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Abstract

How does retrieval performance scale with pretraining FLOPs? We benchmark1

retrieval performance across LLM model sizes from 125 million parameters to 72

billion parameters pretrained on datasets ranging from 1 billion tokens to more3

than 2 trillion tokens. We find that retrieval performance on zero-shot BEIR tasks4

predictably scales with LLM size, training duration, and estimated FLOPs. We5

also show that In-Context Learning scores are strongly correlated with retrieval6

scores across retrieval tasks. Finally, we highlight the implications this has for the7

development of LLM-based retrievers.8

1 Introduction9

Industry labs as well as academic research groups have invested heavily in decoder-style LLMs. A10

consensus has grown around scaling laws for LLMs based on perplexity and downstream in context11

learning (ICL) tasks, where floating point operations (FLOPs) play an important role in addition to12

model size and training tokens. This has led to surprisingly capable LLMs with 7-8 billion active13

parameters or less (Touvron et al., 2023a,b; Jiang et al., 2023a; Dey et al., 2023; Dubey et al., 2024).14

Recent work has shown that LLMs such as Llama 2 7B, Mistral 7B, and Mixtral 8x7B trained with15

causal language modeling can be naively converted into good retrieval models (Ma et al., 2023; Wang16

et al., 2023). In this study, we ask: How well do decoder-style LLMs do on information retrieval17

tasks across model size, training duration, and FLOPs?18

The idea of taking pretrained checkpoints and converting them into good embedding models has been19

around since the early days of neural retrieval. For example, SentenceBERT successfully trained20

BERT models to embed sentence pairs (Reimers & Gurevych, 2019). Models such as GTR (Ni et al.,21

2021) and Instructor (Su et al., 2022) are initialized with the encoder weights from T5 models, and22

E5 is initialized with pretrained BERT weights (Wang et al., 2022).23

In most of these cases, the models were further pretrained and/or finetuned with contrastive loss (a.k.a.24

InfoNCELoss), given the importunate fact that pretrained encoders and decoders are poor retrievers25

“out of the box.” The approach of models like E5-base and E5-large (110M and 340M parameters26

respectively) is to continue pretraining on millions of query-passage pairs followed by finetuning27

on curated datasets such as MS MARCO (Bajaj et al., 2016). RepLlama on the other hand simply28

finetuned Llama 2 7B on 500,000 query-passage pairs from MS MARCO and found surprisingly29

good performance on zero-shot retrieval benchmarks such as BEIR (Ma et al., 2023; Thakur et al.,30

2021).31

What is it about foundation models that allow them to perform well at information retrieval tasks?32

Given that foundation models like Llama 2 7B have been trained on 2 trillion tokens, can handle33

long context lengths and have strong in context learning capabilities, it makes sense that these new34

generation of LLMs do well on retrieval tasks. There has also been a recent trend where embedding35
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Figure 1: Retrieval performance on BEIR improves with model size, training duration, and
FLOPs. (A) Increasing model size leads to an improvement in average BEIR nDCG@10 scores.
MPT-125M, 350M, 760M, 1B, 3B models were trained for token parameter ratio of 20 on the same
dataset, while MPT-7B models were trained for a token parameter ratio of 285 (i.e. a total of 2
trillion tokens). (B) Training models on more tokens leads to improvements in average BEIR score.
Different MPT-125M models were trained for 3B to 1.5T tokens (20-10,000 token parameter ratios,
blue line), while MPT-3B models were trained for 50B to 1.2T tokens (20-500 tokens per parameter,
yellow line). All pretrained checkpoints were finetuned on 500k samples from MS MARCO with a
maximum sequence length of 128 tokens.

models built on top of 7B parameter decoders have overtaken embedding models built on top of36

BERT-style models on benchmarks such as MTEB (Muennighoff et al., 2023b). Given the hard37

lesson that scale is (almost) all you need, we set out to determine how retrieval performance is38

related to model size, training duration, and floating point operations (FLOPs).39

