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ABSTRACT

Zero-shot generative model adaptation (ZSGM) aims to adapt pre-trained gener-
ative models using only textual descriptions. ZSGM is particularly valuable for
data-scarce target domains, such as rare concepts or artistic styles, where obtaining
training samples is challenging. Central to all existing ZSGM methods is the foun-
dational assumption that image-text offsets in CLIP’s multimodal representation
space are well aligned to guide adaptation. In this work, we present two main
contributions. First, we question this foundational assumption by conducting the
first comprehensive empirical analysis of image-text offset alignment in CLIP space
within the ZSGM context. Our findings reveal not only noticeable misalignment
but also a meaningful positive correlation between image-text offset misalignment
and concept distance across six large datasets and four multimodal spaces. Second,
leveraging this discovery, we propose Adaptation with Iterative Refinement (AIR),
the first method focused on improving sample quality for ZSGM. Our method
iteratively refines text offsets and reduces image-text offset misalignment, using
anchor sampling and a novel prompt learning approach. Comprehensive experi-
ments accross 32 experiment setups, including qualitative, quantitative, and user
studies, consistently show that AIR achieves state-of-the-art performance. Code
and additional experiments are available in the supplementary material.

1 INTRODUCTION

Generative models, including Generative Adversarial Networks (GANs) (Goodfellow et al., 2014;
Karras et al., 2020b; Kang et al., 2023; Huang et al., 2024) and Diffusion Models (Rombach et al.,
2022; Peebles & Xie, 2023; Esser et al., 2024), have made significant strides in producing high-fidelity
and diverse images. However, their training requires extensive datasets, such as 70K images for
StyleGAN2 (Karras et al., 2020c) or 400M for Stable Diffusion (Rombach et al., 2022), which are
often unavailable in data-scarce domains like rare species, rare concepts, or artistic styles. Training
with limited data frequently results in mode collapse (Abdollahzadeh et al., 2023), emphasizing the
need to address these challenges.

Generative model adaptation has become a key research area, leveraging pre-trained generators
from rich source domains to adapt to data-scarce target domains(Li et al., 2020; Ojha et al., 2021;
Zhao et al., 2022b; Zhou et al., 2024; Anees et al., 2024; Zhu et al., 2025; Guo et al., 2025; Cai et al.,
2025). This approach exploits the diversity of source models to generate robust, varied samples for
rare or limited-data domains, improving both diversity and quality.

Zero-shot generative model adaptation (ZSGM) represents a significant advancement in this
field, relying exclusively on textual descriptions without target images. NADA (Gal et al., 2022), a
pioneering effort, utilizes text offsets within CLIP multimodal embedding space to guide adaptation
by aligning image offsets (from source to adapted generator) with text offsets (from source to target).
This method is grounded in the core assumption that the offset between image embeddings and the
offset between their corresponding text embeddings in CLIP space are well aligned. This image-text
offset alignment has been the foundational assumption of all subsequent ZSGM approaches (Guo
et al., 2023; Jeon et al., 2023). See Sec. M for detailed discussion on related work.

In this work, we challenge the foundational assumption underlying ZSGM. For the first time in
literature, we conduct a comprehensive empirical analysis of offset alignment within CLIP embedding
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(a) Empirical Analysis of Offset Misalignment (b) Proposed AIR Method

(c) Qualitative Comparison of Proposed Method with Previous Approaches

Text embeddings

Image embeddings

AIR (Ours)

Previous methods

“Grey Wolf”

“Scottish Terrier”

Bernese  
Mountain Dog

“                   ”

Figure 1: Our contributions: (a) We question the core assumption of all existing ZSGM methods:
image-text offset alignment. We perform a comprehensive analysis of offset alignment in CLIP
embedding space. Our analysis reveals that not only there is noticeable misalignment between im-
age offset (orange arrow) and text offset (blue arrow) but also a meaningful positive correlation
between offset misalignment and concept distance. For example, in the ImageNet-1K dataset, the
“Grey Wolf” is a more distant concept to the “Bernese Mountain Dog” (concept distance=0.426)
than the “Scottish Terrier” (concept distance=0.307). Accordingly, “Grey Wolf”→ “Bernese
Mountain Dog” has higher offset misalignment than “Scottish Terrier”→ “Bernese Mountain
Dog” (0.576 vs 0.285). This misalignment is overlooked in existing approaches, resulting in degra-
dation in target domain image quality (Sec. 3). (b) Leveraging our discovery, we propose Adaptation
with Iterative Refinement (AIR) to iteratively refine text offsets and reduce offset misalignment for
ZSGM (Sec. 4). (c) Our proposed AIR consistently achieves improved quality across diverse setups
by better capturing rich target domain’s style and details. (see Sec. 5 and Sec. A for detailed results).

space in the context of ZSGM. Our primary findings reveal not only the presence of noticeable
misalignment in some instances but also a meaningful positive correlation between image-text
offset misalignment and concept distance: for closely related concept pairs, misalignment tends to be
smaller, whereas it increases as concepts become more distant (Fig. 1). This correlation is consistently
observed in six large public datasets and four contrastive learning-based multimodal spaces.

Leveraging our discovery of the positive correlation between misalignment and concept distance,
we propose Adaptation with Iterative Refinement (AIR), a novel framework designed to enhance
the quality of generated images in ZSGM. After limited iterations of initial adaptation, the adapted
generator encodes a concept closer to the target than the source (Sec. H), potentially reducing image-
text offset misalignment. Building on this insight, AIR iteratively samples intermediate adapted
generators as anchors during the adaptation, refining offsets with these anchors to enhance guidance
accuracy. As the textual descriptions of these anchor are unknown, we introduce a novel prompt
learning strategy to infer them dynamically. Our extensive results consistently demonstrate improved
adaptation quality across diverse setups. Our main contributions are summarized as follows:

• We challenge the foundational assumption of ZSGM by conducting the first comprehensive
empirical analysis of offset alignment within CLIP embedding space, revealing noticeable
misalignment and a meaningful positive correlation with concept distance (Sec. 3).

• We introduce Adaptation with Iterative Refinement (AIR), a novel framework that leverages
the discovered correlation to improve generated image quality in zero-shot adaptation, utilizing
iterative anchor sampling and a new prompt learning strategy to dynamically infer unknown
textual descriptions (Sec. 4).
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• Our extensive experiments across 32 diverse setups, including the first application to diffusion
models, demonstrate consistent improvements in adaptation quality, validated by qualitative,
quantitative, and user study results, achieving state-of-the-art performance (Sec. 5 and Supp.).

Remark: Our discovery of image-text offset misalignment in CLIP multimodal space can be viewed as
an analogy to text offset misalignment studies in unimodal text embedding space for natural language
processing (NLP). In NLP, analogical reasoning (Mikolov et al., 2013c;a;b; Levy & Goldberg,
2014) relies on aligning offsets between word vectors, such as alignment between Ev(“Man”)
- Ev(“Woman”), and Ev(“King”) - Ev(“Queen”), where Ev denotes a text vector. Research
indicates that the accuracy of analogical reasoning improves with similar, nearby concepts but
decreases with growing distance (Levy et al., 2015; Köper et al., 2015; Rogers et al., 2017; Fournier
et al., 2020). Similarly, our finding of a positive correlation between image-text offset misalignment
and concept distance in CLIP reveals a similar distance-dependent relationship in CLIP space.

2 PRELIMINARIES: DIRECTIONAL CLIP LOSS

In zero-shot generative model adaptation setup (Gal et al., 2022), given a pre-trained generator GS on
the source domain S, and textual descriptions of source and target domains, denoted by TS and TT
respectively, the goal is to shift GS to target domain T to generate diverse and high-quality images
from this domain (Abdollahzadeh et al., 2023). For this adaptation, current approaches (Gal et al.,
2022; Guo et al., 2023; Jeon et al., 2023) use the CLIP model (Radford et al., 2021) as the source
of supervision, and assume that text and image offsets (between S and T ) are well-aligned in CLIP
representation space. Therefore, the text offset is computed based on the provided textual descriptions
of the source and target. Then, the trainable generator is initialized with the parameters of the GS ,
and optimized in a way to align image offset with text offset, leading to the directional CLIP loss:

Ldirection = 1− cos(∆IS→t,∆TS→T ),

where ∆IS→t = EI(Gt(w))− EI(GS(w)),

and ∆TS→T = ET (TT )− ET (TS)

(1)

where cos(x, y) = x · y/|x||y| represents the cosine similarity. ET and EI denote the CLIP text and
image encoders, respectively. Gt denotes the trainable generator in iteration t of adaptation. ∆IS→t

denotes the image offset computed from the source generator to the trainable generator, and ∆TS→T
denotes the text offset from source to target.

