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Abstract
Low-light image enhancement poses a significant challenge due to the limited1

information captured by image sensors in low-light environments. Despite recent2

improvements in deep learning models, the lack of paired training datasets remains3

a significant obstacle. Therefore, unsupervised methods have emerged as a promis-4

ing solution. In this work, we focus on the strength of curve-adjustment-based5

approaches to tackle unsupervised methods. The majority of existing unsupervised6

curve-adjustment approaches iteratively estimate higher order curve parameters7

to enhance the exposure of images while efficiently preserving the details of the8

images. However, the convergence of the enhancement procedure cannot be guar-9

anteed, leading to sensitivity to the number of iterations and limited performance.10

To address this problem, we consider the iterative curve-adjustment update process11

as a dynamic system and formulate it as a Neural Ordinary Differential Equations12

(NODE) for the first time, and this allows us to learn a continuous dynamics of13

the latent image. The strategy of utilizing NODE to leverage continuous dynamics14

in iterative methods enhances unsupervised learning and aids in achieving better15

convergence compared to discrete-space approaches. Consequently, we achieve16

state-of-the-art performance in unsupervised low-light image enhancement across17

various benchmark datasets.18

1 Introduction19

Images taken in various low-light environments suffer from insufficient light, leading to the capture20

of limited information by the camera’s image sensor. Therefore, many studies have been conducted21

to improve the quality of the low-light images and achieve images with optimal exposure levels.22

In particular, recent supervision-based deep learning approaches [1, 2, 3] have shown remarkable23

performance in enhancing low-light images. However, the process of collecting pairs of low-light24

scenes and their corresponding ground-truth images for supervised learning is time consuming and25

resource intensive. As a result, unsupervised approaches that rely solely on low-light images have26

been proposed to address this problem.27

Among many unsupervised low-light image enhancement approaches, curve-adjustment-based meth-28

ods, conventionally used in photo editing software (e.g., Photoshop), have received much attention.29

After the introduction of first learning-based curve-adjustment work by Yuan and Sun [7], iter-30

ative curve-adjustment-based methods have been explored in various subsequent studies. These31

unsupervised methods achieve enhancement without using the ground-truth images by fitting the32

brightness values of pixels in the input image to specific curves. In addition, it is advantageous to33

preserve local structural information adaptively by allowing efficient pixel-by-pixel computations.34

For example, ZeroDCE [6, 8] introduced a fast and lightweight neural network to predict pixel-wise35

curve parameter maps within a fixed iteration step. In addition, ReLLIE [9] produced more accurate36
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Figure 1: (a) Quantitative Evaluation: The average PSNR values on the LSRW [4] and LOL [5],
together with the respective parameter numbers for each model. (b) Visual Comparisons with
ZeroDCE [6] (unsupervised), RetinexFormer [2] (supervised) and proposed CLODE (unsupervised).

image enhancement results by using reinforcement learning to predict the curve parameter map at37

each iteration step, with users able to adjust the number of iterations.38

In general, these curve-adjustment-based methods, which have fewer parameters, offer the advantage39

of fast and efficient training and also demonstrate the effectiveness of using higher-order curves40

for low-light image adjustment. However, conventional iterative approaches in discrete-space with41

fixed update steps do not arrive at the optimal solution and cannot guarantee convergence of the42

optimization. Therefore, we alleviate this problem in the discrete-space updating process of existing43

methods. In doing so, we bring out the strengths of curve fitting methods by reformulating the44

iterative update formula into ordinary differential equations, which allows the iterative approach to be45

transformed from discrete-space to continuous-space and find input-specific higher-order curves until46

convergence within a specified tolerance. To be specific, we present the Neural Ordinary Differential47

Equations (NODE) model for the low-light enhancement task for the first time. By solving the48

NODE problem using conventional ODE solvers, we obtain better approximate solutions to the49

curve-adjustment problem, producing more accurate results than conventional results from iterative50

updates in discrete-space by exploring the continuous exposure dynamics. In this work, we introduce51

Continuous exposure learning for Low-light image enhancement using neural Ordinary Differential52

Equations (CLODE), which is the first dynamic system for low-light image enhancement. Our main53

contributions can be summarized as follows:54

• CLODE is the first approach to formulate the higher-order curve estimation problem as a55

NODE problem, enabling effective and accurate solutions with standard ODE solvers.56

• By transforming the discrete update formula into NODE, which is solvable in continuous-57

space, we significantly enhance the unsupervised low-light image enhancement results across58

various benchmark datasets as shown in Fig. 1. This effectively bridges the performance59

gap between supervised and unsupervised approaches.60

• CLODE also offers user controllability without altering the network architecture, enabling61

users to manually adjust the desired level of exposure as needed.62

2 Related works63

2.1 Unsupervised Low-light Image Enhancement64

Obtaining well-exposed ground-truth images paired with corresponding low-light images is inherently65

challenging, which limits the use of supervised learning in low-light image enhancement. To address66

this limitation, many unsupervised methods have been developed to tackle the problem. First, there67

are some approaches [10, 11, 12, 13] that utilize the principles of retinex-theory. Among them,68

PairLIE [13] utilizes retinex-theory to identify the reflectance and illumination, and employs gamma69

correction with user-defined gamma values to enhance the illumination. In addition, UDCN [14] and70

