

000 AIR: RETHINKING IMAGE-TEXT OFFSET ALIGNMENT 001 FOR ZERO-SHOT GENERATIVE MODEL ADAPTATION 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT

009
010
011 Zero-shot generative model adaptation (ZSGM) aims to adapt pre-trained gener-
012 ative models using only textual descriptions. ZSGM is particularly valuable for
013 data-scarce target domains, such as rare concepts or artistic styles, where obtaining
014 training samples is challenging. Central to all existing ZSGM methods is the foun-
015 dational assumption that image-text offsets in CLIP’s multimodal representation
016 space are well aligned to guide adaptation. **In this work**, we present two main
017 contributions. First, we question this foundational assumption by conducting the
018 first comprehensive empirical analysis of image-text offset alignment in CLIP space
019 within the ZSGM context. Our findings reveal not only noticeable misalignment
020 but also a meaningful positive correlation between image-text offset misalignment
021 and concept distance across six large datasets and four multimodal spaces. Second,
022 leveraging this discovery, we propose Adaptation with Iterative Refinement (AIR),
023 the first method focused on improving sample quality for ZSGM. Our method
024 iteratively refines text offsets and reduces image-text offset misalignment, using
025 anchor sampling and a novel prompt learning approach. Comprehensive experi-
026 ments across **32** experiment setups, including qualitative, quantitative, and user
027 studies, consistently show that AIR achieves state-of-the-art performance. **Code**
028 and additional experiments are available in the supplementary material.

029 1 INTRODUCTION

030 Generative models, including Generative Adversarial Networks (GANs) (Goodfellow et al., 2014;
031 Karras et al., 2020b; Kang et al., 2023; Huang et al., 2024) and Diffusion Models (Rombach et al.,
032 2022; Peebles & Xie, 2023; Esser et al., 2024), have made significant strides in producing high-fidelity
033 and diverse images. However, their training requires extensive datasets, such as 70K images for
034 StyleGAN2 (Karras et al., 2020c) or 400M for Stable Diffusion (Rombach et al., 2022), which are
035 often unavailable in data-scarce domains like rare species, rare concepts, or artistic styles. Training
036 with limited data frequently results in mode collapse (Abdollahzadeh et al., 2023), emphasizing the
037 need to address these challenges.

038 **Generative model adaptation** has become a key research area, leveraging pre-trained generators
039 from rich source domains to adapt to data-scarce target domains (Li et al., 2020; Ojha et al., 2021;
040 Zhao et al., 2022b; Zhou et al., 2024; Anees et al., 2024; Zhu et al., 2025; Guo et al., 2025; Cai et al.,
041 2025). This approach exploits the diversity of source models to generate robust, varied samples for
042 rare or limited-data domains, improving both diversity and quality.

043 **Zero-shot generative model adaptation (ZSGM)** represents a significant advancement in this
044 field, relying exclusively on textual descriptions without target images. NADA (Gal et al., 2022), a
045 pioneering effort, utilizes text offsets within CLIP multimodal embedding space to guide adaptation
046 by aligning image offsets (from source to adapted generator) with text offsets (from source to target).
047 This method is grounded in the core assumption that the offset between image embeddings and the
048 offset between their corresponding text embeddings in CLIP space are well aligned. This image-text
049 offset alignment has been the foundational assumption of all subsequent ZSGM approaches (Guo
050 et al., 2023; Jeon et al., 2023). See Sec. M for detailed discussion on related work.

051 **In this work**, we challenge the foundational assumption underlying ZSGM. For the first time in
052 literature, we conduct a comprehensive empirical analysis of offset alignment within CLIP embedding

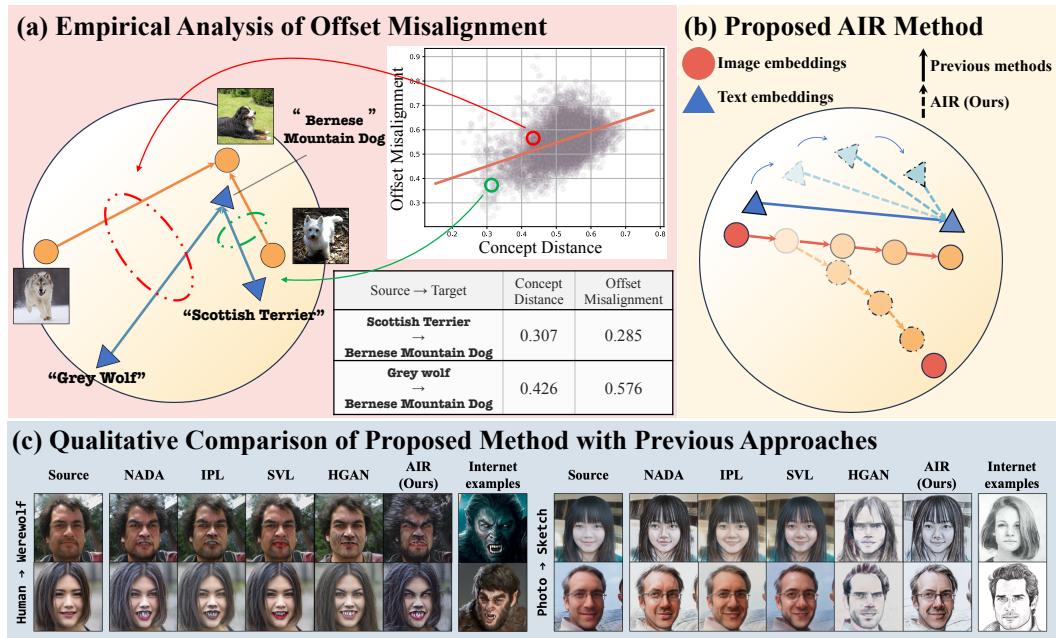


Figure 1: **Our contributions:** (a) We question the core assumption of all existing ZSGM methods: image-text offset alignment. We perform a comprehensive analysis of offset alignment in CLIP embedding space. **Our analysis reveals that not only there is noticeable misalignment between image offset (orange arrow) and text offset (blue arrow) but also a meaningful positive correlation between offset misalignment and concept distance.** For example, in the ImageNet-1K dataset, the “Grey Wolf” is a more distant concept to the “Bernese Mountain Dog” (concept distance=0.426) than the “Scottish Terrier” (concept distance=0.307). Accordingly, “Grey Wolf” → “Bernese Mountain Dog” has higher offset misalignment than “Scottish Terrier” → “Bernese Mountain Dog” (0.576 vs 0.285). This misalignment is overlooked in existing approaches, resulting in degradation in target domain image quality (Sec. 3). (b) Leveraging our discovery, we propose Adaptation with Iterative Refinement (AIR) to iteratively refine text offsets and reduce offset misalignment for ZSGM (Sec. 4). (c) Our proposed AIR consistently achieves improved quality across diverse setups by better capturing rich target domain’s style and details. (see Sec. 5 and Sec. A for detailed results).

space in the context of ZSGM. **Our primary findings** reveal not only the presence of noticeable misalignment in some instances but also a meaningful positive correlation between image-text offset misalignment and concept distance: for closely related concept pairs, misalignment tends to be smaller, whereas it increases as concepts become more distant (Fig. 1). This correlation is consistently observed in six large public datasets and four contrastive learning-based multimodal spaces.

Leveraging our discovery of the positive correlation between misalignment and concept distance, we propose Adaptation with Iterative Refinement (AIR), a novel framework designed to enhance the quality of generated images in ZSGM. After limited iterations of initial adaptation, the adapted generator encodes a concept closer to the target than the source (Sec. H), potentially reducing image-text offset misalignment. Building on this insight, AIR iteratively samples intermediate adapted generators as anchors during the adaptation, refining offsets with these anchors to enhance guidance accuracy. As the textual descriptions of these anchor are unknown, we introduce a novel prompt learning strategy to infer them dynamically. Our extensive results consistently demonstrate improved adaptation quality across diverse setups. Our main contributions are summarized as follows:

- We challenge the foundational assumption of ZSGM by conducting the first comprehensive empirical analysis of offset alignment within CLIP embedding space, revealing noticeable misalignment and a meaningful positive correlation with concept distance (Sec. 3).
- We introduce Adaptation with Iterative Refinement (AIR), a novel framework that leverages the discovered correlation to improve generated image quality in zero-shot adaptation, utilizing iterative anchor sampling and a new prompt learning strategy to dynamically infer unknown textual descriptions (Sec. 4).

108 • Our extensive experiments across 32 diverse setups, including the first application to diffusion
 109 models, demonstrate consistent improvements in adaptation quality, validated by qualitative,
 110 quantitative, and user study results, achieving state-of-the-art performance (Sec. 5 and Supp.).
 111

112 **Remark:** Our discovery of *image-text offset misalignment* in CLIP multimodal space can be viewed as
 113 an analogy to *text offset misalignment* studies in unimodal text embedding space for natural language
 114 processing (NLP). In NLP, *analogical reasoning* (Mikolov et al., 2013c;a;b; Levy & Goldberg,
 115 2014) relies on aligning offsets between word vectors, such as alignment between E_v (“Man”)
 116 - E_v (“Woman”), and E_v (“King”) - E_v (“Queen”), where E_v denotes a text vector. Research
 117 indicates that the accuracy of analogical reasoning improves with similar, nearby concepts but
 118 decreases with growing distance (Levy et al., 2015; Köper et al., 2015; Rogers et al., 2017; Fournier
 119 et al., 2020). Similarly, our finding of a positive correlation between image-text offset misalignment
 120 and concept distance in CLIP reveals a similar distance-dependent relationship in CLIP space.
 121

2 PRELIMINARIES: DIRECTIONAL CLIP LOSS

124 In zero-shot generative model adaptation setup (Gal et al., 2022), given a pre-trained generator G_S on
 125 the source domain \mathcal{S} , and textual descriptions of source and target domains, denoted by T_S and T_T
 126 respectively, the goal is to shift G_S to target domain \mathcal{T} to generate diverse and high-quality images
 127 from this domain (Abdollahzadeh et al., 2023). For this adaptation, current approaches (Gal et al.,
 128 2022; Guo et al., 2023; Jeon et al., 2023) use the CLIP model (Radford et al., 2021) as the source
 129 of supervision, and assume that text and image offsets (between \mathcal{S} and \mathcal{T}) are well-aligned in CLIP
 130 representation space. Therefore, the text offset is computed based on the provided textual descriptions
 131 of the source and target. Then, the trainable generator is initialized with the parameters of the G_S ,
 132 and optimized in a way to align image offset with text offset, leading to the directional CLIP loss:
 133

$$\begin{aligned} \mathcal{L}_{\text{direction}} &= 1 - \cos(\Delta I_{\mathcal{S} \rightarrow t}, \Delta T_{\mathcal{S} \rightarrow \mathcal{T}}), \\ \text{where } \Delta I_{\mathcal{S} \rightarrow t} &= E_I(G_t(w)) - E_I(G_S(w)), \\ \text{and } \Delta T_{\mathcal{S} \rightarrow \mathcal{T}} &= E_T(T_{\mathcal{T}}) - E_T(T_S) \end{aligned} \quad (1)$$

137 where $\cos(x, y) = x \cdot y / |x||y|$ represents the cosine similarity. E_T and E_I denote the CLIP text and
 138 image encoders, respectively. G_t denotes the trainable generator in iteration t of adaptation. $\Delta I_{\mathcal{S} \rightarrow t}$
 139 denotes the image offset computed from the source generator to the trainable generator, and $\Delta T_{\mathcal{S} \rightarrow \mathcal{T}}$
 140 denotes the text offset from source to target.

3 A CLOSER LOOK AT OFFSET MISALIGNMENT IN CLIP SPACE

144 Previous works assume that for two different concepts α and β , the image offset $\Delta I_{\alpha \rightarrow \beta}$ and text
 145 offset $\Delta T_{\alpha \rightarrow \beta}$ are well aligned in the multimodal CLIP embedding space. This alignment assumption
 146 underlies the directional loss (Eq. 1). We postulate that this assumption has two major limitations:

147 • CLIP (Radford et al., 2021) is trained with contrastive loss to maximize cosine similarity between
 148 corresponding image-text pairs, *i.e.*, maximize $\cos(E_I(I_\alpha), E_T(T_\alpha))$ for concept α (*e.g.*, cat), or
 149 maximize $\cos(E_I(I_\beta), E_T(T_\beta))$ for concept β (*e.g.*, dog). Note that the degree of alignment of
 150 image offset $\Delta I_{\alpha \rightarrow \beta}$ and text offset $\Delta T_{\alpha \rightarrow \beta}$ in CLIP space is not studied in the literature.
 151 • In addition, this degree of alignment between $\Delta I_{\alpha \rightarrow \beta}$ and $\Delta T_{\alpha \rightarrow \beta}$ may vary based on the distance
 152 between two concepts α and β .
 153

154 In this section, we take a closer look at this degree of offset alignment between two different modalities
 155 in CLIP space. First, inspired by offset misalignment in NLP, we conduct an empirical study on
 156 large public datasets to analyze the offset misalignment between image and text modalities in CLIP
 157 embedding space. Our analysis suggests that **there is a misalignment between $\Delta I_{\alpha \rightarrow \beta}$ and $\Delta T_{\alpha \rightarrow \beta}$**
 158 in CLIP embedding space, and this misalignment increases as concepts α and β become more
 159 distant. Second, we take a further step and design an experiment to evaluate the effect of this offset
 160 misalignment in generative model adaptation using directional loss (Eq. 1). Our experimental results
 161 suggest that **less offset misalignment in CLIP embedding space leads to a better generative**
 model adaptation with directional loss.

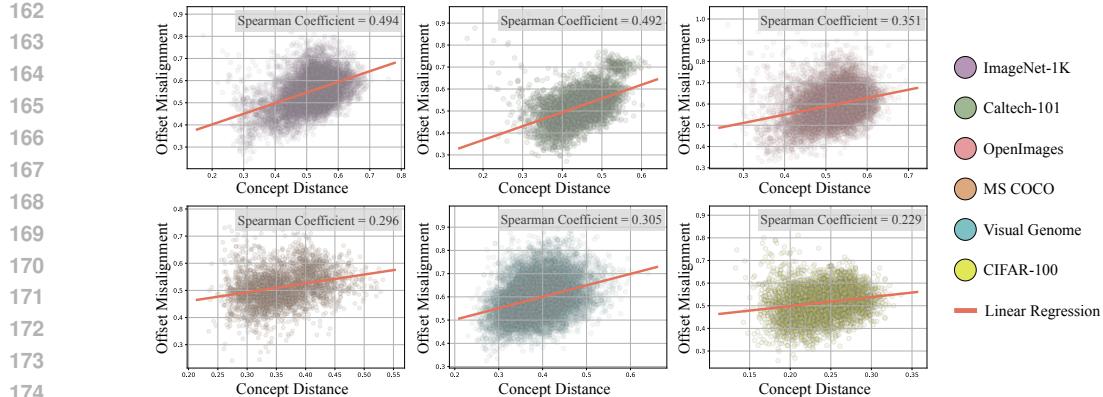


Figure 2: **Empirical analysis of offset misalignment in ViT-based CLIP space:** We plot the offset misalignment (Eq. 2) vs concept distance for $N = 5000$ of text-image pairs in CLIP space which are sampled from 6 large publicly available datasets (details in Sec. C.1; total 30,000 text-image pairs). Our results show that there is a meaningful correlation (measured by Spearman’s coefficient (Zar, 2005)) between offset misalignment and concept distance for datasets with different distributions, i.e., close concepts has less offset misalignment. **Furthermore, we have consistent observations for three additional CLIP-like representation spaces, see Sec. G.**

3.1 EMPIRICAL ANALYSIS OF OFFSET MISALIGNMENT

In this section, we conduct an empirical experiment on public datasets to evaluate the degree of alignment between image and text offsets. We randomly sample two classes for each dataset as a pair of concept (α, β) . Then, the images within each class are used alongside the related textual description (e.g., label) of each class to measure offset misalignment $\mathcal{M}(\alpha, \beta)$ in a similar way to directional loss:

$$\begin{aligned} \mathcal{M}(\alpha, \beta) &= 1 - \cos(\Delta I_{\alpha \rightarrow \beta}, \Delta T_{\alpha \rightarrow \beta}), \\ \text{where } \Delta I_{\alpha \rightarrow \beta} &= E_I(\overline{I_\beta}) - E_I(\overline{I_\alpha}), \\ \text{and } \Delta T_{\alpha \rightarrow \beta} &= E_T(T_\beta) - E_T(T_\alpha) \end{aligned} \quad (2)$$

where $E_I(\overline{I_\alpha})$ is the average embedding of all images of the class (concept) α in CLIP space. To measure the distance between two concepts denoted by $\mathcal{D}(\alpha, \beta)$, we use cosine similarity between images of two classes, i.e., $\mathcal{D}(\alpha, \beta) = 1 - \cos(E_I(\overline{I_\beta}), E_I(\overline{I_\alpha}))$. We repeat this for $N = 5000$ pairs of concepts for each dataset. Then, we plot $\mathcal{M}(\alpha, \beta)$ against $\mathcal{D}(\alpha, \beta)$ for each pair of concepts.

Experimental Setup. In this experiment, we use CLIP ViT-B/32 as vision encoder. We use 6 large and multi-class datasets that are publicly available, including ImageNet (Deng et al., 2009), Caltech-101 (Fei-Fei et al., 2007), OpenImages (Kuznetsova et al., 2020), COCO (Lin et al., 2014), Visual Genome (Krishna et al., 2017), and CIFAR-100 (Krizhevsky et al., 2009) (details in Sec. C.1).

