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ABSTRACT

Humor is a culturally nuanced aspect of human language that presents challenges
for understanding and generation. Humor generation requires a multi-hop rea-
soning process where each hop is based on proper rationales. Although CloT
introduce nouns as instruction receipt, thereby enhancing generalization. Creative
data is inherently scarce, and relying solely on dataset fitting easily leads to being
trapped in local patterns. GPT-o1 proposes a reasoning process with reflection
and correction, but also fails at humor generation. Therefore, in this paper, we
propose a more robust framework for tackling humor reasoning task, named Cre-
ative Leap of Structured Thought (CLoST). The key point is to empower LLMs
with reasoning ability to understand humor, rather than just memorizing some
patterns. Reward model helps to optimize the behavior of large language mod-
els by providing feedback so that they produce outputs that are more in line with
expectations. Due to the subjectiveness of humor, a unified score may include
great noise. Judgement ability is then a fundamental to further empower LLMs
reasoning ability. Judgement-oriented instructions are designed to improve the
capability of a model’s judgment, and we also propose an automatic instruction
evolutionary method to involve the deeper and broader thinking process behind
humor. Then, through reinforcement learning, the reasoning logic for each online
generated response is extracted using GPT-4o. In this process, external knowl-
edge is introduced again to assist the model in logic reasoning and human pref-
erences learning. Finally, experimental results demonstrate that the combination
of these two methods can both enhance the model’s judgment ability and improve
its generative capability. These findings deepen our understanding of the creative
capabilities of LLMs and provide ways to enhance LLMs’ creative abilities for
cross-domain innovative applications.

1 INTRODUCTION

Currently, humor is becoming increasingly prevalent because it not only alleviates stress and en-
hances interpersonal relationships but also brings a sense of ease and optimism in complex envi-
ronments. The humorous content is usually creative. For example in Figure 1, humor reasoning
is a multi-hop process to make creativity, and each hop is based on proper rationales. Without the
understanding of the rationale, it is difficult for the model to understand the internal humorous logic,
making it prone to pattern recognition. However, even for humans, it is challenging to make leaps
of thought. It is also difficult to empower LLMs with reasoning ability to understand humor, rather
than just memorizing some patterns.

So far, Creative Leap of Thought (CLoT) paradigm (Xu et al., 2024) develops two basic ability to
facilitate humor understanding and generation, selection skill and ranking skill. And the innovation
of CLoT is the introduction of nouns as instruction receipt, thereby enhancing generalization. How-
ever, as mentioned in CLoT, it directly fine-tuning on the given creative data merely amounts to a
rigorous fitting of the data. This fitting process only captures the inherent creative patterns within
the data, failing to stimulate ”thinking outside the box” for generating novel ideas. Large language
models (LLMs) like GPT-4o or o1 (Lightman et al., 2023) and QWEN, which show superior perfor-
mance in almost aspects, do not show superior performance on humor generation such as shown in
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Figure 1: English Comparison Showcase (more showcases are in Appendix A.4). Compared to
GPT-4o and CLoT, CLoST provides shorter and more conversational answers to questions. For in-
stance in Case 2, while CLoST and CLoT may convey the same meaning, their different expressions
produce different effects. Brief responses leave room for readers to ponder, enhancing interest and
interactivity.

Figure 1. Beyond that humor-related works (Xu, 2024; Xu et al., 2024) focus on a special aspect in
humor like pun or proverb, which is incomplete in humor including also irony and so on.

Therefore, to solve the problem mentioned above, we come up with a more robust framework to
tackle humor reasoning task that current LLMs struggle with. Reward model helps to optimize
the behavior of large language models by providing feedback so that they produce outputs that are
more in line with expectations. Due to the subjectiveness of humor, a unified score may include
great noise. Judgement skill is then a fundamental to providing feedback to further empower LLMs
reasoning ability. Understanding is also important to empower LLMs with reasoning ability to avoid
falling into local pattern. The introduction and augmentation of external knowledge are facilitative
for LLMs to understand the underlying logic and rationale.

We introduce the Creative Leap of Structured Thought (CLoST) containing two stage training. In
the first Supervised Fine-Tuning (SFT) stage, we develop human-designed judgement-related in-
structions and their derivatives to train the model’s judgement capabilities of humor. Additionally,
an automatic prompt expansion method on humorous conversations are proposed to inject and aug-
ment knowledge into the original training data. It will be facilitative for LLMs to understand the
underlying logic and rationale. In the second online Direct Preference Optimization (DPO) stage,
the reasoning logic for each online generated response is extracted using GPT-4o. In this process,
external knowledge is introduced again to assist the model in logic reasoning and human preferences
learning. Judgement capability from DIET could be helpful to enlarge preference pair dataset.

We evaluated various language models’ humor judgement ability on both Chinese and English hu-
mor datasets. Experiments manifest that CLoST outperformed other models on almost all the test
sets. Additional confirmatory experiments are conducted to show that CLoST enhances the model’s
divergent thinking ability and effectiveness in humor. Our contributions are summarized as follows:

1. We propose a teacher-student prompt system to enhance the judgement ability of LLMs.
Through the automatic construction of the conversation data between the teacher and the
student, LLMs learn the teacher’s judgment of the student’s thinking.

2. We propose a automatic instruction system for conversation data. A three agent system
is introduced to inject and augment knowledge into the original training data. It will be
facilitative for LLMs to understand the underlying logic and rationale.

3. Experimental results demonstrate that we can both enhance the model’s judgment and gen-
erative capability and achieve the state-of-the-art performance.
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2 METHOD

2.1 PROBLEM FORMULATION

In general, the knowledge graph G is defined as a set of triples G = {(e, r, e′) | e, e′ ∈ E , r ∈ R},
where E is the set of entities and R is the set of relations. Each triple represents a relation r from
the head entity e to the tail entity e′ (Sun et al., 2023a; Yang et al., 2023). In the special application
of humor generation, we consider a knowledge graph composed of question-related entities EQ and
answer-related entities EA, where the intersection EZ = EQ ∩ EA is regarded as correlation (we
refer to it here as correlation entities). In consideration of the creative and unexpected of humor and
the existence of causal relationships between questions and answers, EZ may be pseudo-correlation
entities between EQ and EA such as puns (i.e. EZ → EQ, EZ → EA and EQ → EA), and it also
can be EQ → EZ → EA as shown in Figure 12. Obviously, it can be concluded that EZ is pivotal
to realize the multi-hop of the humor reasoning path. Therefore, we construct the causal relation
Rc to a verbal description as shown in Table 6 which contains the correlation entities EZ either
explicitly or implicitly. Finally, our goal is to expand the scope of EQ and EA, and utilize the causal
relationship to structure the reasoning path. It is beneficial to mitigate the information insufficiency
issue to further realize humor reasoning.

Figure 2: The details of judgement-oriented instructions templates.

The overall training framework is illustrated in Figure 4. In the first process (supervised fine-tuning
(SFT)), we randomly initialize a LoRA model. And we train the model with single-turn question-
answer format data and muti-turn question-answer format data. In the second process (Direct Pref-
erence Learning (DPO)), the first stage model serves as ref model, and it is frozen as judgement
model. The tunable model is trained with preference question-answer data to assist the model in
logic reasoning and human preferences learning.

