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ABSTRACT

The Predict+Optimize (P+O) paradigm seeks to train prediction models for un-
known parameters in optimization problems, with the goal of yielding good opti-
mization solutions downstream. Prior works have proposed strategies for gradient
computation in neural network training, when the downstream optimization is a
linear program (LP). Yet, in face of mixed-integer linear programs (MIP), much
prior work simply relax the MIP into an LP, resulting in sub-optimally trained pre-
dictors. The issue is particularly stark in the recent Two-Stage Predict+Optimize
framework, where even the MIP constraints can contain uncertainty.
In this work, we propose a (shockingly) simple and fast approach for addressing
the MIP-LP gap, and show that it yields essentially the same or more accuracy
gains over a much slower method adapted from prior work. Concretely, for the
latter, we adapt the approach of MIPaaL (Ferber et al., 2020) and introduce cut-
ting planes into the LP relaxation, before using LP-based gradient computation
methods. Such adaptation is slow and requires some work for the new Two-Stage
P+O setting, given the constantly-changing constraint predictions during training.
We instead propose and advocate for a far simpler method: replace the relaxed-LP
optimum in the LP-based gradient computation with the actual true MIP optimum,
avoiding the repeated use of (slow) cutting plane MIP solvers in the slow method.
Experimental results on 3 benchmarks show that this simple strategy yields the
same or more accuracy gain over the much slower cutting plane approach, and the
conjunctive use of the two methods yields only minor further gains at the expense
of vastly increased training time, sometimes by a whole order of magnitude.

1 INTRODUCTION

Predict+Optimize (Elmachtoub & Grigas, 2022) is a recently proposed paradigm at the intersection
of constrained optimization and machine learning. In a constrained optimization problem, suppose
some parameters are unknown, with some relevant features that can help us predict these unknown
parameters. How do we make best use of the training data to train a prediction model (e.g. a neural
network) that gives good parameter predictions, so as to yield an estimated solution that has good
objective even under the true unknown parameters? The key idea by Elmachtoub & Grigas (2022) is
to incorporate the optimization problem into the definition of the training (and test) loss, producing
an optimization-aware prediction model.

Since the advent of this Predict+Optimize paradigm, a number of works have sought to derive gra-
dient computation methods for training neural network prediction models (Mandi & Guns, 2020;
Amos & Kolter, 2017; Paulus et al., 2021). Yet, most of these works assume linear programs,
quadratic programs or other convex programs for the underlying downstream optimization tasks.
For (mixed) integer programs and other discrete non-convex programs commonly used in AI and
operations research applications, many (but not all) prior works simply ask the practitioner to simply
discard the integrality constraints and use continuous-optimization based training methods. Clearly
this is sub-optimal, as these training methods and the resulting neural network models completely
ignore the integrality aspects of the optimization problem. The issue became more pressing in the re-
cent Two-Stage Predict+Optimize framework (Hu et al., 2023; 2022a), which allows uncertainty and
unknown parameters to appear in the optimization constraints, instead of only in the optimization
objective as in the original Predict+Optimize framework.
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In this work, we study two strategies that incorporate the integrality constraints back into training.

1. One strategy is to adapt an idea from MIPaaL (Ferber et al., 2020), which is to add cutting
planes to the LP-relaxed polytope to make it closer to the integral optimization domain,
before computing gradient information from this tightened relaxation. Doing so requires
using a cutting plane MIP solver to generate cutting planes, which is slower than some
other types of MIP solvers. While MIPaaL only handled predicting unknown objective pa-
rameters, in our context we have to accommodate the entire Two-Stage Predict+Optimize
framework with unknown constraint parameters as well. As training proceeds, the con-
straint predictions change, necessitating new cuts to be generated as the old ones might
be invalid. This strategy thus adds dominating training time overhead, and Section 3.1
explores ways to limit cut generation to trade accuracy gains for running time.

2. The novel strategy we propose and advocate is much simpler and faster, by avoiding
the use of cutting plane MIP solvers. Starting with known gradient computation methods
for LP (relaxation) models, we replace the LP optimum with the true MIP optimum in the
calculations and use the resulting gradient. While this simple strategy still requires solving
MIPs, we no longer need to use slow cutting plane solvers and can instead use much faster
solvers based on branch-and-bound search. Section 3.2 discusses the method details.

Across 3 experimental benchmarks, we demonstrate that the very simple second strategy yields
prediction accuracy that is essentially at least as good as the slow cutting plane strategy, while being
much faster, in some cases by an order of magnitude. The further accuracy gains from using both
strategies are also minimal. Together, our results strongly suggest that our novel and simple approach
of just using the MIP optimum is a practical solution to the Predict+Optimize problem on MIPs.

Other related work Elmachtoub and Grigas first proposed the Predict+Optimize framework (El-
machtoub & Grigas, 2022), with numerous followup work in the community on improving com-
putational efficiency (Mandi et al., 2020; Mulamba et al., 2021), predictive accuracy (Demirović
et al., 2020; Jeong et al., 2022; Mandi & Guns, 2020), and on types of applicable optimization prob-
lems (Guler et al., 2022; Hu et al., 2022b; Wilder et al., 2019). Other works also apply the framework
to specific real-world scenarios (Chu et al., 2023; Stratigakos et al., 2022; Tian et al., 2023). More
recently, Hu et al. (2022a; 2023; 2024) proposed adaptations of the framework to handle uncertainty
in optimization constraints, including the Two-Stage framework which our work is most related to.

See Appendix D for further related work, e.g. under the umbrella of decision-focused learning.

2 BACKGROUND

In this Background section, we recount the Two-Stage Predict+Optimize framework (Hu et al.,
2023), as well as explain their gradient computation method adapted from IntOpt (Mandi & Guns,
2020).

2.1 TWO-STAGE PREDICT+OPTIMIZE

Without loss of generality, the downstream optimization is a minimization problem. The exposition
below is mostly from Hu et al. (2023); see their Sections 2 and 3 for a detailed explanation/examples.

A parameterized optimization problem (Para-OP) P (θ) is defined as computing:
x∗(θ) = argmin

x
obj(x, θ) s.t. C(x, θ)

where x is a vector of decision variables, θ is a vector of parameters, obj is a function mapping
decisions x and parameters θ to a real objective value that is to be minimized, and C is a set of
constraints that must be satisfied over x under parameters θ. We call x∗(θ) an optimal solution
under parameters θ, and obj(x∗(θ), θ)) the optimal value under parameters θ. When the parameters
are all known, a Para-OP is just a classical optimization problem (OP).

Each instantiation of the true parameter vector θ has an associated feature matrix F . These features
are relevant and correlated with the unknown parameters θ, which can help a model predict θ.