3 A CLOSER LOOK AT OFFSET MISALIGNMENT IN CLIP SPACE

Previous works assume that for two different concepts α and β, the image offset ∆Iα→β and text
offset ∆Tα→β are well aligned in the multimodal CLIP embedding space. This alignment assumption
underlies the directional loss (Eq. 1). We postulate that this assumption has two major limitations:

• CLIP (Radford et al., 2021) is trained with contrastive loss to maximize cosine similarity between
corresponding image-text pairs, i.e., maximize cos(EI(Iα), ET (Tα)) for concept α (e.g., cat), or
maximize cos(EI(Iβ), ET (Tβ)) for concept β (e.g., dog). Note that the degree of alignment of
image offset ∆Iα→β and text offset ∆Tα→β in CLIP space is not studied in the literature.

• In addition, this degree of alignment between ∆Iα→β and ∆Tα→β may vary based on the distance
between two concepts α and β.

In this section, we take a closer look at this degree of offset alignment between two different modalities
in CLIP space. First, inspired by offset misalignment in NLP, we conduct an empirical study on
large public datasets to analyze the offset misalignment between image and text modalities in CLIP
embedding space. Our analysis suggests that there is a misalignment between ∆Iα→β and ∆Tα→β

in CLIP embedding space, and this misalignment increases as concepts α and β become more
distant. Second, we take a further step and design an experiment to evaluate the effect of this offset
misalignment in generative model adaptation using directional loss (Eq. 1). Our experimental results
suggest that less offset misalignment in CLIP embedding space leads to a better generative
model adaptation with directional loss.
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ImageNet-1K

Caltech-101

OpenImages

MS COCO

Visual Genome

CIFAR-100

Linear Regression

Spearman Coefficient = 0.494

Spearman Coefficient = 0.296

Spearman Coefficient = 0.492

Spearman Coefficient = 0.305

Spearman Coefficient = 0.351

Spearman Coefficient = 0.229

Figure 2: Empirical analysis of offset misalignment in ViT-based CLIP space: We plot the offset
misalignment (Eq. 2) vs concept distance for N = 5000 of text-image pairs in CLIP space which are
sampled from 6 large publicly available datasets (details in Sec. C.1; total 30, 000 text-image pairs).
Our results show that there is a meaningful correlation (measured by Spearman’s coefficient (Zar,
2005)) between offset misalignment and concept distance for datasets with different distributions,
i.e., close concepts has less offset misalignment. Furthermore, we have consistent observations
for three additional CLIP-like representation spaces, see Sec. G.

3.1 EMPIRICAL ANALYSIS OF OFFSET MISALIGNMENT

In this section, we conduct an empirical experiment on public datasets to evaluate the degree of
alignment between image and text offsets. We randomly sample two classes for each dataset as a
pair of concept (α, β). Then, the images within each class are used alongside the related textual
description (e.g., label) of each class to measure offset misalignmentM(α, β) in a similar way to
directional loss:

M(α, β) = 1− cos(∆Iα→β ,∆Tα→β),

where ∆Iα→β = EI(Iβ)− EI(Iα),

and ∆Tα→β = ET (Tβ)− ET (Tα)

(2)

where EI(Iα) is the average embedding of all images of the class (concept) α in CLIP space. To
measure the distance between two concepts denoted by D(α, β), we use cosine similarity between
images of two classes, i.e., D(α, β) = 1− cos(EI(Iβ), EI(Iα)). We repeat this for N = 5000 pairs
of concepts for each dataset. Then, we plotM(α, β) against D(α, β) for each pair of concepts.

Experimental Setup. In this experiment, we use CLIP ViT-B/32 as vision encoder. We use 6
large and multi-class datasets that are publicly available, including ImageNet (Deng et al., 2009),
Caltech-101 (Fei-Fei et al., 2007), OpenImages (Kuznetsova et al., 2020), COCO (Lin et al., 2014),
Visual Genome (Krishna et al., 2017), and CIFAR-100 (Krizhevsky et al., 2009) (details in Sec. C.1).

Results. Fig. 2 shows the offset misalignment against the concept distance for N = 5000 pairs
of concepts for 6 public datasets. As shown in the plots, for all datasets, apart from their different
distributions and characteristics, there is a positive correlation between offset misalignment and
concept distance. Particularly, if two concepts α and β are distant, there is a higher misalignment
between image offset ∆Iα→β and corresponding text offset ∆Tα→β . This means that given Iα, Tα

and Tβ , it is sub-optimal to align ∆Iα→β and ∆Tα→β to find Iβ . On the other hand, if two concepts
α and β are closer, potentially, it is more accurate to align ∆Iα→β and ∆Tα→β to find Iβ .

Remark: Our work is the first to reveal that offset misalignment between image and text modalities
in CLIP correlates positively with concept distance. In what follows, we design an experiment to
show that less offset misalignment leads to a better generative adaptation with directional loss.

3.2 IMPACT OF OFFSET MISALIGNMENT ON GENERATIVE MODEL ADAPTATION

In the previous section, we performed an empirical study that revealed the offset misalignment. In
this section, we take a step further and investigate the effect of this misalignment on the generative

4
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Figure 3: Impact of offset misalignment on zero-shot generative model adaptation with direc-
tional loss: For each of the two setups, we fix the source domain and augment the text description of
the target domain to simulate various degrees of misalignment between image offset and text offset.
Then, we perform the adaptation using directional loss in Eq. 1 for each setup. Results show that
adaptation performance degrades by increasing the offset misalignment.

model adaptation from a source domain (concept) S to a target domain (concept) T . Specifically,
following ZSGM setup (Gal et al., 2022), for source domain S, we assume a pre-trained generator
GS and a text description TS is available. However, for the target domain, only text description TT
is available. To simulate different degrees of misalignment between source and target, we augment
target text to get a set of text descriptions {T i

T }. Then, we perform zero-shot adaptation using the
directional loss (Eq. 1) from the source domain S to each of these target text T i

T and measure the
generation performance of adapted generator.

Experimental Setup. For this experiment, we perform adaptation on Human→ Baby and Dog→
Cat. We use StyleGAN2-ADA (Karras et al., 2020a) pre-trained on FFHQ (Karras et al., 2019) and
AFHQ-Dog (Choi et al., 2020) as the pre-trained model. We fix the source text TS and augment the
target text TT by sampling handcrafted prompts from the CLIP ImageNet template (INt)1 in order
to simulate different degrees of misalignment (see Sec. C.2). Then, we follow exactly the same
hyperparameters as NADA (see Sec. C.3) to adapt the source generator to different target text T i

T .
We use FID to measure the performance of the adapted generator against offset misalignment.

Our results in Fig. 3 demonstrates that in general, increasing the offset misalignment degrades
the performance of the zero-shot generative adaption with directional loss. Motivated by this
finding, we propose an approach to iteratively refine the adaptation direction.

4 METHODOLOGY: ADAPTATION WITH ITERATIVE REFINEMENT

(a) Alg. 1: Zero-Shot Learning using AIR (b) Alg. 2: Proposed Prompt Learning

Text Embeddings

Image Embeddings
Objective: Train generator  to produce high-quality target domain imagesGt Objective: Train prompt vector       to represent current anchor.

Frozen

Trainable

EI(GAi�1
(w))

EI(GAi
(w))

EI(GS(w))

EI(Gt(w))

EI(IT )

ET (PAi�1
)

ET (PAi
)

ET (TS)

�IAi!t

�IAi�1!Ai

�PAi�1!Ai

PAi

�TAi!T

EI(GAi
(w))

ET (PAi
)

ET (TT )
Anchors

Figure 4: Illustration of the proposed AIR method: (a) Zero-shot learning scheme using Adaptation
with Iterative Refinement (AIR) (Sec. 4.1). (b) The proposed prompt learning method to learn text
embedding PAi

for the anchor Ai (Sec. 4.2).

Our analysis in Sec. 3 suggests that closer concepts tend to have less offset misalignment in CLIP
space, resulting in a more accurate directional loss (Eq. 1) for adaptation. Here, we leverage this
property to enhance the zero-shot generative model adaptation with directional loss.

1
https://github.com/openai/CLIP/blob/main/notebooks/Prompt Engineering for ImageNet.ipynb
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Specifically, even though the concept distance between source S and target T is fixed, after a limited
number of initial adaptation iterations using directional loss, the encoded concept in the adapted
generator is already closer to the target domain than the encoded concept in source generator (see Sec.
H ). For example, when adapting a generator pre-trained on Photo to the target domain Painting,
after limited adaptation iterations, the adapted generator already encodes more knowledge related to
the Painting domain than the pre-trained generator.

Therefore, we use the adapted generator as the new anchor (denoted by GA), and compute the
directional loss from this anchor point to the target. We update this anchor point iteratively during
adaptation, as we move closer to the target domain. Because of the smaller concept distance,
our previous analysis suggests that the directional loss computed based on GA can provide better
guidance, and this improves the adaptation direction solely computed based on GS . One challenge of
using GA for directional loss is that the corresponding text prompt PA that describes this concept
is unknown. In what follows, first, we discuss the details of the proposed Adaptation with Iterative
Refinement (AIR) in Sec. 4.1. Then, to infer the unknown PA within the directional loss of AIR, we
introduce a prompt learning method in Sec. 4.2.