2.2 DIVERSE INSTRUCTION EXPANSION AND TUNING

To stimulate the judgement capability of a model, we design the judgement-oriented template by hu-
man as shown in Figure 2. And we further improve the judgement capability through strengthening
the understanding capability. For that we expand a simplex instruction to open-domain instructions
of a dialogue to unleash the potential of LLMs as shown in Figure 3. (Luo et al., 2023; Zhu et al.,
2023; Xu et al., 2023)

Judgement Template Design. Regarding humor judgement, we designed multiple-choice ques-
tions based on the dataset introduced in Section 3.1 to enhance the humor judgement ability of
LLMs, specifically the selection skill. Additionally, since the dataset includes human preference
annotations, such as the number of ’likes’ voted among multiple candidate responses, we designed
ranking questions to improve another discrimination skill, namely ranking ability. Based on these
two foundational skills, we designed various enhancement tasks to improve the model’s judgement
ability of humor.
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For multiple-choice questions in Figure 2(a), we introduce dataset-specific processing methods (see
Section 3.1) and adapt them to the ”task-specific prompt”. For ranking ability in Figure 2(b), we
construct them exclusively using data with user preferences. These tasks require the LLM to order
multiple responses to a given question based on human preferences. By training on both multiple-
choice and ranking task, we enable the LLM to identify humorous responses and align with human
preferences, thereby enhancing its ability to discriminate, select, and rank humorous content.

In addition, we created another two tasks to enrich judgement instructions, further enhancing the
model’s judgement capabilities.

(1) Answer Rewrite (template in Figure 2(c)). Transforming a non-humorous statement into a hu-
morous expression. And the format is in the form of a round of dialogue.

(2) Teacher-Student Model Prompt Loop (template in Figure 2(d)). We utilized two GPT-4o mod-
els, designating one as the teacher and the other as the student. The teacher provides prompts
based on the given question and the ideal response. The student generates an answer using both the
teacher’s prompts and the original question. If the student’s response does not align with the original
witty response in terms of logic and humor, the teacher supplies additional prompts; otherwise, the
prompting process ends. After a maximum number of attempts, the student’s response is accepted
as the ground truth, and the teacher replies, ”Congratulations, you got it right.” At any intermedi-
ate stage, the teacher provides negative feedback if the student’s answer is incorrect. So multi-turn
question-answer data are output by this system, and the part of calculating loss is the judgment made
by the teacher and the hint given.

Figure 3: Overall architecture of Automatic Instruction Expansion.

Automatic Associate Instruction Expansion. To empower LLMs with reasoning ability to under-
stand humor, rather than just memorizing some patterns. we involves the thinking process behind
humor by automatic prompt expansion method to deepen and broaden the comprehension of a dia-
logue. Further, concepts that do not normally appear in context appear in each other’s context in this
approach, thus strengthening the model’s relationship to the different concepts.

Given a dataset D = {(q0k, a0k)}Nk=0, where q0k is a question, a0k is a funny answer, and N is the
number of the samples. I = {Ik|Ik = (q0k, a

0
k, i

0
k)}Nk=0 is prompts to be expanded, where i0k is an

instruction for understanding the conversation (q0k, a
0
k). y

0
k ∈ Yk is the reply to i0k and e0 is the initial

rule to make instructions complicated as shown in Figure 7. The framework in Figure 3 shows the
process of prompts expansion to augment knowledge and involves three agents, each playing the
roles of rewriter, imaginator, and analyst. Here’s how the process works:

1.Rewriter Agent (GPT-4o): Given a conversation (q0k, a
0
k) and an instruction i0k, such as ”What is

the punchline of this response?”, the rewriter agent transforms it into a more informative version I1k
based on an initial rule e0. And then the agent provides a reply y1k based on the complex version of
the instruction.

2.Imaginator Agent (GPT-4o): The imaginator agent then takes the more informative I1k and the
reply y1k to imagine a new conversation (q1k, a

1
k). The imagined conversation is going to make a shift

on story line and explore the boundary of the entity scope.

3.Analyst Agent (GPT-4o): Modern LLMs trained with ruozhiba are capable of understanding humor
and abnormal logic. This process follows the paradigm of rejection sampling that leverages Imagi-
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nator Agent to generate diverse imaginations and Analyst to provide accurate judgements. Finally,
both the original conversation (q0k, a

0
k) and the imagined conversation (q1k, a

1
k) are sent to the analyst

agent. The analyst agent evaluates ”whether the two conversations express the same viewpoint or
punchline?”. If they do, the interaction between the agents ends. If not, the analyst applies a second
criterion: ”Is the instruction i1 more complex than the initial instruction i0?” If the answer is ”yes,”
the original conversation is replaced with the imagined conversation and sent back to the rewriter,
allowing the three agents to continue their interaction based on the imagined conversation. If the an-
swer is ”no,” the analyst agent formulates a more complex rule e1 and sends it to the rewriter. This
process continues until the imagined and conversations in last round express different viewpoint or
punchline, or until a maximum number of communication rounds mk is reached.

Finally, the system outputs multi turn question-answer data which format is
{(q0k, a0k), (I0k , y0k), . . . , (q

mk

k , amk

k ), (Imk

k , ymk

k )}Nk=0, where mk is the maximum number of
communication rounds between the three agents. Finally, all above human-designed and automatic
expanding data are sent to train a LoRA model.

Figure 4: Network architecture of training frame.

2.3 GUIDE EXPLORATION AND SELF-IMPROVEMENT TUNING

In the previous section, we developed the model with judgement and understanding capability. To
enhance the graph’s interpretability, we incorporate additional causal principles through online Di-
rect Preference Optimization (DPO) (Rafailov et al., 2024).

The algorithm details are provided in Algorithm 1. We start with an initial offline preference dataset
without rationales, D0 = {(qi, a+i , a

−
i )}Mi=0, where M is the training data number, and the model

trained with DIET is made into two copies, one of which is frozen to produce pair data for online
data augmentation π∗. And another is trained with more robust generative capability π.

During training, the policy model π is trained with D0 for a few steps. Every N
TP

steps, the model
π selects l questions from D0 to generate two answers. And then, the judgement model π∗ de-
cides which one is the more humorous one, so that new pairwise data are generated and mix them
into training dataset. Additionally, an expert (GPT-4o) in causal reasoning provides a rationale for
each answer in relation to the question (see Appendix A.3 for details). This process expands the
preference dataset to D = D0 ∪ D̃, where D̃ = {(q, ã+, ã−, r̃+, r̃−)}.

3 EXPERIMENTS

In this section, we first construct a humor-related dataset in both Chinese and English, organize
it into an appropriate format, and evaluate the performance of our method by comparing it with
multiple large language models (LLMs) through various validation experiments.