After defining Para-OPs, we can now fully describe the Two-Stage Predict+Optimize framework.
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Stage 1 The practitioner uses a prediction model, which takes in a feature matrix F , to compute a
vector of estimated parameters θ̂. The Stage 1 solution x̂(1) is then computed as

x̂(1) = argmin
x

obj(x, θ̂) s.t. C(x, θ̂)

The solution x̂(1) should be interpreted as a soft commitment modifiable in Stage 2, under penalty.

Stage 2 The true parameters θ are revealed, and the practitioner wishes to compute an up-
dated Stage 2 solution x̂(2) from x̂(1), subject to a (problem+application-specific) penalty function
Pen(x̂(1) → x̂(2), θ) which depends on both the softly-committed Stage 1 x̂(1), the final Stage 2
solution x̂(2) and the true parameters θ. More specifically, the Stage 2 solution x̂(2) is computed as

x̂(2) = argmin
x

obj(x, θ) + Pen(x̂(1) → x, θ) s.t. C(x, θ)

The Stage 2 solution x̂(2) should be interpreted as a hard-committed final action, and note that it is
guaranteed to be feasible under the true parameters θ.

The prediction θ̂ is evaluated using the post-hoc regret, which is the sum of two terms: (a) the
difference in objective between the true optimal solution x∗(θ) and the final Stage 2 solution x̂(2)

under the true parameters θ, and (b) the penalty incurred by modifying x̂(1) to x̂(2). Formally, the
post-hoc regret function PReg(θ̂, θ) (for minimization problems) is:

PReg(θ̂, θ) = obj(x̂(2), θ)− obj(x∗(θ), θ) + Pen(x̂(1) → x̂(2), θ)

The goal of a prediction model is to make predictions θ̂ so as to minimize the post-hoc regret. The
post-hoc regret, crucially defined in terms of the underlying optimization, is thus used as the training
loss for the prediction model, in order to produce an optimization-aware prediction at test time.

2.2 GRADIENT COMPUTATION FOR LP MODELS

Much prior work in Predict+Optimize have focused on training neural networks as the prediction
model, which is also the goal in the present work. The standard training techniques are by gradient
methods and backpropagation, which compute the gradient of the post-hoc regret with respect to
changes in the network edge weights. By the law of total derivatives, the gradient decomposes to

dPReg(θ̂, θ)

dwe
=

∂PReg(θ̂, θ)

∂x̂(2)

∣∣∣∣∣
x̂(1)

∂x̂(2)

∂x̂(1)

∂x̂(1)

∂θ̂

∂θ̂

∂we
+

∂PReg(θ̂, θ)

∂x̂(1)

∣∣∣∣∣
x̂(2)

∂x̂(1)

∂θ̂

∂θ̂

∂we
(1)

The key challenge lies in the ∂x̂(1)

∂θ̂
and ∂x̂(2)

∂x̂(1) terms, which are gradients of the optima of the Stage

1 and 2 optimizations with respect to their parameters (e.g. θ̂ and x̂(1)). Even if the optimization
problems are as continuous and convex as LPs, the gradients are 0 almost everywhere, leading to no
useful training gradients. The problem is further exacerbated for MIPs, with integrality constraints.

Here, we present the method proposed by Hu et al. (2023), which extends IntOpt (Mandi & Guns,
2020) to handle unknown parameters in constraints. The method is designed to “differentiate
through” an LP, if both Stage 1 and 2 optimizations can be expressed as LPs—for MIPs, both prior
works just take the LP relaxation. The goal of this current paper is to propose a novel simple strategy
(Section 3.2) to efficiently re-incorporate the integrality constraints into the training process.

Without loss of generality, consider a minimization LP of the following standard form:
x∗ = argmin

x
c⊤x s.t. Ax = b,Gx ≥ h, x ≥ 0 (2)

As explained above, if we try to take the gradient of x∗ with respect to any of the parameters c, A,
b, G or h, the gradients will be 0 almost everywhere (over the tuples of (c, A, b,G, h)).

Following the interior-point based approach of IntOpt (Mandi & Guns, 2020) and (Hu et al., 2023),
consider the following relaxation using logarithmic regularizer terms, for any fixed value µ ≥ 0:

x∗ = argmin
x,s

c⊤x− µ

d∑
i=1

ln(xi)− µ

q∑
i=1

ln(si)

s.t. Ax = b,Gx− s = h

(3)
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This relaxes (2) by introducing slack variables s ≥ 0 to re-express Gx ≥ h into Gx − s = h,
and moves the non-negativity constraints x ≥ 0 and s ≥ 0 into the logarithmic barrier terms in the
objective, with multiplier µ ≥ 0. We choose the hyperparameter µ as 10−3, following Hu et al.

Given this relaxation (3), Slater’s condition holds, and so the KKT conditions must be satisfied at
the primal optimum (x∗

int, s
∗
int) with some dual optimum y∗int.

The remaining part, then, is to compute all the relevant gradients using the KKT conditions. The
implicit function theorem lets us differentiate the KKT condition equations and express the gradients
as solutions to a system of linear equations. By using an interior point solver (Mandi & Guns,
2020) on the relaxed problem (3), we can find the primal-dual optimum solutions ((x∗

int, s
∗
int), y

∗
int),

and then solve for the desired gradients by substituting the optimal solution values into the KKT-
derivative linear system.

The precise calculation details are not essential for understanding the contributions of this paper, so
we omit these, and refer interested readers to Hu et al. (2023).

3 TRAINING ALGORITHMS BEYOND VANILLA LP RELAXATIONS

In Section 2.2, we saw the prior approach for differentiating through MIPs in the Two-Stage Pre-
dict+Optimize setting, which was just ignoring integrality constraints in the MIP and using an ap-
proach for differentiating through the corresponding LP relaxation. This is clearly sub-optimal —
the gradient computation, and hence the entire neural network training process, completely ignores
the fact that the downstream optimization is a MIP and not an LP. To mitigate this deficiency, in this
section we give an adaptation from prior work (Section 3.1) and further propose a novel, much sim-
pler and much faster strategy (Section 3.2). We also choose the best configurations for both strate-
gies, using small-scale experiments. Afterwards, in Section 4, we experimentally compare them to
show that our novel and simple strategy (vastly) outperforms the adaptation from prior work, with
no worse prediction accuracy (and sometimes much better), and always significantly faster training.

3.1 ADDING CUTTING PLANES TO LP RELAXATIONS

The first basic (semi-baseline) approach follows an idea from MIPaaL (Ferber et al., 2020), which
is to add cutting planes to tighten the LP relaxation, to make it approximate the true MIP well
(or perfectly). While MIPaaL was originally proposed for Predict+Optimize (and related) settings
where unknown parameters appear only in the objective, in this work, we apply this idea to the
newer Two-Stage Predict+Optimize setting which allows also for unknown constraint parameters.

Cutting plane solvers A cutting plane MIP solver iteratively solves LP relaxations; if a non-
integral optimal solution is found, then the solver generates a cut (an inequality a · x ≤ b) that
removes the found solution (which cannot be a MIP solution given non-integrality) but which is also
guaranteed to not remove any MIP feasible solution (i.e. the generated cut is valid for the MIP). The
cut is added to the constraint set, and the process is repeated until an integer optimum is found.