4.1 ADAPTATION WITH ITERATIVE REFINEMENT (AIR)

In our proposed approach, first, we adapt the generator to the target domain for tthresh iterations
using directional loss in Eq. 1 to make sure the adapted generator has moved closer to the target
domain. Then, in each tint interval of adaptation, we sample the adapted generator as the new anchor
point. 2 We denote ith sampled anchor by GAi

. To reduce offset misalignment and provide
more accurate direction, we use the anchor point Ai instead of source point S for computing
the directional loss. The proposed AIR scheme is illustrated in Fig. 4 (a). The image offset with
anchor point Ai is computed based on the sampled generator GAi

, and the trainable generator Gt:
∆IAi→t = EI(Gt(w))−EI(GAi

(w)). Assuming that the anchor point is described by the prompt
PAi in the text domain (details of inferring PAi will be discussed in Sec. 4.2), the text offset with
anchor point is calculated as follows: ∆TAi→T = ET (TT )− ET (PAi). Finally, the adaptive loss
Ladaptive is computed by aligning the image and text offsets from anchor point Ai to target T :

Ladaptive = 1− cos(∆IAi→t,∆TAi→T ) (3)
We empirically find that adding this adaptive loss to Ldirection results in a more stable adaptation.
The pseudo-code can be found in Sec. B.

4.2 ALIGNING PROMPT TO IMAGES

Here, we explain the details of the proposed method for learning text prompt PAi
that describes ith

anchor point Ai in text domain. Inspired by Zhou et al. (2022b); Teo et al. (2024), we define prompt
PAi ∈ R(M+1)×d as combination of M learnable tokens [V ]ij ∈ Rd and a label token YAi ∈ Rd:

PAi
= [V ]i1[V ]i2 . . . [V ]iM [YAi

] (4)
Early approaches of prompt learning directly learn the learnable tokens [V ]ij from related images
(Zhou et al., 2022b;a). However, recently, ITI-GEN (Zhang et al., 2023) (proposed for fair text-to-
image generation) shows that learning from the offsets is more efficient for capturing the specific
attribute of interest. Inspired by this, we learn the anchor text prompt PAi by aligning text offset
to the image offset. Here, the image offset is calculated between the current and previous anchors:
∆IAi−1→Ai = EI(GAi(w)) − EI(GAi−1(w)). Similarly, the text prompt offset is calculated as
follows: ∆PAi−1→Ai

= ET (PAi
) − ET (PAi−1

). Note that the only trainable parameter is the
unknown prompt PAi

which is learned by aligning image and prompt offsets:
Lalign = 1− cos(∆IAi−1→Ai

,∆PAi−1→Ai
) (5)

The proposed prompt learning approach is shown in Fig. 4 (b). We remark that PAi
is the tokenized

text prompt before the CLIP text encoder, and for simplicity, we slightly abuse the notation and use
ET (PAi) to show CLIP text embedding for anchor Ai.

Remark: Given that offset misalignment is less for closer concepts, we propose to use the previous
anchor point Ai−1 as the source to learn the prompt for the ith anchor Ai. Since consecutive anchor
points are close together, the directional loss is more accurate.

2We use the same settings of tthresh and tint across all 32 experiment setups.
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Figure 5: Qualitative comparison (Degraded images/regions are highlighted with red boxes). The
results of NADA (Gal et al., 2022) and HGAN (Anees et al., 2024) show the adaptation often
introduces undesirable changes, e.g., thick eyebrows in Human→ Pixar character, missing mouth
in Dog→ Cat, and red cheeks in Photo→Wall painting. For IPL (Guo et al., 2023) and SVL
(Jeon et al., 2023), a common issue is that the adaptations are inadequate, resulting in images that lack
target features/styles, especially for adaptations that require drastic feature change, e.g., Church→
Temple, Photo→ Cartoon/Sketch. Our proposed method does not suffer from artifacts (as shown
in target domains Pixar character, Wall painting, and Dog), and adapts better to the style of
target domains, such as Temple, Cartoon and Sketch. StyleGAN2 is used as pre-trained generator.
More qualitative results are shown in Fig. 1 and Sec. A.1. (Best viewed with color and zoom in.)

Regularizer: We further propose to use the interpolation between tokenized source and target
descriptions as anchor label, i.e., YAi

= (1− pi)YS + piYT , with pi denoting the proportion of the
training progress until anchor point Ai. The label token acts like a regularizer during prompt learning
(see motivation in Sec. D.2).

We empirically find that using these design choices results in better adaptation with our AIR mecha-
nism compared to learning the prompts directly from generated images by GAi

. More details of the
method are summarized in the pseudo-code in Alg. 1 and 2 in Sec. B.

5 EXPERIMENTS

In this section, first, we discuss the details of our experimental setup. Then, we compare our proposed
AIR with SOTA methods qualitatively and quantitatively. Note that we are the first to study zero-shot
adaptation of diffusion models. We also show our AIR outperforming large-scale Stable Diffusion in
generating rare concepts. Finally, we conduct an ablation study on the design of the prompt learning.

5.1 EXPERIMENTAL SETUP

Generative Models. In this work, we implement zero-shot generative model adaptation for both
GANs and diffusion models. The implementation details for each type of model is as follows:

• Zero-Shot Adaptation of GANs. We follow previous ZSGM works (Gal et al., 2022; Guo et al.,
2023; Jeon et al., 2023) setups to adapt StyleGAN2-ADA (Karras et al., 2020a) pre-trained on
FFHQ (Karras et al., 2019) and AFHQ-Dog (Choi et al., 2020) to various target domains.

• Zero-Shot Adaptation of Diffusion Models. We use Guided Diffusion (Dhariwal & Nichol,
2021) pre-trained on FFHQ and AFHQ-Dog from P2-Weighting (Choi et al., 2022) as source
generator. To speedup training, we use DPM-Solver (Lu et al., 2022) for 10-step image generation.
To prevent overfitting, instead of fully fine-tuning, we fine-tune with LoRA (Hu et al., 2022).

During the adaptation of both generators, we utilize the pre-trained ViT-B/32 as vision encoder for
CLIP. Hyperparameter details can be found in Sec. C.4. Notably, the only varying hyperparameter
for all adaptation setups is the total number of adaptation iterations (strictly follow NADA).
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Table 1: Quantitative results of zero-shot GAN adaptation. All methods use the same CLIP for
guidance. For FID, we report only Baby and Cat, which are the only target domains with sufficient
samples for reliable FID. Note that compared with previous methods that aim to improve the
synthesized sample diversity, our method (AIR) focuses on enhancing the quality of adaptation (lower
CLIP Distance and FID), leading to significant gain (e.g., average CLIP distance improves spanning
from 9% to 25%, and FID improves from 88.71 in HGAN to 56.20 in our AIR for distant adaptation
Dog→ Cat). The quality enhancement is consistent for all setups. Furthermore, our method is able
to maintain competitive diversity (Intra-LPIPS). See qualitative comparisons in Fig. 1, 5 and Sec. A.1.

Pre-trained
Dataset Adaptation CLIP Distance (↓) Intra-LPIPS (↑) FID (↓)

NADA IPL SVL HGAN AIR NADA IPL SVL HGAN AIR NADA IPL SVL HGAN AIR

FFHQ

Human→ Baby 0.3327 0.3562 0.3838 0.3596 0.3325 0.4474 0.4518 0.4506 0.4110 0.4520 68.35 68.48 158.76 123.55 62.13
Human→ Pixar 0.2335 0.2343 0.4224 0.2418 0.2213 0.4759 0.4488 0.4618 0.4013 0.4717 - - - - -

Human→Werewolf 0.3467 0.3200 0.3998 0.3424 0.2431 0.4301 0.4387 0.4316 0.4395 0.4410 - - - - -
Photo→Wall painting 0.4382 0.4898 0.4952 0.3747 0.4306 0.4217 0.4320 0.4332 0.4208 0.4381 - - - - -

Photo→ Sketch 0.3606 0.3955 0.4092 0.3327 0.3126 0.4190 0.4292 0.4476 0.4354 0.4257 - - - - -
Photo→Watercolor 0.3548 0.3621 0.3639 0.3865 0.3376 0.4598 0.4671 0.4612 0.4544 0.4656 - - - - -
Photo→ Ukiyo-e 0.2437 0.2467 0.3906 0.3286 0.2315 0.4583 0.4652 0.4406 0.4647 0.4670 - - - - -

Dog

Dog→ Cat 0.1493 0.1530 0.1644 0.1642 0.1320 0.4439 0.4522 0.4547 0.4436 0.4628 70.87 83.29 65.79 88.71 56.20
Dog→ Hamster 0.1616 0.1457 0.1826 0.1282 0.1306 0.4196 0.4340 0.3918 0.3822 0.4213 - - - - -
Dog→ Capybara 0.1359 0.1446 0.1861 0.1543 0.1121 0.4312 0.4377 0.4264 0.4217 0.4401 - - - - -

