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ABSTRACT

Vision transformers (ViTs) have continuously achieved new milestones in com-
puter vision. A natural usage of ViTs in detection is to replace the CNN-based
backbone with a transformer-based backbone directly, but with the price of consid-
erable computation burden for their deployment on resource-limited edge devices.
More potential usage is the DETR family, which eliminates the need for many
hand-designed components in object detection but still cannot reach real-time
edge applications. In this paper, we propose a novel hardware-efficient adaptive-
thinning DETR (HeatDETR), achieving high speed inference on multiple edge
devices and even the realtime, for the first time. Specifically, it mainly includes
three contributions: 1) For decent detection performance, we introduce a backbone
design principle based on the visual modeling process that focuses on locality to
globality. Meanwhile, we propose a semantic-augmented module (SAM) in the
backbone with the global modeling capabilities of self-attention to enhance low-
level semantics. We also introduce an attention-based task-couple module (TCM)
to reduce contradictions between classification and regression tasks. 2) For on-
device efficiency, we propose a scale-combined module (SCM), through which we
transform the multi-level detection process into the single-level process, releasing
the multi-branch inference for higher hardware speed while maintaining detection
performance. Then we first revisit network architectures and operators used in
ViT-based models, reparametered CNNs, identify hardware-efficient design and
introduce basic HeatDETR structure. 3) Based on our device-adaptive model-
thinning strategy, deployable end-to-end HeatDETR on target devices can be gen-
erated efficiently. Experiments on the MS COCO dataset show HeatDETR outper-
forms current DETR-based methods by 0.3%∼6.2% AP with 5%∼68% speedup
on a single Tesla V100. Even real-time inference can be achieved on extremely
memory-constrained devices, e.g., Dual-Core Intel Core i7 CPU.

1 INTRODUCTION

With the excellent long-range modeling capabilities, Transformers (Bahdanau et al., 2015; Parikh
et al., 2016) have recently made an attractive resurgence in the form of Vision Transformers (ViTs)
(Dosovitskiy et al., 2021), showing strong versatility in computer vision tasks (e.g., image classifi-
cation (Dosovitskiy et al., 2021), object detection (Carion et al., 2020; Zhu et al., 2020), semantic
segmentation (Zheng et al., 2021), depth estimation (Yang et al., 2021a), and video understanding
(Zhou et al., 2018)). Currently, there are two main branches to applying the transformer structure
in object detection. One is developing ViTs as effective backbones (Dosovitskiy et al., 2021; Wang
et al., 2021b; Han et al., 2021; Cao et al., 2021) in traditional frameworks such as Faster RCNN (Ren
et al., 2015), Mask RCNN (He et al., 2017), and RetinaNet (Lin et al., 2017b), which constantly sets
the state-of-art for the object detection task. The other one is the DETR series which utilizes an
encoder-decoder transformer design that reduces object detection to an end-to-end set prediction
problem. ViTs are largely considered one of the future dominant object detection techniques.

However, to fully unleash the advantages of transformer architectures, we need to address the fol-
lowing challenges before ViTs become an indispensable staple in future object detection systems.
(i) Although the self-attention mechanism is a key defining feature of transformer architectures, a
well-known concern is its computation and memory complexity (e.g., at least 200 GFLOPs in tra-
ditional frameworks; 100 GFLOPs in DETR series). This hinders scalability in many settings, let
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Figure 1: (a) Comparison with previous works in real-world object detection. (b) The trade-off
between performance (AP) and hardware efficiency (FPS) for different detection methods. Heat-
DETR gets faster inference (25.2 FPS > 24 FPS) with 2%∼4.2% higher AP than DETR and out-
performs state-of-the-art efficient transformer-based detectors on both precision and efficiency.

alone deployment on resource-constrained edge devices. (ii) Existing transformer-based detectors
do not have optimizations for specific hardware deployment, such as memory access cost, degree of
parallelism, and compiler characteristics, which can have a non-trivial effect on hardware through-
put during inference. (iii) The original self-attention structure converges slowly due to the lack of
inductive bias information, similar to the convolutional structure (Khan et al., 2021). Specifically,
DETR comes at the expense of around 10× to 20× slower training convergence than traditional
frameworks, which also restricts constant model improvements to serve evolving needs of real-
world platforms. Therefore, we need to address this low hardware efficiency while enjoying the
power of long-range modeling from ViTs.

Some pioneering works explore efficient DETR. For instance, Sparse-DETR Roh et al. (2021) added
an independent scoring network to image-adaptively remove the redundant information inside the
feature map, resulting in the AP improved by 2.8 with a 21% degradation of the inference speed
compared with DETR; ViDT Song et al. (2021) redesigned the detection-suitable attention mecha-
nism, leading to inference speed decreasing about 20%∼45% under acceptable detection precision
(>44% AP). Other works dedicated to improving the training efficiency of the DETR mainly focus
on reducing the delayed convergence induced by the decoder. They enhance object queries of the de-
coder with explicit spatial priors such as anchor points (Sun et al., 2021), RPN proposals (Ren et al.,
2015), and conditional spatial embeddings (Gao et al., 2021). However, the newly added spatial
prior in the decoder stage impairs the inference efficiency of the detector and consumes more than
1.5× GFLOPs. Moreover, they lack design optimization for hardware deployment and are mainly
tested on high-end GPUs (e.g., V100, A100) for inference speed rather than on resource-limited
devices that serve in more real-world applications.