Thus, in gradient computations, one can use the final LP with all the cuts generated by the cutting
plane solver, to achieve a much better approximation of the original MIP.

The original work of MIPaaL considered only Para-OPs with unknown objective parameters, with-
out any uncertainty in the constraints. Thus, every generated cut remains a valid cut for the feasible
region of the underlying MIP, regardless of how the objective parameter predictions change. On the
other hand, when there is uncertainty in the constraints, directly using this cutting plane idea in-
troduces a major complication—during training, the constraint parameter predictions are constantly
changing, meaning that the feasible solution set of the MIP is also changing. This means that cuts
generated for one constraint prediction may no longer be valid once the constraint prediction is up-
dated (i.e. when we take a gradient step in the neural network training). As a result, cuts need to be
generated from scratch after taking every gradient step, requiring numerous calls to a cutting plane
MIP solver during the model training process. Given that cutting plane MIP solvers are generally
much slower than other types of solvers, for example those based on branch-and-bound strategies,
the repeated cutting plane solver calls add significant (and in some cases drastic) overhead to the
training time.

4
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Table 1: Question 3.1.1: mean post-hoc-regret and standard deviations (not confidence intervals) over 10
simulations on the weighted set multi-cover problem.

Penalty
factor LP FullCut-Stage1 FullCut-Both

0.25 50.68±18.29 40.65±16.15 38.81±10.87
0.5 71.20±20.47 67.91±18.33 65.44±19.01
1 113.84±31.42 109.93±31.80 104.57±31.59
2 175.63±51.87 167.87±45.94 161.89±46.47
4 275.09±70.54 244.07±68.43 241.33±68.43

Table 2: Question 3.1.1: mean training time (in seconds) and standard deviations (not confidence intervals)
over 10 simulations on the weighted set multi-cover problem.

Penalty
factor LP FullCut-Stage1 FullCut-Both

0.25 91.93±22.98 1192.21±598.81 1936.23±630.23
0.5 89.05±33.21 1197.12±680.50 1795.77±912.37
1 100.15±54.98 1564.64±884.82 2777.01±1449.29
2 78.87±27.02 1401.44±767.93 2481.50±1033.75
4 61.74±14.17 954.75±411.10 2035.98±784.50

The rest of this subsection investigates techniques to reduce this overhead, perhaps at the expense of
some prediction accuracy, but which are still better than not using integrality information at all.

Recalling Equation (1), there are two derivative terms requiring differentiating through a MIP: ∂x̂(1)

∂θ̂

and ∂x̂(2)

∂x̂(1) . These are derivatives corresponding to the Stages 1 and 2 optimizations respectively.
This brings us to the first question on the application of the cutting plane strategy.

Question 3.1.1 Should we generate cuts for the optimizations in both Stages 1 and 2? Or is there
a better tradeoff, for example, by only generating cuts for Stage 1?

Beyond the decision on whether to restrict cutting plane generation to Stage 1 gradient computation,
even when differentiating through a MIP for a particular stage, there is the question of whether to
fully generate cuts until the LP relaxation has the same optimum as the MIP.

Question 3.1.2 When differentiating through a MIP, is it worth running the cutting plane solver
until completion? Can we just generate the first few cuts, or alternatively, limit the cut generation
time, and use the resulting LP relaxation instead?

Here, we give some preliminary results, based on the “weighted set multi-cover” problem described
in Section 4, addressing the above questions on the best use of the cutting plane strategy. Section 4
will then compare the best cutting plane strategy with the Section 3.2 strategy with full experiments.

Answer to Question 3.1.1 Based on Tables 1 and 2, it is reasonable to generate cuts solely for
Stage 1 (referred to as “FullCut-Stage1”) rather than for both Stages 1 and 2 (referred to as “FullCut-
Both”). The differences in post-hoc regret between the two approaches are minimal, while the time
savings from focusing on Stage 1 are significant. Specifically, across all penalty factors, FullCut-
Both yields post-hoc regrets at most 5% smaller than FullCut-Stage1, while the training time for
FullCut-Stage1 is only roughly 60-70% of that for FullCut-Both. The results suggest focusing on
generating cuts for Stage 1 only, for a good tradeoff.

Answer to Question 3.1.2 Tables 3 and 4 show that generating only the first 10 cuts (referred to as
”LimCut-Stage1 (CutNum=10)”) or limiting the cut generation time to 0.5s (referred to as ”LimCut-
Stage1 (CutGenTime=0.5s)”) could be reasonable compromises between prediction accuracy versus
training time. From Tables 3 and 4, we observe that LimCut-Stage1 (CutNum=10) and LimCut-
Stage1 (CutGenTime=0.5s) generally perform well, achieving 3.21%-10.81%, and 2.92%-10.33%
smaller post-hoc regret than LP without any cuts respectively, across different penalty factors.

Moreover, these methods require significantly less training time compared to FullCut-Stage1 while
still maintaining competitive performance. Specifically, the training times for LimCut-Stage1 (Cut-
Num=10) are roughly only 60-80% of that required for FullCut-Stage1, with slightly less than 1%
larger post-hoc regret than FullCut-Stage1 across the majority of penalty factors.
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Table 3: Question 3.1.2: mean post-hoc-regret and standard deviations (not confidence intervals) over 10
simulations on the weighted set multi-cover problem.

Penalty
factor LP LimCut-Stage1

(CutNum=5)
LimCut-Stage1
(CutNum=10)

LimCut-Stage1
(CutGenTime=0.5s) FullCut-Stage1

0.25 50.68±18.29 46.70±18.60 45.20±16.68 46.24±17.28 40.65±16.15
0.5 71.20±20.47 69.34±19.85 68.04±18.32 68.02±17.40 67.91±18.33
1 113.84±31.42 112.46±33.61 110.19±34.64 110.52±30.47 109.93±31.80
2 175.63±51.87 172.14±48.80 169.43±45.59 170.07±47.84 167.87±45.94
4 275.09±70.54 251.68±68.01 246.52±66.45 246.68±66.19 244.07±68.43

Table 4: Question 3.1.2: mean training time (in seconds) and standard deviations (not confidence intervals)
over 10 simulations on the weighted set multi-cover problem.

Penalty
factor LP LimCut-Stage1

(CutNum=5)
LimCut-Stage1
(CutNum=10)

LimCut-Stage1
(CutGenTime=0.5s) FullCut-Stage1

0.25 91.93±22.98 820.42±376.89 859.33±301.84 788.26±300.46 1192.21±598.81
0.5 89.05±33.21 796.69±459.58 895.71±381.90 803.54±334.65 1197.12±680.50
1 100.15±54.98 855.74±336.33 900.17±392.17 880.17±353.09 1564.64±884.82
2 78.87±27.02 800.90±329.20 830.03±305.23 773.56±321.68 1401.44±767.93
4 61.74±14.17 755.12±297.70 792.03±306.41 723.19±346.35 954.75±411.10

Summary for cutting plane strategy Given the very significant overhead in using the cutting
plane strategy, in Section 4 we will only use it for Stage 1, and further limit cut generation time to
0.5s per instance. This configuration will be compared against the Section 3.2 strategy.