Dog→Wolf 0.1480 0.1519 0.2249 0.1199 0.1421 0.4305 0.4261 0.4272 0.4056 0.4349 - - - - -
Dog→ the Joker 0.3708 0.3827 0.4574 0.3230 0.3131 0.4155 0.4206 0.4327 0.4058 0.4173 - - - - -
Photo→ Cartoon 0.2433 0.2419 0.2543 0.2936 0.2258 0.4356 0.4413 0.4400 0.3741 0.4427 - - - - -

Photo→Watercolor 0.1535 0.1711 0.1646 0.1611 0.1507 0.4639 0.4703 0.4622 0.4566 0.4667 - - - - -

Church

Church→ Skyscraper 0.3860 0.3441 0.4209 0.3631 0.3270 0.4823 0.481 0.4777 0.4433 0.4839 - - - - -
Church→ Temple 0.3197 0.3632 0.3177 0.3229 0.3146 0.4689 0.4623 0.4839 0.5103 0.4862 - - - - -
Photo→ Sketch 0.2948 0.3070 0.3401 0.2957 0.2805 0.5084 0.5373 0.5356 0.5085 0.5176 - - - - -
Photo→ Anime 0.2067 0.2180 0.3503 0.3504 0.1990 0.5223 0.5392 0.5356 0.5071 0.5245 - - - - -

Avg. 0.2711 0.2793 0.3293 0.2802 0.2465 0.4519 0.4575 0.4552 0.4359 0.4588 69.91 75.86 112.28 106.13 59.16

Evaluation Metrics. Following ZSGM literature, we conduct both visual inspections for qualitative
evaluations and quantitative evaluations. Specifically, we evaluate image quality with FID and CLIP
Distance and measure diversity using Intra-LPIPS (Ojha et al., 2021). We introduce additional metrics
in Sec. A.1 to further refine quality assessment. Additionally, a user study compares image quality
and diversity across different schemes based on human feedback. (See Sec. C.5 for details.)

5.2 GENERATIVE MODEL ADAPTATION

Qualitative results. We compare with SOTA ZSGM methods NADA (Gal et al., 2022), IPL (Guo
et al., 2023), SVL (Jeon et al., 2023), and SOTA one-shot generative model adaptation method HGAN
(Anees et al., 2024) (trained with both references images as it supports two-shot) as shown in Fig.
1 and 5. The results of NADA and HGAN often introduces undesirable changes in features. For
IPL and SVL, the adaptations are inadequate, resulting images lack target domain feature/style. See
discussion in caption for details. Our proposed method adapt correctly to target domain. Additional
qualitative results of diffusion model adaptation (Sec. A.2) and GAN adaptation (Sec. A.1).

Quantitative results. We report FID, Intra-LPIPS, and CLIP Distance to quantify the performance of
zero-shot adaptation for GAN (Tab. 1). Our method significantly outperforms SOTA in quality while
maintaining competitive diversity. Our user study results in Tab. 3 further confirm the improvement
of our method (details in Sec. L). Results for diffusion model (Tab. 2) show similar improvement.

Additional Experiments. We conduct additional experiments to demonstrate the well-behaved latent
space of the pre-trained generator is preserved with our proposed approach. More specifically, we
perform latent space interpolation (Sec. I) , cross-model interpolation (Sec. J) , and cross-domain
image manipulation (Sec. K). We also conduct an experiment to show our method effectively learned
anchor prompts (Sec. E) and effectively reduces the offset misalignment (Sec. F).

5.3 GENERATING RARE CONCEPTS

Notably, our proposed AIR method outperforms large-scale Stable Diffusion (SD) (Rombach et al.,
2022) in generating rare concepts. As shown in Fig. 6, SD suffers from severe mode collapse, often
generating nearly identical individuals. In contrast, AIR leverages source-domain diversity to enrich
rare concept generation, confirming its advantage in handling challenging rare-concept scenarios.
See more discussion between generative model adaptation and SD in Sec. M.

5.4 ABLATION STUDY

We conduct an ablation study to verify the effectiveness of our introduced prompt learning to infer
text prompts for anchor points. We compare: i) I → T : Following IPL to learn a mapper that
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Table 2: Quantitative results of zero-shot diffusion
model adaptation. Our AIR focuses on enhanc-
ing the quality of adaptation instead of improving
synthesized sample diversity. FID is reported only
for Baby and Cat, which have sufficient data for
reliable evaluation. (Qualitative results in Sec. A)
Pre-trained

Dataset Adaptation CLIP Distance (↓) Intra-LPIPS (↑) FID (↓)
NADA AIR NADA AIR NADA AIR

FFHQ

Human→ Baby 0.2598 0.2162 0.5700 0.5779 65.54 58.05
Human→Werewolf 0.2782 0.2318 0.5208 0.5195 - -

Human→ Pixar character 0.4316 0.3881 0.4585 0.4549 - -
Photo→ Sketch 0.4405 0.3576 0.4868 0.4860 - -

Photo→Wall painting 0.4791 0.4771 0.5259 0.5283 - -
Photo→Watercolor 0.3266 0.3234 0.6221 0.6405 - -
Photo→ Ukiyo-e 0.2300 0.2141 0.5429 0.5532 - -

Dog

Dog→ Cat 0.1406 0.1402 0.5423 0.5445 85.02 77.61
Dog→Wolf 0.1449 0.1364 0.4684 0.4726 - -

Dog→ Hamster 0.1850 0.1580 0.4888 0.4961 - -
Dog→ Capybara 0.1573 0.1191 0.4785 0.4596 - -
Photo→ Cartoon 0.2544 0.2472 0.5574 0.5603 - -

Photo→Watercolor 0.1916 0.1848 0.5216 0.5283 - -

Avg. 0.2707 0.2456 0.5218 0.5247 75.28 67.82

Table 3: Results of our user study (%). Note
that compared with previous methods that aim
to improve diversity, our method focuses on
enhancing the quality, while maintaining com-
petitive diversity.

Evaluation NADA IPL SVL HGAN AIR

Quality 24.8 4.2 3.6 11.7 55.7
Diversity 22.4 32.8 10.8 3.4 30.6

Table 4: Ablation study on prompt learning
scheme. Visual ablation results in Sec. D.3.

Methods Human→ Baby Dog→ Cat

FID (↓) Intra-LPIPS (↑) FID (↓) Intra-LPIPS (↑)
NADA 68.35 0.4474 70.87 0.4439
I → T 98.35 0.4308 104.59 0.4452
S → Ai 64.39 0.4503 61.75 0.4630
Ai−1 → Ai 62.13 0.4520 56.20 0.4628
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Figure 6: Our proposed AIR outperforms SD in generating rare concepts. We compare SoTA
SD3.5-L with our proposed AIR. Due to the scarcity of rare concept training samples, SD generated
samples have limited diversity and suffer from mode collapse: e.g., the same woman with the same
hairstyle (Yuki-Onna) or nearly identical wolf/dog faces (Werewolf, Joker Dog). In contrast, ZSGM,
such as our AIR, can leverage source-domain diversity to enrich generation for rare target concepts,
producing variations across ages, genders, hairstyles, breeds, etc., achieving better diversity than SD
in these challenging cases. (Best viewed with color and zoom in.)

produces prompt descriptions from each image. ii) S → Ai: We learn the prompt by capturing the
semantic difference between S and A with directional loss: LS

align = 1− cos(∆IS→Ai
,∆PS→Ai

).
iii) Ai−1 → Ai: Our proposed prompt learning scheme, which captures the semantic difference
between consecutive anchors Ai−1 and Ai with our proposed directional loss (Eq. 5). The results
shown in Tab. 4 demonstrate our prompt learning design reduces offset misalignment compared to
other schemes, therefore, leading to more accurate prompts and better zero-shot adaptation. Our
visual ablation results in Sec. D.3 further confirm this observation. More ablation studies in Sec. D

6 CONCLUSION

All previous methods in ZSGM assume that image offset and text offset are well aligned in CLIP
embedding space. In this paper, we conduct an empirical study to analyze the misalignment between
image offset and text offset in CLIP space. Our analysis reveals that there is offset misalignment
in CLIP space which positively correlates with concept distances. Building on this insight, we
propose AIR, a new approach that iteratively samples anchor points closer to the target and reduces
offset misalignment. Extentsive experimental results shows that the proposed AIR achieves SOTA
performance across 32 setups. See Supp. for limitation and societal impact.
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SUPPLEMENTARY

In this supplementary material, we provide additional experiments, ablation studies, and reproducibil-
ity details to support our findings. These sections are not included in the main paper due to space
constraints.