3.1 DATASET AND TASK

Datasets. Currently, there is limited data on humor-focused question-answer pairs. To enrich the
English dataset, we collected various humor-related datasets, including short jokes and headline
wordplays. We compiled English humor data from three sources—Oogiri-GO, SemEval 2020, and
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SemEval 2021—and organized them into the required format as described below. Chinese data is
from human voting game.

(1) Oogiri-GO (Zhong et al., 2024). In the ”Oogiri game”, participants need to give unexpected and
humorous responses to given images, text, or both. This game requires a sudden burst of insight
and strong associative thinking for the given context, and provides an ideal platform for evaluating
the “Leap-of-Thought” (LoT) ability of large language models. Similar to the processing method of
CLoT, we randomly select 95% of the samples to construct the training dataset, and the remaining
5% form the test dataset for validation and analysis.

(2) SemEval-2021 Task 7 Meaney et al. (2021). This dataset contains labels and ratings collected
from a balanced age group ranging from 18 to 70 years old. The data relevant to our purpose
includes: Humor Discrimination: Whether the text would be considered humorous (for an average
user). This is a binary label. Humor Rating: If the text is classified as humorous, predict its degree
of humor (for an average user). The values vary between 0 and 5.

(3) SemEval-2020 Task 7 (Hossain et al., 2020a). The dataset of this task contains news headlines
in which short edits have been made to make them funny. The funniness of these edited headlines
is rated through crowdsourcing. This task includes two subtasks. The first subtask is to estimate
the funniness degree of headlines on a humor scale ranging from 0 to 3. The second subtask is to
predict, for two edited versions of the same original headline, which one is the funnier version.

(4) Chinese Data. We collect data from varied humor generation games such as Origi-GO. In these
games, a question gains many responses from human and these responses are ranking by human
voting. We select response with different votes numbers to construct choices. Easy case is formed
by responses with large disparity. Hard case is formed by small difference votes’ responses. And
with develop of options’ number, the gap between options will shrink.

Tasks. Inspired by the task design in CLoT(Zhong et al., 2024), we develop multiple choice ques-
tions of varying degrees of difficulty are used to test the judgement ability of the model. There are
varying difficulty levels in the dataset, and it is variation primarily reflected in the choice options. We
collect data from varied humor generation games such as Origi-GO. In these games, a question gains
many responses from human and these responses are ranking by human voting. We select response
with different votes to construct choices. Easy case is formed by response with large disparity. Hard
case is formed by small difference votes’ response. And with develop of options’ number, the gap
between options will shrink. Finally, we clarify that we randomly shuffle the options in training and
validate sets. Abbreviated as mTn, these questions require LLMs to select n humorous responses
from m options given an input. Here, we construct four types of mTn questions, including 2T1,
3T1, 4T1, and hard case 2T1. 2T1 represents two options, namely the response with the highest
votes and the response with the lowest votes. The hard case 2T1 is a choice between responses
with relatively close votes. 3T1 and 4T1 add responses with intermediate votes respectively. For
these questions, their difficulty gradually increases and they are diverse to ensure comprehensive
evaluation. The top-1 accuracy is the evaluation metric.

3.1.1 IMPLEMENTATION DETAILS

Our model is fine-tuned based on QWEN1.5-32B-Chat Bai et al. (2023) with fine-tuning method
LoRA Hu et al. (2021) on 8 A100 GPUs. For the first stage, we train the model on the 95% of
dataset mentioned above for 6 epochs with AdamW optimizer and the learning rate of 3e− 4. In the
second stage, 5% of the dataset are used to train GESIT for 3 epochs with AdamW optimizer and
the learning rate of 2e− 4. The models are tested in the tasks introduced in previous part. And more
parameters used in generation are list in Table 8.

3.2 RESULTS ANALYSIS

Evaluation by Choice Questions in English Tasks. The top-1 accuracy of completing each se-
lection task and show the performance of several models in Table 2. Overall, compared with open-
source language models including LLAMA3 and QWEN, the state-of-the-art closed-source large
language models show impressive zero-shot performance on humor discrimination and rank tasks.
By training on the English task instruction data designed by us, our model CLoST has a significant
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Table 2: The accuracy (%) of choice questions on various Algorithms in English benchmarks.

Model
SemEval 2021 SemEval 2020 Oogiri-GO

2T1 2T1(hard) 3T1 4T1 2T1 2T1
GPT 4o 85.09 60.77 43.71 34.63 55.08 85.09

LLAMA3
8B 43.85 54.23 39.81 29.57 59.93 72.05

70B 93.60 58.08 39.81 31.82 60.73 88.51

QWEN1.5
7B 62.04 52.02 31.54 24.89 50.46 36.65

14B 82.05 51.04 30.92 24.24 50.38 53.73
32B 68.01 52.57 35.38 28.79 56.39 68.01

QWEN2
7B 56.55 50.63 32.31 23.38 50.08 62.11

57B 83.30 52.02 37.08 28.79 48.29 48.14
QWEN2.5 32B 94.00 55.22 34.77 27.92 58.71 81.68
Baichuan2 13B 51.70 52.71 35.69 24.24 51.45 50.00

CLoT 52.49 51.74 34.46 23.59 53.50 52.49
OURS 32B 96.58 57.45 48.06 35.90 64.57 97.20

improvement compared with other models (such as LLAMA3-70B and GPT-4o) (with an average
accuracy in diverse English benchmark increase of 4.55% and 5.91%).

Evaluation by Choice Questions in Chinese Tasks.

We also evaluate the accuracy rate (acc%) of completing each selection task in Chinese and show
the performance of several models in Table 1. Overall, compared with open-source language mod-
els including LLaMA3 and QWEN, the state-of-the-art closed-source large language models show
impressive zero-shot performance on humor discrimination and rank tasks. By training on the Chi-
nese task instruction data designed by us, the CLoST has a significant improvement compared with
other models (such as GPT-4o) (with an average accuracy in diverse Chinese benchmark increase of
16.22%).

Table 1: The accuracy (%) of choice questions on
various Algorithms in Chinese benchmarks.

Model
Chinese Benchmark
2T1 2T1(hard)

GPT 4o 64.98 63.49

LLAMA3
8B 50.72 57.44
70B 59.48 61.22

QWEN1.5
7B 54.82 51.71
14B 53.45 57.41
32B 52.71 56.27

QWEN2
7B 51.99 58.17
57B 65.91 57.03

QWEN2.5 32B 61.53 60.46
Baichuan2 13B 50.56 53.61

Oogiri-GO-ch 52.12 34.46
OURS 32B 90.95 69.97

Evaluation on Creative Task. To evaluate the
associative generalization capability of CLoST,
we tested it on a creative task known as the Di-
vergent Association Task (DAT) (Olson et al.,
2021). DAT is a classic creativity test that re-
quires participants to select words with large
semantic distances from a set of 10 unrelated
nouns. In the Chinese creativity test, we uti-
lized Chinese Word Vectors (Li et al., 2018)
to calculate the DAT score. First, we provided
specific words and asked the model to generate
associations and imaginations, resulting in 10
associated words. We then used these 11 words
to calculate the DAT score. Additionally, we
tested how the model’s DAT score varied as the
number of test words increased. It can be seen
that as the number of words increases, the DAT
score also tends to stabilize. It can be seen from
the average of each domain that CLoST has the
highest score after stabilization. As shown in
Figure 5, CLoST has a slight improvement in
performance on the mean value of DAT com-
pared to Qwen1.5-32B and GPT-4o.