3.2 FAST+SIMPLE: USING THE TRUE MIP OPTIMUM

The basic strategy from the previous section and adapted from the prior work of MIPaaL increases
the training time very significantly even when we use time-limiting techniques. By contrast, the
novel strategy we propose in this section is much simpler and drastically faster to run. As we will
see in Section 4, this new strategy has (essentially) at least as good post-hoc regret. The conceptual
message of this paper is to advocate this simple method over the slower prior MIPaaL method.

To understand the new strategy, first recall the gradient computation method for LPs, in Section 2.2.
There, an interior point LP solver solves a relaxation (Equation (3)) of the LP, for the primal-dual
optimum pair ((x∗

int, s
∗
int), y

∗
int). The required gradients can then be computed by differentiating

through the KKT condition, which holds at the primal-dual optimum, and solve the resulting linear
system. Lastly, for MIPs, ignore the integrality constraints and use the above strategy for LPs.

Our new strategy is very simple: instead of using x∗
int which is the primal optimum of the relaxation

(Equation (3)), we use the true MIP optimum x∗
MIP in place of x∗

int in the above calculations.

Our method bears some resemblance to the “straight-through” gradient estimator (Bengio et al.,
2013), but as far as we can tell from explicit, rigorous calculations using the chain rule, it cannot
mathematically be viewed as an instance of “straight-through”.

Note that, unlike the cutting plane strategy in Section 3.1, there is no requirement on the type of MIP
solver used for this new True MIP Optimum strategy. As such, we can use a fast solver, for example
those with branch-and-bound algorithms, avoiding the use of slow cutting plane MIP solvers.

Given this simple (yet, as we will see, effective) strategy, we again have to decide whether to use it
for the optimizations in both stages or restrict the strategy to Stage 1.

Question 3.2 Should we employ the True MIP Optimum strategy for both Stages 1 and 2 opti-
mizations? Or is there a better tradeoff, for example, by only using it on Stage 1?

Table 5: Question 3.2: mean post-hoc-regret and standard deviations (not confidence intervals) over 10 simu-
lations on the weighted set multi-cover problem.

Penalty
factor LP MipOpt-Stage1 MipOpt-Both FullCut-Both

0.25 50.68±18.29 38.72±10.77 38.54±10.67 38.81±10.87
0.5 71.20±20.47 66.44±18.67 66.03±18.49 65.44±19.01
1 113.84±31.42 108.91±31.07 107.84±31.42 104.57±31.59
2 175.63±51.87 165.06±47.17 163.71±44.60 161.89±46.47
4 275.09±70.54 242.83±68.22 241.65±69.93 241.33±68.43

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 6: Question 3.2: mean training time (in seconds) and standard deviations (not confidence intervals) over
10 simulations on the weighted set multi-cover problem.

Penalty
factor LP MipOpt-Stage1 MipOpt-Both FullCut-Both

0.25 91.93±22.98 123.85±31.62 143.94±52.41 1936.23±630.23
0.5 89.05±33.21 135.14±53.11 159.05±63.21 1795.77±912.37
1 100.15±54.98 168.01±73.49 183.32±69.28 2777.01±1449.29
2 78.87±27.02 159.64±69.72 170.31±65.54 2481.50±1033.75
4 61.74±14.17 114.59±32.74 137.22±43.45 2035.98±784.50

Answer Our preliminary results (Tables 5 and 6), again on the weighted set multi-cover problem
described in Section 4, show that using the True MIP Optimum strategy in both optimization stages
does offer some small post-hoc regret improvement over only using the strategy in Stage 1. The
training times do have overhead over the vanilla approach from Section 2.2, but they are nowhere
near as drastic as for the cutting plane approach in Section 3.1.

For the Section 4 comparisons, we will use the True MIP Optimum strategy on both Stages 1 and 2.

3.3 COMBINING BOTH STRATEGIES

A reasonable further question to ask is: what happens if we use both strategies at the same time?
In Section 3.1, the preliminary experiments informed us to use the cutting plane strategy without
running the cutting plane MIP solver to completion. Instead, we take only the first few cuts, resulting
in an LP that might have optimum different from the original MIP. We can thus additionally use the
“True MIP Optimum” strategy, by running a faster MIP solver (to completion) and use the true MIP
optimum in the gradient calculations. This further adds to the training time, but a priori, it might be
possible that the combination of the strategies will produce a much better prediction model.

The experiments in Section 4 will demonstrate that the tradeoff is not worth it—the training time is
even longer than the cutting plane method, and yet the post-hoc regret reductions are insignificant.

4 EXPERIMENTAL EVALUATION

In this section, we compare (1) the cutting plane strategy LimCut-Stage1 (CutGenTime = 0.5s),
which we will refer to as ‘LCGT-Stage1’, (2) our novel true MIP optimum strategy ‘MipOpt-Both’,
and (3) the combination of these two strategies, which we will refer to as ‘Combination’. We use
three benchmarks: weighted set multi-cover, 0-1 knapsack, and the nurse rostering problem.

We compare the proposed strategies with the prior Two-Stage Predict+Optimize method which only
differentiates through the LP relaxation (Hu et al., 2023), and we use “LP” to denote it. “LP” is our
only decision-focused baseline: to our knowledge, only two other decision-focused prior works can
handle unknown constraints: CombOptNet and Nandwani et al. (2022). Hu et al. (2023) already
compared “LP” with CombOptNet and demonstrated the latter’s worse predictive performance. On
the other hand, Nandwani et al. (2022) has no runnable code, and so we are unable to compare with
them. Finally, for completeness, our experiments also compare with classical non-Predict+Optimize
regression methods (as even weaker baselines). See Appendix B for these complete comparisons.

Both the proposed strategies and LP have hyperparameters, which we tune via cross-validation.
We include the hyperparameter types and values in Appendix C. All models are trained with In-
tel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz processors. For the cutting plane solver, we use
CPLEX (IBM, 2022) configured as a pure cutting plane solver, and for the non-cutting plane solver,
we use Gurobi (Gurobi Optimization, LLC, 2023).

The source code and data are available at: MIPLP Gap Mitigation for Predict+Optimize.

Weighted Set Multi-Cover Problem Our first benchmark is the weighted set multi-cover
(WSMC) with unknown coverage requirements, which is a covering integer program. Let I be a
set of items and J be a set of covers. The parameter aij is 1 if the cover j can cover item i, and 0
otherwise. Item i ∈ I must be covered by at least di many sets, and the cost of selecting cover j ∈ J
is cj . The weighted set multi-cover problem (WSMC) aims to satisfy the coverage constraints while
minimizing the total cost. The prediction challenge here is that the exact coverage requirements for
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Table 7: Full comparisons: mean post-hoc-regret and standard deviations (not confidence intervals) over 30
simulations on the weighted set multi-cover problem.