In this paper, we build a novel detection method named HeatDETR: hardware-efficient DETR with
device-adaptive thinning, which achieves both higher accuracy and better training-inference effi-
ciency across a spectrum of low resource devices (see Fig. 1).

HeatDETR centers around three points: Decent detection performance. 1) Based on the visual mod-
eling process from local to global, we introduce a backbone design principle with a two-phase search
space. The first phase mainly includes convolutional and local-wise attention layers, and the second
phase further adds global-wise attention layers. 2) Semantic-augmented module (SAM) is incor-
porated into several stages of the backbone to absorb rich low-level semantics, which benefits the
detector identity distractors meticulously. 3) With the help of global attention to capturing abstract-
level semantics (global attention capture contextual information inside the data (Khan et al., 2021)),
the task-couple module (TCM) reduces conflicts between the classification and regression tasks,
providing consistent predictions. On-device efficiency. 1) Considering memory access cost and de-
gree of parallelism in resource-limited devices, a scale-combined module (SCM) is designed to
transform the multi-level detection process into the single-level one for higher hardware throughput.
2) Furthermore, through the on-device speed analysis of architectures, we identify the basic Heat-
DETR structure that balances detection precision and hardware efficiency. Fast model generation.
We perform the device-adaptive model-thinning strategy on the single-width superset, generating the
deployable HeatDETR on target edge devices. In addition, these generated models can be trained
from scratch directly with 14× fewer epochs than DETR.
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Figure 2: Device speed profiling. Results on figures are obtained on NVIDIA Tesla V100, GeForce
GTX 1080 Ti, Intel(R) Core(TM) i7, and Dual-Core Intel i7 (13-inch). The on-device speed for fre-
quently used backbone and various operators are reported. The throughput of models and operations
are denoted with different colors. The model-level (×12 layers) comparison of the tables shows that
the efficiency of architecture is hardware dependent.

Compared with the classical DETR of similar GFLOPs, HeatDETR achieves over 1 FPS speedup
with superior detection performance (2% AP higher); With current state-of-art efficient DETRs,
HeatDETR can reach 5%∼68% speedup with up to 6.2% AP higher detection precision; On
resource-limited devices, HeatDETR can outperform other existing DETR-based methods in terms
of both precision and on-device speed while reaching model scalability. Even real-time inference
can be won by chopping off the most resource-constrained devices, Dual-Core Intel Core i7 CPU.

2 RELATED WORK

Traditional Detection Frameworks. One main challenge in object detection is effectively repre-
senting objects at different scales. Both one-stage (Chen et al., 2021; Duan et al., 2019) and two-
stage detectors (Cai & Vasconcelos, 2018; He et al., 2017) overcome it with multi-scale features and
multi-level predictions. By building a feature pyramid to combine two adjacent layers in a feature
hierarchy (with top-down and lateral connections), FPN (Lin et al., 2017a) is widely applied (Tian
et al., 2019; Lin et al., 2017b). And through cross-scale connections, e.g., bottom-up paths (Liu
et al., 2018b), and U-shape modules (Zhao et al., 2019), later CNN-based designs perform multi-
level prediction. Nonetheless, all of these designs introduce extra memory access costs, which can
weaken the speed of memory-constrained devices. In contrast, our HeatDETR introduces large re-
ceptive fields (of the SCM) to cover large objects and aggregate low-level semantics, thus reducing
the multi-level prediction system to the single-level one. Such design ensures superior performance
while reducing memory access and improving hardware throughput.

Transformer-based backbones (Chen et al., 2022b) have shown superior performance in traditional
frameworks such as Mask RCNN and RetinaNet. However, these backbones are usually inserted
directly into the framework without optimizing the efficiency issues after the replacement.

DETR Family. End-to-end detectors delete sophisticated post-processing like NMS and achieve
matchings between targets and candidates by the Hungarian algorithm. DETR (Carion et al., 2020)
utilizes an encoder-decoder transformer framework. The cross-attention module of the decoder at-
tends to different locations in the image for different object queries, which requires high-quality
content embeddings. In addition, self-attention naturally has a high degree of freedom due to the
lack of inductive bias information similar to convolutional layers. All these factors can lead to
larger training costs (500 epochs for DETR training). Deformable DETR (Zhu et al., 2020) accel-
erates the convergence via learnable sparse sampling and multi-scale deformable encoders. Anchor
DETR (Wang et al., 2022) exploits anchor points to accelerate training. Although better perfor-
mance and fast convergence are achieved through these works, the computation cost has yet to be
optimized (e.g., over 170 GFLOPs) due to multi-scale feature encoding.