HEP [15] use histogram equalization results as a reference for exposure enhancement. Moreover,71

recent approaches using GANs have shown remarkable improvements by additionally utilizing72

unpaired images of normal exposed [16, 17]. Lastly, there are curve-adjustment-based methods [6, 8,73

18, 9] that transform images through tone mapping. These methods have advanced the curve-fitting74

techniques from traditional editing tools into deep learning-based approaches, enhancing images by75

predicting the fitting curves pixel-by-pixel. By repeating the pixel-wise curve fitting and exposure76

enhancement for a fixed number of iterations in discrete-space, these approaches aim to handle locally77

varying exposure levels (i.e., single image with both underexposed and overexposed areas) in an78

unsupervised manner. Our CLODE also follows this unsupervised curve-adjustment-based method79
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and reformulates the curve-fitting problem into a neural ordinary differential equation (NODE). By80

solving the NODE problem using conventional ODE solvers, we increase the accuracy of curve fitting81

and thus significantly improve the performance of low-light image enhancement.82

2.2 Neural Ordinary Differential Equations83

An ordinary differential equation (ODE) is a fundamental concept in mathematics that describes how84

a function changes with respect to a single variable. It captures the relationship between a function85

and its derivatives, providing a powerful tool for modeling dynamic systems, such as Newton’s86

Second Law of Motion. To effectively apply the strength of ordinary differential equations to the87

deep learning model, the concept of neural ordinary differential equations (NODE) is introduced88

in [19]. The use of NODE facilitates model definition and evaluation, highlighting its effectiveness in89

parameter efficiency, adaptive computation, and modeling continuous data. In order to effectively90

capture more complicated functions, the Augmented Neural ODE (ANODE) [20] has been introduced.91

Furthermore, for seamless continuous time-series modeling, Latent ODE [21] is proposed and recently,92

ClimODE [22] proposed a continuous-time NODE models for numerical weather prediction. To be93

specific, in the field of computer vision, the Vid-ODE approach [23] has been introduced to generate94

continuous-time videos. NODEO [24] has presented a versatile architecture tailored for deformable95

image registration, and a temporal deformation model using the capabilities of NODE has been96

developed in [25] to address the challenges associated with future prediction tasks in the context97

of 4D reconstruction. With advantages like continuous-space modeling, adaptive computation, and98

memory efficiency, NODE [19] is utilized in various deep learning tasks. However, it has not been99

extensively explored in the field of image restoration. While NODE-SR [26] has been introduced to100

address the arbitrary scale super-resolution problem, our methodology marks the first application in101

image exposure enhancement. In contrast to NODE-SR [26], which learns the continuous variation of102

the scaling factor for the arbitrary scale super-resolution problem, our CLODE learns the continuous103

variation of image exposure through curve-adjustment.104

3 Proposed Method105

3.1 Preliminary106

In photo editing applications, the curve-adjustment method is often used to adjust the tone of107

input images and provides effective exposure control. While this method is useful for pixel-wise108

manipulation, it is not well suited for images that contain areas of extreme over- or under-exposure.109

Additionally, a notable drawback of this approach is its reliance on manual adjustments (e.g., the110

number of updates) by the user for each input image. This can be time-consuming and potentially less111

accurate in certain scenarios. To address this problem, Yuan and Sun [7] have proposed a solution112

that aims to mitigate the limitations of manual adjustments. They introduced an automated approach113

that involves estimating an image-specific S-shaped nonlinear tone curve (referred to as an S-curve)114

tailored to each input image. Specifically, for a given low-light image I0, where each pixel value is in115

the range [0, 1], the S-curve formula for the enhanced image I
′

0 can be represented as follows:116

I
′

0 = I0 + ϕs · P∆(I0)− ϕh · P∆(1− I0), (1)

where ϕs and ϕh represent parameters for the amount of shadow and highlight, respectively. The117

function P∆ serves as an increasing function for the adjustment that manipulates the intensity of118

individual pixels within the input of the function.119

While Eq.1 allows for adjusting the brightness of an entire image using a single global curve parameter,120

existing iterative curve-adjustments approaches [6, 8, 9, 27] operate on a pixel-wise basis of the input121

images. Furthermore, they introduce the necessity of higher-order curves, which enhances images by122

fitting higher-order curves for fixed iteration steps while using a deep learning model to predict curve123

parameters on a pixel-by-pixel basis. Specifically the update formula enhances an image In at the124

n-th step to an image In+1 at the next step as follows:125

In+1 = In +An ⊗ In ⊗ (1− In), (2)

where An ∈ RC×H×W represents a pixel-wise varying curve parameter map and C, H , and W126

represent the number of channels, height, and width of the image In, and ⊗ operation denotes element-127

wise multiplication. Note that, the elements of An corresponding to the curve parameters at each128
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(a) Continuous update procedure of CLODE

Figure 2: (a) Illustration of continuous update procedure of CLODE. Optimal iterative update can
be achieved through the ODE equation. (b) Illustration of our ODEfunc fθ. ODEfunc contains the
Noise Removal (g), Curve Parameter Estimation (h) module, and Eq. 9 to obtain the derivative value.
Please refer to Appendix A.1.2 for more details.