Please find the following anonymous link for code and other resources: https://anonymous.4open.
science/r/AIR-15D2/.
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A MORE EXPERIMENTAL RESULTS

We include a total of 32 different configurations of zero-shot adaptation in this paper. The experimental
setting and evaluation metric follow Sec. 5 in the main paper.
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Figure 7: Additional zero-shot adaptation results from source domain Church. Here we use a
StyleGAN2 generator pre-trained on the LSUN-Church (Yu et al., 2015) dataset as GS and shift this
to various target domains using different zero-shot approaches. We report the qualitative results for
two setups: Church→Skyscraper and Photo→Anime. We also compute CLIP Distance on 5K
generated samples as quantitative results, as shown in Tab. 1, our proposed AIR approach results in
less CLIP Distance meaning that the generated images are closer to the target domain. Additionally,
qualitative results show that in general our proposed method adapts better to the target domain and
has better quality. For example, in line 2 of Church→Skyscraper, NADA and IPL samples contain
artifacts around windows, and SVL still has some structures related to the church like the arch in the
middle of the skyscraper.
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Figure 8: Additional zero-shot adaptation results from source domain FFHQ. Here we use
a StyleGAN2 generator pre-trained on the FFHQ (Karras et al., 2019) (human faces) dataset as
GS and shift this to various target domains using different zero-shot approaches. We report the
qualitative results for two setups: Photo→Baby and Photo→A Painting of Ukiyo-e Style. We
also compute CLIP Distance on 5K generated samples as quantitative results, as shown in Tab. 1, our
proposed AIR approach results in less CLIP Distance meaning that the generated images are closer to
the target domain. Additionally, qualitative results show that in general our proposed method adapts
better to the target domain and has better quality.

A.1 ZERO-SHOT GAN ADAPTATION

In this section, we provide additional experimental results including quantitative and qualitative
results for different adaptation setups using GAN as the generator and introduce more evaluation
metrics.

Qualitatives Results. In Fig. 7 , we perform zero-shot adaptation of a StyleGAN2 pre-trained on
LSUN-Church (Yu et al., 2015) to four different target domains including Skyscraper, and Anime.
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Figure 9: Additional zero-shot adaptation results from source domain FFHQ. Here we use a
StyleGAN2 generator pre-trained on the FFHQ (Karras et al., 2019) (human faces) and AFHQ-Dog
(Choi et al., 2020) (dog face) dataset as GS and shift this to various target domains using different
zero-shot approaches. We report the qualitative results for the setups: Photo→Watercolor. We also
compute CLIP Distance on 5K generated samples as quantitative results, as shown in Tab. 1, our
proposed AIR approach results in less CLIP Distance meaning that the generated images are closer to
the target domain. Additionally, qualitative results show that in general our proposed method adapts
better to the target domain and has better quality.

In Fig. 8 and Fig. 9 show the qualitative results of zero-shot adaptation of a StyleGAN2 pre-trained
on FFHQ (Karras et al., 2019) dataset to two different target domains including Baby, Watercolor,
and A Painting of Ukiyo-e Style. Finally, Fig. 9, Fig. 10 and Fig. 11 we report the zero-shot
adaptation of a StyleGAN2 pre-trained on AFHQ-Dog (Choi et al., 2020) to four different target
domains including Watercolor, Hamster, Capybara, Wolf and The Joker. The results show that
our approach in general adapts better to the style of the target domain and has better sample quality
(please check the caption of each image for more detailed discussion).
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Figure 10: Additional zero-shot adaptation results from source domain Dog. Here we use a
StyleGAN2 generator pre-trained on the AFHQ-Dog (Choi et al., 2020) dataset as GS and shift this to
various target domains using different zero-shot approaches. We report the qualitative results for two
setups: Dog→Hmaster and Dog→Capybara. We also compute CLIP Distance on 5K generated
samples as quantitative results, as shown in Tab. 1, for both setups, our proposed AIR approach
results in less CLIP Distance meaning that the generated images are closer to the target domain.
Additionally, qualitative results show that in general our proposed method adapts better to the target
domain and has better quality. For example, for Dog→Capybara setup, generated samples with
other approaches have degradations like unsymmetrical faces or eyes.

Quantitative Results. Quantitative results are reported by computing the CLIP Distance between the
embeddings of 5K generated images with each approach and the embedding of the text description
of the target domain in CLIP space. As the results show, generated images by proposed AIR has
smaller CLIP distance meaning that these images are closer to the target domain compared to images
generated by other zero-shot approaches.
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Figure 11: Additional zero-shot adaptation results from source domain Dog. Here we use a
StyleGAN2 generator pre-trained on the AFHQ-Dog (Choi et al., 2020) dataset as GS and shift this
to various target domains using different zero-shot approaches. We report the qualitative results for
two setups: Dog→Wolf and Dog→The Joker. We also compute CLIP Distance on 5K generated
samples as quantitative results, as shown in Tab. 1, for both setups, our proposed AIR approach
results in less CLIP Distance meaning that the generated images are closer to the target domain.
Additionally, qualitative results show that in general our proposed method adapts better to the target
domain and has better quality. For example, for Dog→Wolf setup, IPL generates an unnaturally
big snout and SVL has some artifacts in the generated sample. For Dog→The Joker setup, our
approach attains the mouth feature with a proper style and quality.

Additional Metrics. We further evaluate the quality of the generated images by introducing two
additional metrics SigLIP Distance (Zhai et al., 2023) and DINOv2 Distance (Oquab et al., 2024).
Similar to the computation of CLIP Distance, SigLIP and DINOv2 Distance are defined as the cosine
distance between the SigLIP/DINOv2 embeddings of collected and generated images. As shown in
Tab. 5, the results align with those in the main paper, further support the superiority of our proposed
AIR.
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Table 5: Additional quantitative evaluation of zero-shot GAN adaptation, with the same setting of
Tab. 1 in main paper.

Pre-trained
Dataset Target Domain SigLIP Distance (↓) DINOv2 Distance (↓)

NADA IPL SVL HGAN AIR NADA IPL SVL HGAN AIR

FFHQ

Baby 0.1925 0.1884 0.3474 0.3080 0.1833 0.5943 0.5993 0.8026 0.7703 0.5887
Werewolf 0.3192 0.3930 0.4831 0.2425 0.2274 0.8500 0.8923 0.9365 0.6345 0.6097
Pixar 0.2803 0.2762 0.4582 0.2857 0.2630 0.6935 0.6690 0.7848 0.7362 0.6785
Sketch 0.2897 0.3173 0.3598 0.2939 0.2837 0.4682 0.5918 0.6291 0.4703 0.4420

Wall painting 0.4205 0.4277 0.4489 0.4052 0.4103 0.7256 0.7267 0.7836 0.6761 0.7004

AFHQ-Dog
Cat 0.1395 0.2287 0.1819 0.1762 0.1297 0.8553 0.8737 0.8842 0.8623 0.8338

Cartoon 0.2580 0.2618 0.3140 0.3101 0.2518 0.7899 0.8174 0.9078 0.8513 0.7644
Watercolor 0.1934 0.1980 0.2569 0.1916 0.1819 0.8059 0.8328 0.8330 0.7721 0.7943

Algorithm 1: Zero-Shot Learning using Adaptation with Iterative Refinement (AIR)
Require: Pre-trained generator GS , textual descriptions TS and TT , tadapt, tthresh, tint,

learning rate η, CLIP image and text encoder EI and ET

Output: Trained generator Gt to produce high-quality target domain images
1 Initialize Gt by weights of GS and freeze weights of GS , i = 0, Ladaptive = 0
2 ∆TS→T = ET (TT )− ET (TS)
3 for t = 0; t++; t < tadapt do
4 ∆IS→t = EI(Gt(w))− EI(GS(w))
5 Ldirection = 1− cos(∆IS→t,∆TS→T )
6 if t%tint = 0 then
7 i++
8 GAi

= Gt

9 PAi
= Prompt-Learning (GAi

, GAi−1
, PAi−1

) /* refer to Algorithm 2 for details */

10 end
11 if t > tthresh then
12 ∆IAi→t = EI(Gt(w))− EI(GAi

(w)) /* if Gt = GAi , add perturbation to Gt(w) */

13 ∆TAi→T = ET (TT )− ET (PAi
)

14 Ladaptive = 1− cos(∆IAi→t,∆TAi→T )
15 end
16 L = Ldirection + Ladaptive

17 Update Gt ← Gt − η∇Gt
L

18 end

A.2 ZERO-SHOT DIFFUSION MODEL ADAPTATION

In this section, we provide more qualitative and quantitative results of zero-shot diffusion model
adaptation.

Qualitative Results. Here, we report the qualitative results of zero-shot diffusion model adaptation
for the same configuration used in Tab. 2 (main paper). More specifically, we use the pre-trained
Guided Diffusion model (Dhariwal & Nichol, 2021) on two different source domains FFHQ (Karras
et al., 2019) (Fig. 12) and AFHQ-Dog (Choi et al., 2020) (Fig. 13) and shift these pre-trained
models to different target domains using only text descriptions for both NADA and our proposed
AIR approaches. As illustrated in Fig. 12 and 13, the generated images with NADA suffer from
degradation in the form of artifacts compared to our proposed AIR approach.