In this study we explore the relationship between LLM model size, pretraining duration, and FLOPs40

for retrieval tasks. We start with pretrained checkpoints of MPT decoders (MosaicML NLP Team,41

2023b; Sardana et al., 2023) ranging in size from 125 million parameters to 7 billion parameters.42

These checkpoints were trained on datasets ranging from 1 billion tokens to more than 2 trillion43

tokens spanning token to parameter ratios of 20 through 500 (and in one case 10,000). We minimally44

finetune each model checkpoint for one epoch of 500,000 MS MARCO samples with InfoNCE loss45

using contrastive pairs with hard negatives. We then analyze zero-shot retrieval performance on the46

BEIR benchmark Thakur et al. (2021). We find that:47

• Retrieval performance scales both with increasing model size and increasing pretraining48

duration for a fixed model size. This relationship is best captured by accuracy-FLOPs curves;49

i.e. retrieval performance scales with pretraining FLOPs.50

• For most of the BEIR retrieval tasks, training a small model for more tokens has similar51

accuracy to a larger model trained on fewer tokens up to a ceiling. Another way of stating52

this is that isoFLOPs curves for fixed model sizes significantly overlap.53

• In Context Learning (ICL) scores are strongly correlated with retrieval scores across BEIR54

tasks. Almost without exception, LLMs that have higher ICL scores also have higher55

retrieval scores.56

The goal of this study is not to achieve SOTA retrieval performance. Rather it is to investigate scaling57

properties as a function of tokens seen during pretraining, which has not been investigated in prior58

work. We believe this has important implications for the next generation of dense retrieval models;59

our results indicate that high quality decoders ranging in size from 1-8B active parameters are strong60

candidates for future embedding models.61
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2 Results62

We used checkpoints of pretrained MPT decoders of sizes varying from 125 million parameters to63

7 billion parameters. These checkpoints were trained for various durations ranging from 1 billion64

tokens to 2 trillion tokens with corresponding token-per-parameter ratios of 20 through 500 (and in65

one case up to 10,000). Note that each checkpoint was trained to completion, with a full learning rate66

schedule consisting of a warmup followed by a cosine decay. See MosaicML NLP Team (2023b,a)67

for further pretraining details. We then minimally finetuned these models on MS MARCO for 168

epoch (500,000 samples) of query-passage pairs with hard negatives and evaluated them on the BEIR69

retrieval benchmark.70

2.1 Finetuning on MS MARCO with the InfoNCELoss71

Using a pretrained LLM, we pool and average the respective tokens of the final hidden representations72

of each document and query.1 To finetune the model, we leverage the class InfoNCE loss as follows73

over the in-batch negatives and hard negatives:74

minLcont = − 1

n

∑
i

log
esθ(qi,pi)

esθ(qi,pi) +
∑

j e
sθ(qi,p−

ij)
(1)

where qi is a query, pi is a “positive” passage that is paired with the query, and p−ij is a “hard negative”75

passage that is somewhat relevant to the query but not the correct passage. sθ is the cosine similarity76

function, and n is the total number of samples in a batch. This formula can be expressed in terms of77

cross entropy, which makes for easy implementation in PyTorch. Our implementation is motivated by78

Wang et al. (2022).279

The positive document for a given query is derived from the MS MARCO Document Retrieval dataset80

(Bajaj et al., 2016). We use 15 curated hard negative documents per query, mined using BM2581

(Robertson et al., 1995).82

While all MPT models were pretrained with a maximum sequence length of 4096 tokens, we finetuned83

and evaluated all models with a maximum sequence length of 128 tokens. We also used the same84

hyperparameters such as warmup and learning rate for all model sizes without doing hyperparameter85

sweeps. This strongly handicaps the models; we therefore interpret all our BEIR scores as lower86

bounds on retrieval performance.87

2.2 Estimating FLOPs88

Floating point operations (FLOPs) is a hardware-agnostic metric that conveys how much “compute”89

was used to train a particular model. To first order, FLOPs for dense transformer models can be90

estimated as 6×N × tokens where N is the total number of model parameters (Kaplan et al., 2020;91

