scale real-world datasets of information diffusion in social
networks, with 616k and 490k nodes respectively, where each cascade records user-to-user retweet

6
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Table 1: Performance comparison for Propagation Tree Identification. Best results are in bold.
Prec. = Path Precision, Jac. = Jaccard Index.
Method Cora-ML Memetracker CiteSeer Power Grid IDSS Twitter Weibo Pol

Prec. Jac. Prec. Jac. Prec. Jac. Prec. Jac. Prec. Jac. Prec. Jac. Prec. Jac. Prec. Jac.

DDMIX 0.327 0.195 0.062 0.041 0.236 0.133 0.081 0.031 0.109 0.057 0.211 0.122 0.203 0.118 0.198 0.115
DITTO 0.371 0.218 0.091 0.052 0.312 0.178 0.106 0.050 0.115 0.061 0.258 0.154 0.210 0.124 0.242 0.148
DDMSL 0.412 0.259 0.119 0.063 0.405 0.253 0.130 0.069 0.121 0.064 0.312 0.187 0.216 0.130 0.298 0.176
DIPT 0.622 0.452 0.602 0.430 0.593 0.421 0.680 0.515 0.421 0.266 0.581 0.418 0.552 0.397 0.565 0.404

paths over time. For our problem setting, we extract the final diffusion state and treat the observed
retweet tree as ground truth. Similarly, Pol (Conover et al., 2011) is a temporal retweet network
about a U.S. political event. Further dataset preprocessing details appear in Appendix B.3.
Infectious Disease Simulated Spread (IDSS) Dataset. To evaluate performance in large-scale, re-
alistic epidemics, we simulate disease spread using a spatial SIR model (Kermack & McKendrick,
1932) over 3,143 U.S. counties, incorporating real mobility data (Kang et al., 2020; SafeGraph,
Inc.). Infections seed via air travel and evolve under a time-varying reproduction number. Each run
generates a propagation forest over 500–1,000 counties and 12k–48k infections. Full details and
data are in Appendix A.
Evaluation Metrics. We evaluate DIPT on two tasks: propagation tree identification and source
localization. For tree identification, we use Jaccard Index and Path Precision. Jaccard captures
structural overlap between predicted and ground-truth edges, while Path Precision reflects correct-
ness along true diffusion paths. For source localization, we use standard classification metrics to
asses accuracy of source localization.

4.2 COMPARISON METHODS AND EXPERIMENTAL SETTINGS

Most prior approaches focus on predicting global diffusion graphs from cascades, using non-
learnable heuristics, MLP-like models, or classical methods that assume timestamped infections and
fixed diffusion mechanisms. These differ fundamentally from DIPT, which reconstructs instance-
level propagation trees from a single final infection state. We therefore compare against learnable
diffusion models which can capture infection dynamics from final diffusion observations, as:

• Generative Diffusion Models. DITTO (Qiu et al., 2023) reconstructs diffusion histories from a
single final snapshot by estimating posterior barycenters with MCMC and GNN-guided propos-
als. DDMIX (Čutura et al., 2021) uses a VAE to reconstruct diffusion trajectories by learning
latent node states. DDMSL (Yan et al., 2024) models invertible diffusion to recover node-level
timestamps. These methods are adapted to approximate propagation paths by combining random
forward and backward walks(MCMC in case of DITTO) between nodes active in adjacent diffu-
sion steps. This enables a fair comparison to DIPT in terms of reconstructing propagation tree.

• Source Localization Methods. We also benchmark DIPT on source localization task against four
methods: (1) LPSI (Wang et al., 2017): labels-based inference without explicit dynamics. (2)
OJC (Zhu et al., 2017): SIR-based inference from partial observations. (3) GCNSI (Dong et al.,
2019): GCN-based prediction of multiple sources. (4) SLVAE (Ling et al., 2022): variational
modeling of source distributions.
Experimental configurations, implementation details, including tuned hyperparam-
eters and training setup is provided in Appendix B.2. Our code is available at
https://anonymous.4open.science/r/DIPT-A773

4.3 EXPERIMENTAL RESULTS

4.3.1 PROPAGATION TREES PREDICTION PERFORMANCE

Table 1 summarizes the performance of DIPT against two baselines for propagation tree identifi-
cation. DIPT consistently outperforms both across all eight datasets on path precision and Jaccard
index. The performance gap is especially large on denser graphs like Power Grid, IDSS, Meme-
tracker, where baseline methods struggle due to complex propagation dynamics and real-world
noise. On sparser datasets (Cora-ML, CiteSeer), the margin is relatively smaller but still favor-
able. This demonstrates DIPT’s robustness in both synthetic and real-world settings, enabled by its
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Table 2: Source Localization performance comparison based on F1 score and AUC (best in bold).
Method Cora-ML Memetracker CiteSeer Power Grid IDSS Twitter Weibo Pol