Furthermore, we utilize T-SNE to project the embedding vectors of these words into a two-
dimensional space. Figures 5(a) and (b) position the target word at the center and draw a circle
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Table 3: Ablation on English benchmarks.

Model
SemEval 2021 Oogiri-GO-en

2T1 2T1(hard) 3T1 4T1 2T1
QWEN1.5-32B 68.01 52.57 35.38 28.79 68.01
Oogiri-GO+Figure
2(c)

55.12 53.27 33.54 27.49 81.68

Oogiri-GO+Figure
2(c,d)

89.70 50.28 30.46 17.32 95.96

Oogiri-GO+AAIE 88.40 50.07 30.92 19.48 96.58
ALL+Figure 2(c,d) 92.25 52.81 37.46 30.26 96.27
ALL+AAIE(DIET) 94.25 53.10 45.46 32.26 97.20

with a radius equal to the Euclidean distance between the target word’s embedding and that of the
farthest associated word. Figures 5(c) and (d) illustrate the embedding vectors of five target words
and their associated words, with different colors representing different target vectors. A larger circle
indicates a broader semantic range for the target word, suggesting a greater number of associated
words. In both tests, CLoST demonstrates an advantage.

(a) (b)
(c) (d)

Figure 5: Divergent associate thinking (DAT) validate. (a). DAT score compared among CLoST and
three baselines (b). DAT score compared among different component of CLoST (c). TSNE Results
of Word Vectors Obtained by QWEN1.5-32B Associating Five Target Words. (d). TSNE Results of
Word Vectors Obtained by CLoST Associating Five Target Words.

(a) (b) (c)

Figure 6: (a) GPT-4 and GPT-4o logically evaluates the output of the model after DIET and CLoST
respectively. (b). Human evaluation about the win rate statistics based on the problem dimension.
(c). Human evaluation about the win rate based on the total number of votes received by the four
LLMs.

Human Evaluation We conduct a user preference study to test creativity and humor of LLMs. Here
we select four LLMs to generate responses for a total of 200 text questions. We present question and
several corresponding replies, and ask users to choose the most creative and humorous responses.
Figure 6(c) summarizes the statistical analysis of 3000 valid surveys. Figure 6(b) shows the win
rate calculated based on the dimension of the problem. The results show that users have a strong

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

inclination towards selecting the results of CLoST, highlighting the high-quality creative content
generated by CLoT. See more user study details in Appendix.

Ablation Study

Table 4: Ablation on Chinese benchmarks.

Model
Chinese Benchmark
2T1 2T1(hard)

QWEN1.5-32B 52.71 56.27
+Figure 2(c) 63.56 63.88

+Figure 2(c)(d) 83.62 64.64
+AAIE (DIET) 90.34 64.64

We examine the ablation effects of different compo-
nents in CLoST and report the performance results in
Table 3 and Table 4. In Table 3, line 1 is the perfor-
mance of QWEN-1.5-32B. Line2-4 show the perfor-
mance of gradually adding method on Oogiri-GO-en
dataset. The results show that with the increase of
tasks, especially in the teacher-student system, the per-
formance of judgment is improved. AAIE on Oogiri-
GO-en only makes the performance decrease little.
It may be cause by overfitting to the divergence of
thought on Oogiri-GO-en. Line 5-6 shows all dataset
with introductory part method are used to trained the
model and realize further increase.

To evaluate the performance of GESIT, which primarily enhances the model’s causal and logical
reasoning capabilities (i.e., the ability to relate to internal contexts), we enlisted three experts to
assess the logical coherence of responses on 200 examples from GPT-4o, GPT-4 and QWEN2-57B,
respectively. The experimental results shown in Figure 6(a) demonstrate that incorporating GESIT
significantly strengthens the logical reasoning in the model’s answers. In addition, the DAT test is
conducted on ablation study in Figure 5(b), which shows that AAIE enhance the divergent associate
thinking ability.

4 RELATED WORKS

Large Language Models (LLMs) and Their Creativity. Recently, language models (Bai et al.,
2023; Wang et al., 2023; Liu et al., 2024; Chen et al., 2023) have garnered widespread attention
due to their impressive reasoning capabilities (Wang et al., 2023; Saparov & He, 2022; Zeng et al.,
2022; Driess et al., 2023; Dong et al., 2023; Ye et al., 2023; Liang et al., 2024). Additionally, an
increasing number of studies are focusing on exploring the creativity of LLMs (Ling et al., 2023;
Summers-Stay et al., 2023; Sun et al., 2023b; Bhavya et al., 2023), with applications in fields such
as scientific discovery (Park et al., 2023; Kang et al., 2022; Hope et al., 2022; Liang et al., 2022;
Huang et al., 2023) and creative writing (Swanson et al., 2021; Chakrabarty et al., 2022; Wu et al.,
2022; Mirowski et al., 2023; Dang et al., 2023).

Computational humor is a branch of computational linguistics and artificial intelligence that uti-
lizes computers to study humor (Binsted et al., 2006). It encompasses various tasks, including hu-
mor discrimination (Shahaf et al., 2015; Tanaka et al., 2022; Xu et al., 2022; Chen & Zhang, 2022;
Kumar et al., 2022; Wu et al., 2021; Ofer & Shahaf, 2022; Xie et al., 2023; Meaney et al., 2021;
Hossain et al., 2020a), humor interpretation (Hwang & Shwartz, 2023; Evans et al., 2019; Vásquez
& Aslan, 2021), and humor generation (Amin & Burghardt, 2020; Zhang et al., 2020; Hossain et al.,
2020b; Valitutti et al., 2013; Chaudhary et al., 2021). With the advancements in generative LLMs,
humor generation has become a hot focus. However, humor generation still faces challenges such
as insufficient punchlines (Popova & Dadic, 2023).

Chain-of-thought prompting methods provide models with a ”chain of thought” (Kojima et al.,
2022; Wei et al., 2022; Zhang et al., 2022; Yao et al., 2024; Long, 2023), which are reasoning
examples (Wei et al., 2022), or a simple prompt like ”let’s think step by step” (Kojima et al., 2022),
to encourage LLMs to engage in reasoning rather than just providing direct answers (Huang &
Chang, 2022).

Instruction tuning has emerged as a key strategy for unlocking the potential of large language
models (LLMs). By curating high-quality datasets, we can more effectively align these models with
desired behaviors (Zhou et al., 2024). However, the challenge of expanding high-quality instruction
data remains a central research focus. Some researchers prioritize human annotation to create in-
struction data, as seen in projects like OpenAssistant (Köpf et al., 2024). (Zeng et al., 2024; Xu et al.,
2023) explore more efficient methods such as iterative approach for optimizing instruction-following
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data, generating more complex and diverse datasets, to surpass the quality limits of existing datasets
in math and code problems. Since the content of the conversation varies widely, it is difficult to
apply uniform rules to complicate the explanation. Therefore, the above approach may not work.