And these excellent detection performances are typically obtained on high-end GPUs or servers with
enormous computation costs (e.g., 170∼10,000 GFLOPs ). Compared with them, HeatDETR is the
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Figure 3: WMSAbn/SWMSAbn structure. 13%∼21% speedup can be achieved with <0.3 accu-
racy degradation on ImageNet-1k.

first work on transformer-based detectors to explore comparable performance and fast inference
speed on the resource-limited hardware while maintaining efficiency training.

3 ON-DEVICE SPEED ANALYSIS OF ARCHITECTURES

Design and deployment of efficient network architectures for resource-limited devices have made
great strides with consistently reducing parameter count and floating-point operations (FLOPs)
while improving accuracy. However, these classical efficiency metrics like FLOPs need to take into
account memory access cost and degree of parallelism, which can have a non-negligible impact on
inference speed. Parameter count correlates poorly with inference speed as well. We are committed
to improving their detection performance while decreasing the speed cost of efficient architectures
by identifying congestions that prejudice running speed. To clarify these congestions, we implement
neural networks on multiple devices and benchmark their speed costs, as shown in Fig. 2, whereby
the following congestions are drawn.
[Congestion 1] Linear-BN is more speed-friendly than LN-Linear, having trivial accuracy drops.
Considering MLP applies the global receptive field to model information, it is essential to determine
the MLP implementation. There are two options: layer normalization with linear projection (LN-
Linear); linear with batch normalization (Linear-BN). Linear-BN is more speed-friendly because
BN can be fused into the preceding fully-connected layer for inference speedup, while dynamic
normalization (LN) still gathers running statistics at the inference stage, thus causing the delay. From
the analysis of Swin-Transormer (Liu et al., 2021b) (the main architectures utilized in our design)
and DeiT (Touvron et al., 2021), our proposed backbone (HOD) and other standard backbones in
Fig. 2, the latency introduced by LN constitutes around 10%∼20% of the whole network.

Inspired by LeViT Graham et al. (2021), we modify the basic structure of Swin-Transormer,
WMSA/SWMSA, into WMSAbn/SWMSAbn as shown in Fig. 3. Compared to the original de-
sign with channel-wise LN, a 13%∼20% speedup is harvested with negligible accuracy degradation
(<0.3%) on small models. In this paper, we use WMSAbn/SWMSAbn as our design candidates.
[Congestion 2] Skip-connections or branching can impair speed, while reparametered CNNs ap-
plied at the initial layers can speed up with improving recognition performance.
Two key factors that affect runtime performance are the memory access cost and the degree of
parallelism. In a multi-branch structure, the memory access cost increases significantly because the
activation of each branch will be stored to compute the following tensor in the graph. Also, the
synchronization cost caused by multiple branches affects the overall runtime (Hu et al., 2018). This
congestion issue can be sidestepped if the network has a small number of branches.

Thus, Identity I becomes a candidate in our search space to minimize the number of branches while
keeping detection precision. Also, we add RepCNN (Ding et al., 2021) to the search space of 1st
phase, enabling more single-branch substructures during inference (see Sec. 4.3). We experimen-
tally find that recognition performance is improved by 0.3%∼0.5% AP after replacing WMSA with
RepCNN in Stage 1 of backbone. The fact may be that RepCNN utilizes the 3×3 convolutional
kernel, which has a stronger ability to model locality than WMSA with the 7×7 attention window.
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Figure 4: The basic design of HeatDETR . The TCM and SCM enable us to perform fast but accu-
rate detection on a single-level feature map. Considering the visual modeling process and hardware
specifications, we propose a HOD backbone to maintain detection precision while improving the
on-device speed.

[Congestion 3] The speed of different architectures is hardware-dependent.
The specifications of hardware memory affect the inference speed of the model in real-world appli-
cations. The current cache size of edge devices is about 2M∼8M with the bus speed of memory
I/O transmission, 2 Gbps∼10 Gbps. And the part that exceeds the model and intermediate data size
will be transferred to RAM. The speed of CPU reading data from RAM is about 10×∼20× slower
than reading directly from the cache Laguna et al. (2019). So the model with a large size and much
intermediate data can attenuate the throughput of hardware with less cache and less bus speed of
memory I/O. Previous work Ali et al. (2021) claims that channel-wise attention is more efficient
than original self-attention, but the difference in speed is small on NVIDIA V100, large on Intel(R)
Core(TM) i7 and Dual-Core Intel i7 (13-inch). With a linear memory complexity, channel-wise
attention is probably a memory-friendly architecture.

4 DESIGN OF HEATDETR

In this section, we introduce HeatDETR, a hardware-efficient Transformer-based object detector, as
shown in Fig. 4. The hardware-oriented detector (HOD) backbone extracts features at four scales
and sends them to the following task-coupled single-level prediction system. The scale-combined
module (SCM) first combines the multi-scale features into single-level feature maps. Then, the task-
couple module (TCM) adjusts feature maps to reduce conflicts between classification and regression
tasks simultaneously, and finalizes the detection task.