Results. Fig. 2 shows the offset misalignment against the concept distance for $N = 5000$ pairs of concepts for 6 public datasets. As shown in the plots, for all datasets, apart from their different distributions and characteristics, there is a positive correlation between offset misalignment and concept distance. Particularly, if two concepts α and β are distant, there is a higher misalignment between image offset $\Delta I_{\alpha \rightarrow \beta}$ and corresponding text offset $\Delta T_{\alpha \rightarrow \beta}$. This means that given I_α , T_α and T_β , it is sub-optimal to align $\Delta I_{\alpha \rightarrow \beta}$ and $\Delta T_{\alpha \rightarrow \beta}$ to find I_β . On the other hand, if two concepts α and β are closer, potentially, it is more accurate to align $\Delta I_{\alpha \rightarrow \beta}$ and $\Delta T_{\alpha \rightarrow \beta}$ to find I_β .

Remark: Our work is the first to reveal that **offset misalignment between image and text modalities in CLIP correlates positively with concept distance**. In what follows, we design an experiment to show that less offset misalignment leads to a better generative adaptation with directional loss.

3.2 IMPACT OF OFFSET MISALIGNMENT ON GENERATIVE MODEL ADAPTATION

In the previous section, we performed an empirical study that revealed the offset misalignment. In this section, we take a step further and investigate the effect of this misalignment on the generative

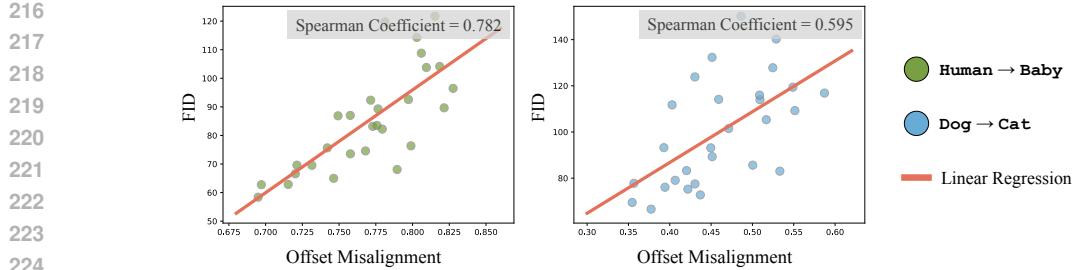


Figure 3: **Impact of offset misalignment on zero-shot generative model adaptation with directional loss:** For each of the two setups, we fix the source domain and augment the text description of the target domain to simulate various degrees of misalignment between image offset and text offset. Then, we perform the adaptation using directional loss in Eq. 1 for each setup. Results show that adaptation performance degrades by increasing the offset misalignment.

model adaptation from a source domain (concept) \mathcal{S} to a target domain (concept) \mathcal{T} . Specifically, following ZSGM setup (Gal et al., 2022), for source domain \mathcal{S} , we assume a pre-trained generator $G_{\mathcal{S}}$ and a text description $T_{\mathcal{S}}$ is available. However, for the target domain, only text description $T_{\mathcal{T}}$ is available. To simulate different degrees of misalignment between source and target, we augment target text to get a set of text descriptions $\{T_{\mathcal{T}}^i\}$. Then, we perform zero-shot adaptation using the directional loss (Eq. 1) from the source domain \mathcal{S} to each of these target text $T_{\mathcal{T}}^i$ and measure the generation performance of adapted generator.

Experimental Setup. For this experiment, we perform adaptation on Human → Baby and Dog → Cat. We use StyleGAN2-ADA (Karras et al., 2020a) pre-trained on FFHQ (Karras et al., 2019) and AFHQ-Dog (Choi et al., 2020) as the pre-trained model. We fix the source text $T_{\mathcal{S}}$ and augment the target text $T_{\mathcal{T}}$ by sampling handcrafted prompts from the CLIP ImageNet template (INt)¹ in order to simulate different degrees of misalignment (see Sec. C.2). Then, we follow exactly the same hyperparameters as NADA (see Sec. C.3) to adapt the source generator to different target text $T_{\mathcal{T}}^i$. We use FID to measure the performance of the adapted generator against offset misalignment.

Our results in Fig. 3 demonstrates that in general, **increasing the offset misalignment degrades the performance of the zero-shot generative adaption with directional loss**. Motivated by this finding, we propose an approach to iteratively refine the adaptation direction.

4 METHODOLOGY: ADAPTATION WITH ITERATIVE REFINEMENT

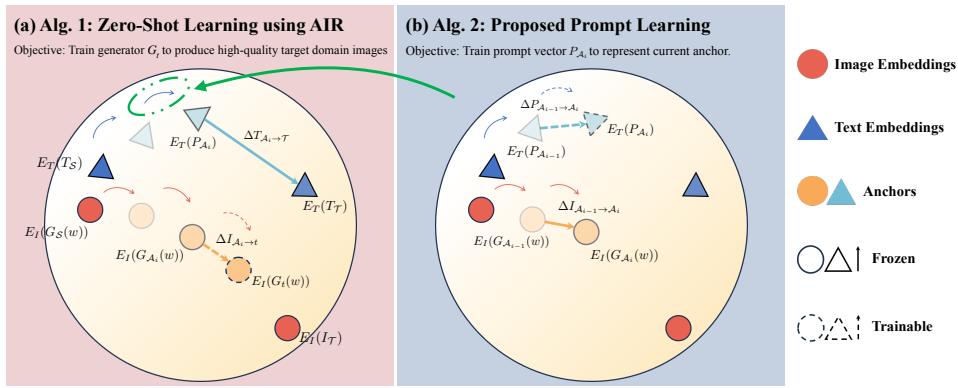


Figure 4: **Illustration of the proposed AIR method:** (a) Zero-shot learning scheme using Adaptation with Iterative Refinement (AIR) (Sec. 4.1). (b) The proposed prompt learning method to learn text embedding $P_{\mathcal{A}_i}$ for the anchor \mathcal{A}_i (Sec. 4.2).

Our analysis in Sec. 3 suggests that closer concepts tend to have less offset misalignment in CLIP space, resulting in a more accurate directional loss (Eq. 1) for adaptation. Here, we leverage this property to enhance the zero-shot generative model adaptation with directional loss.

¹https://github.com/openai/CLIP/blob/main/notebooks/Prompt_Engineering_for_ImageNet.ipynb

270 Specifically, even though the concept distance between source \mathcal{S} and target \mathcal{T} is fixed, after a limited
 271 number of initial adaptation iterations using directional loss, the encoded concept in the adapted
 272 generator is already closer to the target domain than the encoded concept in source generator (see Sec.
 273 H). For example, when adapting a generator pre-trained on Photo to the target domain Painting,
 274 after limited adaptation iterations, the adapted generator already encodes more knowledge related to
 275 the Painting domain than the pre-trained generator.

276 Therefore, we use the adapted generator as the new anchor (denoted by $G_{\mathcal{A}}$), and compute the
 277 directional loss from this anchor point to the target. We update this anchor point iteratively during
 278 adaptation, as we move closer to the target domain. Because of the smaller concept distance,
 279 our previous analysis suggests that the directional loss computed based on $G_{\mathcal{A}}$ can provide better
 280 guidance, and this improves the adaptation direction solely computed based on $G_{\mathcal{S}}$. One challenge of
 281 using $G_{\mathcal{A}}$ for directional loss is that the corresponding text prompt $P_{\mathcal{A}}$ that describes this concept
 282 is unknown. In what follows, first, we discuss the details of the proposed *Adaptation with Iterative*
 283 *Refinement (AIR)* in Sec. 4.1. Then, to infer the unknown $P_{\mathcal{A}}$ within the directional loss of AIR, we
 284 introduce a prompt learning method in Sec. 4.2.

285 4.1 ADAPTATION WITH ITERATIVE REFINEMENT (AIR)

286 In our proposed approach, first, we adapt the generator to the target domain for t_{thresh} iterations
 287 using directional loss in Eq. 1 to make sure the adapted generator has moved closer to the target
 288 domain. Then, in each t_{int} interval of adaptation, we sample the adapted generator as the new anchor
 289 point.² We denote i^{th} sampled anchor by $G_{\mathcal{A}_i}$. **To reduce offset misalignment and provide**
 290 **more accurate direction, we use the anchor point \mathcal{A}_i instead of source point \mathcal{S} for computing**
 291 **the directional loss.** The proposed AIR scheme is illustrated in Fig. 4 (a). The image offset with
 292 anchor point \mathcal{A}_i is computed based on the sampled generator $G_{\mathcal{A}_i}$, and the trainable generator G_t :
 293 $\Delta I_{\mathcal{A}_i \rightarrow t} = E_I(G_t(w)) - E_I(G_{\mathcal{A}_i}(w))$. Assuming that the anchor point is described by the prompt
 294 $P_{\mathcal{A}_i}$ in the text domain (details of inferring $P_{\mathcal{A}_i}$ will be discussed in Sec. 4.2), the text offset with
 295 anchor point is calculated as follows: $\Delta T_{\mathcal{A}_i \rightarrow \mathcal{T}} = E_T(T_{\mathcal{T}}) - E_T(P_{\mathcal{A}_i})$. Finally, the adaptive loss
 296 $\mathcal{L}_{adaptive}$ is computed by aligning the image and text offsets from anchor point \mathcal{A}_i to target \mathcal{T} :

$$\mathcal{L}_{adaptive} = 1 - \cos(\Delta I_{\mathcal{A}_i \rightarrow t}, \Delta T_{\mathcal{A}_i \rightarrow \mathcal{T}}) \quad (3)$$

297 We empirically find that adding this adaptive loss to $\mathcal{L}_{direction}$ results in a more stable adaptation.
 298 The pseudo-code can be found in Sec. B.

302 4.2 ALIGNING PROMPT TO IMAGES

303 Here, we explain the details of the proposed method for learning text prompt $P_{\mathcal{A}_i}$ that describes i^{th}
 304 anchor point \mathcal{A}_i in text domain. Inspired by Zhou et al. (2022b); Teo et al. (2024), we define prompt
 305 $P_{\mathcal{A}_i} \in \mathbb{R}^{(M+1) \times d}$ as combination of M learnable tokens $[V]_j^i \in \mathbb{R}^d$ and a label token $Y_{\mathcal{A}_i} \in \mathbb{R}^d$:

$$P_{\mathcal{A}_i} = [V]_1^i [V]_2^i \dots [V]_M^i [Y_{\mathcal{A}_i}] \quad (4)$$

306 Early approaches of prompt learning directly learn the learnable tokens $[V]_j^i$ from related images
 307 (Zhou et al., 2022b;a). However, recently, ITI-GEN (Zhang et al., 2023) (proposed for fair text-to-
 308 image generation) shows that learning from the offsets is more efficient for capturing the specific
 309 attribute of interest. Inspired by this, we learn the anchor text prompt $P_{\mathcal{A}_i}$ by aligning text offset
 310 to the image offset. Here, the image offset is calculated between the current and previous anchors:
 311 $\Delta I_{\mathcal{A}_{i-1} \rightarrow \mathcal{A}_i} = E_I(G_{\mathcal{A}_i}(w)) - E_I(G_{\mathcal{A}_{i-1}}(w))$. Similarly, the text prompt offset is calculated as
 312 follows: $\Delta P_{\mathcal{A}_{i-1} \rightarrow \mathcal{A}_i} = E_T(P_{\mathcal{A}_i}) - E_T(P_{\mathcal{A}_{i-1}})$. Note that the only trainable parameter is the
 313 unknown prompt $P_{\mathcal{A}_i}$ which is learned by aligning image and prompt offsets:

$$\mathcal{L}_{align} = 1 - \cos(\Delta I_{\mathcal{A}_{i-1} \rightarrow \mathcal{A}_i}, \Delta P_{\mathcal{A}_{i-1} \rightarrow \mathcal{A}_i}) \quad (5)$$

314 The proposed prompt learning approach is shown in Fig. 4 (b). We remark that $P_{\mathcal{A}_i}$ is the tokenized
 315 text prompt before the CLIP text encoder, and for simplicity, we slightly abuse the notation and use
 316 $E_T(P_{\mathcal{A}_i})$ to show CLIP text embedding for anchor \mathcal{A}_i .

317 **Remark:** Given that offset misalignment is less for closer concepts, we propose to use the previous
 318 anchor point \mathcal{A}_{i-1} as the source to learn the prompt for the i^{th} anchor \mathcal{A}_i . Since consecutive anchor
 319 points are close together, the directional loss is more accurate.

320
 321
 322
 323
²We use the same settings of t_{thresh} and t_{int} across all 32 experiment setups.

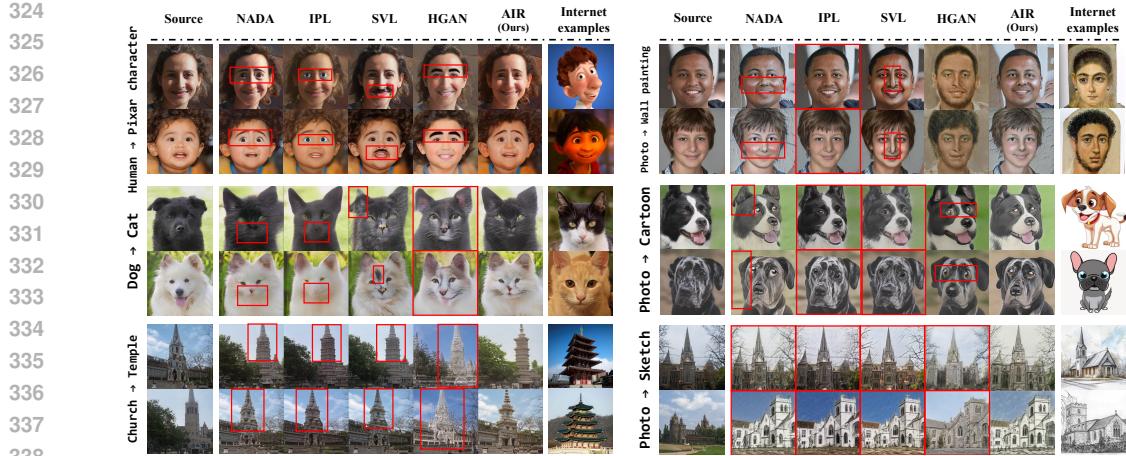


Figure 5: **Qualitative comparison** (Degraded images/regions are highlighted with red boxes). The results of NADA (Gal et al., 2022) and HGAN (Anees et al., 2024) show the adaptation often introduces undesirable changes, e.g., thick eyebrows in Human → Pixar character, missing mouth in Dog → Cat, and red cheeks in Photo → Wall painting. For IPL (Guo et al., 2023) and SVL (Jeon et al., 2023), a common issue is that the adaptations are inadequate, resulting in images that lack target features/styles, especially for adaptations that require drastic feature change, e.g., Church → Temple, Photo → Cartoon/Sketch. Our proposed method does not suffer from artifacts (as shown in target domains Pixar character, Wall painting, and Dog), and adapts better to the style of target domains, such as Temple, Cartoon and Sketch. StyleGAN2 is used as pre-trained generator. More qualitative results are shown in Fig. 1 and Sec. A.1. **(Best viewed with color and zoom in.)**

Regularizer: We further propose to use the interpolation between tokenized source and target descriptions as anchor label, *i.e.*, $Y_{\mathcal{A}_i} = (1 - p_i)Y_S + p_iY_{\mathcal{T}}$, with p_i denoting the proportion of the training progress until anchor point \mathcal{A}_i . The label token acts like a regularizer during prompt learning (see motivation in Sec. D.2).

We empirically find that using these design choices results in better adaptation with our AIR mechanism compared to learning the prompts directly from generated images by $G_{\mathcal{A}_i}$. More details of the method are summarized in the pseudo-code in Alg. 1 and 2 in Sec. B.

5 EXPERIMENTS

In this section, first, we discuss the details of our experimental setup. Then, we compare our proposed AIR with SOTA methods qualitatively and quantitatively. Note that we are the first to study zero-shot adaptation of diffusion models. We also show our AIR outperforming large-scale Stable Diffusion in generating rare concepts. Finally, we conduct an ablation study on the design of the prompt learning.

5.1 EXPERIMENTAL SETUP

Generative Models. In this work, we implement zero-shot generative model adaptation for both GANs and diffusion models. The implementation details for each type of model is as follows:

- **Zero-Shot Adaptation of GANs.** We follow previous ZSGM works (Gal et al., 2022; Guo et al., 2023; Jeon et al., 2023) setups to adapt StyleGAN2-ADA (Karras et al., 2020a) pre-trained on FFHQ (Karras et al., 2019) and AFHQ-Dog (Choi et al., 2020) to various target domains.
- **Zero-Shot Adaptation of Diffusion Models.** We use Guided Diffusion (Dhariwal & Nichol, 2021) pre-trained on FFHQ and AFHQ-Dog from P2-Weighting (Choi et al., 2022) as source generator. To speedup training, we use DPM-Solver (Lu et al., 2022) for 10-step image generation. To prevent overfitting, instead of fully fine-tuning, we fine-tune with LoRA (Hu et al., 2022).

During the adaptation of both generators, we utilize the pre-trained ViT-B/32 as vision encoder for CLIP. Hyperparameter details can be found in Sec. C.4. Notably, the only varying hyperparameter for all adaptation setups is the total number of adaptation iterations (strictly follow NADA).

378 Table 1: Quantitative results of zero-shot GAN adaptation. *All methods use the same CLIP for*
 379 *guidance*. For FID, we report only Baby and Cat, which are the only target domains with sufficient
 380 samples for reliable FID. Note that compared with previous methods that aim to improve the
 381 synthesized sample diversity, our method (AIR) focuses on enhancing the quality of adaptation (lower
 382 CLIP Distance and FID), leading to significant gain (e.g., average CLIP distance improves spanning
 383 from 9% to 25%, and FID improves from 88.71 in HGAN to 56.20 in our AIR for distant adaptation
 384 Dog → Cat). The quality enhancement is consistent for all setups. Furthermore, our method is able
 385 to maintain competitive diversity (Intra-LPIPS). See qualitative comparisons in Fig. 1, 5 and Sec. A.1.