Preference Optimization. Aligning instruction-tuned language models with preference data has
been shown to improve performance in both proprietary (Ouyang et al., 2022; Touvron et al., 2023)
and open-source models. To facilitate further research, several preference datasets have been re-
leased recently (Bai et al., 2022; Cui et al., 2023). Algorithmically, simpler variants of standard
Reinforcement Learning from Human Feedback (RLHF) have been proposed, such as reward-free
methods that directly optimize using initial preference data (Rafailov et al., 2024; Azar et al., 2024;
Ethayarajh et al., 2024) and iterative updates of preference data with gold annotators (Guo et al.,
2024; Touvron et al., 2023). Alternative annotation strategies include using learned reward models
(Zhao et al., 2023; Liu et al., 2023; Calandriello et al., 2024) or leveraging the policy model itself for
preference labeling (Lee et al., 2024; Yuan et al., 2024). (Ahmadian et al., 2024) studied more stable
reinforcement learning algorithms. However, these methods either ignore the distribution shift of
policy models and its impact on reward model performance or rely entirely on expensive gold anno-
tations during training. Our work bridges this gap by introducing a cost-effective method to prevent
reward model degradation during policy training.

4.1 CONCLUSION

In this paper, we propose the Creative Leap of Structured Thought (CLoST) method to enhance the
generation capabilities of large language models (LLMs). CLoST begins with transforming humor
datasets into instruction-tuning data to train LLMs, thereby improving their LoT and judgement abil-
ities. Subsequently, CLoST employs Guided Explorative Self-Improvement, which enables LLMs to
generate more creative structured thought data through an understanding of rationales and to select
high-quality data for self-refinement training. Experimental results demonstrate the effectiveness
and generalization ability of CLoST across various tasks, including witty response generation and
humor discrimination.
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Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning from human
feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Miriam Amin and Manuel Burghardt. A survey on approaches to computational humor generation.
In Proceedings of the 4th Joint SIGHUM Workshop on Computational Linguistics for Cultural
Heritage, Social Sciences, Humanities and Literature, pp. 29–41, 2020.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learn-
ing from human preferences. In International Conference on Artificial Intelligence and Statistics,
pp. 4447–4455. PMLR, 2024.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
ization, text reading, and beyond. 2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Bhavya Bhavya, Jinjun Xiong, and Chengxiang Zhai. Cam: A large language model-based creative
analogy mining framework. In Proceedings of the ACM Web Conference 2023, pp. 3903–3914,
2023.

Kim Binsted, Anton Nijholt, Oliviero Stock, Carlo Strapparava, G Ritchie, R Manurung, H Pain,
Annalu Waller, and D O’Mara. Computational humor. IEEE intelligent systems, 21(2):59–69,
2006.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Daniele Calandriello, Daniel Guo, Remi Munos, Mark Rowland, Yunhao Tang, Bernardo Avila
Pires, Pierre Harvey Richemond, Charline Le Lan, Michal Valko, Tianqi Liu, et al. Human
alignment of large language models through online preference optimisation. arXiv preprint
arXiv:2403.08635, 2024.

Tuhin Chakrabarty, Vishakh Padmakumar, and He He. Help me write a poem: Instruction tuning as
a vehicle for collaborative poetry writing. arXiv preprint arXiv:2210.13669, 2022.

Tanishq Chaudhary, Mayank Goel, and Radhika Mamidi. Towards conversational humor analysis
and design. arXiv preprint arXiv:2103.00536, 2021.

Chengxin Chen and Pengyuan Zhang. Integrating cross-modal interactions via latent representation
shift for multi-modal humor detection. In Proceedings of the 3rd International on Multimodal
Sentiment Analysis Workshop and Challenge, pp. 23–28, 2022.

Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman
Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large
language model as a unified interface for vision-language multi-task learning. arXiv preprint
arXiv:2310.09478, 2023.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023.

Hai Dang, Sven Goller, Florian Lehmann, and Daniel Buschek. Choice over control: How users
write with large language models using diegetic and non-diegetic prompting. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–17, 2023.

Ton De Jong and Monica GM Ferguson-Hessler. Types and qualities of knowledge. Educational
psychologist, 31(2):105–113, 1996.

Runpei Dong, Chunrui Han, Yuang Peng, Zekun Qi, Zheng Ge, Jinrong Yang, Liang Zhao, Jianjian
Sun, Hongyu Zhou, Haoran Wei, et al. Dreamllm: Synergistic multimodal comprehension and
creation. arXiv preprint arXiv:2309.11499, 2023.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. arXiv preprint arXiv:2303.03378, 2023.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Jonathan B Evans, Jerel E Slaughter, Aleksander PJ Ellis, and Jessi M Rivin. Gender and the
evaluation of humor at work. Journal of Applied Psychology, 104(8):1077, 2019.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from
online ai feedback. arXiv preprint arXiv:2402.04792, 2024.

Tom Hope, Ronen Tamari, Daniel Hershcovich, Hyeonsu B Kang, Joel Chan, Aniket Kittur, and
Dafna Shahaf. Scaling creative inspiration with fine-grained functional aspects of ideas. In Pro-
ceedings of the 2022 CHI Conference on Human Factors in Computing Systems, pp. 1–15, 2022.

Nabil Hossain, John Krumm, Michael Gamon, and Henry Kautz. SemEval-2020 task 7: As-
sessing humor in edited news headlines. In Aurelie Herbelot, Xiaodan Zhu, Alexis Palmer,
Nathan Schneider, Jonathan May, and Ekaterina Shutova (eds.), Proceedings of the Fourteenth
Workshop on Semantic Evaluation, pp. 746–758, Barcelona (online), December 2020a. Interna-
tional Committee for Computational Linguistics. doi: 10.18653/v1/2020.semeval-1.98. URL
https://aclanthology.org/2020.semeval-1.98.

Nabil Hossain, John Krumm, Tanvir Sajed, and Henry Kautz. Stimulating creativity with funlines:
A case study of humor generation in headlines. arXiv preprint arXiv:2002.02031, 2020b.

11

https://aclanthology.org/2020.semeval-1.98


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403, 2022.

Zhongzhan Huang, Senwei Liang, Hong Zhang, Haizhao Yang, and Liang Lin. On fast simulation of
dynamical system with neural vector enhanced numerical solver. Scientific reports, 13(1):15254,
2023.

EunJeong Hwang and Vered Shwartz. Memecap: A dataset for captioning and interpreting memes.
arXiv preprint arXiv:2305.13703, 2023.