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

LPSI 0.301 0.592 0.014 0.529 0.306 0.598 0.474 0.934 0.037 0.540 0.201 0.578 0.227 0.552 0.193 0.575
OJC 0.121 0.534 0.026 0.517 0.117 0.530 0.153 0.501 0.028 0.520 0.084 0.491 0.077 0.470 0.082 0.490
GCNSI 0.401 0.687 0.035 0.422 0.387 0.680 0.330 0.639 0.045 0.430 0.287 0.603 0.265 0.567 0.261 0.600
SLVAE 0.764 0.831 0.488 0.624 0.749 0.825 0.797 0.879 0.494 0.630 0.253 0.578 0.209 0.547 0.209 0.576
DDMIX 0.221 0.247 0.022 0.417 0.215 0.250 0.280 0.340 0.029 0.425 0.176 0.464 0.155 0.439 0.168 0.470
DITTO 0.384 0.660 0.115 0.545 0.369 0.660 0.488 0.700 0.151 0.555 0.230 0.595 0.209 0.555 0.239 0.585
DDMSL 0.750 0.873 0.515 0.641 0.742 0.870 0.831 0.866 0.527 0.645 0.313 0.625 0.381 0.622 0.317 0.630

DIPT 0.839 0.881 0.518 0.629 0.832 0.880 0.828 0.864 0.525 0.630 0.421 0.648 0.439 0.658 0.429 0.655

Table 3: Performance of DIPT with varying proportions of partially observed propagation tree data
during training.
Data % Cora-ML Memetracker CiteSeer Power Grid IDSS Twitter Weibo Pol

Prec. Jac. Prec. Jac. Prec. Jac. Prec. Jac. Prec. Jac. Prec. Jac. Prec. Jac. Prec. Jac.

10% 0.671 0.504 0.633 0.463 0.662 0.495 0.683 0.518 0.437 0.279 0.595 0.430 0.567 0.410 0.582 0.422
20% 0.707 0.546 0.651 0.482 0.671 0.504 0.718 0.560 0.451 0.291 0.612 0.445 0.579 0.425 0.599 0.439
30% 0.720 0.562 0.662 0.494 0.695 0.532 0.759 0.611 0.453 0.292 0.628 0.461 0.597 0.442 0.618 0.455

edge-level influence modeling (Eq. 5). DIPT achieves its best results on Power Grid (68% path pre-
cision, 51.5% Jaccard), and handles the challenging IDSS dataset with 42.1% path precision—far
surpassing DDMSL (12.1%) and DDMIX (10.9%). It also generalizes well to large-scale graphs,
achieving strong performance on Twitter (58.1%, 41.8%) and Weibo (55.2%, 39.7%), where base-
lines considerably underperforms.

Figure 2 illustrates predicted trees on Memetracker4 DDMSL and DDMIX exhibit more incorrect
edge predictions (orange edges) in dense subgraphs. DIPT better handles such dense regions by
learning influence between nodes, leading to more accurate edge selection. Additional visualizations
are in Appendix F. On average, DIPT improves path precision and Jaccard index by 3.5× and 4.37×,
respectively, over all three baselines.

4.3.2 SOURCE LOCALIZATION ACCURACY

We evaluate DIPT against six source localization methods, with results summarized in Table 2. DIPT
performs competitively with DDMSL and SLVAE across all datasets and significantly outperforms
LPSI, OJC, and GCNSI. DIPT achieves the highest F1 (0.839) and AUC (0.881) scores on Cora-ML
and performs strongly on CiteSeer, consistent with its superior propagation tree accuracy on these
less dense graphs. On IDSS, which exhibits varying seed distributions due to mobility patterns,
DIPT matches DDMSL’s performance (F1: 0.525, AUC: 0.630). It also outperforms all baselines on
large-scale Twitter and Weibo graphs, achieving F1 scores of 0.421 and 0.439, respectively, demon-
strating strong generalization to large networks. These results show that despite solving the harder
task of full propagation tree inference, DIPT achieves source localization accuracy comparable to
specialized methods. Precision and Recall metrics are included in Appendix E.2.

4.3.3 IMPACT OF PARTIAL OBSERVATIONS

As DIPT is primarily designed to learn propagation trees without edge supervision, Section 3.6
explores how incorporating partial tree information during training affects performance. Table 3
shows that providing 10%, 20%, and 30% of edge annotations leads to average path precision gains
of 7.11%, 11.84%, and 15.16%, respectively. Similar improvements are observed on Twitter and
Weibo; for example, Twitter precision rises from 0.581 (unsupervised) to 0.595 (10% supervision),
highlighting DIPT’s adaptability across graph scales. These gains stem from the supervised loss in
Eq. 13, which enhances learning of influence patterns. However, since inference is based on maxi-
mizing infection likelihood, supervision impacts are non-linear with respect to annotation quantity.

4Every infected(pink) node has a parent. Some appear without incoming edges because their parent lies
outside the displayed subgraph. Due to space constraints, nodes are subsampled for visualization
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Table 4: Performance of DIPT under different ablation settings.
Ablation Cora-ML Memetracker CiteSeer Power Grid IDSS Twitter Weibo Pol

Prec. Jac. Prec. Jac. Prec. Jac. Prec. Jac. Prec. Jac. Prec. Jac. Prec. Jac. Prec. Jac.