386 Pre-trained Dataset	387 Adaptation	388 CLIP Distance (↓)				389 Intra-LPIPS (↑)				390 FID (↓)						
		NADA	IPL	SVL	HGAN	AIR	NADA	IPL	SVL	HGAN	AIR	NADA	IPL	SVL	HGAN	AIR
391 FFHQ	Human → Baby	0.3327	0.3562	0.3838	0.3596	0.3325	0.4474	0.4518	0.4506	0.4110	0.4520	68.35	68.48	158.76	123.55	62.13
	Human → Pixar	0.2335	0.2343	0.4224	0.2418	0.2213	0.4759	0.4488	0.4618	0.4013	0.4717	-	-	-	-	-
	Human → Werewolf	0.3467	0.3200	0.3998	0.3424	0.2431	0.4301	0.4387	0.4316	0.4395	0.4410	-	-	-	-	-
	Photo → Wall painting	0.4382	0.4898	0.4952	0.3747	0.4306	0.4217	0.4320	0.4332	0.4208	0.4381	-	-	-	-	-
	Photo → Sketch	0.3606	0.3955	0.4092	0.3327	0.3126	0.4190	0.4292	0.4476	0.4354	0.4257	-	-	-	-	-
	Photo → Watercolor	0.3548	0.3621	0.3639	0.3865	0.3376	0.4598	0.4671	0.4612	0.4544	0.4656	-	-	-	-	-
392 Dog	Photo → Ukiyo-e	0.2437	0.2467	0.3906	0.3286	0.2315	0.4583	0.4652	0.4406	0.4647	0.4670	-	-	-	-	-
	Dog → Cat	0.1493	0.1530	0.1644	0.1642	0.1320	0.4439	0.4522	0.4547	0.4436	0.4628	70.87	83.29	65.79	88.71	56.20
	Dog → Hamster	0.1616	0.1457	0.1826	0.1282	0.1306	0.4196	0.4340	0.3918	0.3822	0.4213	-	-	-	-	-
	Dog → Capybara	0.1359	0.1446	0.1861	0.1543	0.1121	0.4312	0.4377	0.4264	0.4217	0.4401	-	-	-	-	-
	Dog → Wolf	0.1480	0.1519	0.2249	0.1199	0.1421	0.4305	0.4261	0.4272	0.4056	0.4349	-	-	-	-	-
	Dog → the Joker	0.3708	0.3827	0.4574	0.3230	0.3131	0.4155	0.4206	0.4327	0.4058	0.4173	-	-	-	-	-
393 Church	Photo → Cartoon	0.2433	0.2419	0.2543	0.2936	0.2258	0.4356	0.4413	0.4400	0.3741	0.4427	-	-	-	-	-
	Photo → Watercolor	0.1535	0.1711	0.1646	0.1611	0.1507	0.4639	0.4703	0.4622	0.4566	0.4667	-	-	-	-	-
	Church → Skyscraper	0.3860	0.3441	0.4209	0.3631	0.3270	0.4823	0.481	0.4777	0.4433	0.4839	-	-	-	-	-
	Church → Temple	0.3197	0.3632	0.3177	0.3229	0.3146	0.4689	0.4623	0.4839	0.5103	0.4862	-	-	-	-	-
	Photo → Sketch	0.2948	0.3070	0.3401	0.2957	0.2805	0.5084	0.5373	0.5356	0.5085	0.5176	-	-	-	-	-
	Photo → Anime	0.2067	0.2180	0.3503	0.3503	0.1990	0.5223	0.5392	0.5356	0.5071	0.5245	-	-	-	-	-
394 Avg.		0.2711	0.2793	0.3293	0.2802	0.2465	0.4519	0.4575	0.4552	0.4359	0.4588	69.91	75.86	112.28	106.13	59.16

397 **Evaluation Metrics.** Following ZSGM literature, we conduct both visual inspections for qualitative
 398 evaluations and quantitative evaluations. Specifically, we evaluate image quality with FID and CLIP
 399 Distance and measure diversity using Intra-LPIPS (Ojha et al., 2021). We introduce additional metrics
 400 in Sec. A.1 to further refine quality assessment. Additionally, a user study compares image quality
 401 and diversity across different schemes based on human feedback. (See Sec. C.5 for details.)

402 5.2 GENERATIVE MODEL ADAPTATION

404 **Qualitative results.** We compare with SOTA ZSGM methods NADA (Gal et al., 2022), IPL (Guo
 405 et al., 2023), SVL (Jeon et al., 2023), and SOTA one-shot generative model adaptation method HGAN
 406 (Anees et al., 2024) (trained with both references images as it supports two-shot) as shown in Fig.
 407 1 and 5. The results of NADA and HGAN often introduce undesirable changes in features. For
 408 IPL and SVL, the adaptations are inadequate, resulting images lack target domain feature/style. See
 409 discussion in caption for details. Our proposed method adapt correctly to target domain. Additional
 410 qualitative results of diffusion model adaptation (Sec. A.2) and GAN adaptation (Sec. A.1).
 411

412 **Quantitative results.** We report FID, Intra-LPIPS, and CLIP Distance to quantify the performance of
 413 zero-shot adaptation for GAN (Tab. 1). Our method significantly outperforms SOTA in quality while
 414 maintaining competitive diversity. Our user study results in Tab. 3 further confirm the improvement
 415 of our method (details in Sec. L). Results for diffusion model (Tab. 2) show similar improvement.
 416

417 **Additional Experiments.** We conduct additional experiments to demonstrate the well-behaved latent
 418 space of the pre-trained generator is preserved with our proposed approach. More specifically, we
 419 perform latent space interpolation (Sec. I), cross-model interpolation (Sec. J), and cross-domain
 420 image manipulation (Sec. K). We also conduct an experiment to show our method effectively learned
 421 anchor prompts (Sec. E) and effectively reduces the offset misalignment (Sec. F).
 422

5.3 GENERATING RARE CONCEPTS

423 Notably, our proposed AIR method outperforms large-scale Stable Diffusion (SD) (Rombach et al.,
 424 2022) in generating rare concepts. As shown in Fig. 6, SD suffers from severe mode collapse, often
 425 generating nearly identical individuals. In contrast, AIR leverages source-domain diversity to enrich
 426 rare concept generation, confirming its advantage in handling challenging rare-concept scenarios.
 427 See more discussion between generative model adaptation and SD in Sec. M.
 428

429 5.4 ABLATION STUDY

430 We conduct an ablation study to verify the effectiveness of our introduced prompt learning to infer
 431 text prompts for anchor points. We compare: i) $\mathcal{I} \rightarrow \mathcal{T}$: Following IPL to learn a mapper that

432 Table 2: Quantitative results of zero-shot diffusion
 433 model adaptation. Our AIR focuses on enhancing
 434 the quality of adaptation instead of improving
 435 synthesized sample diversity. FID is reported only
 436 for Baby and Cat, which have sufficient data for
 437 reliable evaluation. (Qualitative results in Sec. A)

Pre-trained Dataset	Adaptation	CLIP Distance (↓)		Intra-LPIPS (↑)		FID (↓)	
		NADA	AIR	NADA	AIR	NADA	AIR
FFHQ	Human → Baby	0.2598	0.2162	0.5700	0.5779	65.54	58.05
	Human → Werewolf	0.2782	0.2318	0.5208	0.5195	-	-
	Human → Pixar character	0.4316	0.3881	0.4585	0.4549	-	-
	Photo → Sketch	0.4405	0.3576	0.4868	0.4860	-	-
	Photo → Wall painting	0.4791	0.4771	0.5259	0.5283	-	-
	Photo → Watercolor	0.3266	0.3234	0.6221	0.6405	-	-
Dog	Photo → Ukiyo-e	0.2300	0.2141	0.5429	0.5532	-	-
	Dog → Cat	0.1406	0.1402	0.5423	0.5445	85.02	77.61
	Dog → Wolf	0.1449	0.1364	0.4684	0.4726	-	-
	Dog → Hamster	0.1850	0.1580	0.4888	0.4961	-	-
	Dog → Capybara	0.1573	0.1191	0.4785	0.4596	-	-
	Photo → Cartoon	0.2544	0.2472	0.5574	0.5603	-	-
	Photo → Watercolor	0.1916	0.1848	0.5216	0.5283	-	-
	Avg.	0.2707	0.2456	0.5218	0.5247	75.28	67.82

462 Figure 6: **Our proposed AIR outperforms SD in generating rare concepts.** We compare SoTA
 463 **SD3.5-L** with our proposed AIR. Due to the scarcity of rare concept training samples, SD generated
 464 samples have limited diversity and suffer from mode collapse: e.g., the same woman with the same
 465 hairstyle (Yuki-Onna) or nearly identical wolf/dog faces (Werewolf, Joker Dog). In contrast, ZSGM,
 466 such as our AIR, can leverage source-domain diversity to enrich generation for rare target concepts,
 467 producing variations across ages, genders, hairstyles, breeds, etc., achieving better diversity than SD
 468 in these challenging cases. **(Best viewed with color and zoom in.)**

469 produces prompt descriptions from each image. ii) $S \rightarrow \mathcal{A}_i$: We learn the prompt by capturing the
 470 semantic difference between S and \mathcal{A} with directional loss: $\mathcal{L}_{align}^S = 1 - \cos(\Delta I_{S \rightarrow \mathcal{A}_i}, \Delta P_{S \rightarrow \mathcal{A}_i})$.
 471 iii) $\mathcal{A}_{i-1} \rightarrow \mathcal{A}_i$: Our proposed prompt learning scheme, which captures the semantic difference
 472 between consecutive anchors \mathcal{A}_{i-1} and \mathcal{A}_i with our proposed directional loss (Eq. 5). The results
 473 shown in Tab. 4 demonstrate our prompt learning design reduces offset misalignment compared to
 474 other schemes, therefore, leading to more accurate prompts and better zero-shot adaptation. Our
 475 visual ablation results in Sec. D.3 further confirm this observation. More ablation studies in Sec. D
 476

477 6 CONCLUSION

479 All previous methods in ZSGM assume that image offset and text offset are well aligned in CLIP
 480 embedding space. In this paper, we conduct an empirical study to analyze the misalignment between
 481 image offset and text offset in CLIP space. Our analysis reveals that there is offset misalignment
 482 in CLIP space which positively correlates with concept distances. Building on this insight, we
 483 propose AIR, a new approach that iteratively samples anchor points closer to the target and reduces
 484 offset misalignment. Extensive experimental results shows that the proposed AIR achieves SOTA
 485 performance across 32 setups. See Supp. for limitation and societal impact.

Table 3: Results of our user study (%). Note that compared with previous methods that aim to improve diversity, our method focuses on enhancing the quality, while maintaining competitive diversity.

Evaluation	NADA	IPL	SVL	HGAN	AIR
Quality	24.8	4.2	3.6	11.7	55.7
Diversity	22.4	32.8	10.8	3.4	30.6

Table 4: Ablation study on prompt learning scheme. Visual ablation results in Sec. D.3.

Methods	Human → Baby		Dog → Cat	
	FID (↓)	Intra-LPIPS (↑)	FID (↓)	Intra-LPIPS (↑)
NADA	68.35	0.4474	70.87	0.4439
$\mathcal{I} \rightarrow \mathcal{T}$	98.35	0.4308	104.59	0.4452
$\mathcal{S} \rightarrow \mathcal{A}_i$	64.39	0.4503	61.75	0.4630
$\mathcal{A}_{i-1} \rightarrow \mathcal{A}_i$	62.13	0.4520	56.20	0.4628

Internet
Examples

0.3926 0.3232

0.3008 0.3458

0.4220 0.2251

0.2431 0.4410

0.5737 0.3010

0.2865 0.4173

486 REFERENCES
487

488 Milad Abdollahzadeh, Touba Malekzadeh, Christopher TH Teo, Keshigeyan Chandrasegaran,
489 Guimeng Liu, and Ngai-Man Cheung. A survey on generative modeling with limited data,
490 few shots, and zero shot. *arXiv preprint arXiv:2307.14397*, 2023. 1, 3

491 Yuval Alaluf, Or Patashnik, and Daniel Cohen-Or. Restyle: A residual-based stylegan encoder via
492 iterative refinement. In *Proceedings of the IEEE/CVF International Conference on Computer
493 Vision*, pp. 6711–6720, 2021. 31

494 Abdul Basit Anees, Ahmet Canberk Baykal, Duygu Ceylan, Aykut Erdem, Erkut Erdem, and
495 Muhammed Burak Kızıl. Hypergan-clip: A unified framework for domain adaptation, image
496 synthesis and manipulation. In *Proceedings of the ACM (SIGGRAPH Asia)*, 2024. 1, 7, 8

497 Shengqu Cai, Eric Ryan Chan, Yunzhi Zhang, Leonidas Guibas, Jiajun Wu, and Gordon Wetzstein.
498 Diffusion self-distillation for zero-shot customized image generation. In *Proceedings of the
499 Computer Vision and Pattern Recognition Conference*, pp. 18434–18443, 2025. 1

500 Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon Kim, Hyunwoo Kim, and Sungroh Yoon.
501 Perception prioritized training of diffusion models. In *Proceedings of the IEEE/CVF Conference
502 on Computer Vision and Pattern Recognition*, pp. 11472–11481, 2022. 7

503 Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for
504 multiple domains. In *2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
505 CVPR 2020, Seattle, WA, USA, June 13–19, 2020*, pp. 8185–8194, 2020. URL <https://doi.org/10.1109/CVPR42600.2020.00821>. 5, 7, 19, 20, 21, 22, 24, 26

506 Trevor Cohen, Dominic Widdows, and Thomas Rindflesch. Expansion-by-analogy: A vector symbolic
507 approach to semantic search. In *Quantum Interaction*, pp. 54–66, 2015. 34

508 Ronan Collobert and Jason Weston. A unified architecture for natural language processing: deep
509 neural networks with multitask learning. In *Proceedings of the 25th International Conference on
510 Machine Learning*, pp. 160–167, 2008. 34

511 Joachim Daiber, Lautaro Quiroz, Roger Wechsler, and Stella Frank. Splitting compounds by semantic
512 analogy. In *Proceedings of the 1st Deep Machine Translation Workshop*, pp. 20–28, 2015. 34

513 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale
514 hierarchical image database. In *2009 IEEE Computer Society Conference on Computer Vision and
515 Pattern Recognition (CVPR 2009)*, 20–25 June 2009, Miami, Florida, USA, pp. 248–255, 2009.
516 URL <https://doi.org/10.1109/CVPR.2009.5206848>. 4

517 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
518 in neural information processing systems*, 34:8780–8794, 2021. 7, 22, 23, 24

519 Nguyen Tuan Duc, Danushka Bollegala, and Mitsuru Ishizuka. Cross-language latent relational
520 search between japanese and english languages using a web corpus. In *ACM Transactions on
521 Asian Language Information Processing (TALIP)*, pp. 54–66, 2015. 34

522 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
523 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
524 high-resolution image synthesis. In *Forty-first international conference on machine learning*, 2024.
525 1

526 Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
527 examples: An incremental bayesian approach tested on 101 object categories. *Computer vision
528 and Image understanding*, 106(1):59–70, 2007. 4

529 Louis Fournier, Emmanuel Dupoux, and Ewan Dunbar. Analogies minus analogy test: measuring
530 regularities in word embeddings. In *Proceedings of the 24th Conference on Computational Natural
531 Language Learning*, pp. 365–375, 2020. 3, 34

532 Rinon Gal, Or Patashnik, Haggai Maron, Amit H Bermano, Gal Chechik, and Daniel Cohen-Or.
533 Stylegan-nada: Clip-guided domain adaptation of image generators. *ACM Transactions on
534 Graphics (TOG)*, 41(4):1–13, 2022. 1, 3, 5, 7, 8, 26, 29, 33, 35

540 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and
 541 Daniel Cohen-or. An image is worth one word: Personalizing text-to-image generation using
 542 textual inversion. In *The Eleventh International Conference on Learning Representations*, 2023.
 543 [26](#)

544 Anna Gladkova, Aleksandr Drozd, and Satoshi Matsuoka. Analogy-based detection of morphological
 545 and semantic relations with word embeddings: what works and what doesn't. In *Proceedings of
 546 the NAACL Student Research Workshop*, pp. 8–15, 2016. doi: 10.18653/v1/N16-2002. [34](#)

548 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
 549 jil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In
 550 Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Wein-
 551 berger (eds.), *Advances in Neural Information Processing Systems 27: Annual Conference
 552 on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
 553 Canada*, pp. 2672–2680, 2014. URL <https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html>. [1](#)

555 Jiayi Guo, Chaofei Wang, You Wu, Eric Zhang, Kai Wang, Xingqian Xu, Humphrey Shi, Gao
 556 Huang, and Shiji Song. Zero-shot generative model adaptation via image-specific prompt learning.
 557 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 558 11494–11503, 2023. [1, 3, 7, 8, 26, 33, 35](#)

560 Jiayi Guo, Junhao Zhao, Chaoqun Du, Yulin Wang, Chunjiang Ge, Zanlin Ni, Shiji Song, Humphrey
 561 Shi, and Gao Huang. Everything to the synthetic: Diffusion-driven test-time adaptation via
 562 synthetic-domain alignment. In *Proceedings of the Computer Vision and Pattern Recognition
 563 Conference*, pp. 30503–30513, 2025. [1](#)

564 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 565 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International
 566 Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeeFYf9>. [7](#)

569 Nick Huang, Aaron Gokaslan, Volodymyr Kuleshov, and James Tompkin. The GAN is dead; long live
 570 the GAN! a modern GAN baseline. In *The Thirty-eighth Annual Conference on Neural Information
 571 Processing Systems*, 2024. [1](#)

573 Seogkyu Jeon, Bei Liu, Pilhyeon Lee, Kibeam Hong, Jianlong Fu, and Hyeran Byun. Improving
 574 diversity in zero-shot gan adaptation with semantic variations. In *Proceedings of the IEEE/CVF
 575 International Conference on Computer Vision*, pp. 7258–7267, 2023. [1, 3, 7, 8, 26, 33](#)