Hyeonsu B Kang, Xin Qian, Tom Hope, Dafna Shahaf, Joel Chan, and Aniket Kittur. Augmenting
scientific creativity with an analogical search engine. ACM Transactions on Computer-Human
Interaction, 29(6):1–36, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.
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A APPENDIX

A.1 TRAINING AND EXPERIMENT DETAILS

Training pipeline:
CLoST takes a two-stage training strategy. In the first process (supervised fine-tuning (SFT)), we
randomly initialize a LoRA model. And we train the model with single-turn question-answer format
data (data from Figure 2(a)(b)(c)) and muti-turn question-answer format data (data from Figure 2(d)
and AAIE). In the second process (Direct Preference Learning (DPO)), the first stage model serves
as ref model, and it is frozen as judgement model. The tunable model is trained to improve the
reasoning generation capability. At the beginning of stage 2, only preference question-answer data
without rationale is fed into the tunable model for training. After several steps, the rationale for each
online generated response is extracted using GPT-4o and the preference question-answer data with
rationles are mixed into the original dataset. And in each batch, the ratio of ’w’ and ’w/o’ rationale
is 1 : 1.

Experiments details:

Table 5: Parameters in Validate
temperature top k top p length penalty

1 50 1.0 1.0

A.2 DETAILS IN DIET

To illustrate the challenges encountered during the data evolution process, we designed an initial
prompt (Table 11 line 1) for empirical analysis. This prompt was subsequently evolved using the
initial evolution rule (Figure 7), resulting in the evolved prompt shown in Table 11 line 2-3. From
initial evolution method, it does not fully account for the inherent information of the evolved in-
structions, leading to incomplete answers that lack necessary background information and fail to
consider factors such as social culture and psychological theory.

In addition, if the prompt will not be going to more informative, and then the evolution rule will
change for example in Figure 8 form Analytic Agent. In this figure, the blue elements represent the
evolution method after the first correction, and the red elements represent the method after the second
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correction. This enhanced approach ensures more comprehensive and contextually aware responses,
thereby fostering deeper and broader understanding and more effective divergent thinking.

Finally, if the evolution based on original conversation is standstill, and then the system allows for
deep understanding and divergent thinking about imagined conversations. Modern LLMs trained
with ruozhiba are capable of understanding humor and abnormal logic. This process follows the
paradigm of rejection sampling that leverages Imaginator Agent to generate diverse imaginations
and Analyst to provide accurate judgements.

There are two examples in Table 9 - Table 14. Table about example 1 is end up with the rule that
prompt did not become more informative over two rounds. Table about example 2 is end up with the
rule that the imagined conversation is make a shift about the punchline or core idea from original
conversation.

Figure 7: Initial Evolution Method.

Figure 8: Complex Evolution Method.

A.3 DETAILS IN GESIT

GESIT develops an online DPO training frame with rationales to reinforce the reasoning ability. The
template is shown in Table 6. And the training frame is shown in Algorithm 1.
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Algorithm 1 Algorithm of GESIT

Input: Policy model π, Discriminator π∗, Preference dataset D0 = {(qi, a+i , a
−
i )}, Expert E.

Output: Finetuned policy model π
1: D̃ ← {}, Dk ← D0, k ← 0,
2: for each t ∈ N do
3: sample (q, a+, a−) ∈ Dk

4: π ← π +∇LDPO(π, (q̃, a
+, a−)) {DPO training on origin dataset.}

5: if mod(N/TP ) = 0 then
6: sample q̃ ∈ Dk {Randomly sample questions form origin dataset.}
7: ã1, ã2 ← π(q̃), π(q̃) {π outputs new responses to sampled questions.}
8: ã+, ã− ← π∗(q̃, ã1, ã2) {π∗ judges both responses as positive and negative samples.}
9: r̃+, r̃− ← E(q̃, ã+), E(q, ã−) {E outputs rationales for responses.}

10: D̃ ← {q̃, ã+, ã−, r̃+, r̃−}
11: Dk+1 ← Dk ∪ D̃ {New data are added into dataset to train.}
12: end if
13: end for
14: return π

Table 6: Rationale Showcase.
Prompt How do you think about Shandong Airlines? Answer: I took it once

before. It arrived an hour ahead of schedule. Now I have been di-
vorced for three years. Please summarize the key words in the ques-
tion and answer around the core points of the conversation. And please de-
scribe the correspondence and causal relationship between thekey words in the ques-
tion and the key words in the answer, as well as the causal relationship be-
tween the key words in the answer. If there is no direct causal relationship be-
tween the two keywords, pleaseadd the full story in the middle to make it logically co-
herent and have a causal relationship. Please output strictly in the following format:
Keywords: ; The causal relationship between [the second keyword] and [the first key-
word] is: ;...

Answer Keywords: Shandong Airlines; took it once; arrived an hour ahead of schedule; di-
vorced for three years. The causal relationship between [took it once] and [Shandong
Airlines] is: Because the passenger chose Shandong Airlines, so he took a flight of
Shandong Airlines once. The causal relationship between [arrived an hour ahead of
schedule] and [took it once] is: Because the passenger took a flight of Shandong Air-
lines once, so he experienced the situation that the flight arrived an hour ahead of
schedule. The causal relationship between [divorced for three years] and [arrived an
hour ahead of schedule] is: Because the flight arrived an hour ahead of schedule, the
passenger returned home early and accidentally discovered the infidelity of his spouse,
which led to the breakdown of marriage and finally being divorced for three years.

A.4 GENERATION SHOWCASE

The reasoning algorithm is shown in Algorithm 2, there are a set of instructions containing ’humor’,
’interesting’ or ’creative’, and we randomly choose n instructions and the model generate n different
answers. The model’s judgement ability is helpful to select the most humorous one. The process
and results show that the model’s performance will not be constrained by a specific template.
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Algorithm 2 Inference Step of CLoST
Input: Questions Q, CLoST-trained LLM π′, response number n, different prompts P shown in

Figure 9.
Output: The most funny response A

1: Select n Prompts Psub from P
2: {Ai}ni=0 ← π′(Q,Psub) {π′ output candidate responses through Psub.}
3: Abest ← π′(Q, {Ai}ni=0) {π′ as judgement model to select the most funny answer.}
4: return Abest

Figure 9: Generation Prompts of CLoST.

Figure 10: Chinese Showcases.

Failure showcase and Analysis
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Figure 11: English Showcases.

Figure 12: Backdoor and Frontdoor criterion examples of humor generation.

The creativity is uneven, and the creativity shown in the samples of training dataset varies widely.
For example, in case 1, the response from CLoST is an internet meme and the response from better
one using a Chinese proverb to compare. In terms of creativity, the latter have broader hands. In

Table 7: Failure case based on user votes
Question failure case better than clost (from human)
What’s your relation-
ship like now?

Had a child. We are like the weather forecast, some-
times sunny, sometimes rainy, forecasts
can never keep up with changes.

Why does knowing
too much make one
an orphan of the
world?

Because smart peo-
ple always find it dif-
ficult to find com-
panions, either to be-
come rivals, or to be
regarded as rivals.

Because knowing too much makes the
world too small.
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case 2, a shorter and antithetical answer is more witty. There are no failure examples, only in some
people’s preferences, it is not humorous.