4.1 THE HARDWARE-EFFICIENT BACKBONE OF LOCAL-GLOBAL MODELING

Backbone Design Principle. HOD backbone aims to extract multi-scale features with strong se-
mantics while guaranteeing the efficiency of the target hardware. Inspired by the visual modeling
process inside ResNet (He et al., 2016), we divide the backbone into four HOD stages S, where
feature scales have a trend from the local to the global visual receptive field. Then, to enhance the
semantic information of low-level features in each HOD stage, one semantic-augmented module
(SAM) is added after one HOD block (residual effect). In conjunction with the hardware speed
analysis, we provide the two-phase search space (see Sec. 4.3). For each input image x∈RH×W×3,
the HOD backbone extracts features at four different scales:

l1, l2, l3, l4 = L(x), (1)

where li∈R
H

s·2i−1 × W

s·2i−1 ×3 is the i-th feature map with Di channels for i∈{1, 2, 3, 4}, and s=8 to
balance the detection precision and computational costs. In the following, we represent the HOD
backbone as function L.

Image Embedding Module. Patch embedding is typically implemented with a non-overlapping
convolutional layer that has a large kernel size and stride. However, our analysis in Fig. 2 shows
that patch embedding with large kernels and stride is a speed bottleneck on multiple devices. Large-
kernel convolutions are not well supported by most compilers nor accelerated by existing algorithms
(e.g., Winograd). Thus, we utilize a convolution stem with fast downsampling, consisting of 3
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Figure 5: The schematic of three major modules in HeatDETR.

hardware-efficient 3×3 convolutions with stride 2, as an image embedding module:

l
H
s ×W

s ×D1

0 = PatchEmbed(xH×W×3). (2)

Hardware-Oriented Detector Block. Each HOD block (see Fig. 5(a)) is designed to effectively
capture the local (texture-level semantics) and global information (abstract-level semantics) at each
scale. So we extract texture-level semantics through several consecutive local-wise blocks following
the local-to-global principle. Then reinforce abstract-level semantics in the feature map through a
global attention block. The search space of local-wise blocks mainly includes RepCNN, WMSAbn,
and SWMSAbn, while original self-attention (Touvron et al., 2021) and channel-wise attention (Ali
et al., 2021) for global attention block. Note that SWMSAbn can compensate for the missing glob-
ality in RepCNN and WMSAbn productively. However, the 7×7 window-attention operation still
limits its receptive field to cover the whole image, so it is necessary to add one global attention block
after local-wise blocks.

Semantic-Augmented Module. Similar to the residual effect, we propose SAM to further enhance
low-level semantics in the current feature map for the detection, as shown in Fig. 4. SAM consists
of an upsampling layer and a global attention block. By inserting the SAM into every two consecu-
tive HOD blocks, low-level semantics can complement high-level semantic information. SAM first
aligns the scale level of the current HOD block with that of the previous one and then generates
enhanced semantic features. Those features flow to the next HOD stage and the SCM, respectively.

HOD Stage. The final HOD backbone contains four HOD stages, each consisting of a HOD block
and a SAM (except for stage 1).The output of the HOD backbone can be defined as

l
∗
i =

{
Lhod(l

∗
i−1), if i = 1, 2

Lhod(down(l∆i−1))), if i = 3, 4
, l

∆
i =

{
Lsam(up(l∗i ) + l∗i−1), if i = 2

Lsam(up(l∗i ) + l∆i−1), if i = 3, 4
, li =

{
l∆i+1, if i = 1, 2, 3

l∗i , if i = 4

(3)

where down denotes the downsampling function while up for upsampling; l∗ is the output of i-th
HOD block while l∆ being the one of the i-th SAM; li is final multi-scale features of the HOD
backbone.

4.2 TASK-COUPLE SINGLE-LEVEL DETECTION SYSTEM

Scale-Combined Module. To reduce the large memory I/o overhead and the high parallelism caused
by multi-branch, we transform multi-level into single-level prediction by SCM (see Fig. 5(b)) with
global attention to extract abstract-level semantics (long-range modeling). The process is

s1 = downsample attention(l1) + l2, s2 = downsample attention(s1) + l3,

s3 = global attention(s2), sout = global attention(s3 + up(l4)).
(4)

Inspired by Metaformer (Yu et al., 2022), we apply average pooling (stride=2) as the token mixer to
enhance abstract-level semantics in features while downsampling data. downsample attention is

I
B,C, H

2j+1 , W

2j+1

i = Pool(x
B,C, H

2j
,W
2j

i ), x
B,C, H

2j+1 , W

2j+1

i+1 = CONVB(CONVB,G(Ii)) + Ii, (5)

where CONVB,G refers to whether the convolution is followed by BN and GeLU. global attention
refers to the transformer block with channel-wise attention or original self-attention block with the
adaptive token sparsity (Feng et al., 2022) (we use <18% sparsity). Due to the sequential computing
of transformer block, we can always concatenate the classified sparse tokens into dense ones to
improve the hardware efficiency, which is challenging for CNN-based architecture. Please note

6



Under review as a conference paper at ICLR 2023

that in some high-end devices such as V100, we deploy the transformer block with the original
self-attention for the higher detection performance while channel-wise attention block in memory-
constant devices.