Chowdhery et al., 2023; Anthony et al., 2023). Thus FLOPs increase with both training duration (i.e.92

data) and model size. We use this approximation for all FLOPs estimates.93

2.3 BEIR Retrieval Benchmark94

We describe the MTEB Muennighoff et al. (2023b) version of BEIR (Thakur et al., 2021), which we95

use for all of our evaluations. Each benchmark within BEIR is divided into queries and documents96

(a.k.a “passages”), and the task is to find most relevant documents for a given query. Exact search is97

done using cosine similarity (as opposed to approximate search). SCIDOCS is one example dataset98

that contains 1000 Queries, and 25,657 Documents from scientific publications in the test set (Cohan99

et al., 2020). The various BEIR tasks are detailed in the Appendix D.100

BEIR was originally designed to be a zero-shot evaluation benchmark, which means that many of101

the early retrieval models were careful not to train in-domain. However, all of the “top” embedding102

models on the MTEB benchmark not only train on the training sets associated with each BEIR103

1Other approaches here include using an end of sentence token to represent the content of the preceding
tokens.

2https://github.com/microsoft/unilm
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benchmark, but also arguably train on the corpus test sets of each BEIR task (Wang et al., 2022, 2023;104

Xiao et al., 2023). Since many of the benchmarks are derived from common datasets derived from105

Wikipedia, Stack Exchange, many argue that it is unrealistic to treat BEIR as a zero-shot evaluation106

benchmark. Instead of focusing on benchmark hacking, in this study we choose to benchmark the107

scaling properties of pretrained decoders by minimally finetuning on a single embedding dataset108

(MS MARCO). Future work can use more curated, higher-quality finetuning datasets to show similar109

scaling properties.110

2.4 Retrieval Performance Scales with Model Size, Training Duration, and FLOPs111

We first evaluated MPT 125M, 350M, 760M, 1B and 3B models all pretrained to a token per parameter112

ratio of 20, ranging from roughly 3 billion tokens to 50 billion tokens (see Appendix Table 2). Figure113

1A shows the smooth increase of average BEIR score with model size as a function of pretraining114

FLOPs.115

We then used MPT-125M model checkpoints for various training durations ranging from 3 billion116

tokens, i.e. 20 tokens per parameter, through 1.5 trillion tokens, i.e. an extreme of 10,000 tokens117

per parameter (Figure 1B blue line). Somewhat surprisingly, we find that retrieval performance118

steadily improves with increased training duration and does not plateau. We also used pretrained119

MPT-3B model checkpoints for various training durations ranging from 50B i.e. 20 tokens per120

parameter, to 1.2 trillion tokens, i.e. 500 tokens per parameter. Here too we see a steady increase in121

retrieval performance as a function of FLOPs. Finally, we also finetune two slightly different MPT 7B122

checkpoints pretrained on 2T tokens with a token per parameter ratio of 285 (Figure 1 purple dots).123

As expected, these have slightly higher average nDCG@10 than the MPT-3B checkpoint trained to124

500 tokens per parameter.125

Figure S1 shows scores for individual BEIR tasks as a function of pretraining FLOPs. We show126

Llama 2 7B and Mistral 7B performance on some tasks for comparison (finetuned in the same manner127

as all of the other checkpoints).3 As expected, the scaling trends for individual BEIR tasks are the128

same as in Figure 1, with the notable exceptions of Arguana and Touche 2020 (not shown). For129

Arguana, performance essentially plateaus despite increasing FLOPs. This is likely due to the unusual130

nature of the task, which requires the model to find a counterargument for a given argument text (i.e.131

the query). The only models that excel at this task are models that explicitly include instructions to132

find the counterargument in the query, like E5-Mistral-7B (Wang et al., 2023).4 We speculate on the133

role of explicit instructions in the Discussion.134

2.5 Small models trained on more data can match performance of larger models trained on135

less data136

One surprising observation from Figure 1 and Figure S1 is that small models pretrained on more data137