A.5 THE DETAILS OF USER STUDY

We conduct a human evaluation to validate CLoST’s performance in humor generation. We choose
the first 200 samples in the validation split of the Ruozhiba dataset1 and the method mentioned
above is to make the query into questin-answer pair. Then four LLMs generate responses to each
question as four options. Then, we conduct a user preference study to directly verify the creativity of
the LLMs. We present question and several corresponding replies, and ask users to choose the most
creative and humorous responses. We select four advanced LLMs to generate responses for a total
of 200 questions, and the four responses from the four distinct LLMs are randomly permuted in the
options. We conduct an extensive survey through an online survey platform2, ultimately collecting
15 valid questionnaires with 3000 votes. Within these collected questionnaires, we calculate the
proportion of times each LLM is selected for each question. Finally, we aggregate the total number
of times each LLM is chosen across all validation samples, as shown in Figure 6(c). The ratio of this
sum to the overall number of selections among all LLMs signifies the user preference for each LLM.
Also we calculate the win rate based on the dimension of the problem as shown in Figure 6(c).

Table 8: Humor judgement under ruozhiba dataset
CLoST GPT-4o QWEN1.5-32B CLoT
95.35 76.40 68.85 50.20

1https://github.com/Leymore/ruozhiba/tree/main?tab=readme-ov-file
2https://www.wjx.cn/
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Table 9: The conversation example 1 form AAIE
Question Answer
What emperor can’t
abandon his harem
for someone he
loves?

If you have raised more than 5 cats, you will understand that love and
heart labor, harem has no reason to speak, and mud is the best choice...

Why is it so hard for
a emperor to manage
a harem?

The emperor’s management of the harem is like raising a group of cats,
each with its own temper and personality. Although the emperor’s posi-
tion is supreme, the harem system is complex, and the concubines com-
pete for favor like cats compete for the attention of their owners. The
emperor could not pet just one cat, because it would upset the balance
of the whole herd. The idiom ”love bo, but the heart is hard” vividly
describes the emperor’s heart and energy caused by the care of many
concubines, while ”He mud” illustrates the helpless measure of recon-
ciling contradictions in a complex situation. Finally, the ”facemask”
expression expresses helplessness and humor in network culture, which
further enhances the funny effect of the answer. The emperor really
worried brokenhearted ah!

Why was it so diffi-
cult for the emperors
of ancient China to
manage their harem?

In ancient China, it was difficult for the emperor to manage the harem,
mainly because the harem system was extremely complicated, and there
were many concubines with different personalities and needs. In his-
tory, Empress Wu Zetian became a female emperor through a harem
struggle, and Emperor Wanli of the Ming Dynasty caused a harem strug-
gle because she favored Princess Zheng Guifei, are typical examples.
Power dynamics theory in social psychology also explains this phe-
nomenon, where power imbalances can lead to conflict and discontent.
In addition, literary works such as A Dream of Red Mansions and The
Legend of Zhen Huan vividly depict the complexity of life in the harem.
The emperor has to balance the interests of all parties in the back palace
to avoid intensifying contradictions, just like raising a group of cats with
different temperaments, which is really worried about the heart!

Table 10: The conversation example 2 form AAIE.
Question Answer
At what point did
you feel you should
leave your job?

”Of course, it’s due to physical reasons: my stomach isn’t good, the
pancake is too big, I can’t eat it. My back isn’t good, the pot is too
heavy, I can’t carry it.”

Recently, I always
feel uncomfortable,
especially stomach
problems and low
back pain, probably
because of too many
tasks and too much
pressure. What do
you think?