Task-Couple Module. One-stage detectors perform object classification and localization indepen-
dently with two separate branches (e.g., decoupled heads). This two-branch design neglects inter-
actions and conflicts between the two tasks, leading to inconsistent prediction results (Dai et al.,
2021a; Song et al., 2020). We propose TCM in Fig. 5(c), which guides learning task interactions
and eliminates conflicts between task-specific features by stacking global attention blocks T .

The global attention block T1 couples and splits the single-level feature sout into two parts. After
that, T2 encodes one of the parts for the subsequent regression task. As follows,

tcls, treg1 = T1(sout), treg2 = T2(t
reg
1 ). (6)

We use the similar strategy as SCM for the model implementation.

4.3 DEVICE-ADAPTIVE MODEL THINNING STRATEGY

Design of Supernet. We introduce a two-phase supernet for a hardware-efficient backbone, as
shown in Fig. 5. We only search the structures and dimensions of the backbone, while SCM and
TCM use the fixed structures with the dimension adapted to the backbone. We also define the
HeatPath (HP) as the collection of possible blocks:

HP
1
i,j=1,2,3 ∈ {RepCNN,WMSAbn, SWMSAbn, I},

HP
2
i,j=4 ∈ {WMSAbn, SWMSAbn, I, Channel − wise,Original − atten}.

(7)

To make the visual modeling a process from locality to globality, the 1st phase covers S1, S2, S3 of
the backbone, and the 2nd phase for S4. Reducing the number of model branches, we add Identity I
as a search candidate; considering the excessive feature scale in S1, S2, S3, the global attention used
in HOD and SAM is fixed to channel-wise attention for hardware efficiency; for the global attention
part in S4, channel-wise and original self-attention are added as candidates for network search.

Searching Space. Our searching space includes Di (the dimension of each S), Nj (the number of
blocks in each S).
Device-Adaptive Model Thinning Algorithm. We propose a simple, fast, and effective gradient-
based search algorithm to obtain a candidate network that requires only once training of the supernet.
The algorithm has three steps.

1) We train the supernet with the Gumble Softmax sampling Liu et al. (2018a) to get the importance
score for the blocks within each HP , which can be expressed as

κi+1 =
∑
n

(
e(r

n
i +εni )/τ∑e(r

n
i

+εn
i
)/τ

n

·HPi,j(κi)), (8)

where r represents the importance of each block in HP by calculating the probability to select a
block (candidate), e.g., WMSAbn or RepCNN for the ith block; ε∼U(0, 1) enhances exploration;
τ is the temperature; n represents the type of blocks in HP . By Eq. 8, the derivatives related with
the architecture search can be easily computed. The training follows the recipe in Appendix 9.

2) We build a FPS lookup table by collecting the on-device speed of each search candidate (except
for I ) with different widths (multiples of 32) for multiple devices.

3) We perform device-adaptive model thinning on the supernet obtained from step 1) by FPS evalu-
ation with the device lookup table. Instead of building up a multiple-width supernet that is memory-
inefficiency, we design a gradual thinning on the single-width supernet. Specifically, we define the

importance score for HPi as rRepCNN
i +rWMSA

i +rSWMSA
i

rIi
and rWMSA

i +rSWMSA
i

rIi
for S1, S2, and S3

and S4. We obtain the importance score r for each S by summing up the scores for all HP within
that S. Then we define the evolution space (all performed in the current least important S): a) re-
move I ; b) remove the first SWMSA ; c) remove the first WMSA; d) reduce the width by multi-
ples of 32. Then we calculate the current FPS of each evolution through a lookup table, and evaluate
the accuracy drop of each evolution. We choose the evolution based on FPS AP drop(−%

fps ). This
process is repeated until the target throughput is reached (Appendix 9).
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Table 1: The references used in Table 2.
Model Reference Model Reference Model Reference

DETR Carion et al. (2020) Mobile-Former Chen et al. (2022b) Focal-Tiny-RetinaNet Yang et al. (2021b)
VIDT Song et al. (2021) Faster RCNN Ren et al. (2015) Anchor DETR Wang et al. (2022)

YOLOF Chen et al. (2021) WB-DETR Liu et al. (2021a) Deformable DETR Zhu et al. (2020)
DFFT Chen et al. (2022a) PnP-DETR Wang et al. (2021a) Conditional DETR Meng et al. (2021)

RetinaNet Lin et al. (2017b) UP-DETR Dai et al. (2021b) SAM-DETR Zhang et al. (2022)
SMCA Gao et al. (2021) TSP-FCOS Sun et al. (2021) Sparse-DETR Roh et al. (2021)
YOLOS Fang et al. (2021) DAB-DETR Liu et al. (2022) Swin-Tiny-RetinaNet Liu et al. (2021b)

Table 2: Comparison of HeatDETR and common detection methods on MS COCO benchmark.
The table is divided into four parts: 1) anchor-based methods; 2) HeatDETR trained for 12 epochs;
3) DETR-based methods; 4) HeatDETR trained for 36 epochs. HeatDETR achieves competitive
precision with fewer inference FPS and training epochs. FPS is measured with a batch size 1 of
800×1333 resolution on a single Tesla V100 GPU.

