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Situation Awareness for Driver-Centric Driving
Style Adaptation

Johann Haselberger ∗, Bonifaz Stuhr ∗, Bernhard Schick , and Steffen Müller

Abstract—There is evidence that the driving style of an
autonomous vehicle is important to increase the acceptance and
trust of the passengers. The driving situation has been found to
have a significant influence on human driving behavior. However,
current driving style models only partially incorporate driving
environment information, limiting the alignment between an
agent and the given situation. Therefore, we propose a situation-
aware driving style model based on different visual feature
encoders pretrained on fleet data, as well as driving behavior
predictors, which are adapted to the driving style of a specific
driver. Our experiments show that the proposed method outper-
forms all evaluated baselines significantly and forms plausible
situation clusters. Furthermore, we found that feature encoders
pretrained on our dataset lead to more precise driving behavior
modeling. In contrast, feature encoders pretrained supervised
and unsupervised on different data sources lead to more specific
situation clusters, which can be utilized to constrain and control
the driving style adaptation for specific situations. Moreover,
in a real-world setting, where driving style adaptation is hap-
pening iteratively, we found the MLP-based behavior predictors
achieve good performance initially but suffer from catastrophic
forgetting. In contrast, behavior predictors based on situation-
dependent statistics can learn iteratively from continuous data
streams by design. Overall, our experiments show that impor-
tant information for driving behavior prediction is contained
within the visual feature encoder. The dataset is publicly avail-
able at huggingface.co/datasets/jHaselberger/SADC-Situation-
Awareness-for-Driver-Centric-Driving-Style-Adaptation.

Index Terms—Driving style adaptation, situation awareness,
clustering, unsupervised learning, artificial intelligence.

I. INTRODUCTION

AS autonomous vehicle development advances, attention is
shifting from technical realizability to achieving driving

characteristics that are both comfortable and acceptable [1].
A crucial aspect of perceived driving comfort is influenced
by the driving style, playing a vital role in fostering trust and
acceptance of autonomous vehicles [2]–[5]. Considerable evi-
dence shows that a driving style adaptation towards the human
driver could improve the acceptance of autonomous driving
functions and mitigate uncertainties associated with their usage
[6]–[21]. The term ”driving style” lacks a comprehensive
and standardized definition [22]–[24]; however, definitions
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Fig. 1. Distance to lane center predictions of our proposed neural-network-
based driving style model (NN) and the driving situation clustering approach
(DSC) for two specific scenarios. The top row shows images of the driving
situation in chronological order, and the bottom row shows the predicted
trajectories and the recorded human behavior. Thereby, a visual feature
encoder extracts a representation from an image of the driving situation, which
DSC associates with a distinct situation cluster. Red squares denote a change
in the identified situation cluster. Corresponding images and their respective
cluster IDs are annotated with arrows.

commonly agree that driving style encompasses a collection of
driving habits developed and refined by a driver [25]–[29]. It is
argued that drivers prefer a style similar to their own [30]–[37].
Current driver models or driving functions, however, depict an
average driver with static parameters [23], [30], [38], lacking
adaptation to individual drivers [19], [39]–[41]. While methods
in the field of driving style adaptation primarily focus on ego-
vehicle-dependent signals like acceleration and jerk values
[42]–[47], the incorporation of the entire driving situation
remains elusive. However, the driving situation has been found
to have a significant influence on driving behavior [24], [48]–
[54]. Furthermore, an alignment between an agent’s capability
and the given situation increases trust [55], [56]. Moreover,
individuals’ responses to different driving contexts constitute a
significant aspect of driving style [10]. Therefore, as our main
contribution, we propose a situation-aware method to adapt the
driving style to the specific human driver. To fully incorporate
the driving situation into our method, we utilize visual feature
encoders to learn a representation of the environment. Building
upon the representations of the visual feature encoder, we
propose and evaluate two distinct driving style models capable
of learning a mapping from the representation of the driving
situation to the driving behavior, mimicking the specific driver.
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Our contributions can be summarized as follows:
1) A situation-aware driving style adaptation method utiliz-

ing learned representations of the driving environment.
2) An interpretable clustering-based approach for learning

situation-dependent driving behaviors and to constrain
and control the driving style adaptation for specific
situations.

3) A publicly accessible dataset including 1.8 million
images and labeled driving behavior data of multiple
drivers.

4) The Entropy-based Cluster Specificity (ECS) metric
which uses proxy labels to measure the specificity of
the found situation clusters.

5) The evaluation of unsupervised foundation models
(DINOv2) and visual feature encoders pretrained super-
vised on ImageNet1K for driving style modeling and
situation clustering.

6) The evaluation of MLPs and situation-dependent statis-
tics for driving style modeling and their iterative training
capabilities.

II. RELATED WORK

In this section, we present an overview of related work in the
field of driving style recognition and modeling, highlighting
the employed input quantities, the derived output quantities,
and the utilized modeling techniques.

Driving Style Input Quantities

For driving style modeling, the majority of approaches
exclusively rely on vehicle BUS time-series data, incorporating
information such as acceleration, jerk, and steering wheel
angle [42]–[47]. When assessing the driving style solely based
on ego-vehicle-centric features, the influence of the driving
context is not considered. However, in various traffic scenarios
the driving context either facilitates or constrains decision-
making [27]. There is considerable evidence affirming that
external conditions significantly influence driving behavior
[24], [48]–[54]. Although weather has been shown to influence
driving behavior significantly [57]–[60], the extent of this
variation among individual drivers differs [61]. In addition
to the influence of weather conditions, traffic also plays
a pivotal role, especially when drivers encounter oncoming
traffic, leading to deviations from the lane center [36], [62]–
[67]. To incorporate the external context into the driving style
analysis, previous works often rely on the isolated inclusion
of weather information [68]–[71], road features [68]–[77],
and traffic data [71], [73], [74], [78]–[80]. Frequently, the
relationship with surrounding traffic is extracted from object
lists of the vehicle’s internal environment perception, as shown
in [79]–[86]. In contrast, we utilize raw images from a front-
facing camera to fully capture the driving situation without
restricting the environment’s representation to specific features
or scenarios.

Driving Style Output Quantities

When examining the output quantities, it is evident that the
majority of prior methods derive discrete driving style classes

[43]–[45], [47], [79], [82], [87], [88]. While categorizing into
broad classes like defensive, moderate, or aggressive provides
a high degree of interpretability, defining these classes and
their boundaries remains highly subjective. In contrast, ob-
jective model outputs in the form of driving behavior indi-
cators provide an alternative approach [84], [86], [89]–[92].
In addition to these dynamics-oriented indicators, the model
parameters of classical mathematical driving behavior models
are also predicted [84], [93]–[95]. Moreover, scores, such
as sportiness or aggressiveness, are derived using predefined
calculation procedures [44], [89], [96], [97]. In contrast to
the broader driving style classes, the objective indicators
of driving behavior offer the advantage of being directly
integrable into the personalization of driver assistance systems
or automated driving functions through constraints or target
variables. Therefore, we use objective indicators of driving
behavior in this work.