576 Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung
 577 Park. Scaling up gans for text-to-image synthesis. In *Proceedings of the IEEE Conference on
 578 Computer Vision and Pattern Recognition (CVPR)*, 2023. [1](#)

580 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 581 adversarial networks. In *IEEE Conference on Computer Vision and Pattern Recognition,
 582 CVPR 2019, Long Beach, CA, USA, June 16-20, 2019*, pp. 4401–4410, 2019. URL http://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html. [5, 7, 18, 19, 22, 23, 29](#)

586 Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
 587 generative adversarial networks with limited data. In Hugo Larochelle, Marc'Aurelio Ranzato,
 588 Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), *Advances in Neural Information
 589 Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
 590 NeurIPS 2020, December 6-12, 2020, virtual*, 2020a. URL <https://proceedings.neurips.cc/paper/2020/hash/8d30aa96e72440759f74bd2306c1fa3d-Abstract.html>. [5, 7](#)

592 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
 593 and improving the image quality of StyleGAN. In *Proc. CVPR*, 2020b. [1, 35](#)

594 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
 595 and improving the image quality of stylegan. In *2020 IEEE/CVF Conference on Computer Vision*
 596 and *Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020*, pp. 8107–8116, 2020c.
 597 URL <https://doi.org/10.1109/CVPR42600.2020.00813>. 1

598 Leonard Kaufman and Peter J Rousseeuw. *Partitioning Around Medoids (Program PAM)*, chapter 2.
 599 John Wiley & Sons, 2009. 26

601 Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion models
 602 for robust image manipulation. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 603 and *Pattern Recognition (CVPR)*, pp. 2426–2435, June 2022. 31, 32

604 Maximilian Köper, Christian Scheible, and Sabine Schulte im Walde. Multilingual reliability and
 605 “semantic” structure of continuous word spaces. In *Proceedings of the 11th international conference*
 606 *on computational semantics*, pp. 40–45, 2015. 3, 34

607 Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
 608 Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language
 609 and vision using crowdsourced dense image annotations. *International journal of computer vision*,
 610 123:32–73, 2017. 4

612 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. (2009),
 613 2009. 4

614 Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab
 615 Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, Tom Duerig, and Vittorio Ferrari.
 616 The open images dataset v4: Unified image classification, object detection, and visual relationship
 617 detection at scale. *IJCV*, 2020. 4

619 Omer Levy and Yoav Goldberg. Linguistic regularities in sparse and explicit word representations.
 620 In *Proceedings of the Eighteenth Conference on Computational Natural Language Learning*, pp.
 621 171–180, 2014. doi: 10.3115/v1/W14-1618. 3, 34

622 Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity with lessons learned
 623 from word embeddings. *Transactions of the association for computational linguistics*, 3:211–225,
 624 2015. 3, 34

626 Yijun Li, Richard Zhang, Jingwan Lu, and Eli Shechtman. Few-shot image generation with elastic
 627 weight consolidation. In *Advances in Neural Information Processing Systems 33: Annual Con-
 628 ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
 629 virtual*, 2020. 1

630 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 631 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer Vision-
 632 ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
 633 Part V 13*, pp. 740–755. Springer, 2014. 4

635 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 636 ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in Neural
 637 Information Processing Systems*, 35:5775–5787, 2022. 7

638 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
 639 tions in vector space. In *1st International Conference on Learning Representations, ICLR 2013,*
 640 2013a. 3, 34, 35

641 Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
 642 of words and phrases and their compositionality. *Advances in neural information processing
 643 systems*, 26, 2013b. 3, 34, 35

645 Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
 646 word representations. In *Proceedings of the 2013 conference of the north american chapter of the
 647 association for computational linguistics: Human language technologies*, pp. 746–751, 2013c. 3,
 34

648 Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, and Richard
 649 Zhang. Few-shot image generation via cross-domain correspondence. In *IEEE Conference on Com-
 650 puter Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021*, pp. 10743–10752,
 651 2021. URL [https://openaccess.thecvf.com/content/CVPR2021/html/Ojha_Few-Shot-
 653 Image_Generation_via_Cross-Domain_Correspondence_CVPR_2021_paper.html](https://openaccess.thecvf.com/content/CVPR2021/html/Ojha_Few-Shot-

 652 Image_Generation_via_Cross-Domain_Correspondence_CVPR_2021_paper.html). 1, 8,
 26

654 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 655 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaeldin El-Nouby, et al. Dinov2: Learning
 656 robust visual features without supervision. *Transactions on Machine Learning Research Journal*,
 657 pp. 1–31, 2024. 21

658 Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. Styleclip: Text-
 659 driven manipulation of stylegan imagery. In *2021 IEEE/CVF International Conference on Com-
 660 puter Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021*, pp. 2065–2074, 2021.
 661 URL <https://doi.org/10.1109/ICCV48922.2021.00209>. 33

662 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 663 the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023. 1

664 Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word
 665 representation. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language
 666 Processing (EMNLP)*, pp. 1532–1543, 2014. doi: 10.3115/v1/D14-1162. 35

667 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 668 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 669 Learning transferable visual models from natural language supervision. In Marina Meila and Tong
 670 Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning, ICML 2021,
 671 18-24 July 2021, Virtual Event*, volume 139 of *Proceedings of Machine Learning Research*, pp.
 672 8748–8763, 2021. URL <http://proceedings.mlr.press/v139/radford21a.html>. 3, 33, 35

673 Anna Rogers, Aleksandr Drozd, and Bofang Li. The (too many) problems of analogical reasoning
 674 with word vectors. In *Proceedings of the 6th Joint Conference on Lexical and Computational
 675 Semantics (* SEM 2017)*, pp. 135–148, 2017. 3, 34

676 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 677 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Confer-
 678 ence on Computer Vision and Pattern Recognition*, pp. 10684–10695, 2022. 1, 8

679 Yujun Shen and Bolei Zhou. Closed-form factorization of latent semantics in gans. In *Proceedings of
 680 the IEEE/CVF conference on computer vision and pattern recognition*, pp. 1532–1540, 2021. 33

681 Christopher TH Teo, Milad Abdollahzadeh, Xinda Ma, and Ngai-man Cheung. Fairqueue: Rethinking
 682 prompt learning for fair text-to-image generation. *arXiv preprint arXiv:2410.18615*, 2024. 6

683 Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and Daniel Cohen-Or. Designing an encoder
 684 for stylegan image manipulation. *ACM Transactions on Graphics (TOG)*, 40(4):1–14, 2021. 31, 35

685 Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple and general method
 686 for semi-supervised learning. In *Proceedings of the 48th annual meeting of the association for
 687 computational linguistics*, pp. 384–394, 2010. 34

688 Ekaterina Vylomova, Laura Rimell, Trevor Cohn, and Timothy Baldwin. Take and took, gaggle and
 689 goose, book and read: Evaluating the utility of vector differences for lexical relation learning. In
 690 *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics*, 2015.
 691 34

692 Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
 693 Construction of a large-scale image dataset using deep learning with humans in the loop. *ArXiv
 694 preprint*, abs/1506.03365, 2015. URL <https://arxiv.org/abs/1506.03365>. 17, 18

695 Jerrold H Zar. Spearman rank correlation. *Encyclopedia of Biostatistics*, 7, 2005. 4, 30, 31

702 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 703 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 704 pp. 11975–11986, 2023. [21](#)

705 Cheng Zhang, Xuanbai Chen, Siqi Chai, Henry Chen Wu, Dmitry Lagun, Thabo Beeler, and Fernando
 706 De la Torre. ITI-GEN: Inclusive text-to-image generation. In *ICCV*, 2023. [6](#)

708 Yunqing Zhao, Keshigeyan Chandrasegaran, Milad Abdollahzadeh, and Ngai-Man Man Cheung. Few-
 709 shot image generation via adaptation-aware kernel modulation. *Advances in Neural Information
 710 Processing Systems*, 35:19427–19440, 2022a. [26](#)

711 Yunqing Zhao, Henghui Ding, Houjing Huang, and Ngai-Man Cheung. A closer look at few-shot
 712 image generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 713 Recognition*, pp. 9140–9150, 2022b. [1](#)

715 Yunqing Zhao, Chao Du, Milad Abdollahzadeh, Tianyu Pang, Min Lin, Shuicheng Yan, and Ngai-Man
 716 Cheung. Exploring incompatible knowledge transfer in few-shot image generation. In *Proceedings
 717 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7380–7391, 2023.
 718 [26](#)

719 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
 720 vision-language models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition
 721 (CVPR)*, 2022a. [6, 27](#)

723 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
 724 language models. *International Journal of Computer Vision (IJCV)*, 2022b. [6, 27](#)

725 Yang Zhou, Zichong Chen, and Hui Huang. Deformable one-shot face stylization via dino se-
 726 mantic guidance. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 727 Recognition*, pp. 7787–7796, 2024. [1](#)

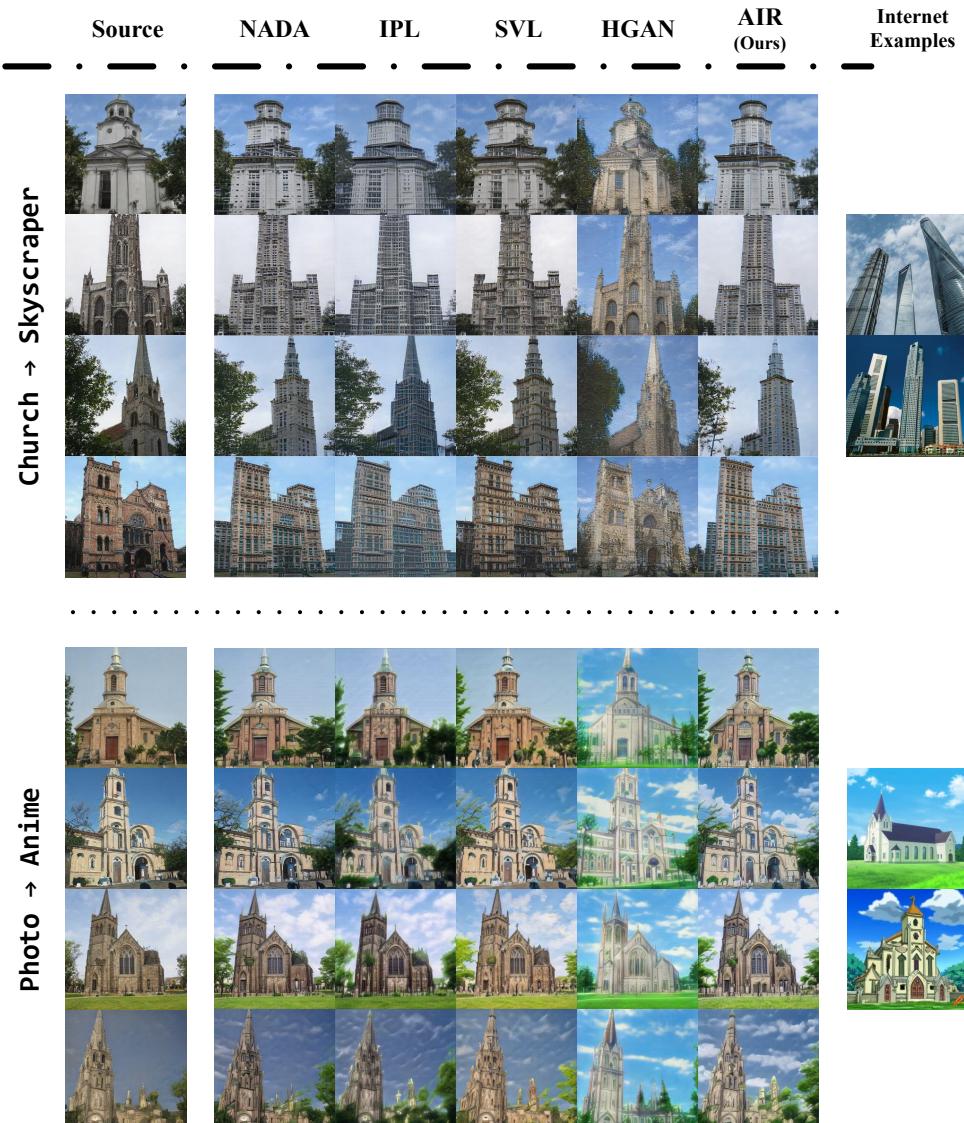
729 Jingyuan Zhu, Huimin Ma, Jiansheng Chen, and Jian Yuan. Domainstudio: Fine-tuning diffusion
 730 models for domain-driven image generation using limited data. *International Journal of Computer
 731 Vision*, pp. 1–25, 2025. [1](#)

732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756 **SUPPLEMENTARY**
757758 In this supplementary material, we provide additional experiments, ablation studies, and reproducibil-
759 ity details to support our findings. These sections are not included in the main paper due to space
760 constraints.761 Please find the following anonymous link for code and other resources: <https://anonymous.4open.>
762 [science/r/AIR-15D2/](https://anonymous.4open.science/r/AIR-15D2/).764 **CONTENTS**
765

A More Experimental Results	17
A.1 Zero-shot GAN Adaptation	18
A.2 Zero-shot Diffusion Model Adaptation	22
B Algorithm	22
C Detailed Experimental Setting	23
C.1 Details of Empirical Analysis	23
C.2 Details of Impact of Offset Misalignment	24
C.3 Hyperparameters of Impact of Offset Misalignment	24
C.4 Hyperparameters of Zero-Shot Adaptation	25
C.5 Evaluation Details	26
D Additional Ablation Studies	26
D.1 Ablation on Hyperparameters Selection	26
D.2 Ablation on Anchor Label Initialization	27
D.3 Visual Ablation Studies	27
E Validate Our Learned Anchor Prompts	27
F Offset Misalignment Alleviation	28
G Offset Misalignment in other Multimodal Representation Spaces	28
H Concept Shifts during Adaptation	29
I Latent Space Interpolation	29
J Cross-model Interpolation	30
K Image Manipulation	31
K.1 GAN-based Image Manipulation	31
K.2 Diffusion-based Image Manipulation	32
L User Study	32

810	M Related Work	33
811		
812	N Limitation	35
813		
814	O Social Impact	35
815		
816	P Use of Large Language Models (LLMs)	35
817		
818		
819	Q Licenses	35
820		
821		
822		
823		
824		
825		
826		
827		
828		
829		
830		
831		
832		
833		
834		
835		
836		
837		
838		
839		
840		
841		
842		
843		
844		
845		
846		
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

864
865
866
867 A MORE EXPERIMENTAL RESULTS
868
869
870
871
872
873874 We include a total of **32** different configurations of zero-shot adaptation in this paper. The experimental
875 setting and evaluation metric follow Sec. 5 in the main paper.
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907908
909 Figure 7: **Additional zero-shot adaptation results from source domain Church.** Here we use a
910 StyleGAN2 generator pre-trained on the LSUN-Church (Yu et al., 2015) dataset as G_S and shift this
911 to various target domains using different zero-shot approaches. We report the qualitative results for
912 two setups: Church → Skyscraper and Photo → Anime. We also compute CLIP Distance on 5K
913 generated samples as quantitative results, as shown in Tab. 1, our proposed AIR approach results in
914 less CLIP Distance meaning that the generated images are closer to the target domain. Additionally,
915 qualitative results show that in general our proposed method adapts better to the target domain and
916 has better quality. For example, in line 2 of Church → Skyscraper, NADA and IPL samples contain
917 artifacts around windows, and SVL still has some structures related to the church like the arch in the
middle of the skyscraper.

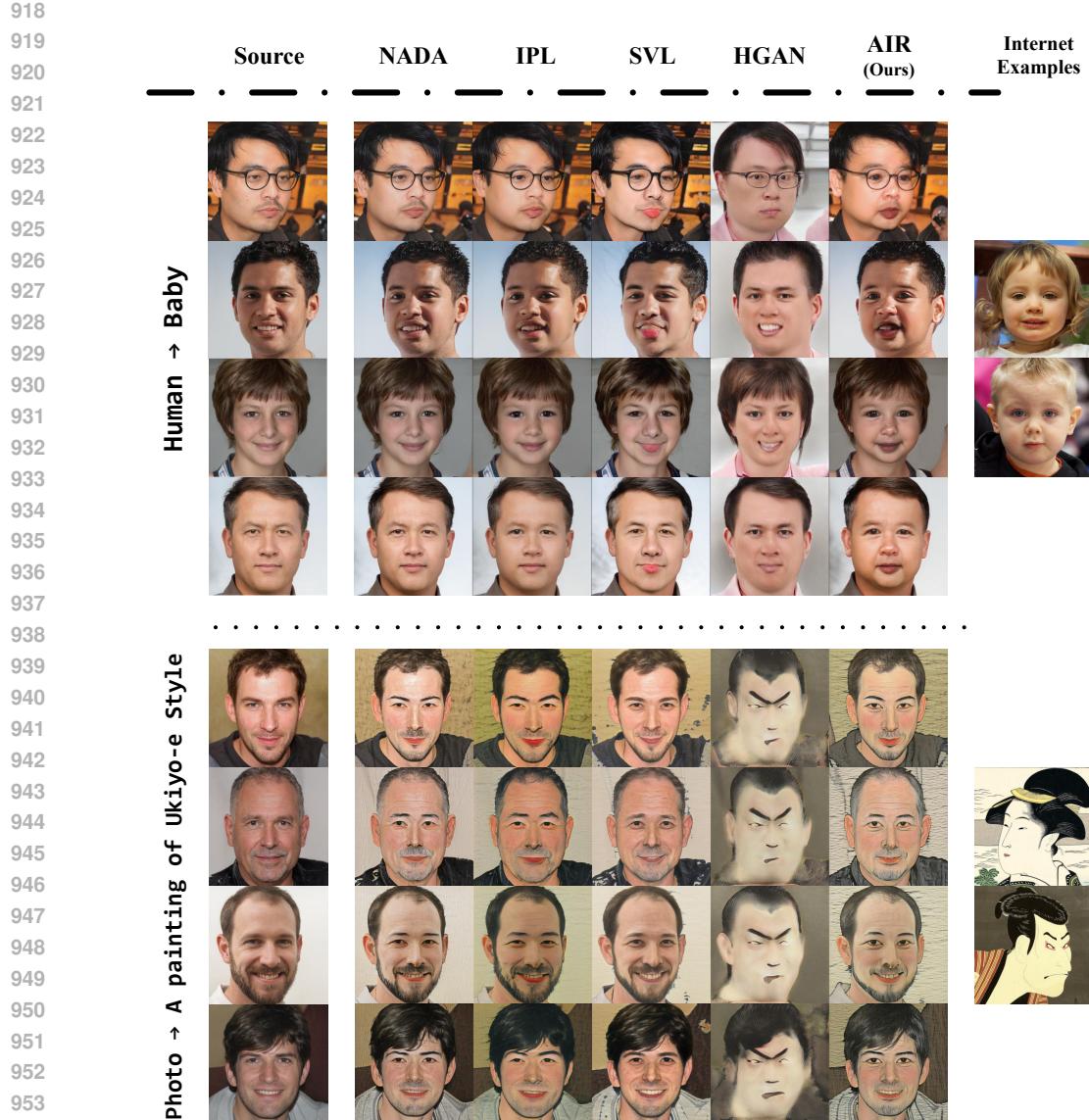


Figure 8: **Additional zero-shot adaptation results from source domain FFHQ.** Here we use a StyleGAN2 generator pre-trained on the FFHQ (Karras et al., 2019) (human faces) dataset as G_S and shift this to various target domains using different zero-shot approaches. We report the qualitative results for two setups: Photo → Baby and Photo → A Painting of Ukiyo-e Style. We also compute CLIP Distance on 5K generated samples as quantitative results, as shown in Tab. 1, our proposed AIR approach results in less CLIP Distance meaning that the generated images are closer to the target domain. Additionally, qualitative results show that in general our proposed method adapts better to the target domain and has better quality.