Method Epochs AP (%) AP50 (%) AP75 (%) APS (%) APM (%) APL (%) GFLOPs FPS

Faster RCNN-FPN-R50 36 40.2 61 43.8 24.2 43.5 52 180 -
Focal-Tiny-RetinaNet 12 43.7 - - - - - 265 -
Swin-Tiny-RetinaNet 12 42 - - - - - 245 -

YOLOF-R50 12 39.2 58.6 42.7 22.3 43.9 50.8 103 24
RetinaNet 12 35.9 55.7 38.5 19.4 39.5 48.2 201 -

Mobile-Former 12 34.2 53.4 36.0 19.9 36.8 45.3 322 -
HeatDETR tiny 12 40.9 60.2 43.5 21.4 44.6 55.7 67 25.2

HeatDETR small 12 41.7 59.5 44.5 23.2 45.6 56.3 69 24.3
HeatDETR medium 12 42.9 60.9 46.2 23.9 47.1 58.7 73 23.5

DETR-R50 500 42 62.4 44.2 20.5 45.8 61.1 86 24
WB-DETR 500 41.8 63.2 44.8 19.4 45.1 62.4 98 -
PnP-DETR 500 41.8 62.1 44.4 21.2 45.3 60.8 - -
UP-DETR 150 40.5 60.8 42.6 19 44.4 60 - -
YOLOS 150 37.6 - - - - - 172 5.7

Anchor DETR-DC5-R50 50 44.2 64.7 47.5 24.7 48.2 60.6 151 19
Deformable DETR 50 43.9 62.6 47.7 26.4 47.1 58 173 19.1

SMCA-R50 50 43.7 63.6 47.2 24.2 47 60.4 152 -
SAM-DETR-R50-DC5 50 43.3 64.4 46.2 25.1 46.9 61 210 -

TSP-FCOS-R50 36 43.1 62.3 47 26.6 46.8 55.9 189 15
DAB-DETR-R50 50 42.6 63.2 45.6 21.8 46.2 61.1 100 -

Conditional DETR-R50 50 40.9 61.8 43.3 20.8 44.6 59.2 90 -
VIDT 50 40.4 59.6 43.3 23.2 42.5 55.8 - 20

Sparse-DETR 50 45.3 65.8 49.3 28.4 48.3 60.1 105 16.4
DFFT 36 44.5 63.6 48 24.5 49 60.7 62 22

HeatDETR tiny 36 44 64.7 46.8 23 47.9 59.9 67 25.2
HeatDETR small 36 44.8 64 47.8 24.9 48.9 60.5 69 24.3

HeatDETR medium 36 46 65.3 49.8 26 50.2 62.8 73 23.5
HeatDETR large 36 46.2 65.9 49.8 28.3 50.5 62.9 108 20.5

5 EXPERIMENTAL RESULTS

We evaluate our proposed HeatDETR on the MS COCO benchmark (Lin et al., 2014), which uses
the common settings. It contains about 160,000 images from 80 categories. We compared Heat-
DETR with traditional frameworks and DETR family as Table 1. The HOD backbone was pre-
trained on ImageNet (Deng et al., 2009) with the same setting as Liu et al. (2021b). We trained
HeatDETR with standard 1× (12 epochs) and 3× (36 epochs) training configurations. We use the
AdamW optimizer with a batch size of 32 and an initial learning rate of 1e-4, the same setting as
VIDT. All experiments were running on a server with 8 Tesla V100 GPUs. The detailed detection
training settings and model configuration are provided in Appendix 9.

5.1 MAIN RESULTS

Comparison with Traditional Frameworks. As shown in Part 1 of Table 2, anchor-based methods
converge fast within only 12 epochs, and the transformer-based methods generally outperform CNN-
based methods but with higher GFLOPs. Focal-Tiny-RetinaNet achieves 7.8% higher AP than the
original RetinaNet at the expense of 32% computation costs. Generally, such good performance
comes with over 170 GFLOPs high computational costs. YOLOF is an efficient single-level feature
method with 103 GFLOPs, while having 39.2%<40% AP.

Compared to the aforementioned approaches that encounter a clear unbalance between detection
precision and inference speed (Part 2), our HeatDETR can improve both metrics based on its efficient
design. HeatDETR tiny is 9% faster than YOLOF with 1.7% higher AP (40.9%>39.2%), while the
speed of HeatDETR small and YOLOF are nearly equal but with 2.5% higher AP (41.7%>39.2%).
In addition, HeatDETR reduces 200 GFLOPs from the best-performing Focal-Tiny-RetinaNet at the
cost of only a 0.8% AP reduction.
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Figure 6: Comparison on multiple resource-limited devices of HeatDETR.