Driving Style Modeling Approaches

On the one hand, driving style modeling often relies on
relatively simple rules based on behavioral patterns [96],
[98]–[101], statistical models [76], [83], [93], [97], [102],
or Artificial Potential Fields (APF) [90], [103]–[106]. APFs
are characterized by a clear mathematical description and
real-time performance and model lateral driving behavior by
employing the superposition of attractive (e.g., towards the
lane-center) and repulsive forces (e.g., shift from oncoming
vehicles).

On the other hand, more complex machine-learning-based
methods are employed. This entails utilizing Support Vector
Machines (SVMs) [107]–[110], K-Nearest Neighbors (KNN)
[107], [108], [111] or Multilayer Perceptrons (MLPs) [107],
[112]–[114] for driving style classification. Beyond the scope
of pure classification, learning-based methods are also applied
to learn a driving style and behavior representation [81],
[115] or to predict specific driving-style-related scores [89].
To capture the temporal aspects of driving behavior and the
corresponding driving situation, Recurrent Neural Networks
(RNNs) are utilized [45], [47], [81], [85], [112], [116], [117].
Even without utilizing images from a vehicle-mounted camera,
Convolutional Neural Networks (CNNs) are often employed
for driving style modeling [74], [85], [88], [113], [116]–[119].
For converting time-series data of driving measurements into
an image-like representation, so-called Driving Operational
Pictures (DOPs) are used [47], [88], [117], [119]–[121].

In addition to the frequently utilized supervised approaches
for driving style classification or behavior prediction, unsu-
pervised clustering methods are also employed to identify
groups of behaviors. These methods cluster data based on
driving behavior metrics such as velocity, accelerations, jerk,
or headway values [43], [82], [84], [87], [122], [123], or
derived representations like risk levels or DOPs embeddings
[109], [124]. This driving behavior clustering is commonly
coupled with a preceding reduction of input dimensionality
using manifold learning techniques [82], [124], [125]. In
contrast, our approach does not rely on clustering behavior
data but focuses on clustering the underlying environment
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Fig. 2. High-level overview of the proposed method. Our method consists of a visual feature encoder that infers a representation from an image of a driving
situation. This encoder is either pretrained on our pretrain dataset, pretrained on ImageNet1K, or a pretrained unsupervised (foundation) model. Utilizing this
representation, unsupervised clustering is employed to associate each driving situation with a cluster Ci. This clustering can be used to identify and mask
specific driving situations to constrain and control the driving style adaptation. We predict the target driving behaviors either with a statistical lookup table
that uses the situation cluster Ci for indexing or with MLPs that use the representations from the visual encoder for situation awareness.

representation derived from camera images to model the
drivers’ individual driving styles in a situation-specific manner.

III. DATASETS

To assess driving style modeling capabilities of our pro-
posed method, a large dataset with a high scenario diversity is
needed to evaluate the situation behavior mapping. This dataset
contains a wide range of situations for pretraining our method
and can be considered as fleet data from a manufacturer.
We denote this dataset as the pretrain dataset DP . For a
fair evaluation of the adaptation capabilities of our method
to various drivers and driving situations, data from multiple
drivers obtained within similar environmental conditions is
needed. This data represent the behavioral examples of a
specific driver collected and used for driving style adaptation
in the vehicle. This dataset is referred to as the validation
dataset DV .

Data Collection

Since there is a lack of publicly accessible driving datasets
covering both image data and driving behavior indicators, as
recently discussed in [126], we collected over 16 hours of
driving data from a single test driver using the JUPITER
platform [127] as pretrain data. The data was captured over
several months, ensuring a diverse range of road, traffic, and
weather conditions.

For the validation data, we utilize the collected driving
data from a previously conducted driving style subject study
[126] using the same research vehicle as for the pretrain data
collection. Within this study, the driving style of 62 subjects
was subjectively and objectively analyzed while driving on a
given route featuring city, rural, federal, and highway roads. In
contrast to the pretrain data, the validation data was captured
over a small period (two months) to asses variability in human
driving behavior under comparable conditions. Out of this
driver population, we randomly sample five drivers and enrich
the dataset with the corresponding captured camera frames.

Dataset Preperation

To ensure a significant variation of driving situations in
the camera stream, the original frame rate of 36Hz is down-

sampled to 10Hz. Sampling frames randomly to create the
training and validation splits likely results in similar driving
situations featured in both sets. To mitigate an overly opti-
mistic evaluation of the generalization ability, we divide the
entire driving dataset into equal time segments of three seconds
each. Following this, the segments are randomly assigned to
either the training or validation split of DP and DV . We use
20% of the samples for validation. To blur vehicle license
plates and human faces in the camera frames, we utilize
EgoBlur [128]. Furthermore, all subject-related data, including
the socio-demographics, are anonymized.

Dataset

The final dataset (SADC) is composed as follows: the
pretrain set DP is split into a training subset DP,T with
242 887 samples, and a validation subset DP,V with 61 400
samples. Similarly, the validation set DV is split into a training
subset DV,T and a validation subset DV,V with 138 572 and
34 767 samples. Each subset consists of 1280 × 960 images,
driving behavior indicators like the distance to the lane center
or longitudinal headway distances, vehicle signals like velocity
or accelerations, as well as traffic conditions and road type
labels. The entire unfiltered pretrain data and the unfiltered
validation data of the five drivers (1.8 million samples),
as well as the processed datasets, are publicly available
at huggingface.co/datasets/jHaselberger/SADC-Situation-
Awareness-for-Driver-Centric-Driving-Style-Adaptation
under the CC BY 4.0 DEED license.

IV. METHOD

Our proposed method consists of three components: vi-
sual feature encoding, situation embedding, and situation-
dependent driving behavior modeling. A graphical overview
is provided in Figure 2. Without the loss of generalization,
we select the distance to the center lane (dCL) as the target
variable to characterize the lateral driving style. Previous
studies show that this quantity is highly driver-heterogenous
and can be integrated into the development and evaluation of
lateral driving functions [126], [129]–[131].
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Visual Feature Encoding

To get a representation Ri of a given driving situation Si, we
pretrain a visual feature encoder E(Si) on our pretrain dataset
DP,T . As the loss function L, we calculate the mean squared
error (MSE) between the predicted (d̂CL) and the measured
distance to the center lane of the human driver (dCL) for the
given situation:

L =
1

N

N∑
i=1

(dCL − d̂CL)
2 (1)

Furthermore, we experiment with visual feature encoders pre-
trained supervised on ImageNet1K [132] and unsupervised on
curated data to evaluate the performance of behavior prediction
and situation clustering based on representations obtained from
off-the-shelf encoders.