Penalty
factor LP MipOpt-Both LCGT-Stage1 Combination

0.25 36.19±17.96 30.70±16.12 31.65±17.63 29.22±15.99
0.5 52.91±30.57 49.78±27.48 51.26±26.80 49.42±27.47
1 82.72±44.65 76.16±46.55 79.81±44.20 74.00±46.69
2 123.67±67.16 118.18±62.40 120.03±60.40 117.31±55.09
4 204.44±108.45 188.53±92.73 194.85±91.59 177.74±97.36

Table 8: Full comparisons: mean training time (in seconds) and standard deviations (not confidence intervals)
over 30 simulations on the weighted set multi-cover problem.

Penalty
factor LP MipOpt-Both LCGT-Stage1 Combination

0.25 101.98±37.03 132.03±36.43 797.63±204.17 891.25±330.14
0.5 121.67±43.74 157.79±44.21 834.65±308.92 905.69±367.42
1 116.18±41.09 171.51±59.56 971.11±363.87 1006.51±398.06
2 79.76±24.86 165.65±49.35 902.68±327.34 963.59±325.11
4 64.84±10.52 135.42±32.73 729.61±320.57 736.73±319.55

each item are unknown. After the coverage requirements are revealed, if the selected covers cannot
satisfy coverage requirements, extra covers can be added with cost (1 + ρ)cj .

Please refer to Appendix A.1 for the precise MIP models for the Stages 1 and 2 optimizations.

We conduct experiments on 10 items and 50 covers. We generate the item-cover incidence matrices
following the method of Grossman & Wool (1997). The cover costs are uniformly randomly drawn
from [1, 100]. Coverage requirements di are the unknown parameters and need prediction. Given
the lack of datasets specific to this benchmark, we follow a standard Predict+Optimize experimental
approach (Hu et al., 2023; Mulamba et al., 2021; Demirović et al., 2020) and use real data from a
different problem (the ICON scheduling competition (Simonis et al., 2014)) as numerical values for
our experiment instances. In this dataset, each unknown parameter is related to 8 features.

We use 210 instances for training and 90 instances for testing the model. For all proposed strategies
and LP, we use a 5-layer fully connected network with 16 neurons per layer. We conduct experiments
on 5 scales of the penalty factor (ρ): ρ = 0.25, 0.5, 1, 2, or 4. Tables 7 and 8 report the mean post-hoc
regrets and training times across 10 runs for each approach on WSMC respectively.

As Table 7 shows, the combination method consistently yields the smallest post-hoc regret, since it
combines strengths from both strategies. MipOpt-Both achieves a post-hoc regret nearly identical
to that of the combination method, with just around 1% higher regret across all penalty factors.
The post-hoc regrets obtained by LCGT-Stage1 are noticeably larger than those of the combination
method and MipOpt-Both, but they are still significantly better than vanilla LP.

Table 8 shows that LP consistently has the shortest training times as expected, while MipOpt-Both
is somewhat slower. However, LCGT-Stage1 and “combination” are around 8-10x slower than LP.

In conclusion, while the combination method provides smallest post-hoc regret, it comes at a sig-
nificantly higher computational cost. Given that MipOpt-Both achieves a similar level of post-hoc
regret with much shorter training times, it is a strong alternative.

0-1 Knapsack Problem Our second benchmark is a variant of the 0-1 knapsack problem with
unknown item prices pi and sizes si—a packing integer program—which Hu et al. (2023) also
experimented on. Due to space reasons, please see Appendix B for the experimental results.

Nurse Rostering Problem Our last benchmark is the nurse rostering problem (NRP). Consider a
large medical center that needs to assign full-time nurses to shifts to meet patient load. If there are
too many patients for full-time nurses assigned to a shift, the center can hire temp nurses at a higher
salary to cover the extra demand. The task is to minimize the total hiring costs while meeting the
patient demand and (full-time) nurse workload restrictions. The challenge is that the shifts need to be
decided before the patient demand is known precisely, requiring prediction at the time of scheduling.

The roster of a particular week is made at least a full week before the start of the schedule, in order
to let nurses plan their week. This is Stage 1, making a schedule using estimated patient demands.

8
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Table 9: Full comparisons: mean post-hoc-regret and standard deviations (not confidence intervals) over 30
simulations on the nurse rostering problem.

Extra
payment LP MipOpt-Both LCGT-Stage1 Combination

15 156.17±56.01 144.99±52.33 152.25±50.08 141.37±43.71
20 172.92±58.09 157.31±56.67 165.11±56.31 155.55±48.54
25 180.85±64.39 162.78±58.12 170.75±60.46 160.89±51.48

Table 10: Full comparisons: mean training time (in seconds) and standard deviations (not confidence intervals)
over 30 simulations on the nurse rostering problem.

Extra
payment LP MipOpt-Both LCGT-Stage1 Combination

15 1097.48±459.06 934.40±440.06 2031.60±782.70 1477.59±796.23
20 1299.55±555.45 1070.56±532.01 2353.85±790.74 1635.35±746.82
25 1570.99±696.68 1376.45±599.99 2695.65±865.36 1907.97±779.81

The center requires patients to make appointments in advance—reservations for a week, from Mon-
day to Sunday, close the Sunday night prior. That night, the center knows the precise patient load,
and can solve the Stage 2 optimization to (A) potentially hire extra temp nurses to cover understaffed
shifts or (B) edit full-time nurse schedules with a monetary compensation for their inconvenience.

Due to page limitations, see Appendix A.2 for a detailed prose description of the setup. The full
Stages 1 and 2 MIP models and the Stage 2 penalty are also given in Appendix A.2.

We conduct experiments on the NSP with 10 full-time nurses. Extra nurses come at a cost of
{15, 20, 25} in different experiments. We again use real data from the ICON scheduling compe-
tition (Simonis et al., 2014) as the numerical values for patient demands. We use 70 instances for
training and 30 instances for testing. We use a smaller dataset size for this benchmark since it is
more complex and time-consuming to train models on than the previous two benchmarks. For all
proposed strategies and LP, we use a 5-layer fully connected network with 16 neurons per hidden
layer. Tables 9 and 10 report the mean post-hoc regrets and mean training times across 30 runs for
each approach respectively.

From Table 9, we can see that the combination method again consistently outperforms all other
methods, very closely followed by MipOpt-Both, while LCGT-Stage1 has prediction accuracy in
between the combination method/MipOpt-Both and LP.

One interesting observation from Table 10 is that MipOpt-Both has even shorter training time than
LP in this benchmark. This is because, although the training time for each epoch of MipOpt-Both is
longer than that of LP, MipOpt-Both needs fewer epochs to converge. A similar trend holds between
LimCut-Stage1 and the combination method as well.