DIPT (a) 0.388 0.235 0.407 0.255 0.422 0.267 0.437 0.276 0.329 0.206 0.368 0.248 0.362 0.243 0.372 0.252
DIPT (b) 0.519 0.350 0.489 0.326 0.511 0.343 0.607 0.435 0.371 0.227 0.495 0.335 0.489 0.330 0.502 0.341

DIPT 0.622 0.452 0.602 0.430 0.593 0.421 0.680 0.515 0.421 0.266 0.581 0.418 0.552 0.397 0.565 0.404

4.3.4 DIFFUSION STATE RECONSTRUCTION
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Figure 3: Comparison of DIPT,DITTO,DDMSL and
DDMIX on reconstructed information diffusion.

Both DDMSL and DDMIX reconstruct
node states at discrete time steps dur-
ing the diffusion process, capturing an
infection sequence that reflects the or-
der in which nodes became infected (i.e.,
who was infected after whom). In con-
trast, DIPT not only recovers this in-
fection order (induced from the inferred
propagation tree) but also identifies the
source of each infection (i.e., who infected
whom), thereby reconstructing the propa-
gation tree. To ensure a fair comparison,
we evaluate all methods on node state re-
construction accuracy with respect to the
infection order. As shown in Fig. 3, DIPT
achieves an average mean squared error
(MSE) that is 19.67% lower than DDMIX,
5.2% lower than DITTO and 3.85% lower than DDMSL. These results highlight that, beyond recov-
ering propagation tree, DIPT accurately models node-level infection dynamics as well.

4.3.5 ABLATION RESULTS

We conduct an ablation study to assess the contribution of each core component in DIPT. In the
first variant, DIPT(a), the learned edge influence (Eq.5) is replaced with cosine similarity between
node features. In DIPT(b), the model directly optimizes the joint objective in Eq.3 without alternat-
ing between tree inference and parameter updates during training; however, inference still uses the
propagation tree inference described in Section 3.7. Results are reported in Table 4. Both ablations
lead to notable performance drops. In DIPT(a), accuracy degrades significantly because edge-level
influence is no longer learned—scores remain static, undermining the model’s ability to capture
propagation structure. On Cora-ML, DIPT(a) even underperforms DDMSL in path precision (Ta-
ble 1), though it remains competitive on denser datasets where simple similarity still provides some
signal. DIPT(b) performs better than DIPT(a) and continues to outperform all baselines, but its per-
formance lags behind full DIPT. This highlights that while both components are important, learning
local node influence is more critical than alternating optimization. Additional Experimental Re-
sults showing generalization, features sensitivity, and inference time analysis are documented in
Appendix E.1 and C respectively.

5 CONCLUSION

Identification of propagation trees is a crucial yet underexplored task with significant applications
in fields such as epidemiology and misinformation diffusion. In this paper, we introduce DIPT, a
probabilistic framework designed to identify propagation trees from observed diffusion data. DIPT
recursively models the diffusion process by learning influence probabilities across edges. The frame-
work employs an alternating optimization approach to jointly learn both the propagation tree and the
diffusion mechanism, without relying on direct observation of propagation paths during training.
Extensive experiments on eight datasets demonstrate that DIPT consistently outperforms existing
methods, achieving an average path precision of 58.2% and effectively identifying both propagation
trees and diffusion sources.
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A INFECTIOUS DISEASE SPREAD SIMULATION

We simulate the spread of an infectious disease across the 3,143 counties of the United States using
a spatial compartmental Susceptible-Infectious-Recovered (SIR) model (Kermack & McKendrick,
1932). The simulation incorporates real-world human mobility data from SafeGraph (Kang et al.,
2020; SafeGraph, Inc.), enabling region-level interactions based on observed population flows.

SIMULATION SETUP

Each county C is initialized with a susceptible population SC based on U.S. Census data (United
States Census Bureau), with IC = RC = 0. Infected individuals follow a time-dependent reproduc-
tion number vector P = [0.2, 0.3, 0.3, 0.2, 0.1, 0.1], where Pi denotes the probability of infecting
others on day i of infection. The total reproduction number is R0 =

∑
i Pi = 1.2, reflecting a

pathogen with pandemic potential (Delamater et al., 2019).

When an individual in County A becomes infectious, a newly infected individual is assigned to a
County B using a two-step mobility-informed sampling:

1. Sample County X from County A’s outflow distribution.
2. Sample County B from County X’s inflow distribution.

This models the scenario where an infected individual travels and interacts with someone who visited
the same area.

INFECTION SEEDING AND PROGRESSION

To initiate the simulation, we simulate infected air travelers arriving in high-traffic counties. From
the 72 U.S. counties with major airports, two are randomly selected in each run, and 10 infected
individuals are introduced. Their destinations are sampled based on the mobility outflows from
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these counties, simulating infected passengers returning home. The simulation runs for 90 days.
Each infected individual remains infectious for 6 days, transitioning from I to R afterward. Each
transmission event reduces S and increases I in target county; recovery reduces I and increases R.