Situation Embedding

Given the multitude of diverse road, weather, and traffic
situations encountered in real-world driving, the underlying
situation space is not easily definable and manageable using
traditional rule-based approaches. Therefore, we employ un-
supervised clustering to associate each driving situation Si

with a cluster Ci utilizing the representation Ri = E(Si).
In this way, we model the drivers’ individual driving styles
in a situation-specific manner without prior knowledge of the
situation space. Moreover, besides a low computation effort,
clustering provides high interpretability. The identified clusters
can be examined utilizing the given mapping from the situation
embeddings to the camera images and the corresponding
vehicle signals. In this work, we use different variants of k-
means clustering with the target number of clusters NC as an
adjustable parameter to regulate the situation-specificness for
driving style adaption.

Situation Aware Driving Behavior

Using the assigned situation cluster Ci, we predict the target
driving behavior indicators Ki with a statistical lookup table.
To train each of the NC entries of the lookup table, we gather
objective driving behavior samples for each assigned situation
embedding and calculate the target behavior indicators K̄i

based on derived statistics of the NdCL

Ci
collected driving

samples dCL:

K̄i =
1

NdCL

Ci

N
dCL
Ci∑
j=1

dCL,j (2)

Based on the possible large amount of different situation
clusters NC , this is an efficient statistic-based method to
predict the driving behavior indicators.

To further compare our cluster-based approach, we also train
driving behavior models end-to-end directly on the situation
images K̂i = H(E(Si)), where H refers to fully-connected
layers to obtain the final prediction K̂i. For a direct compari-
son to situation-dependent driving behavior modeling, we use
the same visual feature encoder architectures. In contrast to
the cluster-based approach that explicitly decouples the driving

situation and the behavior modeling, the end-to-end approach
only implicitly considers the driving situation, which reduces
interpretability. From the perspective of a manufacturer, ex-
plicit situation-behavior mapping provides the possibility to
constrain and control the driving style adaptation for specific
situations.

Driver-Centric Driving Style Adaptation

Given substantial evidence that every driver has their unique
driving style [13], [29], [48], [133]–[136], we adapt our
model towards the driving style of specific drivers. There-
fore, we freeze the visual feature encoder and the clusters
learned on the pretrain dataset DP,T . Only the entries of
the situation-dependent lookup table are updated using the
driver-specific behavior data DV,T . As a second approach, we
train fully-connected predictor heads on the representations
of the frozen visual feature encoder for each specific driver
separately. Separating the training of the visual encoder and
clustering from behavior modeling allows training these two
components on a wide variety of situations obtained from
fleet data not necessarily encountered by a single driver.
Furthermore, this split enables the training of time, data, and
resource-consuming feature encoders by the manufacturer on
dedicated computation machines rather than on the actual
vehicles. Similarly, the pretraining of the clusters provides
the possibility to share a common situation-behavior-mapping
across all vehicles, facilitating consistency and testability from
the manufacturer’s perspective. On top of this, clustering can
mitigate the effects of catastrophic forgetting when adapting
to new situations. The driver-centric training of the situation-
dependent lookup table and fully-connected heads can be done
directly on the vehicle.

Integration into ADAS / HAF

Compared to direct control quantities like steering angle
or gas pedal position, the derived driving behavior indicators
from our model can be treated as constraints or target values
for low-level controllers like in [76], [80], [84], [137]. De-
coupling driving behavior indicators from the actual control
quantities ensures a driving style adaptation safeguarded by
the low-level controller. Constraining the predicted behavior
indicators to domain-specific save ranges (e.g., the distance
to the centerlane can be bound to the lane width) before
feeding them to the low-level controllers can mitigate possible
inducted risks of the driving style adaptation. However, similar
to established vehicle control architectures, other potential
risks and constraints (e.g., maximum lateral acceleration)
must be handled by the low-level controllers and their safety
modules.

Our method is not restricted to lateral indicators such as the
distance to the lane center and, in theory, can be generalized
to other use cases, such as adapting longitudinal headway
distances for Adaptive Cruise Control (ACC). Besides using
the clustering as indexing for the driving behavior lookup
table, the situation embeddings can also be seen as additional
output of our method. This output can be further used to
mask specific situations for other driving behavior models, like
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the MLPs used in this work. Decoupling situation clustering
from driving behavior modeling provides the possibility of
employing various types of visual feature encoders for both
tasks.

V. EXPERIMENTS

We conduct various experiments to evaluate our method
regarding its capabilities to model the human situation-aware
driving behavior, its adaptability to different drivers, and the
specificity of the identified situation clusters. For all exper-
iments, we report mean and standard deviations across five
runs.

Metrics

For evaluation of the lateral driving behavior modeling, we
utilize the root-mean-square error (RMSE) between the human
and the predicted distance to the lane center d̂CL:

RMSE =

√√√√ 1

N

N∑
i=1

(dCL − d̂CL)2 (3)

For assessing the adaptation performance on the validation
subset DV,V , we average the error across all five drivers. We
report RMSE values for the entire validation datasets DP,V

and DV,V (All) and on subsets containing only rural situations
(Rural Only).

To quantitatively evaluate the clustering of the representa-
tions into specific situations, we propose the Entropy-based
Cluster Specificity (ECS) metric. As the underlying situation
space is unknown and cannot be clearly described, our metric
incorporates NL discrete labels, which act as proxy labels for
the driving situation. In our case, we define six proxy labels:
road type, curvature, as well as type and distance of oncoming
and leading vehicles. Thereby, the l-th label is binned into NBl

bins. Using the learned mapping of the driving situation to the
c-th cluster centroid, we can select a subset Lc of all label
data L. For each label Lc,l in the selected subset, we utilize
the normalized Shannon entropy [138]:

h(Lc,l) = −
∑NBl

i=1 p(Lc,l,i) log p(Lc,l,i)

log(NBl
)

(4)

to define the specificity value s(Lc,l) = 1 − h(Lc,l). We
employ the inverse of the entropy as we want to identify
highly specialized clusters. We then combine the centroid-wise
maximum and average specificity values:

ECS =
1

NC

NC∑
c=1

(
max
l∈NL

s(Lc,l)×
1

NL

NL∑
l=1

s(Lc,l)

)
(5)

We balance contributions from highly specialized centroids
by taking the maximum and contributions from centroids
specialized across multiple labels by calculating the average
over all NL labels. For the final ECS score, we calculate
the average across all clusters NC . The ECS metric is bound
between 0 and 1, as it is derived from the normalized Shannon
entropy.