(i.e. for more FLOPs) can match the performance of larger models trained on less data. For example,138

MPT-125M trained for 1.5T tokens at roughly a 10,000 token parameter ratio has same average BEIR139

performance as a MPT-1B model trained for 25.2B tokens with a token parameter ratio of 20.140

2.6 BEIR scores are strongly correlated with ICL Scores141

We then plot the BEIR nDCG@10 scores as a function of the ICL scores for each pretrained142

checkpoint using the open-source MosaicML Evaluation Gauntlet (Dohmann, 2023; Barton, 2024).143

Figure S2 demonstrates that ICL scores of pretrained checkpoints are strongly correlated with BEIR144

scores after contrastive finetuning on MS MARCO. This provides strong evidence that BEIR is a145

good measure of LLM retrieval capability. See Appendix S3 for the nDCG vs. ICL performance for146

individual BEIR tasks.147

There is a noticeable gap in average ICL score between MPT-125M with token parameter ratio 10,000148

(blue line) and MPT-3B with token per parameter ratio 20 (yellow) along the x-axis for all tasks. This149

simply indicates that MPT-3B models are always better than MPT-125M models for the ICL tasks.150

3Note here that the Mistral 7B pretraining FLOPs are unknown; we simply assume that Mistral was trained
on slightly more data than Llama 2 7B.

4See Appendix Table 14, where the evaluation instructions are “Given a claim, find documents that refute the
claim”
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Model Name Total Parameters Hidden Dimension Attention Heads Layers Expansion Ratio
MPT-125M 151M 768 12 12 4
MPT-350M 367M 1024 16 24 4
MPT-760M 749M 1536 12 24 4

MPT-1B 1.26B 2048 16 24 4
MPT-3B 2560 20 32 4
MPT-7B 4096 32 32 4

Table 1: MPT Model Architecture Details

TPR MPT-125M MPT-350M MPT-760M MPT-1B MPT-3B MPT-7B Llama-7B
20 3.02B 7.34B 14.98B 25.2B 49.2B - -
50 7.55B 18.35B - 63B 123B - -
100 15.1B 36.7B 74.9B 126B 246B 700B -
250 37.8B 73.4B 187.25B - 615B - -
285 - - - - - 2000B 2000B
500 75.5B 183.5 374.5B - 1230B - -
1000 151B - - - - - -
5000 755B - - - - - -
10000 1510B - - - - - -

Table 2: Training Duration (tokens). Note that one MPT-125M checkpoint was trained for 1.5 trillion
tokens.

A Related Work350

A.1 Embedding/Dense Retrieval Models351

The idea of taking pretrained LLM checkpoints and converting them into embedding models has352

been around since the early days of neural retrieval. Dense retrieval quickly grew in popularity353

after the release of BERT. For example, SentenceBERT successfully trained BERT models to embed354

sentence pairs (Reimers & Gurevych, 2019). Early approaches focused on re-ranking (Nogueira &355

Cho, 2019), although “full ranking” (i.e. embedding models) shortly followed (Khattab & Zaharia,356

2020; Karpukhin et al., 2020; Izacard et al., 2021).357

Ni et al. (2021) showed that increase LLM model size while keeping the final embedding dimension358

fixed led to improvements in zero-shot BEIR retreival performance. Specifically, in order to build359

their GTR models, they used the encoder half of T5-Base (110M), large (335M), XL (1.24B) and360

XXL (4.8B) and further pretrained them on 2 billion community question-answer pairs and then361

finetuned them on MS MARCO (Bajaj et al., 2016). Our work builds on this direction by using362

decoders instead of encoders and by avoiding the “further pretraining” stage altogether.363

Many studies have shown that BERT-base and BERT-Large size models can achieve state-of-the-art364

performance on retrieval benchmarks such as BEIR when trained with contrastive pairs Wang et al.365