OUTPUT FORMAT

Each simulation generates a propagation forest:

• Nodes: Infected individuals.
• Edges: “Who-infected-whom” links.

Since multiple initial seeds exist, the resulting structure is a forest, where each tree traces
back to a unique root source. Across runs, simulations yield approximately 500–1,000 in-
fected counties and 12k–48k infected individuals. The dataset can be accessed at following link:
https://anonymous.4open.science/r/Compartmental-Infectious-Disease-Simulation-4F7C

Table 5: Hyperparameter settings of different algorithms.
Algorithms Hyper-parameter Cora ML Memetracker Citeseer Power Grid IDSS Search space / Description

DIPT

Propagation steps (K) 25 30 25 10 20 [min = 10,max = 50, step = 5]
Training epochs (E) 100 100 100 100 100 Total training iterations (Fixed)
Latent dimension (z) 300 300 300 300 300 Size of latent space for seed prior (Fixed)

Learning rate [4× 10−4] [4× 10−4] [4× 10−4] [4× 10−4] [4× 10−4] [4× 10−4, 6× 10−4, 1× 10−3 ]
Regularization weight (λ) 0.5 0.5 0.5 0.5 0.5 [min = 0.3,max = 0.7, step = 0.1] Ldiff
Regularization weight (µ) 0.2 0.3 0.2 0.3 0.6 [min = 0.1,max = 0.7, step = 0.1]

Inference regularization (γ) 0.1 0.1 0.1 0.1 0.4 [min = 0.05,max = 0.4, step = 0.05]

DITTO

Training epochs (E) 100 100 100 100 100 Same as other baselines
β optimization iterations (I) 500 500 500 500 500 Fixed (proposal optimization)

Proposal network Qθ 3-layer GNN + 2-layer MLP (hidden size 16) Fixed architecture
Training iterations (J) 300 300 300 300 300 Total proposal training iterations[min-200, max=600]

DDMSL

Initial learning rate 2× 10−3 2× 10−3 2× 10−3 2× 10−3 3× 10−3 [2× 10−3, 4× 10−3, 5× 10−3]
Learning rate decline interval [1200,1500] [200,1000] [500,1200] [500,1200] [200,500,800,1200] LOSS curve-based schedule

α in SIR model 0.4 0.6 0.4 0.4 0.4 [min = 0.3,max = 0.7, step = 0.05]
α in SI model 0.4 0.45 0.4 0.4 0.4 [min = 0.3,max = 0.7, step = 0.05]

DDMIX
α 0.5 0.5 0.5 0.5 0.5 [min = 3,max = 9, step = 1]

Learning rate 2× 10−3 2× 10−3 2× 10−3 2× 10−3 3× 10−3 [2× 10−3, 4× 10−3, 5× 10−3]
Epoch 100 100 100 100 100 Fixed

B IMPLEMENTATION DETAILS

We begin by projecting node features into a lower-dimensional space using a three-layer MLP. To en-
rich these representations with structural context, we apply a three-layer GNN that integrates graph
topology into the node embeddings. A cross-attention module then fuses the transformed features,
and the resulting representations are passed through a two-layer MLP to compute pairwise influence
scores, following the scaled dot-product attention formulation. Model training is performed with
the Adam optimizer at a learning rate of η for T epochs. To learn a prior over seed nodes, we em-
ploy a three-layer MLP with nonlinear transformations in both the encoder qϕE

(z|x) and decoder
pϕD

(s|z). This component is trained with a fixed learning rate of 0.005 over 500 epochs for all
datasets. During inference, we run 100 iterations consistently across datasets. The implementation
code is provided as part of the supplementary material. For starting 5 iterations we use beam search
i.e. instead of one most probable path to each node chose top three for stable learning.

B.1 PRACTICAL INFERENCE OBJECTIVE DERIVATION

Equation (16) defines the ideal inference objective as a joint maximization over latent sources s
and the propagation structure T . However, this objective requires marginalizing over all source
configurations and latent codes:

Linfer = Es∼pϕ(s|z) [logPψ(y | s, T , G)]
This marginalization is computationally infeasible due to the exponential size of the source space
and propagation paths. Therefore, we simplify the inference using two likelihoods:

• A Gaussian likelihood for the continuous infection vector y ∈ [0, 1]|V |, enabling mean squared
error as a surrogate.

• A Bernoulli likelihood for the binary seed vector s ∈ {0, 1}|V |, parameterized by a decoder
fϕD

(z) ∈ [0, 1]|V |.
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Algorithm 2 DIPT Inference: Latent Optimization & Tree Reconstruction (compact)
Input: G = (V,E), features F , observed infections y, learned (ϕ, ψ), steps K, iters E, lr η, reg γ
Output: Pϕ(s | ẑ), propagation tree T ∗

Initialize ẑ ← z̄; for e = 1 to E do
// Seed prior from latent
Pϕ(s | ẑ); sample/decoding s ∼ PϕD (s | ẑ) ; // Sec. 3.5, equation 15
// Edge transmissions
Iuv = fψ(Fu, Fv), ∀(u, v) ∈ E ; // equation 5
// Monotone propagation