Baselines

As baselines, we use the curve-cutting-gradient-based driv-
ing styles from [130] without considering the driving situation.
These static driving styles consist of constant lane centering
(Rail), minimal curve cutting (Passive), and a sportive driving
style with high curve cutting gradients (Sportive). Further-
more, we compare our method to frequently used methods
incooperating ego-centric time-series data. Utilizing DOPs as
representations of the time-series data, DOP-MLP (flattend
DOP vector), DOP-CNN-MLP [117], [121], and D-CRNN
[116], [117] train behavior predictors in an end-to-end manner.
In contrast to these learning-based techniques, we additionally
evaluate behavior predictors based on artificial potential fields
following [90], [103], [104]. To establish a fair comparsion we
add human-like curve-cutting behavior based on the findings of
[126]. The APF factors are fitted on DV,T for each validation
driver using particle swarm optimization [139]. For more
information we refer to our implementation. The statistical
significance of the mean differences between our proposed
method and the baselines was analyzed using jamovi [140],
an open-source statistical software.

Models

For our visual feature encoder, we experiment with
the convolution-based ResNet-18 [141], ResNet-50 [141],
ResNeXt-50 [142] models, and a large attention-based visual
image transformer (ViT-L) [143]. We either pretrain these
models on our dataset or use their pretrained versions on
ImageNet1K [132]. As an unsupervised foundation model
for the visual feature encoder, we select DINOv2 with reg-
isters [144] in the sizes small (DINO-S), big (DINO-B),
large (DINO-L), and giant (DINO-G). All DINOv2 models
are based on visual image transformers. Visual, unsuper-
vised foundation models like Dinov2 are intended to learn
representations that can directly be used for any image-
level or pixel-level task. For clustering of the representations,
we utilize GPU-accelerated unsupervised K-Means Clustering
[145], [146]. In addition to classical K-Means, we experiment
with spherical K-Means since previous work indicates its
suitability for high-dimensional data [147], [148]. As predictor
heads for the driving behavior based on the representations,
we experiment with fully-connected linear layers and MLPs.
The prediction time of our method is heavily influenced by
the inference time of the utilized visual feature encoder. As
exemplarily shown in [149], ResNet-based encoders achieve
real-time performance under hardware constraints comparable
to those in the automotive sector.

Implementation Details

We implement all methods in PyTorch 2.1.1 and train them
on a single machine with up to eight NVIDIA A100 GPUs. For
GPU accelerated training of both K-Means variants, we utilize
the Faiss library [146]. For training of the feature encoders, we
resize the input images to height 224, crop 224× 224 patches
with center cropping, apply AugMix augmentations [150] on
the images, and normalize them with mean 0.5 and standard
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TABLE I
RESULTS OF OUR METHODS ON DP,V WITH VISUAL FEATURE ENCODERS

PRETRAINED ON DP,T .

Visual Behavior All Rural Only
Encoder Predictor RMSE RMSE

N
N

ResNet-18 MLP 0.0806 ± 0.0014 0.0923 ± 0.0022
ResNet-50 MLP 0.0822 ± 0.0013 0.0978 ± 0.0013

ResNeXt-50 MLP 0.0823 ± 0.0013 0.0984 ± 0.0019

D
SC

ResNet-18 DSDS-KM 0.1075 ± 0.0001 0.1080 ± 0.0003
DSDS-KMS 0.1159 ± 0.0005 0.1170 ± 0.0004

ResNet-50 DSDS-KM 0.1035 ± 0.0005 0.1314 ± 0.0005
DSDS-KMS 0.1093 ± 0.0004 0.1332 ± 0.0004

ResNext-50 DSDS-KM 0.1023 ± 0.0008 0.1272 ± 0.0009
DSDS-KMS 0.1077 ± 0.0007 0.1308 ± 0.0005

St
at

ic Passive [130] 0.2519 0.2115
Rail [130] 0.2314 0.2027

Sportive [130] 0.2801 0.2460

deviation 0.5. We use AdamW [151] with standard parameters
as optimizer, a cosine annealing learning rate schedule, a batch
size of 256, and tune learning rates as well as epochs sepa-
rately for each model. For the supervised pretrained models,
we utilize the weights provided by torchvision 0.16.1 [152].
Since there are different versions of ImageNet1K weights,
we choose the weights with the best reported performance
on ImageNet1K. We follow the original implementation of
Dinov2 and use the provided weights [144] to infer repre-
sentations of our dataset. All MLP heads consist of three
layers with [2048, 2048, 1] units, ReLU activations, batch
normalization [153], and a tanh output activation. Before fur-
ther processing by K-Means clustering or the fully-connected
heads, we standardize the representations by removing the
mean and scaling to unit variance. Our implementation is pub-
licly available at github.com/jHaselberger/SADC-Situation-
Awareness-for-Driver-Centric-Driving-Style-Adaptation.

Situation Aware Driving Behavior

To test the capabilities of our models to predict the human
situation-aware driving behavior, we train neural-network-
based (NN) behavior predictors end-to-end on the pretrain
dataset DP,T and report the RMSE results on DP,V in Table I.
We use the best-performing feature encoders of the end-
to-end training for driving situation clustering (DSC). For
training the driving situation dependent statistics (DSDS),
the number of clusters NC is varied from 5 to 3000 and
the best-performing configuration is reported. Compared to
the static driving styles, both NN and DSC predict human
driving behavior with significantly (p<.001) lower mean
errors according to the Post-hoc test of a robust analysis of
variance (ANOVA) (F (2.0, 48990)=15814, p<.001). Over-
all, the end-to-end trained models lead to the lowest RMSE
values for both domains. However, the DSC approach leads to
more stable results, indicated by the lower standard deviations.
For the end-to-end method, ResNet-18 performes the best in
our experiments with an RMSE value of 0.0806 ± 0.0014.
However, as we observe in the results of the DSC method, the
larger representation sizes of the ResNet-50 and ResNeXt-50
encoders lead to performance improvements when the behav-
ior prediction is decoupled from training the feature encoder.

TABLE II
RESULTS OF OUR METHODS ON DV,V WITH VISUAL FEATURE ENCODERS
PRETRAINED ON DP,T AND BEHAVIOR PREDICTORS TRAINED ON DV,T .