In summary, MipOpt-Both again offers the best balance with essentially the best post-hoc regret,
while having shorter training times, compared to other methods.

5 SUMMARY

The MIP-LP gap in Predict+Optimize has been an unresolved challenge in the community. In this
paper, we propose a novel and simple strategy (MIPOpt, Section 3.2) to mitigate this gap, for the
recently proposed Two-Stage Predict+Optimize framework. Compared with the slow adaptation of
MIPaaL (Section 3.1), our experiments show that MIPOpt give the best tradeoff between predictive
accuracy (in terms of post-hoc regret) and training time — it has essentially the best post-hoc regret,
but has relatively mild runtime overhead compared to the vanilla LP-based gradient computation
method. We thus advocate for the use of the simple strategy as an effective approach to incorporate
integrality constraints into the prediction model training process.

We emphasize that the simplicity of our proposed novel strategy is a key advantage. Beyond the
speed of the simple approach, it is also much easier to implement, and potentially applicable in a
wider variety of settings (although this is work beyond the scope of this paper, requiring extensive
further experimentation). Given that such a simple method is not an a-priori obvious strategy to try,
we believe that our work is a practical and actionable result to disseminate to the community.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pp. 136–145. PMLR, 2017.
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A DESCRIPTIONS/MIP MODELS OF EXPERIMENTAL SETUPS

A.1 WEIGHT SET MULTI-COVER

The Stage 1 solution is computed by solving the WSMC using the estimated coverage requirements
d̂i:

x̂(1) =argmin
x

∑
j∈J

cjxj

s.t.
∑
j∈J

aijxj ≥ d̂i, ∀i ∈ I

xj ∈ N, ∀j ∈ J.

In Stage 2, the coverage requirements are revealed. To meet the coverage requirements, extra covers
can be added with extra cost, for example, ρcj for adding one cover j, where ρ ≥ 0 is a non-negative
tunable scalar parameter. In this scenario, the penalty function is:

Pen(x̂(1) → x) = ρc⊤(x− x̂(1))

With respect to the above penalty function, the Stage 2 solution is computed as:

x̂(2) =argmin
x

∑
j∈J

cjxj + ρ
∑
j∈J

cj(xj − x̂
(1)
j )

s.t.
∑
j∈J

aijxj ≥ di ∀i ∈ I

xj ≥ x̂
(1)
j , ∀j ∈ J

xj ∈ N, ∀j ∈ J.

A.2 NURSE ROSTERING PROBLEM

Detailed description of the problem Suppose there are n full-time nurses, and we are scheduling
a 7 day work week with 3 possible shifts per day, with the possibility of a day-off shift. Full-time
nurses are entitled to take a rest: day-off shift. The unknown parameters are the numbers of patients
that will come in each shift on each day next week d ∈ R7×3. The decision variables are: 1) a
Boolean vector x ∈ {0, 1}n×7×4, where xi,j,k represents that whether nurse i is assigned to shift
k (k ∈ {1, 2, 3, 4} with shift 4 denoting a day-off) in day j, and 2) an integer vector σ ∈ N7×3,
where σj,k represents the number of extra nurses hired in shift k day j. Let dj,k denote the number
of patients in shift k day j, mi denote the number of patients that the nurse i can serve per shift,
ci denote the payment of the nurse i per shift, es denote the number of patients that each extra
nurse can serve per shift, and ec denote the payment of each extra nurse per shift. The unknown
parameters are d ∈ N7×3. The constraints are as follows: 1) the patient demand under each shift
must be satisfied, 2) each full-time nurse is assigned to exactly one (working or rest) shift per day, 3)
no full-time nurse may be scheduled to work a night shift followed immediately by a morning shift,
and 4) each full-time nurse gets one or two day-off shifts in the week.
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Precise MIP models The Stage 1 solution is computed by solving the NRP using the estimations:

x̂(1), σ̂(1) =

argmin
x,σ

n∑
i=1

ci

7∑
j=1

4∑
k=1

xi,j,k + ec

7∑
j=1

3∑
k=1

σj,k

s.t.
n∑

i=1

mixi,j,k + esσj,k ≥ d̂j,k,
∀j ∈ {1, . . . , 7},
k ∈ {1, 2, 3}

4∑
k=1

xi,j,k = 1,
∀i ∈ {1, . . . , n},
j ∈ {1, . . . , 7}

xi,j,3 + xi,j+1,1 ≤ 1,
∀i ∈ {1, . . . , n},
j ∈ {1, . . . , 6}

1 ≤
7∑

j=1

xi,j,4 ≤ 2, ∀i ∈ {1, . . . , n}

x ∈ {0, 1}, σ ∈ Z.

In Stage 2, the center knows the precise number of patients for each shift in the upcoming week
and can adjust the shift schedule, although this incurs additional costs. The additional costs are
formulated as a penalty function defined above:

Extra(x̂
(1)
i,j,k → xi,j,k) = 1

[
xi,j,k > x̂

(1)
i,j,k

]
(T − j + 1)ρici

Then we are ready to define the Stage 2 MIP:

x̂(2), σ̂(2) =

argmin
x,σ

n∑
i=1

ci

7∑
j=1

3∑
k=1

xi,j,k + ec

7∑
j=1

3∑
k=1

σj,k

+

n∑
i=1

ρici

7∑
j=1

3∑
k=1

(T − j + 1)γi,j,k

s.t.
n∑

i=1

mixi,j,k + esσj,k ≥ dj,k,
∀j ∈ {1, . . . , 7},
k ∈ {1, 2, 3}

4∑
k=1

xi,j,k = 1,
∀i ∈ {1, . . . , n},
j ∈ {1, . . . , 7}

xi,j,3 + xi,j+1,1 ≤ 1,
∀i ∈ {1, . . . , n},
j ∈ {1, . . . , 6}

1 ≤
7∑

j=1

xi,j,4 ≤ 2, ∀i ∈ {1, . . . , n}

γi,j,k ≥ xi,j,k − x̂
(1)
i,j,k,

∀i ∈ {1, . . . , n},
j ∈ {1, . . . , 7},
k ∈ {1, 2, 3}

x ∈ {0, 1}, σ ∈ Z, γ ∈ {0, 1}

B FULL EXPERIMENTS

In this appendix, we report the full experimental comparisons, including against traditional re-
gression methods that were not designed for Predict+Optimize settings, including ridge regression
(Ridge), k-nearest neighbors (k-NN), classification and regression tree (CART), random forest (RF),
and neural network (NN).
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Weighted Set Multi-Cover Problem Table 11 is on the weighted set multi-cover problem, and
presents the mean post-hoc regret and standard deviations (not confidence intervals, which are very
difficult/impossible to do correctly) for various methods, categorized into three groups: the studied
methods (our novel MipOpt-Both, the adaptation LCGT-Stage1 of MIPaaL, and Combination), the
state-of-the-art Predict+Optimize method (LP), and weak non-Predict+Optimize methods. As ex-
plained in Section 4, “LP” is our only decision-focused baseline presented in this work. Most other
decision-focused prior works cannot handle unknowns in constraints, and only CombOptNet (Paulus
et al., 2021) and Nandwani et al. (2022) can in principle do it. However, Hu et al. (2023) already
compared “LP” with CombOptNet and showed that “LP” is much better than the latter in prediction
accuracy (in post-hoc regret), so we omit to repeat this comparison given how time consuming it is
to run CombOptNet. As for Nandwani et al. (2022), even after corresponding with these authors we
were unable to get a runnable version of their code, and so we do not compare with them.