A.1 ZERO-SHOT GAN ADAPTATION

In this section, we provide additional experimental results including quantitative and qualitative results for different adaptation setups using GAN as the generator and introduce more evaluation metrics.

Qualitative Results. In Fig. 7, we perform zero-shot adaptation of a StyleGAN2 pre-trained on LSUN-Church (Yu et al., 2015) to four different target domains including Skyscraper, and Anime.

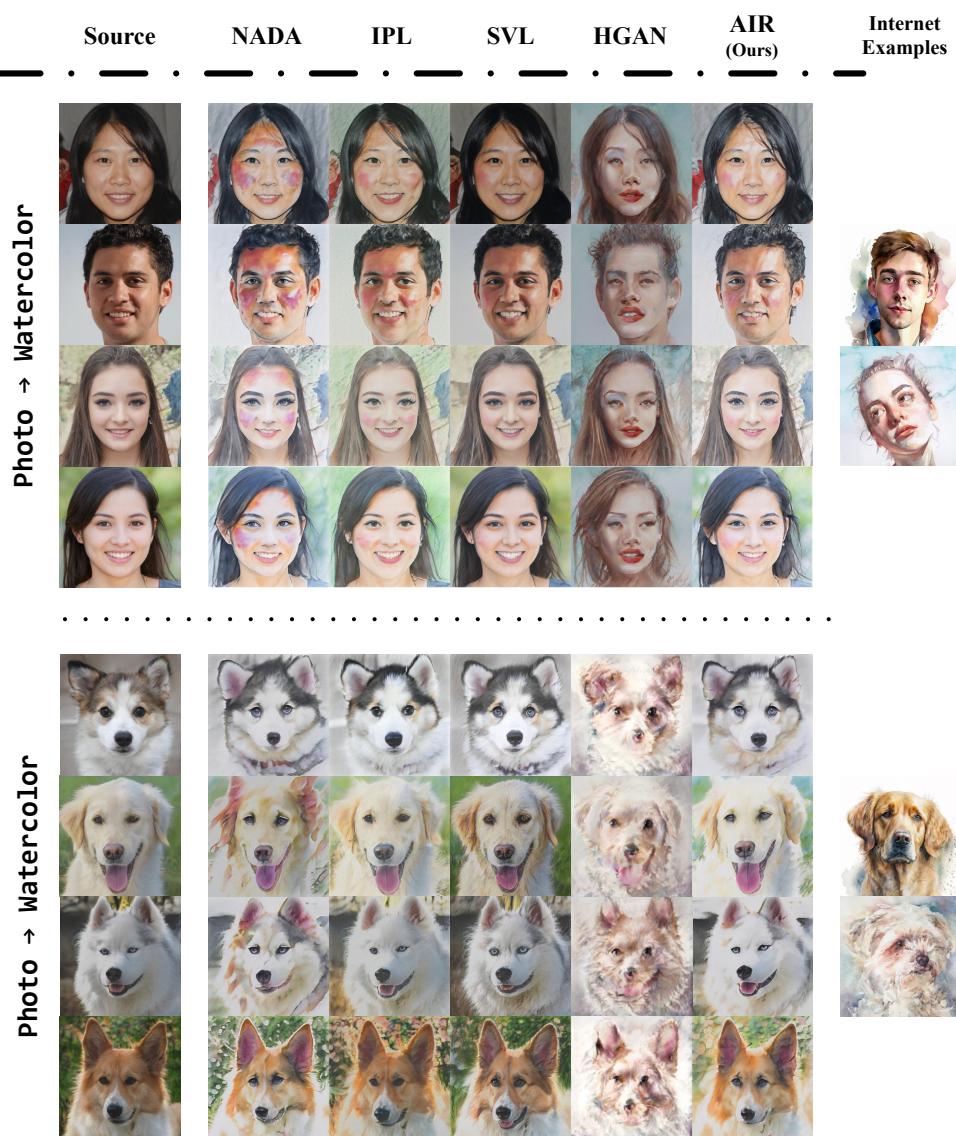


Figure 9: **Additional zero-shot adaptation results from source domain FFHQ.** Here we use a StyleGAN2 generator pre-trained on the FFHQ (Karras et al., 2019) (human faces) and AFHQ-Dog (Choi et al., 2020) (dog face) dataset as G_S and shift this to various target domains using different zero-shot approaches. We report the qualitative results for the setups: Photo → Watercolor. We also compute CLIP Distance on 5K generated samples as quantitative results, as shown in Tab. 1, our proposed AIR approach results in less CLIP Distance meaning that the generated images are closer to the target domain. Additionally, qualitative results show that in general our proposed method adapts better to the target domain and has better quality.

In Fig. 8 and Fig. 9 show the qualitative results of zero-shot adaptation of a StyleGAN2 pre-trained on FFHQ (Karras et al., 2019) dataset to two different target domains including Baby, Watercolor, and A Painting of Ukiyo-e Style. Finally, Fig. 9, Fig. 10 and Fig. 11 we report the zero-shot adaptation of a StyleGAN2 pre-trained on AFHQ-Dog (Choi et al., 2020) to four different target domains including Watercolor, Hamster, Capybara, Wolf and The Joker. The results show that our approach in general adapts better to the style of the target domain and has better sample quality (please check the caption of each image for more detailed discussion).

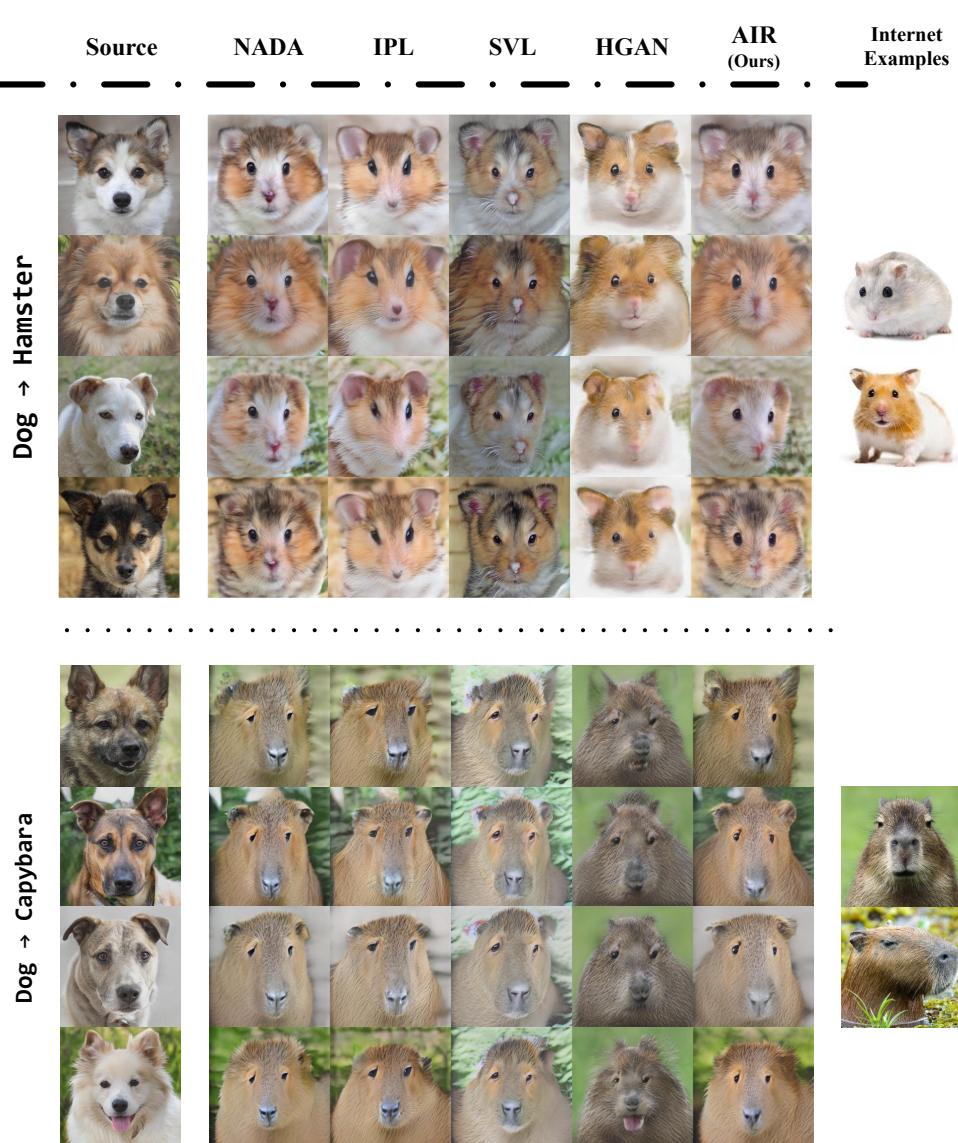


Figure 10: **Additional zero-shot adaptation results from source domain Dog.** Here we use a StyleGAN2 generator pre-trained on the AFHQ-Dog (Choi et al., 2020) dataset as G_S and shift this to various target domains using different zero-shot approaches. We report the qualitative results for two setups: Dog → Hamster and Dog → Capybara. We also compute CLIP Distance on 5K generated samples as quantitative results, as shown in Tab. 1, for both setups, our proposed AIR approach results in less CLIP Distance meaning that the generated images are closer to the target domain. Additionally, qualitative results show that in general our proposed method adapts better to the target domain and has better quality. For example, for Dog → Capybara setup, generated samples with other approaches have degradations like unsymmetrical faces or eyes.

Quantitative Results. Quantitative results are reported by computing the CLIP Distance between the embeddings of 5K generated images with each approach and the embedding of the text description of the target domain in CLIP space. As the results show, generated images by proposed AIR has smaller CLIP distance meaning that these images are closer to the target domain compared to images generated by other zero-shot approaches.

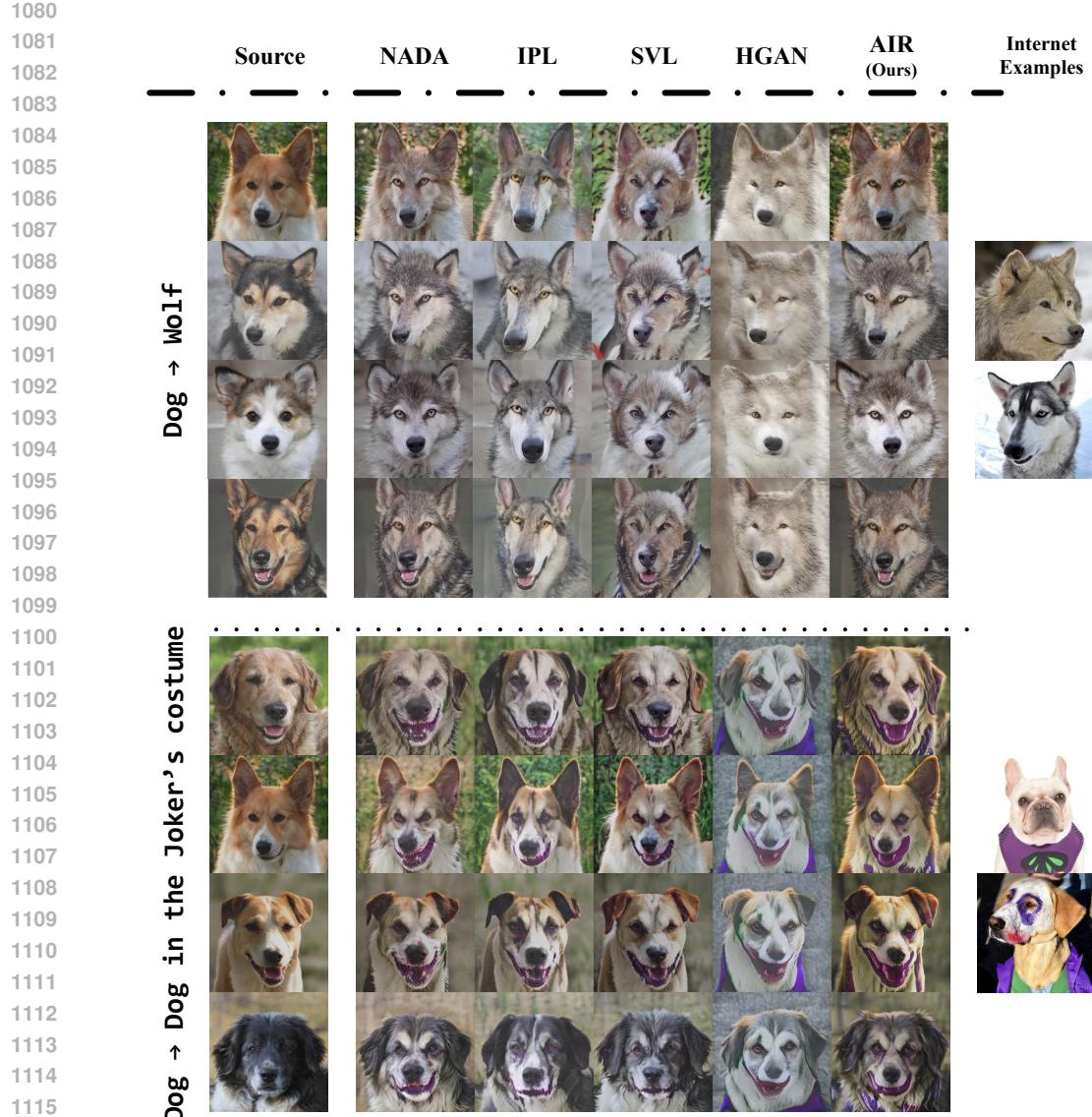


Figure 11: **Additional zero-shot adaptation results from source domain Dog.** Here we use a StyleGAN2 generator pre-trained on the AFHQ-Dog (Choi et al., 2020) dataset as G_S and shift this to various target domains using different zero-shot approaches. We report the qualitative results for two setups: Dog → Wolf and Dog → The Joker. We also compute CLIP Distance on 5K generated samples as quantitative results, as shown in Tab. 1, for both setups, our proposed AIR approach results in less CLIP Distance meaning that the generated images are closer to the target domain. Additionally, qualitative results show that in general our proposed method adapts better to the target domain and has better quality. For example, for Dog → Wolf setup, IPL generates an unnaturally big snout and SVL has some artifacts in the generated sample. For Dog → The Joker setup, our approach attains the mouth feature with a proper style and quality.

Additional Metrics. We further evaluate the quality of the generated images by introducing two additional metrics SigLIP Distance (Zhai et al., 2023) and DINOv2 Distance (Oquab et al., 2024). Similar to the computation of CLIP Distance, SigLIP and DINOv2 Distance are defined as the cosine distance between the SigLIP/DINOv2 embeddings of collected and generated images. As shown in Tab. 5, the results align with those in the main paper, further support the superiority of our proposed AIR.

1134 Table 5: Additional quantitative evaluation of zero-shot GAN adaptation, with the same setting of
 1135 Tab. 1 in main paper.