Visual Behavior All Rural Only
Encoder Predictor RMSE RMSE

N
N

ResNet-18 MLP 0.0737 ± 0.0010 0.0752 ± 0.0021
Linear 0.1750 ± 0.0048 0.1809 ± 0.0083

ResNet-50 MLP 0.0685 ± 0.0012 0.0755 ± 0.0009
Linear 0.1570 ± 0.0028 0.1506 ± 0.0040

ResNeXt-50 MLP 0.0677 ± 0.0010 0.0739 ± 0.0014
Linear 0.1566 ± 0.0036 0.1551 ± 0.0034

D
SC

ResNet-18 DSDS-KM 0.1027 ± 0.0005 0.0954 ± 0.0009
DSDS-KMS 0.1115 ± 0.0009 0.1086 ± 0.0009

ResNet-50 DSDS-KM 0.1026 ± 0.0011 0.1084 ± 0.0013
DSDS-KMS 0.1087 ± 0.0011 0.1096 ± 0.0011

ResNext-50 DSDS-KM 0.1006 ± 0.0004 0.1149 ± 0.0009
DSDS-KMS 0.1053 ± 0.0007 0.1158 ± 0.0013

B
as

el
in

es

DOP-MLP 0.2427 ± 0.0057 0.2278 ± 0.0164
DOP-CNN-MLP [117] 0.2361 ± 0.0005 0.1999 ± 0.0012

D-CRNN [116] 0.2336 ± 0.0011 0.2068 ± 0.0031
APF [90], [103], [104] 0.2223 ± 0.0007 0.2116 ± 0.0029

Passive [130] 0.2653 0.2383
Rail [130] 0.2716 0.2453

Sportive [130] 0.2738 0.2470

Furthermore, it can be seen that the classical K-Means variant
leads to better results compared to the spherical counterpart. It
is evident that, unlike static driving style models, our learning-
based methods deliver slightly better results in all situations
compared to the rural subset. On the one side, this may be
attributed to the higher amount of available training data.
On the other side, the rural-only subset consists of a higher
behavior variability, given the higher variance in curve radii.

Driver-Centric Driving Style Adaptation

Since the previous experiment demonstrates the general
modeling capabilities of our method, we further investigate the
adaptability to different drivers. Therefore, we freeze the fea-
ture encoders and the situation clustering pretrained on DP,T

and train the predictor heads for each driver in the dataset DV,T

separately. As shown in Table II and by the Post-hoc tests of a
robust ANOVA (F (2.0, 5755)=2650, p<.001), the learning-
based methods outperform all baselines significantly with
p<.001. For the RMSE metric, the MLP behavior predictor
performs the best, followed by DSDS and the linear model.
Similar to the pretrain experiments, DSDS turned out to be the
most stable model. As indicated by the DSC results in Table I,
a larger representation size positively impacts performance
in most cases when the predictor heads for the different
drivers are trained separately from the visual feature encoder.
Moreover, the lower RMSE values on DV,V compared to DP,V

show that the feature encoders pretrained on DP,T provide
beneficial representations for situation-dependent driving be-
havior modeling of different drivers. This can also be seen
in the reduced performance gap between the two domains.
These results support the underlying concept of our adaptation
method to decouple training of the visual feature encoder from
behavior prediction. This enables the incorporation of a wide
variety of situations obtained from fleet data and to share a
common situation behavior mapping.
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Fig. 3. a) Training and validation RMSE of the DSC method on DV,V for an increasing number of clusters NC utilizing the ResNeXt-50 feature encoder
pretrained on DP,T . b) and c) Predictions of the DSC approach with ResNeXt-50 feature encoding for two specific driving situations with NC = 10 (DSC-10)
and NC = 500 (DSC-500).

TABLE III
RESULTS OF OUR METHODS ON DV,V WITH VISUAL FEATURE ENCODERS PRETRAINED SUPERVISED ON IMAGENET1K (IN) OR UNSUPERVISED ON

CURRATED DATA (DINO) AND PREDICTION HEADS TRAINED ON DV,T .

Visual Behavior All Rural Only Visual Behavior All Rural Only
Encoder Predictor RMSE RMSE Encoder Predictor RMSE RMSE

N
N

ResNet18-IN MLP 0.1652 ± 0.0011 0.1554 ± 0.0008 Dino-S MLP 0.1658 ± 0.0007 0.1654 ± 0.0017
Linear 0.3845 ± 0.0038 0.3043 ± 0.0013 Linear 0.4823 ± 0.0059 0.3255 ± 0.0038

ResNet50-IN MLP 0.1731 ± 0.0004 0.1614 ± 0.0008 Dino-B MLP 0.1665 ± 0.0010 0.1610 ± 0.0017
Linear 0.4513 ± 0.0013 0.2801 ± 0.0014 Linear 0.4903 ± 0.0034 0.3086 ± 0.0035

ResNeXt50-IN MLP 0.1732 ± 0.0008 0.1609 ± 0.0007 Dino-L MLP 0.1684 ± 0.0005 0.1612 ± 0.0008
Linear 0.4627 ± 0.0014 0.2700 ± 0.0012 Linear 0.4842 ± 0.0037 0.2946 ± 0.0077

ViT-L-IN MLP 0.1752 ± 0.0011 0.1721 ± 0.0011 Dino-G MLP 0.1653 ± 0.0001 0.1597 ± 0.0021
Linear 0.4118 ± 0.0077 0.3115 ± 0.0019 Linear 0.4849 ± 0.0048 0.2754 ± 0.0012

D
SC

ResNet18-IN DSDS-KM 0.2366 ± 0.0008 0.2151 ± 0.0014 Dino-S DSDS-KM 0.2289 ± 0.0023 0.2102 ± 0.0048
DSDS-KMS 0.2370 ± 0.0006 0.2166 ± 0.0009 DSDS-KMS 0.2301 ± 0.0010 0.2102 ± 0.0025

ResNet50-IN DSDS-KM 0.2384 ± 0.0006 0.2160 ± 0.0004 Dino-B DSDS-KM 0.2261 ± 0.0017 0.2100 ± 0.0022
DSDS-KMS 0.2390 ± 0.0002 0.2166 ± 0.0008 DSDS-KMS 0.2280 ± 0.0014 0.2111 ± 0.0044

ResNeXt50-IN DSDS-KM 0.2389 ± 0.0002 0.2161 ± 0.0004 Dino-L DSDS-KM 0.2283 ± 0.0014 0.2104 ± 0.0011
DSDS-KMS 0.2389 ± 0.0004 0.2171 ± 0.0010 DSDS-KMS 0.2290 ± 0.0009 0.2126 ± 0.0023

ViT-L-IN DSDS-KM 0.2382 ± 0.0003 0.2157 ± 0.0008 Dino-G DSDS-KM 0.2258 ± 0.0015 0.2099 ± 0.0018
DSDS-KMS 0.2381 ± 0.0002 0.2161 ± 0.0004 DSDS-KMS 0.2260 ± 0.0015 0.2108 ± 0.0018

St
at

ic Passive [130] 0.2653 0.2383 Passive [130] 0.2653 0.2383
Rail [130] 0.2716 0.2453 Rail [130] 0.2716 0.2453

Sportive [130] 0.2738 0.2470 Sportive [130] 0.2738 0.2470

Impact of Clusters Quantity

To study the impact of the number of clusters, we vary
the cluster quantity NC from 5 up to 3000 while keeping the
remaining behavior modeling the same. As shown in Figure 3
a), a decreasing trend in the resulting RMSE values can be ob-
served during training across all drivers. However, for a higher
number of clusters, the validation curve shows convergence
or slight overfitting behavior. This confirms the dependency
of the driving behavior modeling accuracy concerning NC .
As shown in Figure 3 b) and c), a lower number of clusters
results in a coarser estimate of the driving behavior while
maintaining the general trend in curve cutting. This can be
attributed to the higher number of driving samples assigned
to the same situation cluster, which are taken into account
for the statistic-based driving style modeling. Increasing the
number of clusters up to the optimum leads to a higher level
of specialization of the learned clusters and a more situation-
dependent capture of the human driving behavior, resulting
in a more accurate reproduction of the human driving style.
This property can be utilized to tailor the model to the specific
application. For example in ADAS a precise prediction of the

driving behavior could be crucial, as the system actively drives
in conjunction with the human driver [154], [155].