pixel location are in the range [−1, 1] and determine the quadratic curve for the pixel-wise exposure129

adjustment during the enhancement process. Conventional curve-adjustment methods [6, 8, 9, 18]130

iteratively follow this process for N times, fitting an appropriate higher-order curve to produce131

the final well-exposed output image. On the contrary, our CLODE performs curve adjustment for132

image enhancement by reformulating Eq. 2 as an ordinary differential equation. This approach133

facilitates memory-efficient training and yields more accurate results through adaptive computation134

using modern ODE solvers.135

3.2 Continuous Exposure Learning for Low-light Image Enhancement using Neural ODEs136

Although conventional curve-adjustment-based iterative methods offer advantages in terms of137

lightweight network architecture and local robustness, these approaches cannot guarantee con-138

vergence of the update process. ZeroDCE [6] empirically determines the iteration number N and139

enhances low-light images by iterating the curve-adjustment formula 8 (=N ) times. While ReL-140

LIE [9] provides users with optional flexibility, it requires manual selection of the value of N for141

each input image to further improve image quality. To tackle this challenge in optimization, we142

reformulate the curve-adjustment-based formula outlined in Eq. 2 as a Neural Ordinary Differential143

Equations (NODE). Then, we can solve the NODE with conventional ODE solvers (e.g., Euler, RK4,144

dopri5) which guarantees the convergence of loss within tolerances. Specifically, we reformulate145

the original curve-adjustment-based formula by introducing a continuous state t instead of using the146

discrete state n as follows:147
It+1 = It + fθ(It, t), (3)

where fθ is a neural network with trainable parameters θ that satisfies fθ(It, t) = At ⊗ It ⊗ (1− It).148

Then, we can parameterize the derivative of the enhanced image during the update using the network149

fθ if the continuous update step is very small, and it is given by,150
dIt
dt

= fθ(It, t). (4)

By transforming the original curve fitting problem into a NODE problem with an initial condition I0,151

we can estimate not only the derivative value of each state but also recover the enhanced image by152

solving the problem, and the initial value problem is given by,153

IT = I0 +

∫ T

0

fθ(It, t)dt, (5)

where IT denotes the well-exposed image at the final state T . Finally, the low-light image enhance-154

ment process to output IT is accomplished by using the ODE solver as:155

IT = ODE_Solver(I0, [0, T ], fθ), (6)
where ODE_Solver denotes a conventional algorithm for solving the ordinary differential equations.156

In our experiments, CLODE adopts the well-known dopri5 (Dormand-Prince 5th order Runge-Kutta)157

as an adaptive ODE solver, that determines an input-specific number of iterations for each input and158

dynamically adjusts the step size. Using the adaptive solver, we can adaptively compute the optimal159

state for different exposure levels, thereby enabling a more accurate approximation of the solution.160

This is in contrast to conventional methods, which use the same fixed number of iterations for all161

input images and cannot guarantee optimality and convergence. To the best of our knowledge, our162

approach is the first to define the low-light image enhancement problem as a novel NODE problem163

with an initial condition.164
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3.2.1 ODE function (ODEfunc)165

We can solve the NODE problem in Eq. 5 by integrating fθ over the time interval [0, T ] with the given166

initial value I0 (e.g., a low-light image). In practice, conventional ODE solvers are used to address167

this problem, iteratively enhancing the low-light images using Eq. 3. In Fig. 2(a), we illustrate the168

continuous update procedure of our CLODE approach. Notably, the ODE function (ODEfunc) fθ169

computes continuous dynamics of the latent image and is a key element in the update procedure. The170

detailed configuration of our ODEfunc fθ is shown in Fig. 2(b). To be specific, our ODEfunc includes171

Noise Removal (g) and the Curve Parameter Estimation (h) modules with trainable parameters, and172

outputs dIt
dt , the continuous dynamics of It. Please refer to Appendix A.1.2 for more details.173

Noise Removal In the ODEfunc, we first employ a pre-processing step to eliminate the artifacts174

from It and generate the denoised image Ĩt in order to produce more accurate curve adjustment175

parameters At. To minimize computational costs within the fθ, we employ a simple and lightweight176

three-layer convolutional neural network g as our Noise Removal module, expressed as follows:177

Ĩt = g(It). (7)

The refined image Ĩt is then used as the input to the subsequent Curve Parameter Estimation stage.178

Curve Parameter Estimation Inspired by [7, 28], to enhance both under- and over- exposed179

areas, we not only use the denoised image Ĩt and its inverted version (1− Ĩt) as inputs to the Curve180

Parameter Estimation module. The formulation is given by:181

At = h(Ĩt, 1− Ĩt), (8)

where At represents the curve parameter map at t, and h represents the Curve Parameter Estimation182

module. For efficacy, this module is also a lightweight convolutional neural network. In particular,183

we apply layer normalization [29] to all intermediate features. Notably, the use of layer normalization184

enables CLODE to handle the diverse exposure ranges of input images. Furthermore, all convolutional185

layers within the Curve Parameter Estimation module h take the continuous state t as a conditional186

input, allowing for time-varying outputs during the integration interval [0, T ] as in [19].187

Continuous Dynamics Lastly, the derivative value of the one-step state at t is computed in our188

ODEfunc, and it is expressed as follows:189

dIt
dt

= At ⊗ It ⊗ (1− It). (9)

Notably, unlike conventional curve-adjustment-based update formulas that discretize update steps,190

our continuous dynamics allows the desired level of accuracy and produces more accurate solutions.191