(2022); Xiao et al. (2023). Wang et al. (2022) trained E5 on millions of contrastive pairs with soft366

negatives but did not release their pretraining data, while with BGE, Xiao et al. (2023) followed a367

similar recipe and gave more hints as to their pretraining data sets.368

Ma et al. (2023) finetuned Llama 7B weights on MS MARCO and found very good performance369

on BEIR Thakur et al. (2021). Our work builds on RepLlama by exploring the scaling properties of370

LLM-based retrieval models.371

Some of the same authors as RepLlama and E5 achieved state of the art performance on BEIR by372

finetuning Mistral-7B-Instructor (Jiang et al., 2023a) on 13 datasets of contrastive pairs with hard373

negatives as well as synthetic contrastive pairs generated by GPT-3.5/4 Wang et al. (2023).374

There has been a recent uptick in BERT-style embedding models including Nomic Embed Nussbaum375

et al. (2024), Arctic-Embed (Merrick et al., 2024), ModernBERT (Warner et al., 2024), Similarly,376

there has been a recent explosion of LLM-based embedding models such as SFR-Embedding-Mistral377

(Rui Meng, 2024), NV-Embed (Lee et al., 2024), bge-en-icl (Li et al., 2024), gte-Qwen2-1.5B-instruct378
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Figure S1: LLM performance on individual BEIR tasks scales with model size, pretraining
duration, and FLOPs. E5-small-v2 (grey), E5-base-v2(red), E5-large-v2 (blue), E5-Mistral-7B
(black), and RepLlama-7B (green) performance is included for reference.
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(Li et al., 2023), GRIT LM (Muennighoff et al., 2024) and others. The Qwen 3 Embedding models379

(0.6B, 4B 8B) models were initialized from the Qwen 3 pretrained models (Zhang et al., 2025).380

Similarly, the Gemini Embedding models (Lee et al., 2025) were initialized from the Gemini models381

(Team et al., 2023).382

A.2 Evaluation of Embedding Models383

Neural network based embedding and retrieval were considered slightly different subfields. Over time384

these have converged, as exemplified by the MTEB benchmark (Muennighoff et al., 2023a), which385

incorporates BEIR (Thakur et al., 2021) as well as many other benchmarks for tasks such as semantic386

similarity. We give more details on the BEIR and MTEB benchmarks below. More recent retrieval387

benchmarks include AIR Bench Chen et al. (2024), LongEmbed (Zhu et al., 2024) and BRIGHT Su388

et al. (2024); we save the analysis of LLM scaling properties on these benchmarks for future work.389

A.3 Scaling Laws for Large Language Models390

The study by Hoffmann et al. (2022), informally known as the “Chinchilla paper,” determined scaling391

laws for optimally allocating train compute for LLMs, resulting in a heuristic that models should be392

trained on a total number of tokens that is roughly 20× the number of model parameters (i.e. the393

token-per-parameter ratio). They use three approaches to predict optimal model size and number of394

tokens for pretraining a LLM with a fixed compute budget; first they fix model size and vary dataset395

size, and then they also establish isoFLOP profiles by varying model size for fixed number of FLOPs.396

Finally, they fit a parametric loss function. All approaches arrive at the same rough conclusion that397

LLMs such as GPT-3 (Brown et al., 2020) and Gopher (Rae et al., 2021) were significantly under398

trained. This builds on previous work exploring scaling laws for LLMs by Hernandez et al. (2021);399

Kaplan et al. (2020); Tay et al. (2021).400

The popularity - and capabilities - of models such as Llama 2 7B, Mistral 7B (Jiang et al., 2023a) and401

Llama 3 8B have upended the chinchilla scaling laws. These models were trained on far more tokens402

than “Chinchilla optimal;” for example, Llama 2 7B was pretrained for 2 trillion tokens, which is403

a token parameter ratio of 285. Recent studies have pointed to the fact that consideration such as404

inference serving cost (which increases with model size) as well as ease of use should be taken into405

consideration when training LLMs (De Vries, 2023; Sardana et al., 2023; Villalobos & Atkinson,406