Impact of Pretrained Visual Feature Encoders
To quantify if a pretraining on a task-specific pretrain

dataset is necessary, we infer representations with models
pretrained supervised on ImageNet1K and pretrained unsuper-
vised on curated data from different sources. Pretrained models
on publicly available datasets alleviate the time and resource
requirements for gathering a large-scale driving dataset. Fur-
thermore, for unsupervised learning, studies show beneficial
characteristics of the learned representations, like the trans-
ferability to various target tasks [156]–[160] or the existence
of more detailed information in the representation than super-
vised learning [161], [162]. Therefore, the representations of
these models could have beneficial characteristics for situation-
based clustering. As seen in Table III, the overall performance
of supervised and unsupervised pretraining is very similar.
This aligns with other studies [156]–[158], [160] that show
evidence that unsupervised pretraining can be competitive with
supervised pretraining without requiring labeled data. Addi-
tionally, no clear correlation is observed between the evaluated
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Feature Encoder Pretrained on Feature Encoder Pretrained on Feature Encoder Pretrained on
DP (ours) ImageNet1K Currated Data (Dinov2)

Fig. 4. Sample images of learned situation clusters using the representations from the visual feature encoders pretrained on our pretrain dataset DP,T ,
ImageNet1K, and in an unsupervised manner on curated data from different sources. For each situation cluster, we sample six images randomly from the
set of assigned driving situations of DV,T . In the first four rows, we aim to highlight various aspects of potential driving situations, including oncoming
traffic, following vehicles, overtaking, and driving on rural roads. In the last row, possible shortcomings of the clusters, such as unclear driving situations or
over-specification, are shown.
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Fig. 5. a) Comparison of the Entropy-based Cluster Specificity (ECS) over
the number of clusters NC of the best-performing models for pretraining
variant. b) ECS curves for the models pretrained on our pretrain dataset DP,T .

representation sizes and the resulting RMSE values. However,
compared to the task-specific pretraining results summarized
in Table II, we observe a notable drop in performance. This de-
crease in performance is similar for both the NN and DSC ap-
proaches, with DSC now only slightly outperforming the static
driving styles. According to robust ANOVAs, the mean differ-
ences of the errors remain statistically significant (p<.001) for
both the visual feature encoders pretrained supervised on Ima-
geNet1K (F (2.0, 6507)=685, p<.001) and unsupervised on
curated data (F (2.0, 6155)=1047, p<.001). Although these
pretrained feature encoders can lead to a more situation-
specific clustering, as shown in Figure 4, the observed drop
in performance can be attributed to unwanted invariances or
missing information required for driving behavior prediction
in the representations. One potential explanation for this can
be drawn from the qualitative analysis of the situation cluster
images, exemplarily shown in row four of Figure 4. Here it
is indicated that the clusters trained on the representations
obtained from the visual feature encoders pretrained on DP

are more sensitive to the road curvature. In contrast, the
other visual feature encoders focus more on the general visual
appearance of the scene. Overall, it is evident that all represen-
tations obtained from the different variants of feature encoders
are able to form plausible situation clusters. However, there
are possible shortcomings, such as unclear driving situations
or over-specification, as highlighted in the last row of Figure 4.

Cluster Specificity

To quantitatively analyze the specificity of the found sit-
uation clusters, we utilize our proposed ECS metric for the
clustered representations obtained from the different visual
feature encoders. As seen in Figure 5 a), the visual feature
encoders pretrained supervised on ImageNet1K and unsuper-
vised on curated data achieve higher specificity compared to
the visual feature encoders pretrained on our dataset DP,T .
Generally, we observe increasing specificity values for an
increasing number of clusters NC and stable specificity results
across multiple runs in our experiments. The unsupervised
Dinov2 models lead to the highest specificity, even for a lower
number of clusters. This high specificity is also visible in
the cluster image samples of Figure 4, where the high ECS
scores underline the ability to differentiate driving situations
in detail. However, a higher specificity can lead to a decrease
in generalization and does not generally correlate with a good

TABLE IV
COMPARATIVE RESULTS (RMSE) OF OUR METHODS ON THE DATASETS
SADC (OURS), LLAMAS [163], A2D2 [164], AND TUSIMPLE [165]

WITH RESNET-18 VISUAL FEATURE ENCODER.

Behavior Dataset
Predictor SADC (ours) LLAMAS [163] A2D2 [164] TuSimple [165]

NN-MLP 0.0806 ± 0.0014 0.1239 ± 0.0012 0.0959 ± 0.0006 0.1099 ± 0.0024
DSC-DSDS 0.1075 ± 0.0001 0.1528 ± 0.0012 0.1352 ± 0.0020 0.1551 ± 0.0004
Static-Rail 0.2314 0.3273 0.3965 0.4184

performance on a target task like behavior prediction. This can
be seen in the higher RMSE values of the Dinov2 models and
the models pretrained on ImageNet1K. Therefore, archiving
a high precision on the target task (generalization) while
maintaining high specificity is beneficial for our method. In
our experiments, such a trend can be observed for the visual
feature encoders trained on our pretrain dataset, as shown
in Figure 5 b), where higher-performing models also exhibit
higher specificity.