The physical discomfort you mentioned may indeed be related to work
stress. In many countries, especially in East Asia, long working hours
and high-intensity tasks are common phenomena, and this ”overwork
culture” causes the body to secrete large amounts of stress hormones,
such as cortisol, which affects gastrointestinal function and leads to
stomach problems. At the same time, chronic stress can cause muscle
tension, especially in the lower back muscles, which can trigger lower
back pain. There are also many famous workaholics in history who de-
veloped health problems due to overwork, such as Thomas Edison and
Winston Churchill. In order to maintain physical and mental health, it
is recommended that you pay attention to adjusting the balance of work
and rest, relax properly, and avoid overwork.
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Table 11: Example 1 of gradually increase the prompt of information.
”What emperor can’t abandon his harem for someone he loves? If you have raised more than
5 cats, you will understand that love and heart labor, harem has no reason to speak, and mud
is the best choice....” What’s funny about this answer?
Please explain in detail why the emperor cannot abandon the harem for a beloved? If you
have raised more than 5 cats, you will understand that love and heart labor, harem has no
reason to speak, and mud is the best choice... (Hands face). Please analyze the humor of
this answer from the following aspects: 1. Explain the position of the emperor in history and
the complexity of the harem system. Explain the special status of the ”beloved person” in
the harem and its influence on the emperor. 3. By analogy, explain the similarities between
owning a cat and managing a harem, especially the challenges that come with multiple cats. 4.
Explain the idiom of ”love bo and heart labor” and explain its application in the management
of the harem. 5. Explain in detail the idiom of ”he mud” and explain its role in dealing
with the affairs of the harem. 6. Combined with the historical background, explain why the
emperor can not abandon the harem for a beloved person. 7. Explain the use of the ”facepad”
expression in Internet culture, and explain its role in expressing frustration and humor. 8.
Analyze the humorous elements in the answer and explain the irony and humor.
Please explain in detail why it was so difficult for ancient emperors to manage their harem.
Cultural background: Introduce the harem system in ancient China and other countries, cit-
ing relevant cultural customs and popular culture. For example, what are the similarities
and differences between the harem system in ancient China and the harem system in Japan?
Historical background: The analysis of specific historical events and figures, such as Wu Ze-
tian in the Tang Dynasty and Wanli Emperor in the Ming Dynasty, illustrates the complexity
of the management of the harem. Specific historical events can be cited, such as how Wu
Zetian became an empress through a harem struggle. 3. Scientific principles: Apply social
psychology and power dynamics theory to explain the emperor’s power distribution and in-
terpersonal relationships in the harem. For example, how does the theory of power dynamics
explain power struggles in the harem? 4. Linguistic features: Use idioms, Internet expres-
sions and linguistic features in literary works to enhance the humorous effect of the answer.
For example, how does the idiom ”love a lot, but the heart is hard” graphically describe the
emperor’s situation? 5. Social phenomenon: The analogy of power struggle and family rela-
tions in modern society illustrates the universality of harem management. For example, how
do power struggles in the modern workplace resemble those in ancient harem? 6. Literature
and art: quote A Dream of Red Mansions, Legend of Zhen Huan and other literary works
and TV dramas to analyze their depictions of the life of the harem. For example, how does
the story of Zhen Huan in the Legend of Zhen Huan reflect the complexity of the harem? 7.
Philosophical thought: Explore the views of different philosophical schools on power, man-
agement, balance and other issues to increase the depth of answers. For example, what does
Confucianism think of the emperor’s management in the harem?
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Table 12: The answer from evolutionary prompt example 1.
The joke of this answer is to compare the emperor’s harem to keeping a cat, emphasizing that
managing multiple objects (whether concubines or cats) requires a lot of effort, so ”mixing
mud” is the best option. The analogy creates a sense of humor.
The funny point of this answer is to depict the complexity and helplessness of the emperor’s
management of the harem by analogy with keeping a cat. First, the emperor had a supreme
position in history, but the harem system was complex, involving numerous concubines and a
balance of political power. Although the beloved is special in the harem, the emperor cannot
abandon the entire harem for her, because it will destroy the balance of power. By analogy
with owning a cat, respondents graphically illustrate the challenges of managing multiple
cats (concubines), whose independence and uncontrollability are similar to the competition
and complexity of harem concubines. The idiom ”love bo, but the heart is hard” vividly
describes the emperor’s heart and energy caused by the care of many concubines, while ”He
mud” illustrates the helpless measure of reconciling contradictions in a complex situation.
Finally, the ”facemask” expression expresses helplessness and humor in network culture,
which further enhances the funny effect of the answer. On the whole, this answer, through
the combination of historical background, idioms and Internet culture, vividly shows the
frustration and humor of the emperor’s management of the harem.
The reason why it is so difficult for the emperor to manage the harem must first be seen
from the cultural background. The harem system of ancient China was very complicated
and different from that of other countries. For example, the Japanese harem system had
concubines, but there were far fewer power struggles than in China. This cultural difference
made it more challenging for Chinese emperors to manage their harem. From the historical
background, Wu Zetian of the Tang Dynasty was not only the emperor’s concubine, but also
eventually became the only female emperor in Chinese history through the struggle of the
harem. Her success not only shows the intensity of the struggle in the harem, but also reflects
the difficult situation of the emperor in managing the harem. The emperor Wanli of the Ming
Dynasty, because he favored the Concubine Zheng, triggered a fierce battle in the harem, and
even affected the government. From the perspective of scientific principles, the theory of
power dynamics and interpersonal relations in social psychology can explain the emperor’s
situation in the harem. The power dynamic theory holds that the distribution and use of power
will affect the stability of interpersonal relations. Although the emperor was supreme, in the
face of the different needs and personalities of many concubines, he had to carefully balance
the interests of all parties and avoid exacerbating contradictions. For example, research has
shown that an imbalance of power in a group can lead to conflict and discontent, especially
in the harem. In terms of linguistic features, the idiom ”love bo and heart strain” vividly
describes the emperor’s heart exhaustion caused by the care of many concubines, while ”He
mud” describes the helpless act of reconciling contradictions in a complex situation. The
expression of ”facemask” in the Internet expression expresses helplessness and humor in the
Internet culture, which further enhances the funny effect of the answer. For example, when
the emperor faced the concubines competing for favor, he may feel helpless and can only
”cover his face” to show that he is speechless. In terms of social phenomena, the power
struggle in the modern workplace has many similarities to the ancient harem. Bosses in the
workplace need to balance relationships between subordinates and avoid conflicts caused by
taking sides. This is very similar to the situation of the emperor in the harem. In literature and
art, the Grand View Garden in A Dream of Red Mansions and the battle between the harem
in the Legend of Zhen Huan vividly depict the complexity of harem life and the difficult
situation of the emperor. For example, in the Biography of Zhen Huan, the process of Zhen
Huan’s gradual transformation from an ordinary concubine to an empress is full of intrigues
and struggles, fully demonstrating the complexity of life in the harem. Finally, from the
perspective of philosophical thought, Confucianism emphasizes the ”golden mean”, that is,
to maintain balance in management. However, it was very difficult for the emperor to achieve
this in the imperial palace, because each concubine had its own needs and personalities, and it
was difficult to achieve complete fairness and balance. In short, the emperor’s management of
the harem was like raising a group of cats, each with its own temper and personality. Although
the emperor was supreme, the harem system was complex, with concubines competing for
favor like cats competing for their master’s attention. For example, some cats like to be
spoiled, some cats like to be alone, and some cats like to compete for attention. The emperor
could not pet just one cat, because it would upset the balance of the whole herd. The emperor
is really worried!
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Table 13: Example 2 of gradually increase the prompt of information.
At what point did you feel you should leave your job? Of course, it’s due to physical reasons:
my stomach isn’t good, the pancake is too big, I can’t eat it. My back isn’t good, the pot is
too heavy, I can’t carry it. What is the punchline of the answer?
Please explain in detail why you have been feeling under the weather lately, especially stom-
ach problems and low back pain. Please answer with the following information: 1. Cultural
background: Reference to work culture and stress management methods of different countries
and regions, combined with humor elements in popular culture. 2. Historical background:
References to famous workaholics or historical figures with health problems caused by work
stress. 3. Scientific principles: Explain the effects of stress on the body, especially on the
stomach and waist, citing medical research. 4. Linguistic features: Use idioms, proverbs and
humorous expressions to enhance the interest and cultural depth of the answers. 5. Other
relevant in-depth information: Combining psychological and sociological theories to explain
the impact of work stress on psychological and social relationships.

Table 14: The answer from evolutionary prompt example 2.
The joke of this answer is the use of metaphors and puns. Respondents used ”bad stomach,
cake is too big, can not eat” and ”bad waist, pot is too heavy, can not move” to express the
image of work pressure, heavy tasks, their own unbearable situation.Comparing work tasks
to ”pancakes” and ”pans”, graphically indicating that the task is too heavy.On the surface, it
is a physical health problem (bad stomach, bad waist), in fact, it is to express the frustration
of work pressure and burden.
Recently, I always feel uncomfortable, especially stomach problems and low back pain, prob-
ably because you work too much, too much pressure. Let’s look at the problem from several
angles. 1. Cultural background: In many countries, especially in East Asia, the work culture
emphasizes long working hours and high-intensity tasks, which is called ”overwork culture”.
In Japan, there is a phenomenon called ”Karoshi,” which refers to sudden death caused by
overwork. Work stress is also often teased in popular culture, such as The US TV series ”The
Office”, where characters often produce a variety of funny plots because of work pressure. 2.
Historical background: There are many famous workaholics in history, such as the American
inventor Thomas Edison, who slept only four hours a day, which eventually led to health
problems. Then there was British Prime Minister Winston Churchill, who developed a severe
stomach bug from the stress of his job during World War II. 3. Scientific principles: Medical
research shows that stress causes the body to secrete a large amount of stress hormones, such
as cortisol, which affect gastrointestinal function and lead to stomach problems. At the same
time, chronic stress can cause muscle tension, especially in the lower back muscles, which
can trigger lower back pain. 4. Linguistic features: Some idioms and proverbs can be used
to describe this situation, such as ”the pie is too big to eat”, so many tasks give you indiges-
tion; ”The pot is too heavy, the back can’t move”, the pressure makes your back ache. These
expressions are not only vivid, but also make the answer more interesting. 5. Other relevant
in-depth information: Psychological research shows that long-term work stress can lead to
anxiety and depression, affecting mental health. At the same time, sociological research has
pointed out that overwork affects individuals’ social relationships, leading to family conflicts
and social isolation. Therefore, it is very important to strike a balance between work and rest.
In short, too much stress at work can affect not only physical health, but also psychological
and social relationships. We should pay attention to the balance between work and rest, and
relax properly in order to maintain physical and mental health. ’
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