3.3 Inference Process of CLODE192

Inference Process Given a low-light input image I0, CLODE undergoes successive image enhance-193

ment through fθ until convergence within the specified tolerance of the ODE solvers, resulting in a194

well-exposed image IT . Note that, the output image IT may contain some noise that is amplified195

during the image enhancement process. Therefore, we use the noise-free image ĨT as our final196

outcome by applying the Noise Removal module g.197

User Controllable Design CLODE learns the low-light exposure adjustment mechanism in the198

continuous-space, and is trained to output IT by integrating the states from 0 to T in Eq. 5 using a199

fixed T . However, as shown in Fig. 3, users can manually adjust the integration interval by changing200

the final state value T at the test stage, allowing them to output images with the preferred exposure201

level and even produce images darker than the input. In practice, by controlling the final state from202

−(T +∆t) to (T +∆t), the exposure level of the output image can be easily controlled to provide a203

more user-friendly exposure level.204

𝑰𝟎 "𝑰𝑻"𝑰#𝑻 "𝑰$(𝑻$𝚫𝒕)"𝑰#(𝑻$𝚫𝒕)

……

Figure 3: Illustration of User Controllable Design. By manually changing the integration interval
from −(T +∆t) to +(T +∆t), ours can produce results with different exposure levels.
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3.4 Zero-Reference Loss Functions205

To address the challenge posed by the lack of ground truth, we use five zero-reference loss functions206

for unsupervised training.207

Spatial Consistency Loss While the given low-light input image I0 is enhanced during the update208

procedure, maintaining spatial consistency in the pixel brightness order is crucial for preserving209

image details. Specifically, we measure the difference in spatial consistency between the input image210

I0 and our prediction IT by comparing the differences in neighboring pixel values. Similar to [6],211

we compute the spatial consistency after applying 4-by-4 average pooling to both I0 and IT , and the212

spatial consistency loss Lspa is expressed as:213

Lspa =
1

K

K∑
i=1

∑
j∈Ω(i)

(|m4(IT )i −m4(IT )j | − |m4(I0)i −m4(I0)j |)2. (10)

The 4-by-4 average pooling operation is denoted as m4(·) and Ω(i) includes neighboring pixels in214

four directions (left, right, top, bottom) centered at position i. The normalization factor K denotes the215

number of pixels in the reduced image after the pooling operation, and K is given by H
4 × W

4 × C.216

Exposure Loss To enforce a consistent exposure level across pixels, conventional unsupervised217

methods incorporate exposure guidance into the loss function [6]. Similarly, we introduce a desired218

exposure level parameter E and define the exposure loss Lexp as:219

Lexp = ||m16(IT )− E||22. (11)

In our experiments, we set the exposure level E to 0.6, which corresponds to the gray level in the220

RGB color space. To maintain the overall exposure level in the results, we minimize the difference221

between the pixel values of the predicted image IT and the desired exposure level E after performing222

a 16-by-16 average pooling operation m16(·) on the output image IT .223

Color Constancy Loss In conventional zero-reference methods, two main approaches are used to224

enforce spatial color constancy: one based on the retinex-theory, and the other based on the Gray-225

World hypothesis in [30]. In this work, the color constancy loss Lcol is based on the Gray-World226

hypothesis as in [6, 15], and the formulation is given by,227

Lcol = (R−B)2 + (R−G)2 + (G−B)2, (12)

where R, G, and B are the mean pixel values of the red, green, and blue channels in the predicted228

image IT , respectively. We minimize the color constancy loss Lcol to correct the potential color229

deviations in the enhanced image.230

Parameter Regularization Loss To prevent rapid changes of pixel values in nearby regions, we231

employ the spatial regularization to enforce smoothness among neighboring curve parameter values232

in At, and the formulation is given by,233

Lparam = (|∇xA0|+ |∇yA0|)2 + . . .+ (|∇xAT−1|+ |∇yAT−1|)2, (13)

where the linear operations ∇x and ∇y compute the horizontal and vertical gradients from the234

parameter map At, respectively. For better understanding, we represent T − 1 as the stage before the235

final enhancement. We employ the parameter regularization loss at each update step (e.g., red points236

in Fig. 2 (a)) and accumulate the loss while solving the NODE problem.237

Noise Removal Loss To estimate a spatially smooth At regardless of the noise in the image It, we238

use the Noise Removal module (g) to remove the noise. To train the Noise Removal module, we239

utilize a self-supervision-based loss Lnoise that follows the Noise2Noise approaches [31, 32, 33].240

Specifically, we employ the loss introduced in Zeroshot-N2N [33]. Our Lnoise has two components241

at state t: the residual loss Lt
res and the consistency loss Lt

cons. We minimize these losses using two242

different down-samplers; D1 and D2. Notably, D1 and D2 represent fixed 2D convolutional kernels:243 [
0.5 0
0 0.5

]
and

[
0 0.5
0.5 0

]
, respectively. Notably, these kernels are used for downsampling through244

convolutions with a stride of two. First, our Lt
res fits the noise within It through a symmetric loss245

function similar to the approach in [34] and it yields:246

Lt
res =

1

2
(||D1(It)− g(D1(It))−D2(It)||22 + ||D2(It)− g(D2(It))−D1(It)||22). (14)
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Next, as in [33], Lt
cons ensures spatial consistency by maintaining similarity in noise distributions,247

even if the order of denoising and downsampling is altered. Specifically, Lt
cons also adopts a248

symmetric loss and is defined as at each update step (e.g., red points in Fig. 2 (a)):249

Lt
cons =

1

2
(||D1(It)−g(D1(It))−D1(It−g(It))||22+ ||D2(It)−g(D2(It))−D2(It−g(It))||22).