Our studied methods (the adaptation of MIPaaL, our proposed novel MipOpt method, and the com-
bination method) generally perform well, often resulting in the smallest 3 post-hoc regrets among
all methods across different penalty factors. LP consistently yields larger post-hoc regrets than the
proposed methods across all penalty factors but exhibits smaller post-hoc regrets compared to non-
Predict+Optimize methods. Among non-Predict+Optimize methods, there is a notable variability in
performance, for example, Ridge and RF perform better than k-NN and CART.

Table 11: Mean post-hoc-regret and standard deviations of Predict+Optimize and non-Predict+Optimize meth-
ods over 30 simulations on the weighted set multi-cover problem.

Penalty factor 0.25 0.5 1 2 4
LP 36.19±17.96 52.91±30.57 82.72±44.65 123.67±67.16 204.44±108.45
MipOpt-Both 30.70±16.12 49.78±27.48 76.16±46.55 118.18±62.40 188.53±92.73
LCGT-Stage1 31.65±17.63 51.26±26.80 79.81±44.20 120.03±60.40 194.85±91.59
Combination 29.22±15.99 49.42±27.47 74.00±46.69 117.31±55.09 177.74±97.36
Ridge 42.40±24.95 53.69±31.22 84.27±44.20 124.07±72.34 211.72±124.50
RF 48.10±27.25 58.99±33.30 86.76±45.90 125.83±72.60 211.41±124.56
NN 47.61±27.66 58.62±33.41 86.64±45.47 124.68±70.46 212.77±121.38
k-NN 67.28±35.01 76.64±40.63 95.35±52.28 133.31±76.36 207.64±125.38
CART 63.26±32.81 74.64±39.19 97.42±52.81 142.96±81.42 234.05±140.18
TOV 346.33±200.37

0-1 Knapsack Problem Next, we conduct experiments on a variant of the 0-1 knapsack problem
with unknown item prices pi and sizes si, which is a packing integer program. Since Hu et al. (2023)
also experimented on this problem, we adopt their dataset and experimental setting. The problem
description and formulation can be found in their Appendix C.2 (Hu et al., 2023). We use the same
real data from Paulus et al. (2021) as that used in Hu et al. (2023) for the numerical values in our
experimental instances. In this dataset, each 0-1 knapsack instance consists of 10 items and each
item has 4096 features related to its price and size. For both our proposed strategies and LP, we use
a 5-layer fully-connected network with 512 neurons per hidden layer. We conduct experiments with
2 different knapsack capacities: 100 and 200. Following Hu et al. (2023), we also use 4 scales of
the penalty factor: 0.21, 0.25, 0.3, or 0.4.

We use 700 instances for training and 300 instances for testing the model performance. Table 12
compares the post-hoc regret of the different methods. Given 0-1 knapsack is a much simpler prob-
lem than the other two problems we consider. the differences in post-hoc regret are not as large as
in the other problem. As we increase the capacity of the knapsack, the integrality becomes less and
less important in solutions meaning there is less improvement possible over LP. We again see that
while the best post-hoc regret comes from Combination, MipOpt-Both is never more than 5% worse
than the combination. Table 13 compares the training times, LP as expected has the shortest training
time, while MipOPT-Both requires around 50% longer. The combination requires close to twice the
training time of MipOPT-Both for very little reduction in regret.

Again, the results point to MipOPT-Both as a strong practical alternative for handling integrality.

Nurse Rostering Problem Table 14 is on the final nurse rostering problem benchmark. Consistent
with the other two benchmarks, the table shows that non-Predict+Optimize methods consistently ex-
hibit larger post-hoc regret compared to Predict+Optimize methods across all extra payment levels.
Ridge and RF show the most competitive performance among the Non-Predict+Optimize methods,
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Table 12: Full comparisons: mean post-hoc-regret and standard deviations of Predict+Optimize and non-
Predict+Optimize methods over 30 simulations on the 0-1 knapsack problem.

Capacity 100 200
Penalty factor 0.21 0.25 0.3 0.4 0.21 0.25 0.3 0.4
LP 1.70±0.49 6.36±0.14 10.06±1.55 10.91±1.70 0.33±0.01 1.67±0.03 3.90±1.21 6.99±0.26
MipOpt-Both 1.26±0.01 6.25±0.09 9.53±0.57 10.75±0.25 0.33±0.01 1.67±0.03 3.83±0.54 6.79±0.26
LCGT-Stage1 1.28±0.13 6.30±0.22 9.16±0.67 10.50±0.28 0.33±0.01 1.67±0.03 3.73±0.05 6.70±0.22
Combination 1.26±0.01 6.24±0.15 9.11±0.21 10.36±0.38 0.33±0.01 1.67±0.03 3.33±0.05 6.66±0.10
Ridge 9.50±0.22 9.82±0.22 10.21±0.22 11.01±0.23 6.61±0.27 6.84±0.26 7.13±0.25 7.72±0.23
RF 9.53±0.26 9.85±0.26 10.25±0.27 11.05±0.29 6.63±0.31 6.86±0.29 7.15±0.28 7.73±0.25
NN 9.27±2.89 10.02±1.56 10.95±0.99 12.82±4.22 6.68±2.58 6.99±2.24 7.37±1.83 8.12±1.12
k-NN 9.46±0.22 9.77±0.22 10.27±0.22 11.96±0.23 6.45±0.22 6.69±0.22 6.99±0.21 7.60±0.21
CART 9.34±0.52 9.72±0.43 10.29±0.32 11.15±0.22 6.63±0.32 6.88±0.29 7.20±0.25 7.82±0.19
TOV 29.69±0.14 48.14±0.17

Table 13: Full comparisons: mean training time (in seconds) and standard deviations over 30 simulations on
the 0-1 knapsack problem.