P
(0)
inf (v) = Pϕ(sv | ẑ); for k = 1 to K do
P

(k)
inf (v) = max

(
P

(k−1)
inf (v), maxu∈C(v) P

(k−1)
inf (u) Iuv

)
, ∀v

end
// Tree extraction (acyclic by construction)

pv = argmaxu∈C(v) P
(K)
inf (u) Iuv for yv=1, v /∈ s; T ∗ = {(pv, v)} ; // cf. Eq. (10)

// Likelihood and latent update
Pψ(y | s, T ∗, G) =

∏
v/∈s Pψ(yv | ypv ) ; // equation 4

Linf = − logPψ(y | s, T ∗, G) + γ∥ẑ − z̄∥2 ; // equation 15
ẑ ← ẑ − η∇ẑLinf

end
return Pϕ(s | ẑ), T ∗

- The Bernoulli term involves products over all nodes:

|V |∏
i=1

fϕD
(zi)

si(1− fϕD
(zi))

1−si

which becomes numerically unstable when |V | is large. To address this, we apply the log-sum-exp
trick to derive a numerically stable surrogate objective:

log

∑
j

exp

(∑
i

log fϕD
(zji )

si(1− fϕD
(zji ))

1−si

)
This log-sum-exp approximation yields a tractable and stable objective.

Hence, we adopt the following practical objective in Eq. (17), combining the Gaussian reconstruc-
tion error over y, the Bernoulli loss over s, and a regularization penalty over the latent code z:

min
ẑ

∥ŷ − y∥2 −
∑
i

log fϕD
(ẑi)

si(1− fϕD
(ẑi))

1−si + λ∥ẑ − z̄∥2

B.2 HYPERPARAMETER DETAILS

Tuned hyperparameters for baselines and DIPT are summarized in Table 5. For baselines, limited
search space exploration is done as in original work.

B.3 FURTHER DATASET DETAILS

The further description of the datasets used for the experiments are shown as below:

• Cora-ML Rossi & Ahmed (2015). This network contains computer science research papers, where
each node represents a paper and each edge indicates that one paper cites another.

• Power Grid Watts & Strogatz (1998). This is the topology network of the Western States Power Grid
of the US. An edge represents a power supply line, and a node is either a generator, a transformer,
or a substation.

• Memetracker Leskovec et al. (2009). MemeTracker tracks the posts that appear most frequently
over time across the entire online news spectrum. The propagation of each story is represented as
one diffusion cascade.
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• CiteSeer Caragea et al. (2014). This is a citation network of research papers, where each node
represents a paper, and edges indicate citation relationships. Papers are classified into different
categories based on their research topics.

• IDSS. This is a mobility network of US counties based on real mobility data and is explained in
detail in Appendix A.

• Twitter Weng et al. (2013). This dataset contains public English-language tweets published be-
tween Mar 24 and Apr 25, 2012. Nodes are users; the global user–user graph aggregates three
relations: reciprocal follow ties, retweets, and mentions. We treat each hashtag and its adopters as
an independent cascade, with cascade edges induced by the three relations above.

• Weibo Cao et al. (2017). Weibo is a large microblogging platform in China. Nodes are users, and the
global graph is constructed from user retweeting relationships. Each original post and its retweets
form a retweet cascade.

• Pol Conover et al. (2011) is a temporal retweet network about a U.S. political event. It is an SI-like
diffusion, because when a user retweets or is retweeted, they must have known about the event.

C TIME COMPLEXITY ANALYSIS

Time & space complexity. DIPT has two components: propagation and model training. Let K
be the propagation steps (upper-bounded by diffusion depth / graph diameter), and let Cmodel =∑
ℓ dℓ−1dℓ be the per-edge MLP cost (e.g., for a 2-layer MLP 2d→h→1, Cmodel = O(2dh+ h)).

Propagation. Each step is a sparse mat-vec plus a max-reduction over neighbors: O(E) per step
⇒ O(KE) per pass, with masking/parent-pick in O(E). Worst case (path graph) gives O(V E)
when K = Θ(V ); in practice we cap K, so it is O(KE).

Influence model training. Per epoch: edge scoring O(E Cmodel) (fwd+bwd) + one propagation/loss
eval O(KE), so O

(
E(Cmodel +K)

)
per epoch and O

(
E E(Cmodel +K)

)
over E epochs. On GPU

this parallelizes over edges, giving near-linear wall-clock in E for fixed Cmodel,K.

Space. Graph and influence scores O(E); node vectors O(V ); parameters O(Cmodel).

Comparison with DDMSL/DDMIX. DDMSL scales with diffusion steps and GNN depth, e.g.,
O
(
E · V · T · F 2 + E · L · E · F

)
for T time steps, L GCN layers, feature width F . DDMIX also

grows with T (despite a lightweight VAE). In contrast, DIPT avoids observed timestamps (it only
uses K propagation passes) and uses edge-local updates, making it significantly more efficient on
large, sparse graphs.

Table 6: Inference Time Comparison (in seconds) across methods and datasets for propagation tree
inference task.