(15)
Therefore, our final noise removal loss Lnoise can be represented accumulating during the update250

procedure as:251
Lnoise = (L0

res + L0
cons) + . . .+ (LT−1

res + LT−1
cons). (16)

As with Eq. 13, we represent T − 1 as the stage before the final enhancement. A more detailed252

description of the noise removal loss is provided in Appendix A.4.253

Final Objective Function The final objective function to optimize is given as follows:254

Ltotal = wspa · Lspa + wexp · Lexp + wcol · Lcol + wparam · Lparam + wnoise · Lnoise, (17)

where wspa, wexp, wcol, wparam, and wnoise are hyper-parameters used to control the relative255

significance of each associated loss during the training process.256

4 Experiments257

4.1 Implementation Details258

Please refer to Appendix A.1 for more implementation details and training scheme. The code will be259

available upon acceptance.260

4.2 Experimental Setup261

In this work, we use the LOL [5] and SICE [35] Part1 datasets for training. The results of low-light262

image enhancement are evaluated on the LOL and LSRW [4] benchmark datasets. In addition,263

the SICE [35] Part2 dataset is used as a benchmark dataset for evaluation under various exposure264

conditions. SICE Part2 contains 229 image sequences with different exposure levels, and we use265

the entire sequences as the evaluation dataset. By default, each comparison model uses its official266

network weights. In cases where the official code is available but weights are not provided, the267

models are retrained using the official code and settings, except for ReLLIE [9]. We present the268

performance of ReLLIE on the LOL dataset as reported in their original manuscript.269

4.3 Quantitative Comparisons270

First, we quantitatively compare the performance of low-light image enhancement on different271

datasets. Notably, in the experimental results, CLODE represents our proposed method without272

requiring additional user input (by default), while CLODE† represents the result of adjusting the final273

state T to the user’s preferred level, as introduced in Sec. 3.3.274

In Table 1, we compare the low-light image enhancement performance on the LSRW [4] and LOL [5]275

benchmark datasets in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM).276

The term "GT Mean" refers to the evaluation method used by KinD [36] and LLFlow [1], which277

matches the average value of the output pixels to that of the ground truth pixels. CLODE and CLODE†278

outperform other unsupervised learning methods. Notably, CLODE† even surpasses the PSNR of279

state-of-the-art supervised learning methods by 0.73 dB, when averaging the results from the LSRW280

and LOL datasets in the rightmost columns, without using GT Mean. Moreover, two notable points281

can be highlighted in Table 1. First, the effectiveness of using NODE to compute accurate higher282

order curves is evident, as demonstrated by its superiority over curve-adjustment-based methods;283

ZeroDCE [6] and ReLLIE [9]. Second, unlike other models trained on the same training dataset284

(LOL), our model shows robust performance on both the LSRW and LOL test datasets, indicating285

that our model generalizes better than conventional approaches.286

In Table 2, we demonstrate the robustness under various exposure conditions including both under-287

and over- exposures, and evaluate the performance on SICE Part2 [35]. The results show that CLODE288

exhibits robust performance compared to other models, even under various exposure conditions. It289

outperforms other unsupervised learning methods, and even when compared to supervised learning290
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Table 1: Quantitative results on LSRW [4] and LOL [5] datasets. For a fair comparison, we
re-trained some models on LOL and marked them with *. Among the unsupervised approaches,
the best score is displayed in red, the second best in blue, and the third best in black. For more
comparison results in terms of non-reference metrics, please refer to Appendix A.4.3.

Training Method #Params (M) Train dataset
LSRW LOL Average

Normal GT Mean Normal GT Mean Normal GT Mean
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Supervised

RetinexNet [5] 0.4446 LOL 15.49 0.355 16.55 0.371 16.77 0.419 17.65 0.648 16.13 0.387 17.10 0.510
URetinexNet [37] 0.3069 LOL, SICE 17.63 0.516 18.10 0.523 19.84 0.826 21.33 0.835 18.74 0.671 19.71 0.679
DRBN [38] 0.5556 LOL 16.15 0.542 17.68 0.548 16.29 0.617 19.55 0.746 16.22 0.580 18.62 0.647
KinD [36] 8.0160 LOL 16.47 0.493 19.86 0.504 17.65 0.775 20.87 0.802 17.06 0.634 20.36 0.653
LLFlow [1] 38.859 LOL 17.52 0.509 18.68 0.518 21.15 0.854 24.99 0.871 19.34 0.681 21.84 0.694
RetinexFormer [2] 1.6057 LOL 17.76 0.517 19.15 0.529 25.15 0.845 27.18 0.850 21.45 0.681 23.17 0.690