1136

1137 Pre-trained Dataset	1138 Target Domain	1139 SigLIP Distance (↓)				1140 DINOv2 Distance (↓)					
		1141 NADA	1142 IPL	1143 SVL	1144 HGAN	1145 AIR	1146 NADA	1147 IPL	1148 SVL		
1149 FFHQ	Baby	0.1925	0.1884	0.3474	0.3080	0.1833	0.5943	0.5993	0.8026	0.7703	0.5887
	Werewolf	0.3192	0.3930	0.4831	0.2425	0.2274	0.8500	0.8923	0.9365	0.6345	0.6097
	Pixar	0.2803	0.2762	0.4582	0.2857	0.2630	0.6935	0.6690	0.7848	0.7362	0.6785
	Sketch	0.2897	0.3173	0.3598	0.2939	0.2837	0.4682	0.5918	0.6291	0.4703	0.4420
	Wall painting	0.4205	0.4277	0.4489	0.4052	0.4103	0.7256	0.7267	0.7836	0.6761	0.7004
1151 AFHQ-Dog	Cat	0.1395	0.2287	0.1819	0.1762	0.1297	0.8553	0.8737	0.8842	0.8623	0.8338
	Cartoon	0.2580	0.2618	0.3140	0.3101	0.2518	0.7899	0.8174	0.9078	0.8513	0.7644
	Watercolor	0.1934	0.1980	0.2569	0.1916	0.1819	0.8059	0.8328	0.8330	0.7721	0.7943

Algorithm 1: Zero-Shot Learning using Adaptation with Iterative Refinement (AIR)

Require: Pre-trained generator G_S , textual descriptions T_S and T_T , t_{adapt} , t_{thresh} , t_{int} , learning rate η , CLIP image and text encoder E_I and E_T

Output: Trained generator G_t to produce high-quality target domain images

```

1150 1 Initialize  $G_t$  by weights of  $G_S$  and freeze weights of  $G_S$ ,  $i = 0$ ,  $\mathcal{L}_{adaptive} = 0$ 
1151 2  $\Delta T_{S \rightarrow T} = E_T(T_T) - E_T(T_S)$ 
1152 3 for  $t = 0$ ;  $t++$ ;  $t < t_{adapt}$  do
1153 4    $\Delta I_{S \rightarrow t} = E_I(G_t(w)) - E_I(G_S(w))$ 
1154 5    $\mathcal{L}_{direction} = 1 - \cos(\Delta I_{S \rightarrow t}, \Delta T_{S \rightarrow T})$ 
1155 6   if  $t \% t_{int} = 0$  then
1156 7      $i++$ 
1157 8      $G_{A_i} = G_t$ 
1158 9      $P_{A_i} = \text{Prompt-Learning}(G_{A_i}, G_{A_{i-1}}, P_{A_{i-1}})$  /* refer to Algorithm 2 for details */
1159 10   end
1160 11   if  $t > t_{thresh}$  then
1161 12      $\Delta I_{A_i \rightarrow t} = E_I(G_t(w)) - E_I(G_{A_i}(w))$  /* if  $G_t = G_{A_i}$ , add perturbation to  $G_t(w)$  */
1162 13      $\Delta T_{A_i \rightarrow T} = E_T(T_T) - E_T(P_{A_i})$ 
1163 14      $\mathcal{L}_{adaptive} = 1 - \cos(\Delta I_{A_i \rightarrow t}, \Delta T_{A_i \rightarrow T})$ 
1164 15   end
1165 16    $\mathcal{L} = \mathcal{L}_{direction} + \mathcal{L}_{adaptive}$ 
1166 17   Update  $G_t \leftarrow G_t - \eta \nabla_{G_t} \mathcal{L}$ 
1167 18 end

```

A.2 ZERO-SHOT DIFFUSION MODEL ADAPTATION

In this section, we provide more qualitative and quantitative results of zero-shot diffusion model adaptation.

Qualitative Results. Here, we report the qualitative results of zero-shot diffusion model adaptation for the same configuration used in Tab. 2 (main paper). More specifically, we use the pre-trained Guided Diffusion model (Dhariwal & Nichol, 2021) on two different source domains FFHQ (Karras et al., 2019) (Fig. 12) and AFHQ-Dog (Choi et al., 2020) (Fig. 13) and shift these pre-trained models to different target domains using only text descriptions for both NADA and our proposed AIR approaches. As illustrated in Fig. 12 and 13, the generated images with NADA suffer from degradation in the form of artifacts compared to our proposed AIR approach.

B ALGORITHM

We provide the pseudo-code of the proposed method in this section. Specifically, we show zero-shot generative model using Adaptation with Iterative Refinement (AIR) in Alg. 1, and our proposed prompt learning scheme in Alg. 2.

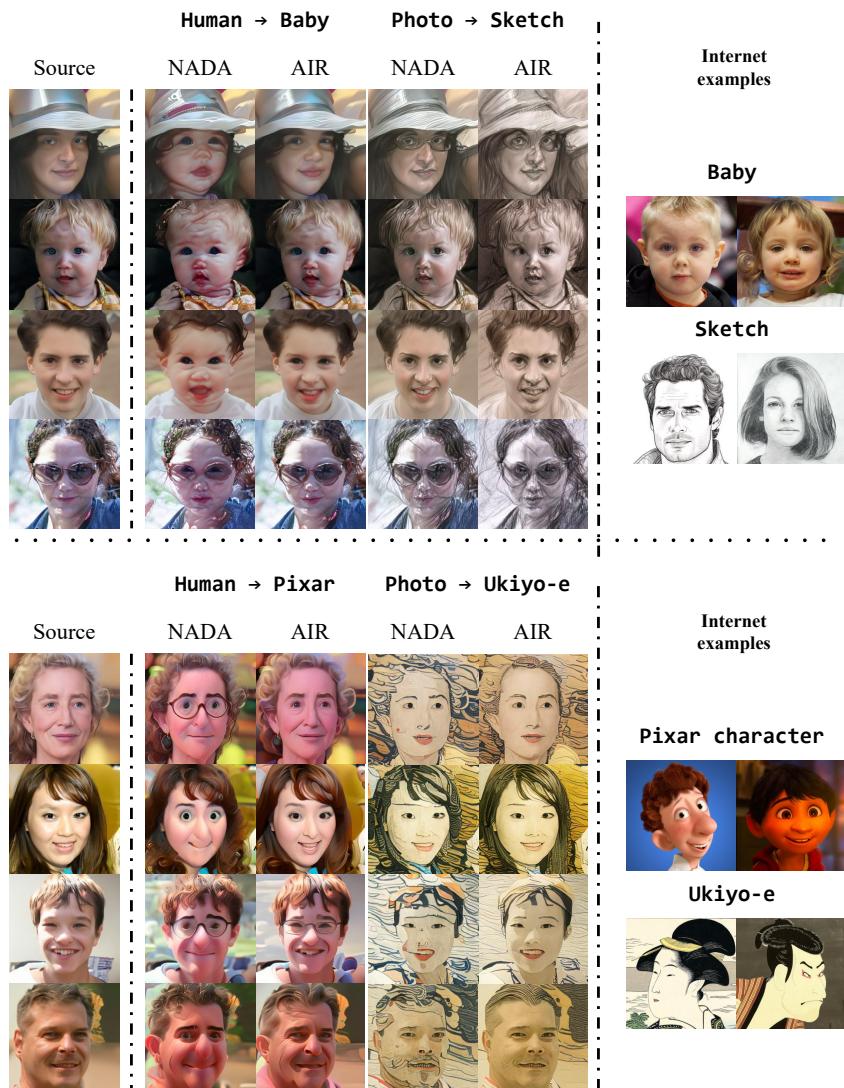


Figure 12: Additional zero-shot adaptation results. We use a pre-trained Guided Diffusion model (Dhariwal & Nichol, 2021) on FFHQ dataset (Karras et al., 2019) as pre-trained generator G_S and perform zero-shot adaptation in four different setups: Human \rightarrow Baby, Photo \rightarrow Sketch, Human \rightarrow Pixar Character, and Photo \rightarrow A painting in Ukiyo-e style using both NADA and our proposed AIR approach. Quantitative results measured by CLIP distance in 2 shows that the generated images by our approach are closer to the target domain. In addition, qualitative results show that NADA suffers from degradation.

C DETAILED EXPERIMENTAL SETTING

C.1 DETAILS OF EMPIRICAL ANALYSIS

For datasets with a single class label for each image, such as ImageNet, Caltech-101, and CIFAR-100, we use the original images from the dataset. For datasets with multiple objects in an image, such as OpenImages, MS COCO, and Visual Genome, to better align with the setting in NADA, we extract the objects using bounding boxes and classify them into their labeled classes.

For a certain concept α , we use the images of the class as I_α . For text description T_α , we use the corresponding class label with INT, e.g., "a photo of a [cat]" when $\alpha = \text{cat}$.

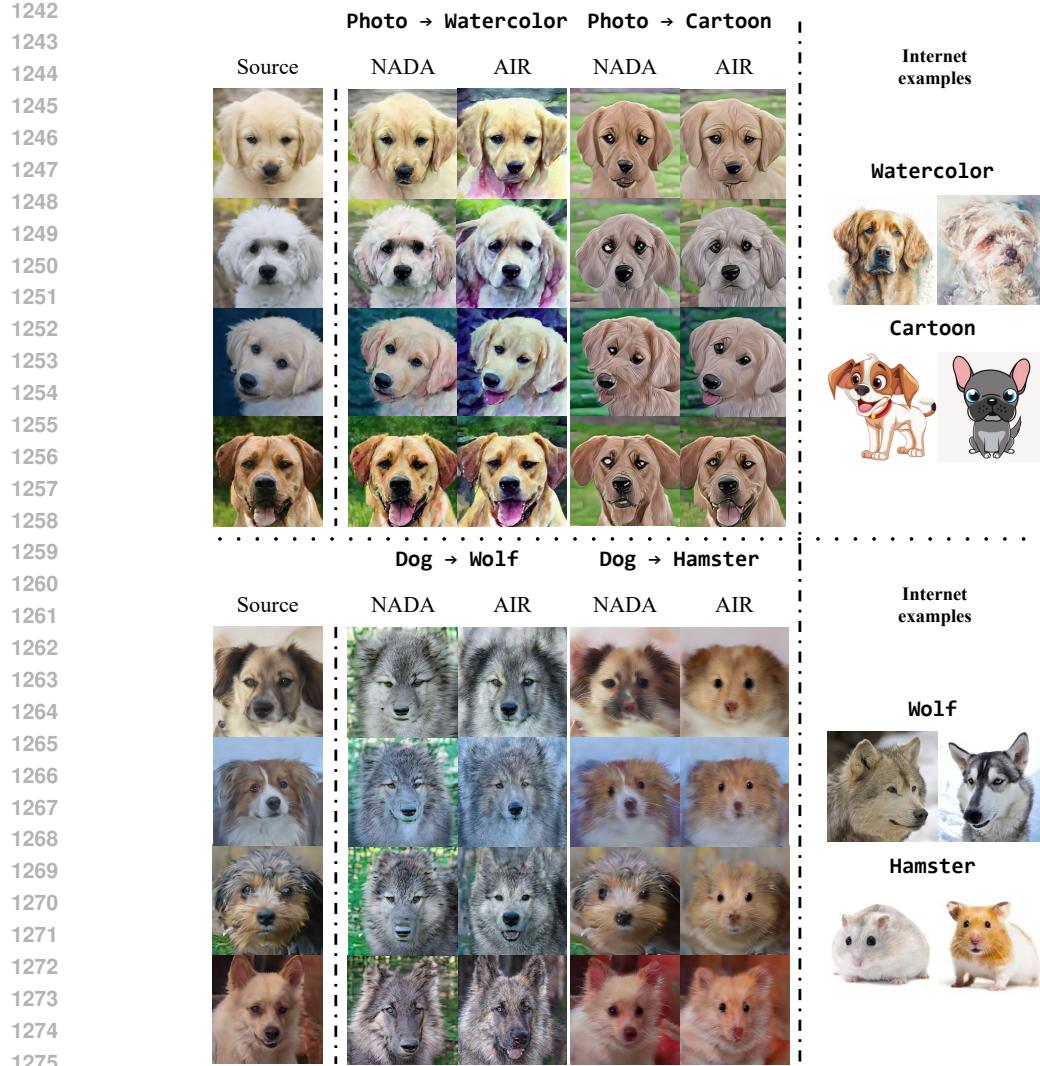


Figure 13: **Additional zero-shot adaptation results.** We use a pre-trained Guided Diffusion model (Dhariwal & Nichol, 2021) on AFHQ-Dog dataset (Choi et al., 2020) as pre-trained generator G_S and perform zero-shot adaptation in two different setups: Photo → Watercolor, Photo → Cartoon, Dog → Wolf, and Dog → Hamster using both NADA and our proposed AIR approach. Quantitative results measured by CLIP distance in 2 shows that the generated images by our approach are closer to the target domain. Similarly, qualitative results show that our proposed AIR approach has better performance compared to NADA.

C.2 DETAILS OF IMPACT OF OFFSET MISALIGNMENT

We randomly sample prompt template from INT, and perform zero-shot adaptation with NADA as shown in Fig. 3 in main paper. We list the details of the sampled prompts and their offset misalignment \mathcal{M} as well as the adaptation quality (measured by FID) in Tab. 6.

C.3 HYPERPARAMETERS OF IMPACT OF OFFSET MISALIGNMENT

For the hyperparameter choices in Sec. 3.2, we strictly follow the settings in NADA except that only the ViT-B/32 is used as vision encoder. The details of hyperparameters are shown in Tab. 7.

1296

Algorithm 2: Proposed Prompt Learning

1297

Require: Current and previous anchor generators $G_{\mathcal{A}_i}$ and $G_{\mathcal{A}_{i-1}}$, learned text prompt for previous anchor $P_{\mathcal{A}_{i-1}}$, learning rate μ , CLIP image and text encoder E_I and E_T

1298

Output: Prompt vector $P_{\mathcal{A}_i}$ to represent current anchor.

1299

1 $\Delta I_{\mathcal{A}_{i-1} \rightarrow \mathcal{A}_i} = E_I(G_{\mathcal{A}_i}(w)) - E_I(G_{\mathcal{A}_{i-1}}(w))$

1300

2 **for** $k = 0$; $k++$; $k < k_{iter}$ **do**

1301

3 $\Delta P_{\mathcal{A}_{i-1} \rightarrow \mathcal{A}_i} = E_T(P_{\mathcal{A}_i}) - E_T(P_{\mathcal{A}_{i-1}})$

1302

4 $\mathcal{L}_{align} = 1 - \cos(\Delta I_{\mathcal{A}_{i-1} \rightarrow \mathcal{A}_i}, \Delta P_{\mathcal{A}_{i-1} \rightarrow \mathcal{A}_i})$

1303

5 Update $P_{\mathcal{A}_i} \leftarrow P_{\mathcal{A}_i} - \mu \nabla_{P_{\mathcal{A}_i}} \mathcal{L}_{align}$

1304

6 **end**

1305

1306

1307

1308

1309

Table 6: Prompt templates used in Sec. 3.2.

1310

Prompts	Human \rightarrow Baby		Dog \rightarrow Cat	
	Offset	Misalignment	Offset	Misalignment
	FID		FID	
A bad photo of a { }.	0.6971	62.76	0.3545	69.47
A sculpture of a { }.	0.7895	68.08	0.4713	101.49
A photo of the hard to see { }.	0.7989	76.36	0.4219	75.24
A low resolution photo of the { }.	0.7729	83.18	0.3942	76.06
A rendering of a { }.	0.7577	73.56	0.4028	111.74
Graffiti of a { }.	0.7715	92.34	0.5332	83.03
A bad photo of the { }.	0.7202	66.58	0.3774	66.58
A cropped photo of the { }.	0.8215	89.66	0.4512	132.33
A tattoo of a { }.	0.8060	108.78	0.5490	119.40
The embroidered { }.	0.8185	104.13	0.5514	109.27
A photo of a hard to see { }.	0.7680	74.58	0.4066	79.07
A bright photo of a { }.	0.7315	69.54	0.4305	77.50
A dark photo of the { }.	0.7758	83.50	0.4592	114.12
A drawing of a { }.	0.7765	89.28	0.4304	123.84
A photo of my { }.	0.6949	58.39	0.3566	77.76
The plastic { }.	0.7812	119.73	0.5092	113.99
A photo of the cool { }.	0.8094	103.78	0.4496	93.12
A close-up photo of a { }.	0.7213	69.61	0.4370	72.75
A black and white photo of the { }.	0.7463	64.99	0.5288	140.25
A painting of the { }.	0.8152	121.74	0.4862	150.15
A painting of a { }.	0.7576	87.01	0.4513	89.32
A pixelated photo of the { }.	0.7154	62.85	0.5168	105.32
A sculpture of the { }.	0.7794	82.22	0.5086	115.97
A bright photo of the { }.	0.8029	114.31	0.4203	83.28
A cropped photo of a { }.	0.7493	86.87	0.3929	93.22
A plastic { }.	0.7420	75.65	0.5247	127.82
A photo of the dirty { }.	0.8276	96.47	0.5004	85.62
A jpeg corrupted photo of a { }.	0.7972	92.56	0.5872	88.73

1341

1342

1343

1344

C.4 HYPERPARAMETERS OF ZERO-SHOT ADAPTATION

1345

1346

1347

1348

1349

In Alg. 1, for both GAN and diffusion model adaptation the batch size is set to 2. Adaptation iteration t_{adapt} is set to 200 for in-domain changes like Human \rightarrow Baby, 300 for texture-based changes such as Photo \rightarrow Sketch, and 2,000 for animal changes like Dog \rightarrow Cat. We set $t_{thresh} = 50\%t_{adapt}$ to ensure there are some target domain concept encoded in G_t , and $t_{int} = 10\%t_{adapt}$ to facilitate a stable and efficient training.

1350
1351
1352 Table 7: Hyperparameters choices of NADA in Sec. 3.2.
1353
1354
1355

Source	Target	Prompt template	Iterations	Adaptive k
Human	Baby	INt	300	18
Dog	Cat	INt	2000	3

1356
1357 In Alg. 2, we generate 1,000 pairs of source and anchor images with the same batch of w for each
1358 update. The number of prompt vectors m is set to 4, and is initialized by "A photo of a". Each of
1359 the prompt learning sessions requires $k_{iter} = 200$ iterations.

1360 For all experiments, we use an ADAM optimizer with a learning rate of 0.002 for both Alg.1 and
1361 2. We conduct all the experiments on a single NVIDIA RTX 6000 Ada GPU. The training time is
1362 comparable to NADA as prompt learning in Alg. 2 only requires \sim 20 seconds in our environment.