Iterative Driving Style Adaptation

To evaluate the capability of our method to adapt to the
driving style of a specific driver synchronously while gathering
driving data, we split the dataset DV,T into smaller subsets. We
maintain the temporal order of the driving data when splitting
into these subsets to mirror a real-world recording. For each
training iteration, the models are trained on the respective
subset until all driving data has been processed. Since small
subset sizes lead to a more flexible and resource-efficient
driving behavior adaptation, we experiment with subsets that
contain 10%, 1%, and 0.5% of the training dataset DV,T . This
corresponds to a time context for adaptation of approximately
14 s, 28 s, and 277 s. For each iteration, we validate our models
using the entire validation set DV,V to show overall im-
provements during the iterative training. The training curves,
visualized in Figure 6, show that the DSC approach converges
to the same RMSE as when trained on the entire dataset DV,T

at once. This behavior is expected since the lookup table
training eliminates catastrophic forgetting by design, as the
calculation of the statistics leads to the identical lookup table
entries when training on the dataset iteratively or when training
on the entire dataset DV,T . Furthermore, the lookup table
approach is low in training time and memory consumption
since only the number of assigned samples and their sum need
to be saved for each situation cluster. In contrast, for the MLP-
based driving behavior prediction, catastrophic forgetting can
be observed. After the initial gains achieved by using the
learned model from the previous iteration as initialization for
the current iteration, no further increase in performance is
visible. However, after seeing only a few training samples,
the performance of the MLP increases significantly and is
outperformed by the fully-trained lookup table only by a
small margin. The MLP’s capability to learn from a small
number of samples and the performance variations among dif-
ferent pretrained feature encoders implies that the information
embedded into the feature encoder significantly impacts the
performance of behavior prediction.
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Performance on other Datasets

To further assess the generalization capability of our
method, we train the visual encoder (ResNet-18) and the
behavior predictors (NN-MLP and DSC-DSDS) on the three
commonly used datasets LLAMAS [163], A2D2 [164], and
TuSimple [165]. We choose these datasets since their available
annotations allow to derive our target behavior indicator dCL.
As not all datasets provide ego-vehicle-dependent signals, we
can only report the results of the static rail driving style as a
baseline. The results shown in Table IV demonstrate that our
method is capable to generalize to other real-world datasets,
surpassing the performance of the static baseline significantly
(p<.001). Overall, the archived RMSE values of the NN- and
DSC-based predictors are in the same range, indicating that
our method performs well across all evaluated datasets.

VI. CONCLUSION

This work shows that a situation-aware prediction of human
driving behavior based on camera images that capture the driv-
ing environment significantly surpasses the performance of all
evaluated baselines. Moreover, a driving style adaptation based
on visual feature encoders and situation clusters pretrained
on fleet data results in a precise driving behavior modeling
of different drivers with an average RMSE of 6.77 cm. This
shows that a setup with a visual feature encoder pretrained,
e.g., by the manufacturer, and with decoupled driver-specific
prediction heads, like MLP- and driving-situation-clustering-
based models, is feasible. Furthermore, we experiment with
visual feature encoders pretrained on other datasets to eval-
uate the need for dedicated task-specific pretraining datasets.
The qualitative results show that the different visual feature
encoders focus on different aspects of driving situations. To
analyze these aspects quantitatively, we introduce an entropy-
based cluster specificity metric. Using this metric, we observe
that visual feature encoders pretrained on other datasets exhibit
higher specificity values. It is important to note that cluster
specificity does not necessarily correlate with performance,
and overspecialization on unrelated aspects could negatively
impact driving behavior prediction. However, a positive trend
between higher specificity and a lower RMSE value for driving
behaviour modeling can be observed for the visual feature
encoders pretrained on our dataset. From a manufacturer’s
point of view, higher specificity values could prove advanta-
geous in constraining and controlling driving style adaptation
for specific situations with greater detail. Therefore, a two-
branched version of our method with a branch for behavior
prediction and a branch for situation masking could be realized
with two different visual feature encoders. For an application-
oriented test we evaluate the model’s capability to be trained
synchronously while gathering driving data. While the MLP-
based behavior predictors achieve good performance initially,
they suffer from catastrophic forgetting and are unable to
learn from a continuous data stream. In contrast, the driving
situation-dependent statistics can iteratively learn from the
new driving samples by design. Overall, we found that the
underlying visual feature encoder significantly impacts the
performance of the driving behavior prediction, indicating

that relevant information for driving behavior prediction is
contained within situation-dependent representations.

Limitations

A potential limitation of our work is the usage of a single
image for behavior prediction, which could be extended in
future work into a sequence-based approach to incorporate
the temporal information into the predictions. Our proposed
publicly available dataset is already suitable for temporal
methods. Furthermore, driving behavior predictors can be
improved by utilizing more advanced models than MPLs
or by improving the situation clustering and the statistical
inference of the DSC approach. One interesting direction
would be to train separate prediction heads per situation
cluster. For iterative driving style adaptation using NN-based
behavior predictors, investigating continual learning methods
[166] to reduce catastrophic forgetting is another interesting
direction for future research. While our method can theoret-
ically predict multiple driving behavior indicators, additional
research needs to be conducted to explore other use cases,
such as predicting longitudinal indicators suitable for Adaptive
Cruise Control (ACC). If the hardware constraints are very
limited, an investigation into highly efficient models (such
as MobileNets [167]) could further improve the efficiency of
our method. Additionally, it is important to highlight that the
collection of data for autonomous driving is an ongoing effort,
and datasets like ours do not encompass all possible real-
world driving scenarios that are crucial to ensure safe and
practical deployment. Although the results show significant
improvements compared to all baselines, there is still a need
for a more profound understanding of how sensitive human
driving behavior is regarding variations in distances to the lane
center.

Ethical and Responsible Use

Overall, our work contributes to the ongoing research in the
field of autonomous driving, which still deals with unresolved
ethical and legal questions. Our method intends to adapt
behavior predictors to the driving style of different drivers
live during driving. While a live adaptation should be treated
with caution, we mitigate possible risks by decoupling driving
behavior indicators from the actual control quantities. This
enables a driving style adaptation safeguarded by the low-
level controller. Regarding data privacy concerns, potential
drivers may not accept uploading their driving behavior data
to train the behavior predictors on the manufacturer’s side.
However, the low complexity of the proposed behavior predic-
tors allows an adaptation towards the personal behavior within
the vehicle, which eliminates the need to send personal data
to the manufacturer. Furthermore, considering the limitations
of our dataset, real-world tests should be conducted with
care in a safe environment. To publish the data concerning
privacy policies, we utilized a state-of-the-art anonymization
framework to blur human faces and vehicle license plates to
mitigate privacy concerns.
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Fig. 6. Training curves for the NN and DSC-based driving behavior prediction when trained iteratively on subsets of DV,T . The subset sizes are 10%,
1%, and 0.5% of the training data DV,T . The performance based on feature encoders pretrained on our pretrain dataset DP,T , ImageNet1K and in an
unsupervised manner on curated data from different sources is shown.
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[131] M. Höfer, F. Fuhr, B. Schick, and P. E. Pfeffer, “Attribute-based de-
velopment of driver assistance systems,” in 10th International Munich
Chassis Symposium 2019: chassis. tech plus. Springer, 2020.

[132] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International journal of computer
vision, vol. 115, 2015.