2023).407

All these studies focus on cross entropy loss and not on downstream ICL performance (or retrieval408

performance for that matter). While a study by Tay et al. (2021) found that T5 model size did not409

follow easily identifiable scaling laws on downstream SuperGLUE performance, there is little work410

showing how current decoder downstream performance scales with FLOPs. There are even fewer411

studies that focus on the question of how LLM retrieval performance scales with FLOPs.412

Muennighoff (2022) investigated the scaling properties of GPT for semantic similarity from 100M -413

5.8B parameters. Motivated by the promise of LLM-based retrievers, Jiang et al. (2023b) propose an414

ICL-based method to improve sentence embedding performance and use it to finetune OPT models415

from size 125M to 66B and Llama models across 7B, 13B, 30B and 65B. In this work, however, they416

exclusively focus on the semantic textual similarity benchmarks. Finally, Fang et al. (2024) derived417

phenomenological scaling laws for dense embeddings based on BERT models up to 80M parameters.418

Zeng et al. (2025) investigate the retrieval across the Llama 3 1B, 3B and 8B models. Our study419

complements these results and focuses on the scaling properties of decoders from 125M parameters420

up to 7B parameters with varying token per parameter ratios.421

B Discussion422

Our work shows that retrieval performance scales with LLM pretraining FLOPs, and we hope that it423

provides strong motivation for finetuning pretrained LLMs for retrieval.424

Why might one want to build an embedding model using a pretrained LLM? There has been a425

cambrian explosion of open-source LLMs in the range of 1B, 3B, 7B, 8B, and 13B parameters (as426
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well as Mixture of Experts models with a similar number of active parameters).5 Almost all of these427

models have been pretrained on trillions of tokens, can handle long context lengths upwards of 8k428

tokens, and have been extensively finetuned to handle nuanced language (using both supervised429

finetuning and reinforcement learning).430

The previous generation of embedding models such as E5, GTE and BGE were built on top of431

pretrained BERT models. BERT is 6 years old and counting, and there is much less development432

occurring for small encoder models.6 While BERT-style models are smaller than 1B parameters and433

therefore easier to deploy, 7B models are already dominating retrieval benchmarks such as MTEB.434

We suspect that this trend away from BERT models will continue.435

Figure S2: Retrieval performance is highly cor-
related with In Context Learning (ICL) perfor-
mance. ICL Core Average Score uses the open-
source MosaicML Evaluation Gauntlet.

Does retrieval performance continue to increase436

beyond 7B models? While there are mixed re-437

ports on the success of retrieval models larger438

than 7B parameters (e.g. RepLlama 13B, Mix-439

tral 8x22B), our results hint at the tantalizing440

possibility that retrieval performance might con-441

tinue to scale beyond 7B parameters. With the442

recent state of the art open weights models such443

as DeepSeek, Qwen 3, and Llama 4, we expect444

research on decoder-based retrieval to continue445

in this direction.446

Why don’t any of our checkpoints achieve SOTA447

on BEIR or MTEB? In this study, we chose to fo-448

cus on the scaling properties of pretrained mod-449

els using a baseline finetuning approach. All of450

the datapoints represented by circles were fine-451

tuned on the same MS MARCO dataset with452

the same hyperparameters and a maximum se-453

quence length of 128 tokens. This is a “lower454

bound” of performance, as most modern embed-455

ding models finetune on a maximum sequence456

length of > 512 tokens and use much more ex-457

tensive finetuning datasets.458

One example of a more extensive finetuning459

dataset is E5-Mistral-7B (Wang et al., 2023). The E5-Mistral-7B team finetuned Mistral-7B on460

a custom, closed source hard-negatives dataset that consists of 13 semi-open-source datasets (they461

mined their own hard negatives) including MS MARCO as well as synthetically generated GPT-3.5/4462

data (Wang et al., 2023). We only trained our checkpoints on MS MARCO.463

In this study, we don’t derive phenomenological scaling laws; rather we report a strong trend. We464

save formal retrieval scaling laws for future work.465

C Retrieval metrics466

While there are many metrics used for retrieval, normalized discounted cumulative gain (nDCG) is a
particularly common one. This metric indicates whether the retrieved documents are (1) relevant and
whether (2) they are sorted in order of relevance to the query. Specifically, it is defined as:

DCGp =

p∑
i=1

reli
log2(i+ 1)

= rel1 +

p∑
i=2

reli
log2(i+ 1)

IDCGp =

|RELp|∑
i=1

reli
log2(i+ 1)

5Llama 2 7B and 13B, Llama 3.2 1B and 3B, Gemma 2 3B, Llama 3.3 8B, Mistral 7B, Mistral 8x7B, OLMo
2 7B and 13B, OLMoE-1B-7B, DeepSeekMoE-3B-16B.

6With the minor exceptions of MosaicBERT (Portes et al., 2023), NomicBERT (Nussbaum et al., 2024), and
ModernBERT (Warner et al., 2024).
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where reli is graded relevance of the result at position i. Finally, the normalized discounted cumulative467

gain is defined as:468

nDCGp =
DCGp

IDCGp
(2)

D BEIR Retrieval Tasks469

ArguAna Wachsmuth et al. (2018): consists of 1406 queries and 8674 documents in the test set. Data470

consists of single sentence “arguments” and single sentence “counterarguments” originally curated471

from the obscure online debate portal idebate.org. The task is to find documents that refute the claim472

in the query, which makes the task particularly difficult without instructions or instruction tuning.473

ClimateFEVER Diggelmann et al. (2020): is similar in spirit to FEVER, ClimateFEVER is a dataset474

for verification of climatechange-related claims.475

CQADupstackRetrieval Hoogeveen et al. (2015). The task is designed such that, given a single476

sentence title (the query), the model has to retrieve a duplicate document (title +body).477

DBPedia Hasibi et al. (2017) is derived from Wikipedia pages.478

FEVER Thorne et al. (2018) The original Fact Extraction and VERification dataset was collected479

semiautomaticallyas part of an automatic fact checking task. The task is to retrieve Wikipedia480

abstracts that support or refute a given claim.481

FiQA2018 Maia et al. (2018): passages are were scraped from StackExchange posts under the482

Investment topic from 2009-2017. 648 queries and 57638 documents in the test set.483

HotpotQA Yang et al. (2018) - multi-hop like questions derived from ? that require multiple separate484

wikipedia paragraphs to answer. 5447 queries.485

MSMARCO Bajaj et al. (2016): Since all models were finetuned on MS MARCO, this is not486

considered “zero-shot.”487

NFCorpus Boteva et al. (2016): 323 queries and 3633 documents in the test set. Queries taken from488

Nutrition Facts website, annotated medical documents from PubMed are the documents.489

NQ Kwiatkowski et al. (2019): natural questions is Google searches with answer spans from490

Wikipedia articles. 3,452 queries, search over 2,681,468 passages. While the original NQ dataset491

includes full articles, the MTEB BEIR version only uses wikipedia abstracts and not full articles.492

QuoraRetrieval: 10,000 queries, and 522,931 queries as “documents” in the test set.493

SCIDOCS Cohan et al. (2020) consists of scientific documents.494

SciFact Wadden et al. (2020) contains 1.4K expert-written scientific claims. These are paired with495

paper abstracts.496

Touche2020 Bondarenko et al. (2020): 49 queries, 382545 documents in the test set. conversational497

arguments. Use conclusion as title and premise as arguments. Note that only 49 queries is potentially498

quite noisy.499

TREC-COVID Voorhees et al. (2021): CORD-19 dataset of published scientific articles dealing with500

the COVID-19 pandemic. 50 queries and 171,332 documents in the test set.501
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Figure S3: Retrieval performance on individual BEIR tasks is highly correlated with ICL
performance. Same data as Figure S2.
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