B ALGORITHM

We provide the pseudo-code of the proposed method in this section. Specifically, we show zero-shot
generative model using Adaptation with Iterative Refinement (AIR) in Alg. 1, and our proposed
prompt learning scheme in Alg. 2.
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Human → Baby
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Baby
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Source NADA AIR

Human → Pixar

Internet

examples
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Figure 12: Additional zero-shot adaptation results. We use a pre-trained Guided Diffusion
model (Dhariwal & Nichol, 2021) on FFHQ dataset (Karras et al., 2019) as pre-trained generator
GS and perform zero-shot adaptation in four different setups: Human→ Baby, Photo→ Sketch,
Human→ Pixar Character, and Photo→ A painting in Ukiyo-e style using both NADA and
our proposed AIR approach. Quantitative results measured by CLIP distance in 2 shows that the
generated images by our approach are closer to the target domain. In addition, qualitative results
show that NADA suffers from degradation.

C DETAILED EXPERIMENTAL SETTING

C.1 DETAILS OF EMPIRICAL ANALYSIS

For datasets with a single class label for each image, such as ImageNet, Caltech-101, and CIFAR-100,
we use the original images from the dataset. For datasets with multiple objects in an image, such as
OpenImages, MS COCO, and Visual Genome, to better align with the setting in NADA, we extract
the objects using bounding boxes and classify them into their labeled classes.

For a certain concept α, we use the images of the class as Iα. For text description Tα, we use the
corresponding class label with INt, e.g., ”a photo of a [cat]” when α = cat.
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Source NADA AIR NADA AIR

Photo → Watercolor Photo → Cartoon

Internet

examples

Watercolor

Cartoon

Source NADA AIR NADA AIR

Dog → Wolf Dog → Hamster

Internet

examples

Wolf

Hamster

Figure 13: Additional zero-shot adaptation results. We use a pre-trained Guided Diffusion model
(Dhariwal & Nichol, 2021) on AFHQ-Dog dataset (Choi et al., 2020) as pre-trained generator GS
and perform zero-shot adaptation in two different setups: Photo→Watercolor, Photo→ Cartoon,
Dog→Wolf, and Dog→ Hamster using both NADA and our proposed AIR approach. Quantitative
results measured by CLIP distance in 2 shows that the generated images by our approach are closer
to the target domain. Similarly, qualitative results show that our proposed AIR approach has better
performance compared to NADA.

C.2 DETAILS OF IMPACT OF OFFSET MISALIGNMENT

We randomly sample prompt template from INt, and perform zero-shot adaptation with NADA as
shown in Fig. 3 in main paper. We list the details of the sampled prompts and their offset misalignment
M as well as the adaptation quality (measured by FID) in Tab. 6.

C.3 HYPERPARAMETERS OF IMPACT OF OFFSET MISALIGNMENT

For the hyperparameter choices in Sec. 3.2 , we strictly follow the settings in NADA except that only
the ViT-B/32 is used as vision encoder. The details of hyperparameters are shown in Tab. 7.
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Algorithm 2: Proposed Prompt Learning
Require: Current and previous anchor generators GAi

and GAi−1
, learned text prompt for

previous anchor PAi−1
, learning rate µ, CLIP image and text encoder EI and ET

Output: Prompt vector PAi
to represent current anchor.

1 ∆IAi−1→Ai
= EI(GAi

(w))− EI(GAi−1
(w))

2 for k = 0; k++; k < kiter do
3 ∆PAi−1→Ai

= ET (PAi
)− ET (PAi−1

).
4 Lalign = 1− cos(∆IAi−1→Ai ,∆PAi−1→Ai)
5 Update PAi

← PAi
− µ∇PAi

Lalign

6 end

Table 6: Prompt templates used in Sec. 3.2.

Prompts Human→Baby Dog→Cat
Offset

Misalignment FID Offset
Misalignment FID

A bad photo of a { }. 0.6971 62.76 0.3545 69.47
A sculpture of a { }. 0.7895 68.08 0.4713 101.49
A photo of the hard to see { }. 0.7989 76.36 0.4219 75.24
A low resolution photo of the { }. 0.7729 83.18 0.3942 76.06
A rendering of a { }. 0.7577 73.56 0.4028 111.74
Graffiti of a { }. 0.7715 92.34 0.5332 83.03
A bad photo of the { }. 0.7202 66.58 0.3774 66.58
A cropped photo of the { }. 0.8215 89.66 0.4512 132.33
A tattoo of a { }. 0.8060 108.78 0.5490 119.40
The embroidered { }. 0.8185 104.13 0.5514 109.27
A photo of a hard to see { }. 0.7680 74.58 0.4066 79.07
A bright photo of a { }. 0.7315 69.54 0.4305 77.50
A dark photo of the { }. 0.7758 83.50 0.4592 114.12
A drawing of a { }. 0.7765 89.28 0.4304 123.84
A photo of my { }. 0.6949 58.39 0.3566 77.76
The plastic { }. 0.7812 119.73 0.5092 113.99
A photo of the cool { }. 0.8094 103.78 0.4496 93.12
A close-up photo of a { }. 0.7213 69.61 0.4370 72.75
A black and white photo of the { }. 0.7463 64.99 0.5288 140.25
A painting of the { }. 0.8152 121.74 0.4862 150.15
A painting of a { }. 0.7576 87.01 0.4513 89.32
A pixelated photo of the { }. 0.7154 62.85 0.5168 105.32
A sculpture of the { }. 0.7794 82.22 0.5086 115.97
A bright photo of the { }. 0.8029 114.31 0.4203 83.28
A cropped photo of a { }. 0.7493 86.87 0.3929 93.22
A plastic { }. 0.7420 75.65 0.5247 127.82
A photo of the dirty { }. 0.8276 96.47 0.5004 85.62
A jpeg corrupted photo of a { }. 0.7972 92.56 0.5872 88.73

C.4 HYPERPARAMETERS OF ZERO-SHOT ADAPTATION

In Alg. 1, for both GAN and diffusion model adaptation the batch size is set to 2. Adaptation iteration
tadapt is set to 200 for in-domain changes like Human→Baby, 300 for texture-based changes such
as Photo→Sketch, and 2,000 for animal changes like Dog→Cat. We set tthresh = 50%tadapt to
ensure there are some target domain concept encoded in Gt, and tint = 10%tadapt to facilitate a
stable and efficient training.
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Table 7: Hyperparameters choices of NADA in Sec. 3.2.

Source Target Prompt template Iterations Adaptive k

Human Baby INt 300 18
Dog Cat INt 2000 3

In Alg. 2, we generate 1,000 pairs of source and anchor images with the same batch of w for each
update. The number of prompt vectors m is set to 4, and is initialized by ”A photo of a”. Each of
the prompt learning sessions requires kiter = 200 iterations.

For all experiments, we use an ADAM optimizer with a learning rate of 0.002 for both Alg.1 and
2. We conduct all the experiments on a single NVIDIA RTX 6000 Ada GPU. The training time is
comparable to NADA as prompt learning in Alg. 2 only requires ∼20 seconds in our environment.

It is important to note that the only varying hyperparameter for all 26 setups is the number of
adaptation iterations (same as NADA), and our results show this generalizes well across scenarios.

C.5 EVALUATION DETAILS

A well-trained image generator is defined by its ability to produce high-quality and diverse images
from target distribution. We follow existing zero-shot works in evaluation setup when applicable, and
further improve on them. Specifically, following previous works (Gal et al., 2022; Guo et al., 2023;
Jeon et al., 2023), we have conducted comparisons on both public datasets and images collected
from the internet. Our evaluations include both visual inspections for qualitative evaluations and
quantitative evaluations using the following metrics:

• FID. For target domains with large and publicly available datasets, we follow previous work (Jeon
et al., 2023) to use FFHQ-Baby (Ojha et al., 2021) (for target domain Baby), and AFHQ-Cat
(Choi et al., 2020) (for target domain Cat) as target distribution. Then, we generate 5000 samples
for each target domain (Zhao et al., 2022a; 2023), and use FID to evaluate the generated images’
quality and diversity.

• CLIP Distance. The public data is scarce for other target domains, e.g., Pixar. For these
domains, we follow IPL’s idea (Guo et al., 2023) to collect internet images as reference. However,
since IPL did not make the collected images publicly available, we had to repeat the same practice
and collect the images. Then, we use the CLIP Distance (Gal et al., 2023) which is defined as the
cosine distance between the clip embeddings of the collected images and the generated images to
measure the similarity of the generated images to the target domain.

• Intra-LPIPS. To measure the diversity of the generated images, we use Intra-LPIPS metric (Ojha
et al., 2021) which first assigns generated images to one of K clusters, then averages pair-wise
distance within the cluster members and reports the average value over K clusters. In zero-shot
setup, since there are no training images, we follow (Gal et al., 2022; Jeon et al., 2023) to cluster
around generated images using K-Medoids (Kaufman & Rousseeuw, 2009), with K = 10.

• User Study. We also conducted a user study to compare the quality and the diversity of the
generated images with different schemes based on human feedback. See more details in Sec. L.