Capacity Penalty
factor LP MipOpt-Both LCGT-Stage1 Combination

100

0.21 219.78±28.65 390.83±75.41 791.05±144.58 745.57±156.54
0.25 236.93±26.20 419.57±106.54 845.21±180.42 819.11±139.83
0.3 286.13±94.82 421.58±152.69 844.05±158.99 826.00±173.35
0.4 303.38±92.59 449.10±130.04 894.86±144.58 867.91±139.19

200

0.21 258.61±24.09 411.09±110.63 792.87±156.31 711.99±123.35
0.25 290.36±25.79 433.61±97.58 804.04±175.93 794.52±136.67
0.3 305.13±78.09 459.52±106.58 825.58±143.07 806.27±141.56
0.4 328.74±106.52 466.97±125.98 859.78±195.93 812.03±100.89

but still significantly lags behind LP and the proposed methods. This suggests that for complex op-
timization tasks like nurse rostering, incorporating the optimization problem into predictive models
can significantly enhance performance.

Table 14: Mean post-hoc-regret and standard deviations of Predict+Optimize and non-Predict+Optimize meth-
ods over 30 simulations on the nurse rostering problem.

Extra payment 15 20 25
LP 156.17±56.01 172.92±58.09 180.85±64.39
MipOpt-Both 144.99±52.33 157.31±56.67 162.78±58.12
LCGT-Stage1 152.25±50.08 165.11±56.31 170.75±60.46
Combination 141.37±43.71 155.55±48.54 160.89±51.48
Ridge 218.84±50.03 242.48±54.86 254.53±58.95
RF 219.96±48.77 241.71±53.12 252.66±53.44
NN 247.29±59.12 272.18±66.76 285.57±70.66
k-NN 235.24±43.86 256.34±51.44 270.70±54.13
CART 281.30±64.20 304.75±70.21 317.97±71.39
TOV 10598.58±1668.45 10812.51±1567.03 11021.66±1479.33

C HYPERPARAMETERS FOR THE EXPERIMENTS

The methods of MipOpt-Both, LCGT-Stage1, Combination, LP, k-NN, RF, and NN have hyper-
parameters, which we tune via cross-validation: For the proposed methods and LP, we treat the
optimizer, learning rate, the early-cut-off value of log barrier regularization term (µ), and epochs as
hyperparameters. For k-NN, we try k ∈ {1, 3, 5}; for RF, we try different numbers of trees in the
forest {10, 50, 100}; for NN, we treat the optimizer, learning rate, and epochs as hyperparameters.

Tables 15, 16, and 17 show the final hyperparameter choices for the three problems: 1) weighted set
multi-cover, 2) 0-1 knapsack problem, and 3) nurse rostering problem.

Ridge, k-NN, CART and RF are implemented using scikit-learn (Pedregosa et al., 2011). The neural
network is implemented using PyTorch (Paszke et al., 2019).
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Table 15: Hyperparameters of the experiments on the weighted set multi-cover problem.

Model Hyperparameters

MipOpt-Both optimizer: optim.Adam; learning rate: 10−6;
µ = 10−3; warm start epochs = 20, stop epochs = 40

LCGT-Stage1 optimizer: optim.Adam; learning rate: 10−6;
µ = 10−3; warm start epochs = 20, stop epochs = 40

Combination optimizer: optim.Adam; learning rate: 10−6;
µ = 10−3; warm start epochs = 20, stop epochs = 40

LP optimizer: optim.Adam; learning rate: 5× 10−7;
µ = 10−3; warm start epochs = 20, stop epochs = 40

NN optimizer: optim.Adam; learning rate: 10−4;
stop epochs = 40

k-NN k = 5
RF number of estimator = 100

Table 16: Hyperparameters of the experiments on the 0-1 knapsack problem.

Model Hyperparameters

MipOpt-Both optimizer: optim.Adam; learning rate: 10−6;
µ = 10−3; warm start epochs = 5, stop epochs = 16

LCGT-Stage1 optimizer: optim.Adam; learning rate: 10−6;
µ = 10−3; warm start epochs = 5, stop epochs = 16

Combination optimizer: optim.Adam; learning rate: 10−6;
µ = 10−3; warm start epochs = 5, stop epochs = 16

LP optimizer: optim.Adam; learning rate: 10−7;
µ = 10−3; warm start epochs = 5, stop epochs = 16

NN optimizer: optim.Adam; learning rate: 10−3;
epochs=16

k-NN k = 5
RF number of estimator = 100

Table 17: Hyperparameters of the experiments on the nurse rostering problem.

Model Hyperparameters

MipOpt-Both optimizer: optim.Adam; learning rate: 10−5;
µ = 10−7; warm start epochs = 12, stop epochs = 20

LCGT-Stage1 optimizer: optim.Adam; learning rate: ;
µ =; epochs=
optimizer: optim.Adam; learning rate: 10−5;
µ = 10−7; warm start epochs = 12, stop epochs = 20

LP optimizer: optim.Adam; learning rate: 10−5;
µ = 10−7; warm start epochs = 12, stop epochs = 20

NN optimizer: optim.Adam; learning rate: 10−4;
stop epochs = 20

k-NN k = 5
RF number of estimator = 100

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D FURTHER RELATED WORK

Predict+Optimize is a relatively new and underexplored area, and therefore, there are very few
works on mitigating the MIP-LP gap in this context, specifically addressing unknowns in constraints.
Predict+Optimize falls under the broad umbrella of decision-focused learning, which includes works
that learn prediction models for unknown parameters but with different goals/losses (Nandwani
et al., 2022; Paulus et al., 2021). To better highlight our contributions, we provide an overview of
how existing works —though not strictly within Predict+Optimize but still part of decision-focused
learning—deal with the MIP-LP gap.

Some works (Wilder et al., 2019; Mandi & Guns, 2020; Hu et al., 2023) handle both LPs and ILPs by
simply dropping the integrality constraints and use continuous-optimization based training methods.
Such prior works do not use any integrality information in the underlying MIP, resulting in the MIP-
LP gap that is addressed in the present work. Ferber et al. (2020) extends the work of Wilder et al.
(2019) by using a cutting plane method to generate an LP problem that admits the same solution as
the ILP as the relaxation problem. The relationship between our work and Ferber et al. (2020) is
discussed in detail in the main paper, though the key issue is that Ferber et al. (2020) cannot handle
uncertainty in constraints (and is much slower than the simple method proposed in this work).

On the other hand, some works (Pogančić et al., 2019; Sahoo et al.; Niepert et al., 2021; Berthet
et al., 2020) consider optimization problems with a linear objective function, regardless of whether
the problem contains discrete decision variables or not (i.e. they consider all of LPs, ILPs, and MILPs
and beyond). Rather than viewing the optimization problem as a mapping from unknown parame-
ters to a solution, these works interpret the optimization problem as mapping unknown parameters to
probability distributions over the feasible set and optimizing the expected objective under this distri-
bution. This probabilistic viewpoint yields differentiable surrogates that are agnostic to whether the
variables are continuous or discrete, allowing for training with linear objectives without explicitly
resolving the MIP–LP gap. However, none of these works can handle uncertainty in constraints, and
as far as we can tell there does not seem to be any straightfoward adaptation to make these methods
work with the Two-Stage Predict+Optimize framework.
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