1363 It is important to note that the only varying hyperparameter for all 26 setups is the number of
1364 adaptation iterations (same as NADA), and our results show this generalizes well across scenarios.
1365

1366 C.5 EVALUATION DETAILS

1367 A well-trained image generator is defined by its ability to produce high-quality and diverse images
1368 from target distribution. We follow existing zero-shot works in evaluation setup when applicable, and
1369 further improve on them. Specifically, following previous works (Gal et al., 2022; Guo et al., 2023;
1370 Jeon et al., 2023), we have conducted comparisons on both public datasets and images collected
1371 from the internet. Our evaluations include both visual inspections for qualitative evaluations and
1372 quantitative evaluations using the following metrics:
1373

- 1374 • **FID.** For target domains with large and publicly available datasets, we follow previous work (Jeon
1375 et al., 2023) to use FFHQ-Baby (Ojha et al., 2021) (for target domain Baby), and AFHQ-Cat
1376 (Choi et al., 2020) (for target domain Cat) as target distribution. Then, we generate 5000 samples
1377 for each target domain (Zhao et al., 2022a; 2023), and use FID to evaluate the generated images'
1378 quality and diversity.
- 1379 • **CLIP Distance.** The public data is scarce for other target domains, e.g., Pixar. For these
1380 domains, we follow IPL's idea (Guo et al., 2023) to collect internet images as reference. However,
1381 since IPL did not make the collected images publicly available, we had to repeat the same practice
1382 and collect the images. Then, we use the CLIP Distance (Gal et al., 2023) which is defined as the
1383 cosine distance between the clip embeddings of the collected images and the generated images to
1384 measure the similarity of the generated images to the target domain.
- 1385 • **Intra-LPIPS.** To measure the diversity of the generated images, we use Intra-LPIPS metric (Ojha
1386 et al., 2021) which first assigns generated images to one of K clusters, then averages pair-wise
1387 distance within the cluster members and reports the average value over K clusters. In zero-shot
1388 setup, since there are no training images, we follow (Gal et al., 2022; Jeon et al., 2023) to cluster
1389 around generated images using K -Medoids (Kaufman & Rousseeuw, 2009), with $K = 10$.
- 1390 • **User Study.** We also conducted a user study to compare the quality and the diversity of the
1391 generated images with different schemes based on human feedback. See more details in Sec. L.
1392

1393 We remark that similarly NADA reports Intra-LPIPS on AFHQ-Cat, and SVL reports both FID
1394 and Intra-LPIPS on AFHQ-Cat. In addition, we believe the included visual results can help in
1395 transparency and reflecting the superior performance of our proposed method in terms of adaptation
1396 quality.

1397 D ADDITIONAL ABLATION STUDIES

1398 D.1 ABLATION ON HYPERPARAMETERS SELECTION

1399 We conduct an ablation study to determine the optimal hyperparameters. Specifically, Tab. 8 shows the
1400 ablation results for the adaptation interval t_{int} to update anchor. Tab. 9 shows the ablation results for
1401 the starting iteration t_{thresh} of applying AIR. A large t_{int} which results in fewer updates of the anchor

1404 point, generally leads to a degradation in performance due to less precise adaptation. Conversely,
 1405 a small t_{int} , while more computationally expensive, does not yield significant improvement. Thus,
 1406 we set $t_{int} = 10\%$ to balance the computation cost and adaptation precision. Similarly, neither
 1407 excessively large nor small values of t_{thresh} provide optimal adaptation performance. As shown in
 1408 Fig. 14 (b) and (c), the visual ablation results align with this conclusion. Hence, we empirically select
 1409 $t_{thresh} = 50\%$. It is important to note that the only varying hyperparameter for all 26 setups is the
 1410 number of adaptation iterations (same as NADA), and our results show this generalizes well across
 1411 scenarios.

Table 8: Ablation study on adaptation interval t_{int} to update anchor.

% of t_{adapt}	t_{int}			
	Human \rightarrow Baby		Dog \rightarrow Cat	
	FID (↓)	Intra-LPIPS (↑)	FID (↓)	Intra-LPIPS (↑)
5%	59.45	0.4512	59.97	0.4560
10%	62.13	0.4520	56.20	0.4628
15%	58.87	0.4515	61.92	0.4635
20%	64.54	0.4496	65.49	0.4537
25%	56.69	0.4511	67.49	0.4374
30%	76.39	0.4506	77.23	0.4513

Table 9: Ablation study on starting iteration t_{thresh} of applying AIR.

% of t_{adapt}	t_{thresh}			
	Human \rightarrow Baby		Dog \rightarrow Cat	
	FID (↓)	Intra-LPIPS (↑)	FID (↓)	Intra-LPIPS (↑)
0%	63.56	0.4324	83.33	0.4815
12.5%	75.92	0.4259	78.21	0.4642
25.0%	72.17	0.4386	73.65	0.4516
37.5%	64.14	0.4558	59.96	0.4496
50.0%	62.13	0.4520	56.20	0.4628
67.5%	68.25	0.4542	56.46	0.4344

D.2 ABLATION ON ANCHOR LABEL INITIALIZATION

Our prompt initialization in Sec. 4.2 is inspired by the standard prompt learning in VLM (Zhou et al., 2022b;a), which initializes label token Y with class label of the image to serve as prior. However, in our setting, the anchor domain encodes both source and target concepts, so it cannot be described with natural language. Therefore, we leverage the continuous and semantically rich embedding space of the text encoder to initialize anchor label Y_{A_i} via **interpolation** between tokenized source and target descriptions. We conduct an ablation study on the initialization of Y_{A_i} . Results shown in Tab. 10 indicate the effectiveness of our idea by obtaining the best FID and Intra-LPIPS.

D.3 VISUAL ABLATION STUDIES

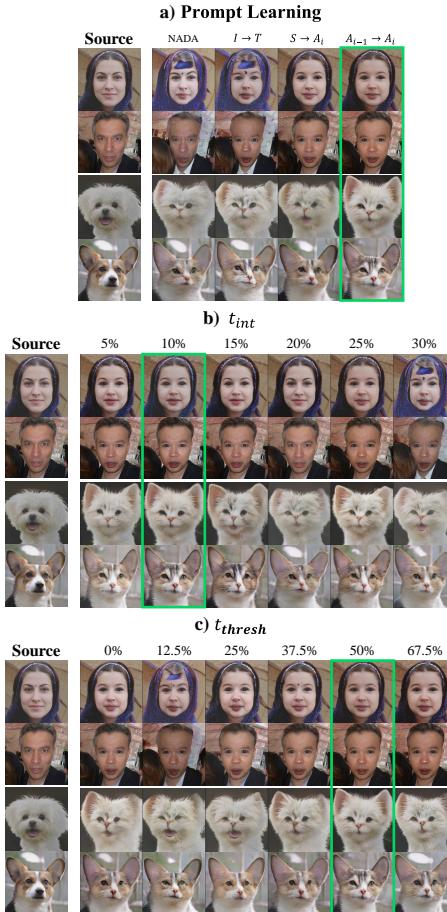
We perform visual ablation studies on prompt learning design and hyperparameters selection with the same experiments setting of Sec. 5.4 and D.1. The results in Fig. 14 align consistently with the quantitative findings.

E VALIDATE OUR LEARNED ANCHOR PROMPTS

To validate our prompt learning, we visualize the learned prompts and generated anchor domain images in CLIP space. As shown in Fig. 15, the prompts accurately represent the anchors (3 of 5 anchors shown for clarity).

1458 Table 10: Ablation study on initialization of $Y_{\mathcal{A}_i}$, using: a) Target domain label; b) Source domain
 1459 label for the first half of adaptation, then target domain label; c) Interpolation as in our AIR.

Init.	Human \rightarrow Baby		Dog \rightarrow Cat	
	FID (\downarrow)	Intra-LPIPS (\uparrow)	FID (\downarrow)	Intra-LPIPS (\uparrow)
a)	67.53	0.4513	65.83	0.4373
b)	63.34	0.4512	56.44	0.4466
c)	62.13	0.4520	56.20	0.4628



1498 Figure 14: Visual ablation study of: a) Design choice of prompt learning; b) Adaptation interval t_{int}
 1499 to update anchor; c) Starting iteration t_{thresh} of applying AIR.

F OFFSET MISALIGNMENT ALLEVIATION

1503 We demonstrate AIR alleviates the offset misalignment, i.e., our refined direction aligns more with
 1504 ground truth in Tab. 11. The ground truth is computed by $\Delta I_{\mathcal{S} \rightarrow \mathcal{T}} = E_I(\overline{I_{\mathcal{T}}}) - E_I(\overline{G_{\mathcal{S}}(w)})$ (for
 1505 AIR, the ground truth is $\Delta I_{\mathcal{A}_i \rightarrow \mathcal{T}}$ of the last \mathcal{A}_i), where $I_{\mathcal{T}}$ are real images.

G OFFSET MISALIGNMENT IN OTHER MULTIMODAL REPRESENTATION SPACES

1508 In this section, we present an additional empirical analysis of offset misalignment for other contrastive
 1509 learning-based Multimodal Representation spaces. Following the experimental setup in Sec. 3.1, but

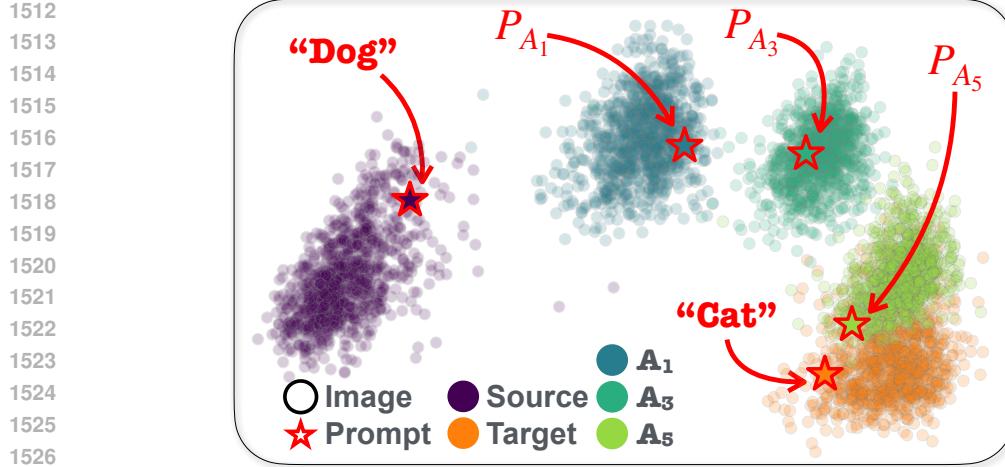


Figure 15: PCA visualization for Dog → Cat. For each anchor point \mathcal{A}_i , our learned prompt $P_{\mathcal{A}_i}$ lies within the distribution of 1000 generated images by the generator $G_{\mathcal{A}_i}$ for that anchor point.

Table 11: Offset misalignment between adaptation directions and the ground truth. Note that IPL and SVL have multiple directions.

Adaptation	NADA	IPL	SVL	AIR
Human → Baby	0.67	0.69 ± 0.09	0.92 ± 0.03	0.49
Dog → Cat	0.54	0.65 ± 0.06	0.59 ± 0.11	0.25

replacing the CLIP ViT-Base/32 vision encoder with CLIP ConvNext-L, CLIP RN50x64, and SigLIP ViT-L/16-256, we plot the offset misalignment against concept distance for six public datasets in Fig. 16, Fig. 17, and Fig. 18. Our results demonstrate consistent and meaningful positive correlations between offset misalignment and concept distance across different CLIP-like spaces.

H CONCEPT SHIFTS DURING ADAPTATION

The intuition of our proposed method is that after limited iterations of adaptation using directional loss, the encoded concept in the adapted generator is already closer to the target domain than the encoded concept in source generator. In this section, we design an experiment to demonstrate that the adapted generator already encodes some knowledge related to the target domain. Specifically, following zero-shot generative model domain adaptation setup (Gal et al., 2022), we perform adaptation on Human → Baby with StyleGAN2-ADA pretrained on FFHQ (Karras et al., 2019). We report FID score throughout the adaptation process to measure the knowledge related to target domain encoded in the adapted generator. Our results in Fig. 19 support our statement. Additionally, we present qualitative results using the same latent code to further support our findings.

I LATENT SPACE INTERPOLATION

Building on prior research, we demonstrate that the target domain generators refined through our method retain a smooth latent space property. As illustrated in Fig. 20, each row features a series of images from the same target domain. The left-most and right-most images in each row, labeled as $G_t(w_1)$ and $G_t(w_2)$ respectively, are generated using distinct latent codes w_1 and w_2 . Latent space interpolation between these codes produces an image $G_t((1 - \gamma)w_1 + \gamma w_2)$, where α varies from 0 to 1. The visual results show that our method has good robustness and generalization ability. The various target domain spaces obtained by our method are consistently smooth.

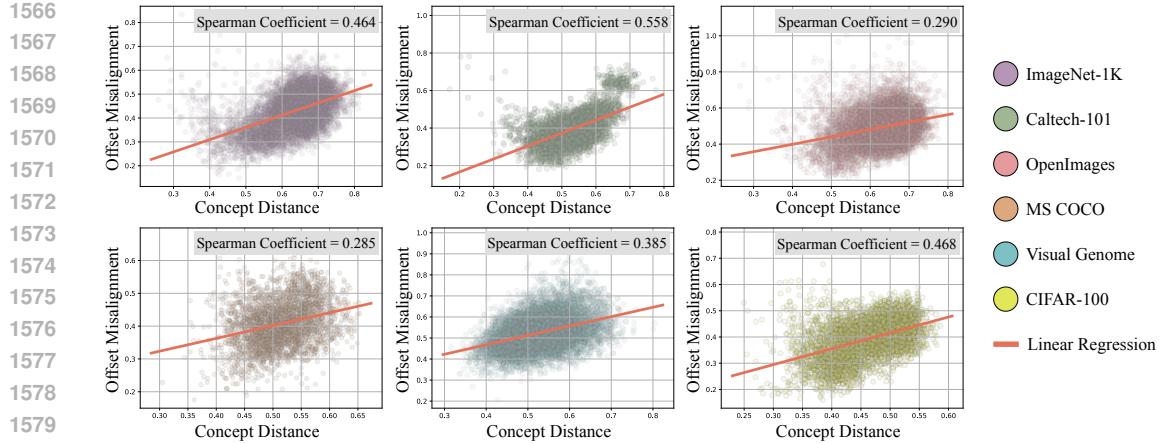


Figure 16: Empirical analysis of offset misalignment in CLIP ConvNext-L space. Experiment setup is the same as Sec. 3.1 except that CLIP ConvNext-L is used as the vision encoder. Our results show that the meaningful correlation (measured by Spearman’s coefficient (Zar, 2005)) between offset misalignment and concept distance consistently exists in both ConvNext-based and ViT-based CLIP vision encoders.

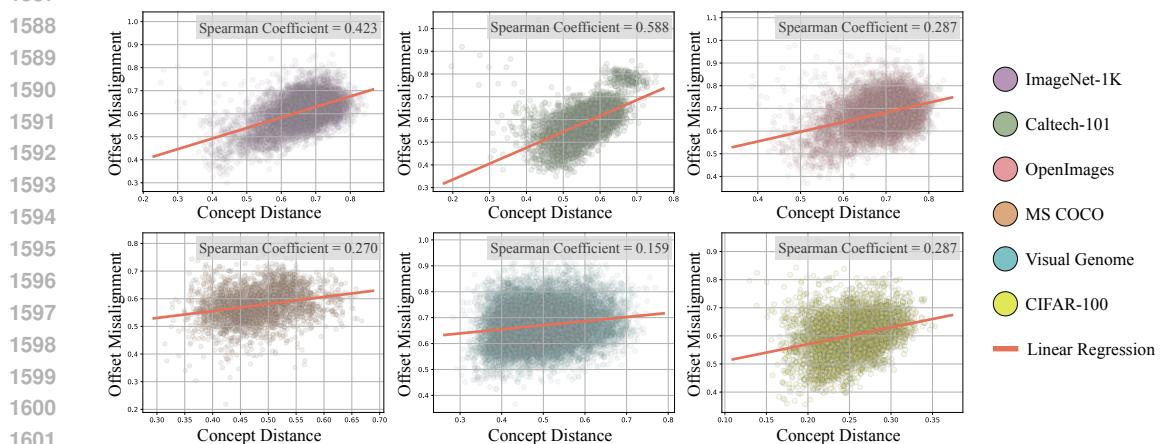


Figure 17: Empirical analysis of offset misalignment in CLIP RN50x64 space. Experiment setup is the same as Sec. 3.1 except that CLIP RN50x64 is used as the vision encoder. Our results show that the meaningful correlation (measured by Spearman’s coefficient (Zar, 2005)) between offset misalignment and concept distance consistently exists in both CNN-based and ViT-based CLIP vision encoders.

J CROSS-MODEL INTERPOLATION

In addition to demonstrating latent space interpolation, we also explore the model’s weight smoothness across various domains. Specifically, we perform linear interpolation in the weight space between $G(\cdot, \theta_s)$ and $G(\cdot, \theta_{t_1})$, or between $G(\cdot, \theta_{t_1})$ and $G(\cdot, \theta_{t_2})$. Here, $G(\cdot, \theta_s)$ represents the source domain generator, while $G(\cdot, \theta_{t_1})$ and $G(\cdot, \theta_{t_2})$ are generators adapted to two different target domains. Given a latent code w , we produce images via an interpolated model, $G(w, (1 - \gamma)\theta_1 + \gamma\theta_2)$, where γ ranges from 0 to 1. As illustrated in Fig. 21, our approach effectively supports smooth cross-model interpolation, whether transitioning from a source to a target domain or between different target domains.