We remark that similarly NADA reports Intra-LPIPS on AFHQ-Cat, and SVL reports both FID
and Intra-LPIPS on AFHQ-Cat. In addition, we believe the included visual results can help in
transparency and reflecting the superior performance of our proposed method in terms of adaptation
quality.

D ADDITIONAL ABLATION STUDIES

D.1 ABLATION ON HYPERPARAMETERS SELECTION

We conduct an ablation study to determine the optimal hyperparameters. Specifically, Tab. 8 shows the
ablation results for the adaptation interval tint to update anchor. Tab. 9 shows the ablation results for
the starting iteration tthresh of applying AIR. A large tint which results in fewer updates of the anchor
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point, generally leads to a degradation in performance due to less precise adaptation. Conversely,
a small tint, while more computationally expensive, does not yield significant improvement. Thus,
we set tint = 10% to balance the computation cost and adaptation precision. Similarly, neither
excessively large nor small values of tthresh provide optimal adaptation performance. As shown in
Fig. 14 (b) and (c), the visual ablation results align with this conclusion. Hence, we empirically select
tthresh = 50%. It is important to note that the only varying hyperparameter for all 26 setups is the
number of adaptation iterations (same as NADA), and our results show this generalizes well across
scenarios.

Table 8: Ablation study on adaptation interval tint to update anchor.

tint

% of tadapt
Human→ Baby Dog→ Cat

FID (↓) Intra-LPIPS (↑) FID (↓) Intra-LPIPS (↑)
5% 59.45 0.4512 59.97 0.4560

10% 62.13 0.4520 56.20 0.4628
15% 58.87 0.4515 61.92 0.4635
20% 64.54 0.4496 65.49 0.4537
25% 56.69 0.4511 67.49 0.4374
30% 76.39 0.4506 77.23 0.4513

Table 9: Ablation study on starting iteration tthresh of applying AIR.

tthresh

% of tadapt
Human→ Baby Dog→ Cat

FID (↓) Intra-LPIPS (↑) FID (↓) Intra-LPIPS (↑)
0% 63.56 0.4324 83.33 0.4815

12.5% 75.92 0.4259 78.21 0.4642
25.0% 72.17 0.4386 73.65 0.4516
37.5% 64.14 0.4558 59.96 0.4496
50.0% 62.13 0.4520 56.20 0.4628
67.5% 68.25 0.4542 56.46 0.4344

D.2 ABLATION ON ANCHOR LABEL INITIALIZATION

Our prompt initialization in Sec. 4.2 is inspired by the standard prompt learning in VLM (Zhou et al.,
2022b;a), which initializes label token Y with class label of the image to serve as prior. However, in
our setting, the anchor domain encodes both source and target concepts, so it cannot be described
with natural language. Therefore, we leverage the continuous and semantically rich embedding space
of the text encoder to initialize anchor label YAi via interpolation between tokenized source and
target descriptions. We conduct an ablation study on the initialization of YAi . Results shown in Tab.
10 indicate the effectiveness of our idea by obtaining the best FID and Intra-LPIPS.

D.3 VISUAL ABLATION STUDIES

We perform visual ablation studies on prompt learning design and hyperparameters selection with
the same experiments setting of Sec. 5.4 and D.1. The results in Fig. 14 align consistently with the
quantitative findings.

E VALIDATE OUR LEARNED ANCHOR PROMPTS

To validate our prompt learning, we visualize the learned prompts and generated anchor domain
images in CLIP space. As shown in Fig. 15, the prompts accurately represent the anchors (3 of 5
anchors shown for clarity).
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Table 10: Ablation study on initialization of YAi
, using: a) Target domain label; b) Source domain

label for the first half of adaptation, then target domain label; c) Interpolation as in our AIR.

Init. Human→ Baby Dog→ Cat

FID (↓) Intra-LPIPS (↑) FID (↓) Intra-LPIPS (↑)

a) 67.53 0.4513 65.83 0.4373
b) 63.34 0.4512 56.44 0.4466
c) 62.13 0.4520 56.20 0.4628

a) 

NADASource

b)

5% 15%10% 20% 25% 30%Source

0% 25%12.5% 37.5% 50% 67.5%

c) 

Source

Figure 14: Visual ablation study of: a) Design choice of prompt learning; b) Adaptation interval tint
to update anchor; c) Starting iteration tthresh of applying AIR.

F OFFSET MISALIGNMENT ALLEVIATION

We demonstrate AIR alleviates the offset misalignment, i.e., our refined direction aligns more with
ground truth in Tab. 11. The ground truth is computed by ∆IS→T = EI(IT ) − EI(GS(w)) (for
AIR, the ground truth is ∆IAi→T of the last Ai), where IT are real images.

G OFFSET MISALIGNMENT IN OTHER MULTIMODAL REPRESENTATION
SPACES

In this section, we present an additional empirical analysis of offset misalignment for other contrastive
learning-based Multimodal Representation spaces. Following the experimental setup in Sec. 3.1, but
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Source
Target

A1
A3
A5

Image
Prompt

“Dog”

“Cat”

PA1 PA3 PA5

Figure 15: PCA visualization for Dog → Cat. For each anchor point Ai, our learned prompt PAi lies within
the distribution of 1000 generated images by the generator GAi for that anchor point.

Table 11: Offset misalignment between adaptation directions and the ground truth. Note that IPL and
SVL have multiple directions.

Adaptation NADA IPL SVL AIR

Human→ Baby 0.67 0.69± 0.09 0.92± 0.03 0.49
Dog→ Cat 0.54 0.65± 0.06 0.59± 0.11 0.25

replacing the CLIP ViT-Base/32 vision encoder with CLIP ConvNext-L, CLIP RN50x64, and SigLIP
ViT-L/16-256, we plot the offset misalignment against concept distance for six public datasets in Fig.
16, Fig. 17, and Fig. 18. Our results demonstrate consistent and meaningful positive correlations
between offset misalignment and concept distance across different CLIP-like spaces.

H CONCEPT SHIFTS DURING ADAPTATION

The intuition of our proposed method is that after limited iterations of adaptation using directional loss,
the encoded concept in the adapted generator is already closer to the target domain than the encoded
concept in source generator. In this section, we design an experiment to demonstrate that the adapted
generator already encodes some knowledge related to the target domain. Specifically, following
zero-shot generative model domain adaptation setup (Gal et al., 2022), we perform adaptation on
Human→Baby with StyleGAN2-ADA pretrained on FFHQ (Karras et al., 2019). We report FID
score throughout the adaptation process to measure the knowledge related to target domain encoded
in the adapted generator. Our results in Fig. 19 support our statement. Additionally, we present
qualitative results using the same latent code to further support our findings.

I LATENT SPACE INTERPOLATION

Building on prior research, we demonstrate that the target domain generators refined through our
method retain a smooth latent space property. As illustrated in Fig. 20, each row features a series of
images from the same target domain. The left-most and right-most images in each row, labeled as
Gt(w1) and Gt(w2) respectively, are generated using distinct latent codes w1 and w2. Latent space
interpolation between these codes produces an image Gt((1− γ)w1 + γw2), where α varies from 0
to 1. The visual results show that our method has good robustness and generalization ability. The
various target domain spaces obtained by our method are consistently smooth.
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Figure 16: Empirical analysis of offset misalignment in CLIP ConvNext-L space. Experiment setup
is the same as Sec. 3.1 except that CLIP ConvNext-L is used as the vision encoder. Our results show
that the meaningful correlation (measured by Spearman’s coefficient (Zar, 2005)) between offset
misalignment and concept distance consistently exists in both ConvNext-based and ViT-based CLIP
vision encoders.
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Figure 17: Empirical analysis of offset misalignment in CLIP RN50x64 space. Experiment setup
is the same as Sec. 3.1 except that CLIP RN50x64 is used as the vision encoder. Our results show
that the meaningful correlation (measured by Spearman’s coefficient (Zar, 2005)) between offset
misalignment and concept distance consistently exists in both CNN-based and ViT-based CLIP vision
encoders.

J CROSS-MODEL INTERPOLATION

In addition to demonstrating latent space interpolation, we also explore the model’s weight smoothness
across various domains. Specifically, we perform linear interpolation in the weight space between
G(·, θs) and G(·, θt1), or between G(·, θt1) and G(·, θt2). Here, G(·, θs) represents the source domain
generator, while G(·, θt1) and G(·, θt2) are generators adapted to two different target domains. Given
a latent code w, we produce images via an interpolated model, G(w, (1 − γ)θ1 + γθ2), where γ
ranges from 0 to 1. As illustarted in Fig. 21, our approach effectively supports smooth cross-model
interpolation, whether transitioning from a source to a target domain or between different target
domains.
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Figure 18: Empirical analysis of offset misalignment in SigLIP ViT-L/16-256 space. Experiment setup
is the same as Sec. 3.1 except that SigLIP ViT-L/16-256 is used as the vision encoder. Our results
show that the meaningful correlation (measured by Spearman’s coefficient (Zar, 2005)) between
offset misalignment and concept distance consistently exists in various contrastive learning-based
multimodal vision encoders.