Method Cora-ML Power Grid Memetracker
DIPT 11.1 17.2 47.8
DDMSL 16.1 21.7 49.3
DITTO 54.5 67.4 100.9
DDMIX 9.1 15.3 44.2

D THEORETICAL PROOFS AND ANALYSIS

D.1 MONOTONICITY

Theorem 1 (Infection Monotonicity of DIPT). Let S ⊆ T be two seed sets with one-hot vectors
xS , xT ∈ {0, 1}|V |. Let P (k)

inf,S and P (k)
inf,T be DIPT infection probability vectors at step k when

initialized with S and T , respectively, under: (i) I is elementwise nonnegative; (ii) P (0)
inf,S ⪯ P

(0)
inf,T

(e.g., P (0)
inf (v) = αx(v) for a fixed α > 0, or any initialization that increases elementwise with the

seed set).
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Training Data Method Cora-ML Power Grid IDSS
Jaccard
Index

Path
Precision

Jaccard
Index

Path
Precision

Jaccard
Index

Path
Precision

Original
DIPT 0.452 0.622 0.515 0.680 0.266 0.421

DDMSL 0.259 0.412 0.069 0.130 0.064 0.121
DDMIX 0.195 0.327 0.031 0.081 0.057 0.109

Small World
DIPT 0.461 0.632 0.509 0.663 0.268 0.424

DDMSL 0.255 0.381 0.060 0.118 0.034 0.083
DDMIX 0.190 0.313 0.020 0.068 0.019 0.026

ER
DIPT 0.256 0.317 0.433 0.634 0.136 0.229

DDMSL 0.101 0.165 0.039 0.090 0.081 0.128
DDMIX 0.091 0.142 0.033 0.088 0.056 0.107

BA Tree
DIPT 0.333 0.472 0.509 0.642 0.211 0.407

DDMSL 0.199 0.381 0.044 0.118 0.066 0.128
DDMIX 0.182 0.353 0.033 0.084 0.053 0.101

Table 7: Generalization performance comparison of DIPT, DDMSL, and DDMIX across three
datasets under various synthetic graph structure conditions.

With the update
P

(k)
inf = max

(
P

(k−1)
inf , P

(k−1)
inf I

)
(k ≥ 1),

applied elementwise, it holds that

P
(k)
inf,S ⪯ P

(k)
inf,T for all k ≥ 0.

Proof. Base case: by assumption, P (0)
inf,S ⪯ P

(0)
inf,T . Inductive step: assume P (k−1)

inf,S ⪯ P
(k−1)
inf,T . Since

I≥0, we have P (k−1)
inf,S I ⪯ P

(k−1)
inf,T I . The map F (P ) = max(P, PI) is order-preserving (monotone)

because both the linear map P 7→ PI and the elementwise max are monotone. Hence

P
(k)
inf,S = F

(
P

(k−1)
inf,S

)
⪯ F

(
P

(k−1)
inf,T

)
= P

(k)
inf,T .

Assumption Justification in DIPT. (1) The edge influence scores Iuv = fψ(Fu, Fv) are passed
through a sigmoid/softmax, ensuring Iuv ∈ [0, 1], hence I ≥ 0. (2) Initialization uses the learned
source prior Pϕ(s); if S ⊆ T , then the one-hot vectors satisfy xS ⪯ xT , and consequently P (0)

inf,S ⪯
P

(0)
inf,T .

D.2 CONVERGENCE OF ALTERNATING OPTIMIZATION IN DIPT

DIPT’s generative model samples seed nodes s ∼ Pϕ(s) and constructs a propagation tree
T = T (s;ψ), as described in Section 3.4. Since training operates on inferred propagation trees
T rather than directly on s, we define the induced joint distribution over observed infections y and
propagation trees T as:

p(y, T ; θ) := pϕ(T ) · pψ(y | T ),

where pϕ(T ) =
∑

s:T (s;ψ)=T

Pϕ(s).

Let θ = (ϕ, ψ) denote model parameters, and let T ∈ TG be a valid propagation tree. The marginal
log-likelihood is:

L(θ) := log p(y; θ) = log
∑

T ∈TG

p(y, T ; θ).

Since the number of trees TG grows exponentially, this marginal is intractable. DIPT instead uses
the following alternating optimization:
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• Tree update: T (t) := argmaxT log p(y, T ; θ(t))

• Parameter update: θ(t+1) := argmaxθ log p(y, T (t); θ)

We now show that this procedure converges to a coordinate-wise stationary point of the joint objec-
tive.
Theorem 2. Let {θ(t), T (t)}∞t=1 be the sequence generated by DIPT. Then:

L(θ(t+1)) ≥ L(θ(t)),

and the sequence {L(θ(t))} converges. Moreover, the sequence (θ(t), T (t)) converges to a
coordinate-wise stationary point of the joint log-probability log p(y, T ; θ).