Unsupervised

SCI-easy [11] 0.0003 MIT-5K [39] 11.79 0.317 16.97 0.426 9.58 0.369 18.55 0.501 10.69 0.343 17.76 0.464
SCI-medium [11] 0.0003 LOL, LSRW 15.24 0.424 17.84 0.439 14.78 0.521 19.11 0.504 15.01 0.473 18.47 0.472
SCI-difficult [11] 0.0003 DARKFace [40] 15.16 0.408 18.04 0.424 13.81 0.526 19.64 0.510 14.48 0.467 18.84 0.467
SCI* [11] 0.0003 LOL 14.82 0.413 17.65 0.437 13.84 0.507 19.02 0.499 14.33 0.460 18.34 0.468
RUAS [10] 0.0034 LOL 14.27 0.470 17.10 0.509 16.41 0.500 18.65 0.520 15.34 0.485 17.88 0.514
ZeroDCE* [6] 0.0794 LOL 14.50 0.403 18.87 0.467 16.49 0.522 20.99 0.596 15.50 0.463 19.93 0.532
ReLLIE [9] - LOL - - - - 18.37 0.641 - - - - - -
PairLIE [13] 0.3417 LOL, SICE 16.97 0.498 18.82 0.523 19.51 0.736 23.10 0.752 18.24 0.617 20.96 0.637
Night-Enhancement [17] 67.011 LOL 14.24 0.472 19.19 0.554 21.52 0.763 24.25 0.781 17.88 0.618 21.72 0.668
CLODE 0.2167 LOL 17.28 0.533 20.60 0.557 19.61 0.718 23.16 0.752 18.44 0.625 21.88 0.655
CLODE † 0.2167 LOL 20.77 0.562 20.94 0.568 23.58 0.754 24.47 0.759 22.18 0.658 22.71 0.664

Table 2: Quantitative results on SICE [35] Part2. For a fair comparison, we re-trained some models
on SICE Part 1 and marked them with *. Within the unsupervised approaches, the best score is
displayed in red, the second in blue and the third in black.

Training Method Train dataset Normal GT Mean
PSNR↑ SSIM↑ LPIPS↓ NIQE↓ BRISQUE↓ PI↓ Entropy↑ PSNR↑ SSIM↑

Supervised

URetinexNet [37] LOL, SICE 12.15 0.708 0.393 4.250 15.633 3.372 6.926 17.81 0.686
LLFlow* [1] SICE 14.34 0.608 0.279 3.643 17.011 3.481 6.566 19.59 0.658
ECLNet [41] SICE 13.99 0.562 0.290 4.279 24.570 3.520 6.919 16.66 0.690
FECNet [42] SICE 14.25 0.600 0.291 3.786 17.454 3.025 7.035 16.47 0.639
RetinexFormer* [2] SICE 19.12 0.570 0.369 4.452 24.768 4.573 7.025 20.97 0.578
RetinexFormer [2] MIT-5K [39] 13.23 0.564 0.263 3.848 17.350 2.863 6.881 16.35 0.609

Unsupervised

SCI-easy [11] MIT-5K [39] 9.87 0.486 0.372 4.276 21.850 3.226 6.113 16.44 0.622
SCI-medium [11] LOL, LSRW 9.77 0.510 0.454 5.727 33.200 4.392 5.212 15.83 0.574
SCI-difficult [11] DarkFace [40] 11.13 0.577 0.324 4.636 23.620 3.107 6.386 16.85 0.647
SCI* [11] SICE 10.67 0.478 0.331 4.289 23.449 3.570 6.213 17.99 0.675
RUAS* [10] SICE 9.12 0.408 0.539 8.097 52.923 6.004 5.101 15.52 0.531
ZeroDCE [6] SICE 12.67 0.635 0.244 3.886 21.630 2.821 6.516 18.85 0.686
PairLIE [13] LOL, SICE 13.39 0.619 0.305 5.268 36.536 3.548 6.376 19.22 0.663
Night-Enhancement* [17] SICE 13.18 0.581 0.360 4.728 33.883 4.133 6.661 19.43 0.660
CLODE SICE 15.01 0.687 0.239 4.050 18.663 3.005 7.006 19.64 0.706
CLODE† SICE 16.18 0.707 0.200 4.026 18.210 2.970 7.045 21.55 0.813

methods, CLODE† and CLODE achieve the best and second best results, respectively. Despite being291

an unsupervised method, CLODE narrows the performance gap with state-of-the-art supervised292

methods. Additionally, it operates robustly under challenging conditions such as various exposure293

conditions in SICE Part2, surpassing supervised approaches. These strengths distinguish CLODE294

from other unsupervised learning methods.295

Input Ground-TruthNight-Enhance [17] LLFlow [1] RetinexFormer [2] CLODE (Ours)SCI [11] ZeroDCE [6] PairLIE [13]

Figure 4: Visual comparisons. From top to bottom: LOL [5], under- and over-exposed image of the
SICE [35] Part2. For more visual results, please refer to Fig. 10 in the Appendix.

4.4 Perceptual and Visual Comparisons296

In Table 2, we also provide a perceptual comparison of the results with other methods. The evaluation297

is conducted on SICE Part2, which includes a combination of underexposed and overexposed images.298

To measure the perceptual quality, we adopt Learned Perceptual Image Patch Similarity (LPIPS) [43],299

and non-reference metrics; natural image quality evaluator (NIQE) [44], blind/referenceless image300

spatial quality evaluator (BRISQUE) [45], perception index (PI) [46], and Entropy [47]. In these301

four aspects, both CLODE and CLODE† show outstanding performance compared to existing302

unsupervised methods. The visual results are compared in Fig. 4. CLODE shows robust and natural303

image enhancement results compared to other comparison methods, regardless of the exposure304

conditions of the input image.305
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Table 3: Comparative experiments according to using
NODE on LSRW [4]/LOL [5].The "Discrete" refers to
performing curve adjustment in discrete steps, similar
to the conventional methods [6, 9], and "Continuous"
refers to the reformulation of NODE.