[133] H. Woo, Y. Ji, Y. Tamura, Y. Kuroda, T. Sugano, Y. Yamamoto,
A. Yamashita, and H. Asama, “Dynamic state estimation of driving
style based on driving risk feature,” International Journal of Automotive
Engineering, vol. 9, no. 1, 2018.

[134] M. Brambilla, P. Mascetti, and A. Mauri, “Comparison of different
driving style analysis approaches based on trip segmentation over gps
information,” in 2017 IEEE International Conference on Big Data (Big
Data). IEEE, 2017.

[135] N. Lin, C. Zong, M. Tomizuka, P. Song, Z. Zhang, and G. Li, “An
overview on study of identification of driver behavior characteristics
for automotive control,” Mathematical Problems in Engineering, vol.
2014, 2014.

[136] D. Kim, H. Shon, N. Kweon, S. Choi, C. Yang, and K. Huh, “Driving
style-based conditional variational autoencoder for prediction of ego
vehicle trajectory,” IEEE Access, vol. 9, 2021.

[137] I. Bae, J. Moon, J. Jhung, H. Suk, T. Kim, H. Park, J. Cha, J. Kim,
D. Kim, and S. Kim, “Self-driving like a human driver instead of a
robocar: Personalized comfortable driving experience for autonomous
vehicles,” ArXiv, vol. abs/2001.03908, 2020.

[138] A. R. Wilcox, “Indices of qualitative variation.” Oak Ridge National
Lab., Tenn., Tech. Rep., 1967.

[139] L. J. V. Miranda, “PySwarms, a research-toolkit for Particle Swarm
Optimization in Python,” Journal of Open Source Software, vol. 3,
2018. [Online]. Available: https://doi.org/10.21105/joss.00433

[140] T. jamovi project. (2023) jamovi (version 2.3). [Online]. Available:
https://www.jamovi.org

[141] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016.

[142] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017.

[143] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[144] T. Darcet, M. Oquab, J. Mairal, and P. Bojanowski, “Vision transform-
ers need registers,” arXiv preprint arXiv:2309.16588, 2023.

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2024.3440634

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.21105/joss.00433
https://www.jamovi.org


IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. XX, NO. XX, MONTH 2024 15

[145] J. MacQueen, “Classification and analysis of multivariate observa-
tions,” in Proceedings of the 5th Berkeley Symposium on Mathematical
Statistics and Probability, 1967.

[146] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with GPUs,” IEEE Transactions on Big Data, vol. 7, no. 3, 2019.

[147] S. Zhong, “Efficient online spherical k-means clustering,” in Proceed-
ings. 2005 IEEE International Joint Conference on Neural Networks,
2005., vol. 5. IEEE, 2005, pp. 3180–3185.

[148] K. Hornik, I. Feinerer, M. Kober, and C. Buchta, “Spherical k-means
clustering,” Journal of statistical software, vol. 50, pp. 1–22, 2012.

[149] P. Kang and J. Jo, “Benchmarking modern edge devices for ai applica-
tions,” IEICE TRANSACTIONS on Information and Systems, vol. 104,
no. 3, 2021.

[150] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Laksh-
minarayanan, “Augmix: A simple data processing method to improve
robustness and uncertainty,” arXiv preprint arXiv:1912.02781, 2019.

[151] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017.

[152] T. maintainers and contributors, “Torchvision: Pytorch’s computer
vision library,” https://github.com/pytorch/vision, 2016.

[153] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
conference on machine learning. pmlr, 2015.

[154] Z. Deng, D. Chu, C. Wu, Y. He, and J. Cui, “Curve safe speed model
considering driving style based on driver behaviour questionnaire,”
Transportation research part F: traffic psychology and behaviour,
vol. 65, 2019.

[155] I. J. Reagan, J. B. Cicchino, L. B. Kerfoot, and R. A. Weast, “Crash
avoidance and driver assistance technologies–are they used?” Trans-
portation research part F: traffic psychology and behaviour, vol. 52,
2018.

[156] L. Ericsson, H. Gouk, and T. M. Hospedales, “How well do self-
supervised models transfer?” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2021.

[157] N. Zhao, Z. Wu, R. W. Lau, and S. Lin, “What makes instance discrim-
ination good for transfer learning?” arXiv preprint arXiv:2006.06606,
2020.

[158] M. B. Sariyildiz, Y. Kalantidis, D. Larlus, and K. Alahari, “Concept
generalization in visual representation learning,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021.

[159] B. Stuhr and J. Brauer, “Don’t miss the mismatch: investigating the
objective function mismatch for unsupervised representation learning,”
Neural Computing and Applications, vol. 34, no. 13, 2022.

[160] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khali-
dov, P. Fernandez, D. Haziza, F. Massa, A. El-Nouby et al., “Dinov2:
Learning robust visual features without supervision,” arXiv preprint
arXiv:2304.07193, 2023.

[161] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and
A. Joulin, “Emerging properties in self-supervised vision transformers,”
in Proceedings of the IEEE/CVF international conference on computer
vision, 2021.

[162] F. Bordes, R. Balestriero, and P. Vincent, “High fidelity visualization of
what your self-supervised representation knows about,” arXiv preprint
arXiv:2112.09164, 2021.

[163] K. Behrendt and R. Soussan, “Unsupervised labeled lane markers
using maps,” in Proceedings of the IEEE International Conference on
Computer Vision, 2019.

[164] J. Geyer, Y. Kassahun, M. Mahmudi, X. Ricou, R. Durgesh, A. S.
Chung, L. Hauswald, V. H. Pham, M. Mühlegg, S. Dorn et al., “A2d2:
Audi autonomous driving dataset,” arXiv preprint arXiv:2004.06320,
2020.

[165] A. TuSimple, “Tusimple benchmark,” 2022.
[166] L. Wang, X. Zhang, H. Su, and J. Zhu, “A comprehensive survey of

continual learning: Theory, method and application,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2024.

[167] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

Johann Haselberger received his B.Eng. degree in
electrical engineering and information technology
and his M.Sc. degree in advanced driver assistance
systems from the University of Applied Sciences
Kempten, Germany. He is currently working towards
his Ph.D. degree in automotive engineering at the
Faculty of Mechanical Engineering and Transport
Systems, Technical University of Berlin, Germany.
Since 2017 he is working as a research assistant
at the Institute for Driver Assistance Systems and
Connected Mobility at the University of Applied

Sciences Kempten, Germany. His main research interests include subject
studies on human driving behavior, machine-learning-based driving style
modeling, and near-series application of situation-adaptive driving functions.

Bonifaz Stuhr received his B.Sc. degree in com-
puter science and his M.Sc. degree in applied
computer science from the University of Applied
Sciences Kempten, Germany. He holds a Ph.D. in
computer science from the Universitat Autònoma
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