Proof. Define a point-mass distribution over trees: Q(t)(T ) := δ(T = T (t)). By Jensen’s inequal-
ity, for any distribution Q over TG:

log p(y; θ) ≥ EQ(T )[log p(y, T ; θ)] +H(Q) =: J (Q, θ),

where H(Q) denotes the entropy of Q. For a deterministic Q(t), we get:

J (Q(t), θ) = log p(y, T (t); θ).

From the tree update step:

T (t) = argmax
T

log p(y, T ; θ(t)) ⇒ L(θ(t)) ≥ J (Q(t), θ(t)).

From the parameter update:

θ(t+1) = argmax
θ

J (Q(t), θ) ⇒ J (Q(t), θ(t+1)) ≥ J (Q(t), θ(t)).

Combining the above:

L(θ(t+1)) ≥ J (Q(t), θ(t+1)) ≥ J (Q(t), θ(t)) ≤ L(θ(t)).

Hence, L(θ(t)) is non-decreasing. If we assume that L(θ) is continuous and upper bounded, which
holds in our case since (i) the parameter space of DIPT is compact due to bounded optimization
ranges (e.g., for λ, µ, learning rate), and (ii) the log-likelihood is computed over a finite graph with
bounded probabilities, ensuring log p(y; θ) is finite.

Since DIPT alternates exact maximization over discrete (tree) and continuous (parameter) variables,
and each step performs coordinate-wise maximization, the limit point is a coordinate-wise stationary
point of log p(y, T ; θ).

Note: DIPT does not perform full marginalization over latent trees; it instead maximizes a lower
bound via greedy MAP inference. This proof establishes convergence as a special case of block
coordinate ascent applied to a non-convex function, which is widely used in variational and EM-like
training settings.

Table 8: Source Localization performance (Recall and Precision) — Supplementary metrics for
Table 2, including Twitter, Weibo, and Pol.
Method Cora-ML Memetracker CiteSeer Power Grid IDSS Twitter Weibo Pol

RE PR RE PR RE PR RE PR RE PR RE PR RE PR RE PR

LPSI 0.217 0.492 0.292 0.007 0.225 0.480 0.495 0.455 0.280 0.020 0.199 0.175 0.202 0.188 0.205 0.182
OJC 0.119 0.123 0.022 0.031 0.115 0.118 0.287 0.104 0.025 0.033 0.097 0.072 0.083 0.069 0.090 0.075
GCNSI 0.456 0.357 0.234 0.019 0.440 0.345 0.335 0.325 0.245 0.025 0.298 0.237 0.271 0.222 0.285 0.240
SLVAE 0.719 0.814 0.518 0.461 0.700 0.805 0.780 0.815 0.520 0.470 0.256 0.174 0.212 0.151 0.240 0.185
DDMIX 0.210 0.232 0.023 0.021 0.205 0.225 0.345 0.235 0.030 0.028 0.182 0.145 0.160 0.131 0.190 0.150
DITTO 0.365 0.405 0.145 0.095 0.355 0.385 0.525 0.455 0.220 0.115 0.248 0.215 0.225 0.195 0.255 0.225
DDMSL 0.758 0.742 0.618 0.441 0.750 0.735 0.763 0.913 0.625 0.455 0.322 0.309 0.374 0.330 0.335 0.300

DIPT 0.856 0.823 0.607 0.452 0.850 0.815 0.781 0.882 0.610 0.460 0.438 0.407 0.464 0.419 0.450 0.410

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.3 THEORETICAL ANALYSIS OF ERROR CORRECTION IN PROPAGATION TREE

DIPT alternates between updating model parameters and re-inferring the propagation tree. While
path reconstruction is more error-prone than source localization (due to compounding parent
choices), the alternating scheme enables recovery from earlier mistakes.

Let Φ(k) = (ϕ(k), ψ(k)) denote parameters at iteration k, and T (k) the inferred tree. Updates proceed
as

Φ(k+1) = argmax
Φ

L(Φ, T (k)), T (k+1) = argmax
T

L(Φ(k+1), T ).

Suppose in T (k) a node v is incorrectly assigned parent p(v). If the updated parameters Φ(k+1)

increase the margin in favor of a better parent p′(v), i.e.

∆ = log
(
P

(K)
inf (p′(v)) Ip′(v),v

)
− log

(
P

(K)
inf (p(v)) Ip(v),v

)
> 0,

then the next tree update will assign p′(v) as parent of v. Hence DIPT can correct earlier structural
errors.

This correction is a direct consequence of likelihood-based parent selection (Eq. 10) combined with
the monotone training objective: once a higher-likelihood edge is preferred, it is retained in subse-
quent iterations. This explains why path reconstruction improves steadily over epochs, despite noisy
initial assignments.

D.4 ACYCLICITY

Theorem 3 (Acyclicity under strict update). Let P (k)(·) be the infection probabilities at step k and
let a non-source node v adopt a parent u only when the strict gain condition holds at the moment of
adoption:

Pψ(v | u) P (pre)(u) > P (pre)(v), (16)

where P (pre) denotes values immediately before updating v. Then the directed parent map {(pv, v)}
is acyclic.