Method Case Step (N ) PSNR↑ SSIM↑ BRISQUE↓

Discrete

(a1) 1 11.19/9.236 0.297/0.362 41.137/41.169
(b1) 5 16.12/17.47 0.419/0.716 31.421/33.042
(c1) 10 13.94/16.18 0.395/0.520 32.267/32.243
(d1) 20 12.95/14.94 0.373/0.506 33.537/34.941
(e1) 30 12.87/14.97 0.375/0.509 33.537/35.342

Continuous (f1) ≤ 30 (adaptive) 17.28/19.61 0.533/0.718 18.426/8.220

Discrete (w/o NODE)

Input output

Continuous (w/ NODE)

Input output

Figure 5: Trajectories of improvement for (e1)
and (f1) in Table 3. PCA dimension reduction
is used to visualize the trajectories.

4.5 Ablation Study306

Effectiveness of NODE To validate the impact of NODE, we adjust the curves using the architecture307

of CLODE in both discrete (w/o NODE) and continuous (w/ NODE) spaces, and we compare the308

results in Table 3. In the discrete setting, similar to [6], curve parameters for fixed update steps [1, 5,309

10, 20, 30] are estimated in parallel ((a1) - (e1)). In the continuous setting, however, curve parameters310

are estimated sequentially for non-fixed adaptive steps, up to a maximum of 30 steps ((f1)). Results311

in Table 3 demonstrate that the curve parameters produced during the sequential continuous update312

procedure are more accurate and verify superior performance of the proposed method over the update313

procedure in the conventional discrete setting. In addition, in Fig. 5, we visualize the trajectories314

of improvement by plotting PCA dimension reduction results of latent images during updates. We315

observe that when curve adjustments are made in continuous space by (f1), the trajectories converge316

more accurately at the final states compared to (e1). This demonstrates that using NODE to find the317

optimal state certainly contributes to image enhancement.318

Table 4: Impact of the modules in fθ.
Noise Removal and the layer normaliza-
tion (LN) significantly improve perfor-
mance.

Case Noise Removal g LN in h PSNR↑ SSIM↑
(a2) 14.72 0.538
(b2) ✓ 15.19 0.489
(c2) ✓ 18.67 0.577
(d2) ✓ ✓ 19.61 0.718

Table 5: Execution time and performance.
Training Method PSNR/SSIM #Params (M) Time (S)

Supervised
RetinexNet [5] 15.49/0.355 0.4446 0.337
LLFlow [1] 17.52/0.509 38.859 0.144
RetinexFormer [2] 17.76/0.517 1.6057 0.072

Unsupervised

SCI-medium [11] 15.24/0.424 0.0003 0.001
RUAS [10] 14.27/0.470 0.0034 0.006
ZeroDCE [6] 15.81/0.449 0.0794 0.004
PairLIE [13] 16.97/0.498 0.3417 0.008
CLODE 17.28/0.533 0.2167 0.056
CLODE-S 16.97/0.457 0.0004 0.005

Effect of the Modules In Table 4, we conduct ablation experiments on the modules used in319

ODEfunc fθ. We verify the effects of the Noise Removal module g and the layer normalization320

(LN) in the Curve Parameter Estimation module h. Each module shows performance improvements321

compared to the baseline (a2). In particular, our final model (d2) achieves the largest performance322

gain in terms of PSNR/SSIM. Furthermore, case (c2), which includes layer normalization, has about323

a 4dB gain in PSNR compared to (a2), which does not include layer normalization. This shows324

that during the image enhancement process in NODE, it is essential to use layer normalization to325

normalize each state. The visual results can be seen in Fig. 8 of the Appendix.326

5 Limitations327

Table 5 shows the performance of PSNR/SSIM, number of parameters, and execution time measured328

in LSRW [4] using an NVIDIA RTX 4090. CLODE shows the advantage in model size compared to329

supervised methods. The iterative ODE solving process of CLODE takes longer than lightweight330

unsupervised models, but it exhibits faster speed and performance comparable to supervised meth-331

ods. Additionally, a smaller version, CLODE-S in Appendix A.1.2 shows promising enhancement332

performance with competitive inference time comparable to those of unsupervised models.333

6 Conclusions334

In this work, we address the unsupervised low-light image enhancement problem by formulating335

it as a NODE problem. We introduce a novel iterative curve-adjustment approach with NODE,336

transforming discrete iterative problems into continuous ones. CLODE exhibits superior convergence337

compared to other unsupervised iterative methods, especially in diverse low-light and multi-exposure338

scenarios. In conclusion, our method effectively narrows the performance gap between unsupervised339

and supervised methods across various datasets.340
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A Appendix455

A.1 Implement Details456

The training set of images is resized to 128x128, we employ the Pytorch framework on NVIDIA457

A6000 GPU with a batch size of 8. The ADAM optimizer is used with default parameters and a fixed458

learning rate of 1e−5 to optimize the parameters of our network. The weights for the loss function459

wcol, wparam, wspa, wexp and wnoise are set to 20, 200, 1, 10 and 1 respectively, to balance the scale460

of losses. Furthermore, we adopt torchdiffeq [48] for Neural ODEs implementation. The training461

process is conducted for 100 epochs.462

A.1.1 Implementation details of NODE463

We utilize the adaptive ODE solver, dopri5 (Dormand-Prince Runge-Kutta of Order 5) for our work.464