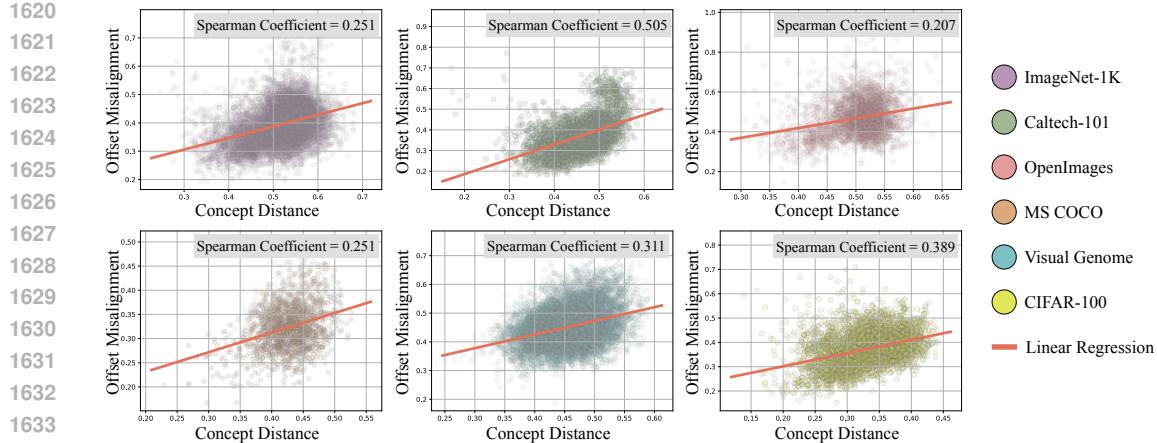


Figure 18: Empirical analysis of offset misalignment in SigLIP ViT-L/16-256 space. Experiment setup is the same as Sec. 3.1 except that SigLIP ViT-L/16-256 is used as the vision encoder. Our results show that the meaningful correlation (measured by Spearman’s coefficient (Zar, 2005)) between offset misalignment and concept distance consistently exists in various contrastive learning-based multimodal vision encoders.

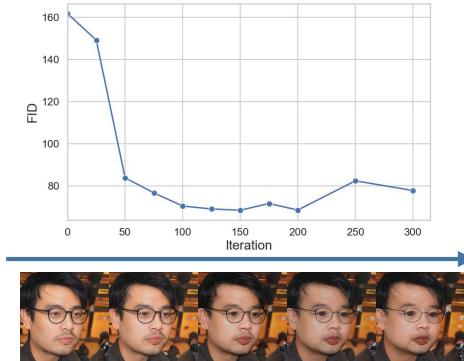


Figure 19: Concept shifts during adaptation.

K IMAGE MANIPULATION

To further demonstrate the effectiveness of our proposed method, we also conduct experiments on text-to-image manipulation. It first inverts a image to the latent code by a pre-trained inversion model and then feeds it to the trained target domain generator to get the translated target domain image.

We experiment on both GAN and diffusion model. We use Restyle (Alaluf et al., 2021) with e4e encoder (Tov et al., 2021) to invert a real image into the latent space w for StyleGANs. For the diffusion model, we follow the setting of DiffusionCLIP (Kim et al., 2022) to diffuse a real image and fintune the model to generate an image with target domain features using the diffused image.

K.1 GAN-BASED IMAGE MANIPULATION

For GAN-based generators, we perform the experiment by utilizing the inversion model Restyle (Alaluf et al., 2021) with e4e encoder (Tov et al., 2021). As illustrated in Fig 22, our method qualitatively exhibits a higher fidelity of target domain features compared to previous methods. Quantitatively, our approach more closely aligns with the reference target images in CLIP space, indicating a greater semantic similarity.

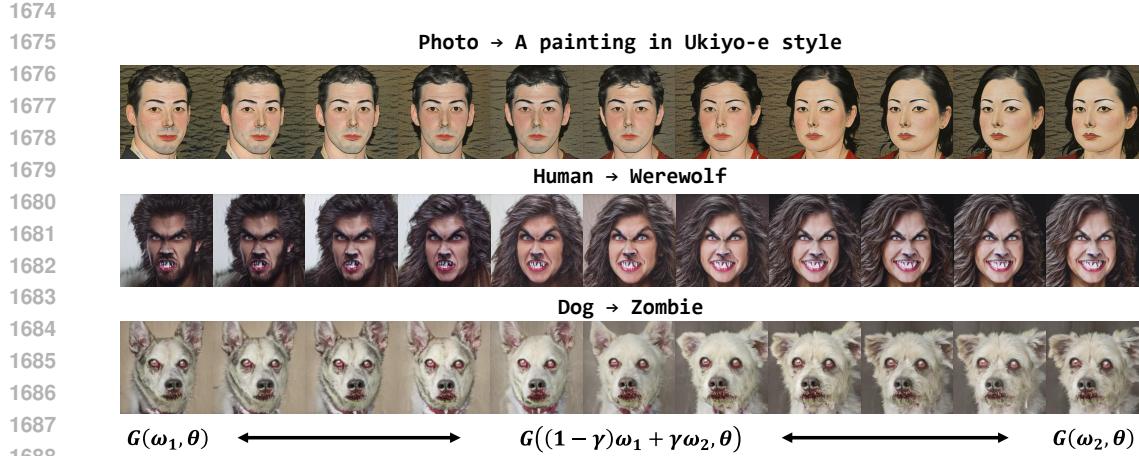


Figure 20: Latent space interpolation. For each row, the left-most column and right-most column are respectively two images synthesized with two different latent codes. The remaining columns refer to images synthesized with interpolated latent codes.

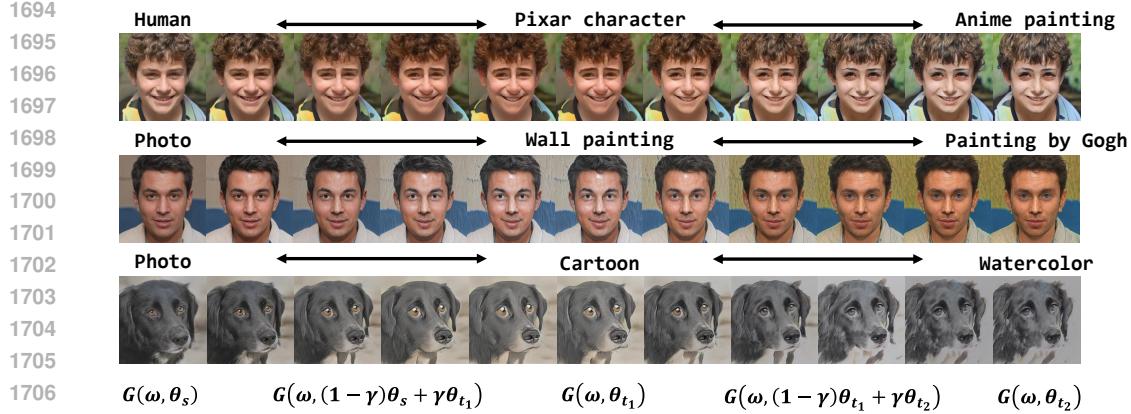


Figure 21: Cross-model interpolation. In each row, the left-most image is generated by the source generator. The middle and the right-most images are synthesized by two different target domain generators. The other images represent cross-model interpolations between two different domains.

K.2 DIFFUSION-BASED IMAGE MANIPULATION

We implement based on Diffusion-CLIP (Kim et al., 2022) which seamlessly integrates with the existing zero-shot adaptation methods.

As illustrated in Fig 23, our method qualitatively exhibits a higher fidelity of target domain feature compared to previous methods. Quantitatively, our approach more closely aligns with the reference target images in CLIP space, indicating a greater semantic similarity.

Fig. 24 illustrates real-world image manipulation results for diffusion AIR.

L USER STUDY

We conduct a user study to compare the quality and the diversity of the generated images with different schemes based on human feedback. The questionnaire is performed using the generated images by different schemes including NADA, IPL, SVL, and our proposed AIR. It includes 12 questions for quality evaluation and 4 questions for diversity assessment. We include examples for

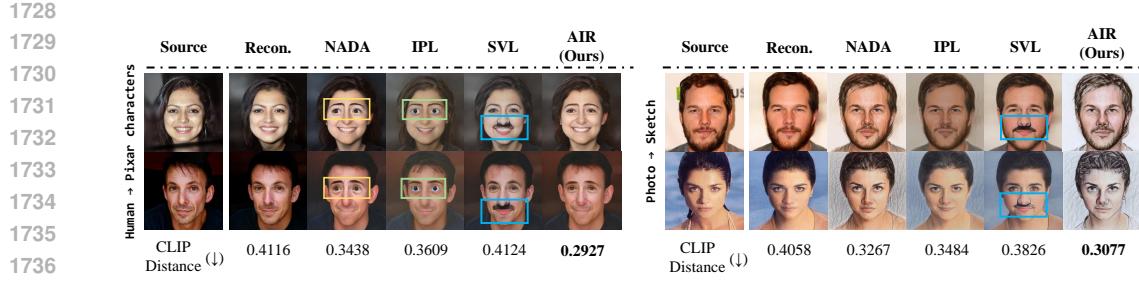


Figure 22: Image manipulation with GAN. The reference image are the same as in Fig. 1, 5.

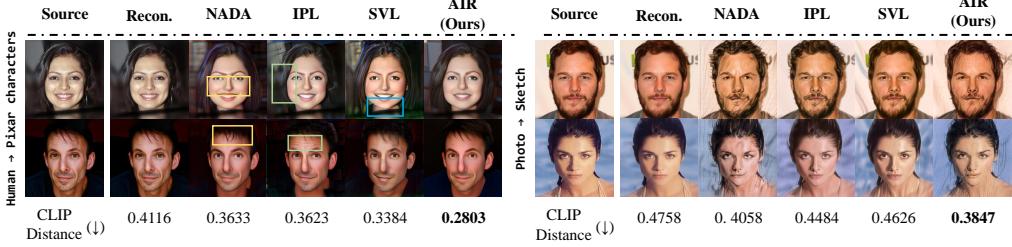


Figure 23: Diffusion model image manipulation. The reference images are the same as in Fig. 1, 6.

quality and diversity evaluation of our questionnaire in Fig. 25. Finally, we report the percentage of the user preference from 220 responses for each method and for both quality and diversity metrics in Tab. 3 in the main paper.

M RELATED WORK

Zero-shot Generative Model Adaptation Zero-shot generative model adaptation is the task of adapting the source domain knowledge of a well-trained generator to the target domain without accessing any target samples. Unlike the zero-shot image editing methods (Patashnik et al., 2021; Shen & Zhou, 2021) where available modifications are constrained in the domain of the pre-trained generator, zero-shot generator adaptation can perform out-of-domain manipulation by directly optimizing the generator parameters. Previous works (Gal et al., 2022; Guo et al., 2023; Jeon et al., 2023) utilized the cross-modal representation in CLIP (Radford et al., 2021) to bypass the need for extensive data collection. Specifically, **NADA** (Gal et al., 2022) first proposes to use the embedding offset of textual description in the CLIP space to describe the difference between source and target domains. By assuming the text offset and image offset are well-aligned in CLIP space, it uses the text offset as adaptation direction and optimizes the trainable generator to align image offset with text offset. **IPL** (Guo et al., 2023) points out that adaptation directions in NADA for diverse image samples is computed from one pair of manually designed prompts, which will cause mode collapse, therefore they produce different adaptation directions for each sample. Similarly, **SVL** (Jeon et al., 2023) use embedding statistics (mean and variance) for producing adaptation direction instead of only mean of embeddings in NADA to prevent mode collapse.

However, the adaptation direction in previous work only focuses on the source and target domains and computes once before the generator adaptation. More importantly, all these methods assume the image and text offsets in the CLIP space are well aligned. In this paper, we draw inspiration from a similar problem called analogical reasoning in NLP, and empirically discover that the alignment of image and text offset in CLIP space is correlated to the concept proximity in CLIP space. Based on this finding, we proposed a method that iteratively updates the adaptation direction, which is more aligned with the image offset and more accurate for zero-shot adaptation with directional loss.

Figure 24: Additional results of image manipulation with diffusion model.

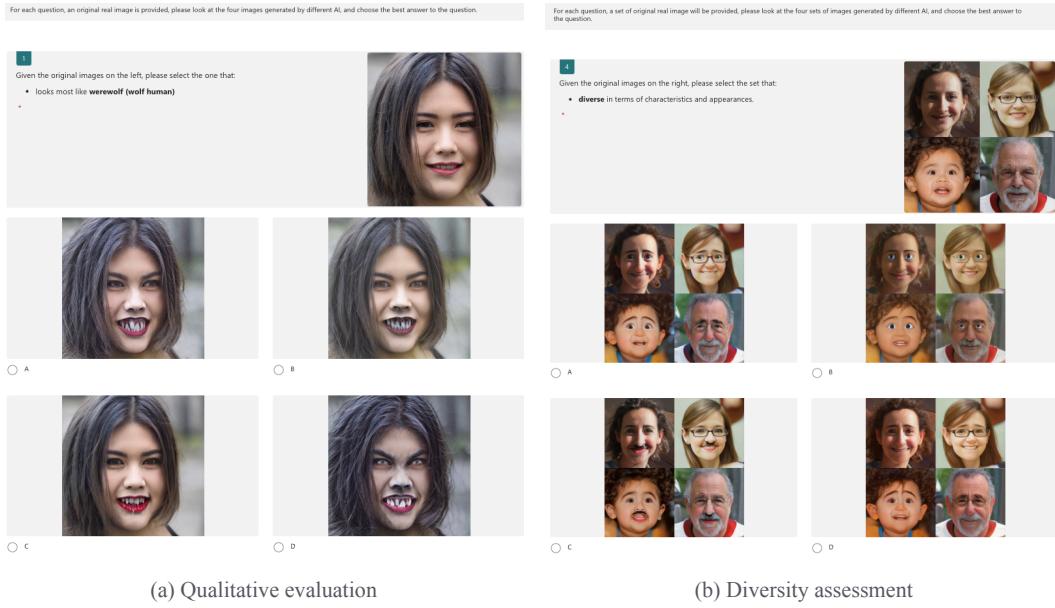


Figure 25: Examples of user study on (a) Quality assessment and (b) Diversity assessment.

Analogical Reasoning Research in NLP has shown that word representations of language models are surprisingly good at capturing semantic regularities in language (Collobert & Weston, 2008; Turian et al., 2010). Specifically, analogical reasoning (Mikolov et al., 2013c;a;b; Levy & Goldberg, 2014), utilizing the semantic regularities of word representations, aims to solve analogy tasks by using one pair of word vectors to identify the unknown member of a different pair of words, commonly via alignment of offsets. This is commonly modeled as using the vector offset between two words $a' - a$, and applying it to a new word b to predict the missing word b' that pair with b , as illustrated by the famous example of using $v("Man") - v("Woman")$ and $v("King")$ to identify $v("Queen")$, where $v(\cdot)$ denotes word representation. This approach attracted a lot of attention for the vital role that analogical reasoning plays in human cognition for discovering new knowledge and understanding new concepts. It is already used in many downstream NLP tasks, such as splitting compounds (Daiber et al., 2015), semantic search (Cohen et al., 2015), cross-language relational search (Duc et al., 2015), etc.

Importantly, previous works (Levy et al., 2015; Köper et al., 2015; Vylomova et al., 2015) demonstrate that the effectiveness of analogical reasoning varies across different categories and semantic relations. More recent studies (Rogers et al., 2017; Fournier et al., 2020), present a series of experiments performed with BATS dataset (Gladkova et al., 2016) on various pre-trained vector space, e.g., GloVe

1836	Models	License
1837	StyleGAN2 (Karras et al., 2020b)	Nvidia Source Code License
1838	CLIP (Radford et al., 2021)	MIT License
1839	StyleGAN2-pytorch (Karras et al., 2020b)	MIT License
1840	e4e (Tov et al., 2021)	MIT License
1841	StyleGAN-NADA (Gal et al., 2022)	MIT License
1842	IPL (Guo et al., 2023)	MIT License
1843	Datasets	License
1844	FFHQ [5]	CC BY-NC-SA 4.0
	AFHQ [1]	CC BY NC 4.0

Table 12: Sources and licenses of the utilized models and datasets

([Pennington et al., 2014](#)), Word2Vec ([Mikolov et al., 2013b](#)), and Skip-gram ([Mikolov et al., 2013a](#)), indicate that it is more effective to use $a' - a$ and b to determine b' when b and b' are close in vector space; and less so when b and b' are more apart.

Inspired by these studies, in this work, we perform an empirical study of offset misalignment in CLIP space and observe that for distant concepts in CLIP, image and text offset suffer from more misalignment, while closely related concepts suffer less. Based on our analysis, we proposed a method that iteratively refined the text offset for adaptation, which results in less offset misalignment and leads to a better generative model adaptation with directional loss.

N LIMITATION

Our proposed iterative refinement method seeks to improve the quality of zero-shot adaptation. As noted by [Guo et al. \(2023\)](#), achieving adaptation across large domain gaps, such as Human to Cat, is particularly challenging. Similar to previous work, our approach necessitates that the trained generator somewhat approximates the target domain before initiating iterative refinement. Additionally, while our experiments on 32 different setups are comprehensive compared to previous work, more setups can be experimented to understand the limitations. We also note that our image-text offset alignment analysis focuses on CLIP-like multimodal representation spaces used in ZSGM work, and under ZSGM context.

O SOCIAL IMPACT

The AIR methodology holds potential for enhancing artistic image synthesis in social media contexts and could serve as a beneficial data augmentation tool in other computer vision tasks such as recognition and detection. However, its capability to generate realistic images from real-world data raises ethical considerations. It is crucial to address these issues thoughtfully to prevent misuse and ensure responsible application of this technology.

P USE OF LARGE LANGUAGE MODELS (LLMs)

LLMs were used solely as a writing aid to improve clarity, grammar, and style. They were not involved in generating research ideas, designing methodology, analyzing data, or drawing conclusions.

Q LICENSES

In Table 12, we specify the source and licenses of the models and datasets used in our work. Note that the FFHQ dataset consists of facial images collected from Flickr, which are under permissive licenses for non-commercial purposes.