Comparison with DETR Family. As shown in Part 3 of Table 2, DETR-based methods can achieve
a better trade-off between performance and inference speed but converge slower. DETR only needs
86 GFLOPs and 24 FPS to achieve 42.0% AP during inference but requires 500 epochs to converge.
WB-DETR and PnP-DETR need even 500 epochs to achieve 41.8% AP merely. Other optimized
DETR-based methods improve the convergence speed but are more inefficient. Deformable DETR,
Anchor DETR, and TSP-FCOS need 50 or 36 epochs to converge, but their GFLOPs are around
76%∼120% larger than DETR. And even though all of these three have 15∼19 FPS on the high-
end GPU, Tesla V100, they cannot achieve acceptable speeds on resource-constraint devices, e.g.,
Intel(R) Core(TM) i7 and Dual-Core Intel i7 (13-inch), as shown in Fig. 6, because of their high
computation and memory complexity.

On the contrary, HeatDETR can achieve state-of-the-art detection prevision without sacrificing both
the convergence and inference speed. Compared with classical DETR, our HeatDETR tiny model
improves 14× training efficiency with 1.2 FPS inference speedup while achieving superior detection
performance (42.0% vs. 44%). Considering current state-of-the-art efficient DETR frameworks,
VIDT, Sparse-DETR, and DFFT, our model can reach 9%∼43% speedup with 0.9%∼5.8% AP
higher precision. HeatDETR reduces 28%–92% training epochs of existing methods as well.

5.2 HARDWARE SPEED ON RESOURCE-LIMITED DEVICES

To evaluate the hardware throughput, we implement the model thinning on three resource-limited
devices: GeForce GTX 1080 Ti which has a 2.8M size L2 cache with 11 Gbps memory bandwidth;
Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz which has 1M (×12 kernel) size L2 cache with 8
Gbps memory bandwidth; 13-inch Dual-Core Intel Core i7 CPU @ 2.50GHz, which has a 4M size
L2 cache with 2.5 Gbps memory bandwidth. We report the average FPS of over 100 inferences.
As shown in Fig. 6, our method outperforms existing efficient DETR frameworks on both hardware
efficiency and detection performance. Note that HeatDETR even achieves real-time inference speed
on the most resource-constrained device, i.e., Dual-Core Intel Core i7 CPU.

Since other methods do not take into account the memory limitations and parallelism of the on-
device runtime, in general, their performance can be degraded further on resource-limited devices
and do not even give results in a reasonable time. This also constrains their scalability for practi-
cal application scenarios. Deformable-DETR and VIDT cannot run on the Dual-Core Intel Core i7
(2.5 Gbps memory bandwidth), which has the highest memory I/O limitation, while on both other
devices, they are faster than Sparse-DETR-1 blocks. The possible reason is that the backbone of
Deformable-DETR has a quadratic memory complexity, and VIDT has an inefficient decoder neck,
without which precision degradation is not trivial. Therefore, we infer that HeatDETR can compen-
sate for this hardware-software disconnect when custom accelerators are available in the regime of
efficient architectures.

6 CONCLUSION

In this paper, we propose a novel hardware-oriented detection pipeline named HeatDETR, which
achieves both higher accuracy and better training-inference efficiency across multiple resource-
limited devices. Combined with the visual modeling process and hardware specifications, Heat-
DETR exceeds current DETR-based methods by 0.3%∼6.2% AP with 5%∼68% speedup on high-
end GPU with 28%∼92% fewer training epochs. Compared to other approaches, HeatDETR is
more potential for practical applications due to its scalability on resource-limited devices. How to
improve the precision of transformer-based detectors on edge will be our next effort.
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7 ETHICS STATEMENT

I will abide by the laws, rules and regulations of my community, school, work and country. I will
conduct myself with integrity, loyalty and honesty. I will be openly accountable for my actions
and will only do what I intend to do to comply with the protocol. Vision Transformer is already
making a splash in the purely algorithmic world, but optimized hardware which can support it is
just emerging. I hope that our entire community will work together to advance the use of Vision
Transformer on the edge side.

8 REPRODUCIBILITY STATEMENT

In order to promote academic development, and efficient conversion of capacity, the relevant codes
for this article are provided in the supplementary material.
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Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable attention
model for natural language inference. In Proceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 2249–2255, 2016. 1

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing systems, 28,
2015. 1, 2, 8

Byungseok Roh, JaeWoong Shin, Wuhyun Shin, and Saehoon Kim. Sparse detr: Efficient end-to-
end object detection with learnable sparsity. arXiv preprint arXiv:2111.14330, 2021. 2, 8

Guanglu Song, Yu Liu, and Xiaogang Wang. Revisiting the sibling head in object detector. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11563–
11572, 2020. 7

Hwanjun Song, Deqing Sun, Sanghyuk Chun, Varun Jampani, Dongyoon Han, Byeongho Heo,
Wonjae Kim, and Ming-Hsuan Yang. Vidt: An efficient and effective fully transformer-based
object detector. arXiv preprint arXiv:2110.03921, 2021. 2, 8

Zhiqing Sun, Shengcao Cao, Yiming Yang, and Kris M Kitani. Rethinking transformer-based set
prediction for object detection. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 3611–3620, 2021. 2, 8

Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully convolutional one-stage object
detection. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
9627–9636, 2019. 3

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
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9 APPENDIX

9.1 DEVICE-ADAPTIVE MODEL THINNING STRATEGY

We provide the details of the proposed device-adaptive model thinning strategy in Alg. 1. Relative
formulations can be found in Sec. 4.3. The proposed device-adaptive model thinning strategy is
speed-oriented for the target device, which does not need retraining for each sub-network. The
importance score for each device-design choice is estimated based on the trainable architecture
parameter r.