Figure 19: Concept shifts during adaptation.

K IMAGE MANIPULATION

To further demonstrate the effectiveness of our proposed method, we also conduct experiments on
text-to-image manipulation. It first inverts a image to the latent code by a pre-trained inversion model
and then feeds it to the trained target domain generator to get the translated target domain image.

We experiment on both GAN and diffusion model. We use Restyle (Alaluf et al., 2021) with e4e
encoder (Tov et al., 2021) to invert a real image into the latent space w for StyleGANs. For the
diffusion model, we follow the setting of DiffusionCLIP (Kim et al., 2022) to diffuse a real image
and fintune the model to generate an image with target domain features using the diffused image.

K.1 GAN-BASED IMAGE MANIPULATION

For GAN-based generators, we perform the experiment by utilizing the inversion model Restyle
(Alaluf et al., 2021) with e4e encoder (Tov et al., 2021). As illustrated in Fig 22, our method
qualitatively exhibits a higher fidelity of target domain features compared to previous methods.
Quantitatively, our approach more closely aligns with the reference target images in CLIP space,
indicating a greater semantic similarity.
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Photo → A painting in Ukiyo-e style

Human → Werewolf

Dog → Zombie

Figure 20: Latent space interpolation. For each row, the left-most column and right-most column are
respectively two images synthesized with two different latent codes. The remaining columns refer to
images synthesized with interpolated latent codes.

Photo Cartoon Watercolor

Human Pixar character Anime painting

Photo Wall painting Painting by Gogh

Figure 21: Cross-model interpolation. In each row, the left-most image is generated by the source
generator. The middle and the right-most images are synthesized by two different target domain
generators. The other images represent cross-model interpolations between two different domains.

K.2 DIFFUSION-BASED IMAGE MANIPULATION

We implement based on Diffusion-CLIP (Kim et al., 2022) which seamlessly integrates with the
existing zero-shot adaptation methods.

As illustrated in Fig 23, our method qualitatively exhibits a higher fidelity of target domain feature
compared to previous methods. Quantitatively, our approach more closely aligns with the reference
target images in CLIP space, indicating a greater semantic similarity.

Fig. 24 illustrates real-world image manipulation results for diffusion AIR.

L USER STUDY

We conduct a user study to compare the quality and the diversity of the generated images with
different schemes based on human feedback. The questionnaire is performed using the generated
images by different schemes including NADA, IPL, SVL, and our proposed AIR. It includes 12
questions for quality evaluation and 4 questions for diversity assessment. We include examples for
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Figure 22: Image manipulation with GAN. The reference image are the same as in Fig. 1, 5.
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Figure 23: Diffusion model image manipulation. The reference images are the same as in Fig. 1, 6.

quality and diversity evaluation of our questionnaire in Fig. 25. Finally, we report the percentage of
the user preference from 220 responses for each method and for both quality and diversity metrics in
Tab. 3 in the main paper.

M RELATED WORK

Zero-shot Generative Model Adaptation Zero-shot generative model adaptation is the task of
adapting the source domain knowledge of a well-trained generator to the target domain without
accessing any target samples. Unlike the zero-shot image editing methods (Patashnik et al., 2021;
Shen & Zhou, 2021) where available modifications are constrained in the domain of the pre-trained
generator, zero-shot generator adaptation can perform out-of-domain manipulation by directly op-
timizing the generator parameters. Previous works (Gal et al., 2022; Guo et al., 2023; Jeon et al.,
2023) utilized the cross-modal representation in CLIP (Radford et al., 2021) to bypass the need for
extensive data collection. Specifically, NADA (Gal et al., 2022) first proposes to use the embedding
offset of textual description in the CLIP space to describe the difference between source and target
domains. By assuming the text offset and image offset are well-aligned in CLIP space, it uses the
text offset as adaptation direction and optimizes the trainable generator to align image offset with
text offset. IPL (Guo et al., 2023) points out that adaptation directions in NADA for diverse image
samples is computed from one pair of manually designed prompts, which will cause mode collapse,
therefore they produce different adaptation directions for each sample. Similarly, SVL (Jeon et al.,
2023) use embedding statistics (mean and variance) for producing adaptation direction instead of
only mean of embeddings in NADA to prevent mode collapse.

However, the adaptation direction in previous work only focuses on the source and target domains
and computes once before the generator adaptation. More importantly, all these methods assume the
image and text offsets in the CLIP space are well aligned. In this paper, we draw inspiration from a
similar problem called analogical reasoning in NLP, and empirically discover that the alignment of
image and text offset in CLIP space is correlated to the concept proximity in CLIP space. Based on
this finding, we proposed a method that iteratively updates the adaptation direction, which is more
aligned with the image offset and more accurate for zero-shot adaptation with directional loss.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Source
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Figure 24: Additional results of image manipulation with diffusion model.

(a) Qualitative evaluation (b) Diversity assessment

Figure 25: Examples of user study on (a) Quality assessment and (b) Diversity assessment.

Analogical Reasoning Research in NLP has shown that word representations of language models are
surprisingly good at capturing semantic regularities in language (Collobert & Weston, 2008; Turian
et al., 2010). Specifically, analogical reasoning (Mikolov et al., 2013c;a;b; Levy & Goldberg, 2014),
utilizing the semantic regularities of word representations, aims to solve analogy tasks by using one
pair of word vectors to identify the unknown member of a different pair of words, commonly via
alignment of offsets, This is commonly modeled as using the vector offset between two words a′ − a,
and applying it to a new word b to predict the missing word b′ that pair with b, as illustrated by the
famous example of using v(“Man”) - v(“Woman”) and v(“King”) to identify v(”Queen”), where v(·)
denotes word representation. This approach attracted a lot of attention for the vital role that analogical
reasoning plays in human cognition for discovering new knowledge and understanding new concepts.
It is already used in many downstream NLP tasks, such as splitting compounds (Daiber et al., 2015),
semantic search (Cohen et al., 2015), cross-language relational search (Duc et al., 2015), etc.

Importantly, previous works (Levy et al., 2015; Köper et al., 2015; Vylomova et al., 2015) demonstrate
that the effectiveness of analogical reasoning varies across different categories and semantic relations.
More recent studies (Rogers et al., 2017; Fournier et al., 2020), present a series of experiments
performed with BATS dataset (Gladkova et al., 2016) on various pre-trained vector space, e.g., GloVe
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Models License
StyleGAN2 (Karras et al., 2020b) Nvidia Source Code License
CLIP (Radford et al., 2021) MIT License
StyleGAN2-pytorch (Karras et al., 2020b) MIT License
e4e (Tov et al., 2021) MIT License
StyleGAN-NADA (Gal et al., 2022) MIT License
IPL (Guo et al., 2023) MIT License
Datasets License
FFHQ [5] CC BY-NC-SA 4.0
AFHQ [1] CC BY NC 4.0

Table 12: Sources and licenses of the utilized models and datasets

(Pennington et al., 2014), Word2Vec (Mikolov et al., 2013b), and Skip-gram (Mikolov et al., 2013a),
indicate that it is more effective to use a′ − a and b to determine b′ when b and b′ are close in vector
space; and less so when b and b′ are more apart.

Inspired by these studies, in this work, we perform an empirical study of offset misalignment in
CLIP space and observe that for distant concepts in CLIP, image and text offset suffer from more
misalignment, while closely related concepts suffer less. Based on our analysis, we proposed a
method that iteratively refined the text offset for adaptation, which results in less offset misalignment
and leads to a better generative model adaptation with directional loss.

N LIMITATION

Our proposed iterative refinement method seeks to improve the quality of zero-shot adaptation. As
noted by Guo et al. (2023), achieving adaptation across large domain gaps, such as Human to Cat,
is particularly challenging. Similar to previous work, our approach necessitates that the trained
generator somewhat closely approximates the target domain before initiating iterative refinement.
Additionally, while our experiments on 32 different setups are comprehensive compared to previous
work, more setups can be experimented to understand the limitations. We also note that our image-text
offset alignment analysis focuses on CLIP-like multimodal representation spaces used in ZSGM
work, and under ZSGM context.

O SOCIAL IMPACT

The AIR methodology holds potential for enhancing artistic image synthesis in social media contexts
and could serve as a beneficial data augmentation tool in other computer vision tasks such as
recognition and detection. However, its capability to generate realistic images from real-world data
raises ethical considerations. It is crucial to address these issues thoughtfully to prevent misuse and
ensure responsible application of this technology.

P USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used solely as a writing aid to improve clarity, grammar, and style. They were not involved
in generating research ideas, designing methodology, analyzing data, or drawing conclusions.

Q LICENSES

In Table 12, we specify the source and licenses of the models and datasets used in our work. Note
that the FFHQ dataset consists of facial images collected from Flickr, which are under permissive
licenses for non-commercial purposes.
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