Proof. Assume, for contradiction, that the final parent map contains a directed cycle u1 → u2 →
· · · → um → u1. For each edge (ui→ ui+1) on the cycle, let the adoption of ui as the parent of
ui+1 occur at some step, and evaluate equation 16 at that instant:

Pψ(ui+1 | ui) P (pre)(ui) > P (pre)(ui+1) (i = 1, . . . ,m).

Multiplying these m strict inequalities gives

m∏
i=1

Pψ(ui+1 | ui) ·
m∏
i=1

P (pre)(ui) >

m∏
i=1

P (pre)(ui+1).

The two products over P (pre)(·) are identical up to index renaming (they contain the same set
{u1, . . . , um}), hence they cancel, yielding

m∏
i=1

Pψ(ui+1 | ui) > 1.

But every influence probability satisfies 0 < Pψ(· | ·) ≤ 1, so the product on the left cannot exceed
1—a contradiction. Therefore no directed cycle exists.

Remarks. (i) The proof requires the strict gain rule equation 16 at the instant of adoption; this is
exactly what our update uses (nodes only update when the candidate margin is strictly larger than
the current value).
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Table 9: DIPT robustness to feature perturbations (CORA-ML).
Setting Path Precision
Baseline (True Features) 0.622
Gaussian Noise (SNR = 20 dB) 0.528
Gaussian Noise (SNR = 10 dB) 0.433
Feature Dropout (50% dropped) 0.405

E ADDITIONAL EXPERIMENT

E.1 GENERALIZATION ACROSS DYNAMIC GRAPHS

We evaluate the generalization performance of DIPT across three datasets by training all models on
original dataset and testing on the synthetic topologies without retraining. This setting assesses the
model’s ability to transfer learned diffusion dynamics across networks with different topologies and
scales. Results in Table 7 show that DIPT generalizes well across datasets.

E.2 SOURCE LOCALIZATION RESULTS ON PRECISION AND RECALL EVALUATION METRICS

d) Ground Truthc) DIPTb) DDMSLa) DDMIX

Figure 4: Comparison of predicted propagation tree edges with ground truth for the IDSS dataset.
Source nodes are in red, infected nodes in pink.

d) Ground Truthc) DIPTb) DDMSLa) DDMIX

Figure 5: Comparison of correctly predicted propagation tree edges (blue) with ground truth for the
Cora-ML dataset. Source nodes are in red, infected nodes in pink. Only correctly predicted edges
are shown for clarity, with the total number of predicted edges being the same across all methods.

The source localization results on Precision and Recall metrics across all five datasets is shown in
Table 8.

E.3 ROBUSTNESS TO NOISY OR MISSING NODE FEATURES

We assess the robustness of DIPT to perturbations in node features, evaluating its capacity to infer
propagation structure under noisy or incomplete information. In particular, we replace clean node
features with (a) additive Gaussian noise at different signal-to-noise ratios (SNR = 20 dB and 10
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dB), and (b) random feature dropout (50% of features masked). Results on the CORA-ML dataset
(Table 9) show that while performance degrades under heavier perturbation, DIPT retains meaning-
ful path-level inference. Notably, even with SNR as low as 10 dB or 50% dropout, the model still
produces non-trivial propagation structure, highlighting its resilience to feature corruption.

E.4 ROBUSTNESS TO DENSE SOURCE DISTRIBUTIONS

We also evaluate DIPT under settings with non-sparse source distributions. While real-world diffu-
sion often begins from a small number of seeds, certain domains (e.g., mobility-driven or adversarial
scenarios) may exhibit high source density. Since DIPT models a forest of trees rooted at seed nodes,
its inference complexity scales linearly with the number of sources. To quantify its behavior in dense
settings, we vary the percentage of source nodes in each cascade within the IDSS dataset. As ex-
pected, both path precision and Jaccard similarity decline gradually with increasing source count,
reflecting the increased structural ambiguity in denser propagation forests. However, DIPT remains
competitive, demonstrating its flexibility in adapting to varying sparsity regimes.

Table 10: Performance on IDSS with varying number of source nodes.
Source % Path Precision Jaccard Similarity

5 0.675 0.422
10 0.642 0.395
15 0.605 0.361
20 0.583 0.338

F ADDITIONAL VISUALIZATIONS

We provide additional visualizations of propagation tree identification for the Cora-ML and simu-
lated IDSS dataset(Fig. 4 & 6). Blue edges represent correctly identified propagation edges, while
orange edges indicate incorrectly predicted ones. Due to panel space limited width, two baselines
and DIPT are visualized against Ground Truth.

G RELATED METHODS ON ALTERNATING OPTIMIZATION

Alternating Optimization in Graph Problems is used for tasks involving latent variables. Xiao
et al. (2021) apply it in GNNs to learn personalized propagation strategies, while GLEM (Zhao et al.,
2022) alternates between language models and GNNs for scalable learning on text-attributed graphs.
MLCO (Wang et al., 2021) uses bi-level optimization for joint structure and reasoning. These works
demonstrate the effectiveness of alternating updates in jointly refining model parameters and latent
structures. Inspired by this, our method uses an alternating optimization to jointly infer propagation
trees and learn diffusion dynamics.
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