Algorithm 1: Device-Adaptive Model Thinning Strategy based on Importance Estimations

1 Given: speed look up table F = {RepCNN,WMSAbn, SWMSAbn}dim=32×,
{RepCNN,WMSAbn, SWMSAbn, Channel wise,Original atten}dim=32×;

2 Requirement: Final throughput satisfy budget:
∑

F ≈ ⊤ ;
3 Super-net Pretraining:
4 foreach epoch do
5 foreach each iteration do
6 foreach HPi,j do
7 κi+1 =

∑
n(

e(r
n
i +εni )/τ∑e

(rn
i

+εn
i
)/τ

n

·HPi,j(κi));

8 end
9 £ = criterion loss function(output, label);

10 backpropagate (£), update parameters;
11 end
12 end
13 Speed-Driven Model thinning:
14 E ∈ {Layer Reduction (LR), Width Reduction (WR), I Reduction (IR), WMSA Reduction (WMR),

SWMSA Reduction (SR)};

15 Calculate the importance of HPi,j through Mi,j = r
RepCNN
i +rWMSA

i +rSWMSA
i

rIi
or rWMSA

i +rSWMSA
i

rIi
;

16 while
∑

F > ⊤ do
17 LR← argminMi,j (HPi,j), IR← argmin∑

j Mi,j
(HPi,j),

SR← argmin∑
j Mi,j

,(HPi,j),WMR← argmin∑
j Mi,j

(HPi,j),
DR← argmin∑

j Mi,j
(HPi,j);

18 Conduct Evolution = argminAPdrop
Fi,j

(E);

19 end
20 Train the searched architecture from scratch:
21 SDG-Training method.

9.2 DETAILED TRAINING SETTINGS

Since HeatDETR performs single-stage detection on a single feature map, the predefined anchor
points are sparse. Applying Max-IoU matching based on sparse anchor points will lead to the im-
balance problem of positive anchor points, which means that the detector will focus on large ground
truth boxes and ignore small ground truth boxes during the training process. To overcome this prob-
lem, we use the uniform matching strategy proposed by YOLOF to keep all ground truth frames
uniformly matched with the same number of positive anchors regardless of their sizes. Similar to
the setup of most traditional detection frameworks, our loss function is composed of a focal loss
for classification and a generalized IOU loss for regression. In the inference stage, we effectively
perform an object detection based on the final aggregated feature map lSAM .

9.3 MODEL SETTINGS

Based on our proposed device-adaptive model thinning strategy, we obtained a serious of detectors
on Tesla V100 as Table 3, where Di represents the number of dimenrion of output feature li of the Si,
and the number of HOD blocks and the corresponding types of local-wise blocks within each DOT
stage is also provided. Only one global attention block is added to the end of each stage. Meanbile,
the target device is high-end GPUs, so we utilize original self-attention with adaptive sparsity on the
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Table 3: The definition and performance of HeatDETR models with different magnitudes.
Models Backbone Settings Performance Efficiency

Di Number of Blocks Type of Blocks Accuracy AP GFLOPS FPS
HeatDETR tiny 128, 128, 256, 384 1, 1, 6, 1 RepCNN×1, RepCNN×1, ( WMSA, SWMSA)×3 WMSA×1 81.5 44 67 25.2

HeatDETR small 128, 128, 256, 384 2, 2, 6, 2 RepCNN×2, (RepCNN, SWMSA)×2, (RepCNN, SWMSA)×1,
(WMSA, SWMSA)×2,(RepCNN, SWMSA)×1 82.4 44.8 69 24.3

HeatDETR medium 128, 128, 224, 384 2, 2, 18, 2 RepCNN×2, (RepCNN, SWMSA)×2, (RepCNN, SWMSA)×4,
( WMSA, SWMSA)×5,(RepCNN, SWMSA)×1 83 46 73 23.5

HeatDETR large 192,192, 256, 384 2, 2, 18, 2 RepCNN×2, (RepCNN, SWMSA)×2, (RepCNN, SWMSA)×4,
( WMSA, SWMSA)×5,(RepCNN, SWMSA)×1 83.3 46.2 108 20.5

final HOD stage, SAM, SCM and TCM parts. For each model, accuracy refers to the accuracy of
backbone on ImageNet and AP refers to the precision after training on the MS COCO dataset. All
GFLOPs are obtained on the MS COCO dataset. Please note that the model configuration is adapted
to the runtime specifications of the target devices.
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