The maximum allowed step for the adaptive solver is set to 30. The relative and absolute tolerances465

for the error rate calculation are set uniformly to 1e−5. The adaptive solver uses the error rate to466

determine the steps. Also, the adaptive solver estimates an error rate for the current step t, and if467

the error exceeds the allowable tolerances, the step is re-done with a smaller step size. This process468

continues until the error becomes smaller than the provided tolerance. The error rate Γt at the t-th469

step is computed as follows:470

Γt = atol × rtol × norm(It), (18)

where atol is absolute tolerance, and rtol is relative tolerate, and the norm being used is a mixed471

L-infinity/RMS norm. We set both atol and rtol to 1e-5.472

A.1.2 Details of the CLODE architecture473

This section presents the architectural details of the CLODE network architecture, with a particular474

focus on the ODEfunc module. The Noise Removal module g employs a simple and lightweight475

three-layer convolutional network. In Curve Parameter Estimation module h, a shallow network476

with two branches is utilized, wherein filters of varying sizes are employed at each branch to capture477

image features across different filter scales. We also provide architectural details of CLODE-S as478

mentioned in Sec. 5 of the main manuscript. This version omits the Noise Removal module for speed479

and uses a 2-layer network with 1x1 convolutions.
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Figure 6: Illustration of architecture details of (a) modules of ODEfunc in CLODE and (b) ODEfunc
of CLODE-S.

480

A.2 Impact of Each Loss Functions481

CLODE combines five non-reference loss functions to train NODE, producing optimal improvements.482

We present ablation experiments for each loss function, and the results are presented in Table 6 and483

Fig. 7. The results of each image ablation experiment demonstrate that appropriate improvement484

results can only be obtained when using CLODE with all loss functions. The characteristics of the485

loss function as observed in each ablation are as follows: ((a3) w/o Lexp): Brightness improvement486

is not achieved in low-exposure enhancement. ((b3) w/o Lcol): Severe color distortion occurs in487

over-exposure enhancement, damaging structural details. ((c3) w/o Lparam): Structural distortion488

occurs, creating artifacts. ((d3) w/o Lspa): While showing better results than other experiments, it489
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(d3) w/o ℒ𝒔𝒑𝒂Input (b3) w/o ℒ𝒄𝒐𝒍(a3) w/o ℒ𝒆𝒙𝒑 (c3) w/o ℒ𝒑𝒂𝒓𝒂𝒎 (e3) ℒ𝒆𝒙𝒑 + ℒ𝒄𝒐𝒍 + ℒ𝒑𝒂𝒓𝒂𝒎 + ℒ𝒔𝒑𝒂 

Input (e3) w/o ℒ𝒏𝒐𝒊𝒔𝒆 (f3) CLODE

Figure 7: Visual results for the ablation study of each loss function. CLODE combines five non-
reference loss functions in training for producing optimal enhancement results.

Table 6: Ablation study on each non-reference losses. The experiment is evaluated on LOL [5].

Case Lspa Lexp Lcol Lparam Lnoise PSNR SSIM

(a3) ✓ ✓ ✓ 8.84 0.323
(b3) ✓ ✓ ✓ 14.72 0.566
(c3) ✓ ✓ ✓ 14.76 0.535
(d3) ✓ ✓ ✓ 18.76 0.580
(e3) ✓ ✓ ✓ ✓ 18.92 0.582
(f3) ✓ ✓ ✓ ✓ ✓ 19.61 0.718

occurs loss of structural details compared to (e3). ((e3) w/o LNoise): Compared to the proposed490

version (f3), it produces improved results with noise present.491

A.3 Visualization of curve parameter map A492

We provide visual comparison results for the module ablation experiments in Sec. 4.5 of the main493

manuscript. In the visual results without noise removal module (c2), we can observe the noise in494

A. The enhanced result of (c2) using A with noise shows overall color discrepancy compared to495

the ground-truth, in contrast to the enhanced result of (d2) where the noise removal module are496

applied. The enhanced result of (d2) shows robust color similarity with the ground-truth image. We497

can confirm that removing noise for A is important for curve-adjustment-based method.498

Input Ground-Truth(d2) 𝒜(c2) 𝒜 (c2) enhanced (d2) enhanced

Figure 8: A visual comparison of the results for (c2) and (d2) from Table 4 in the main manuscript.
The enhanced result (d2) using A with noise removal module demonstrates improvement more similar
to the ground-truth.
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A.4 Background of Noise Removal Loss499

In Sec.3.4 we provide information about the zero-reference loss functions that we used. Unlike the500

others, the Noise Removal Loss (Lnoise) requires more explanation due to its unfamiliarity in the501

field of low-light enhancement, so we provide additional explanation for it.502

A.4.1 Noise2Noise background503

In supervised denoising studies, neural networks are aimed at denoising the noisy image y to the504

clean image x. Since the noisy y is an addition of the clean image x and the noise e, the network is505

trained to map the noise e which is called Noise2Clean (N2C) method. If the network parameter is506

ϕN2C , the object function of the supervised denoising method with the network gϕ can be written as:507

ϕN2C = argmin
ϕ

E
[
||gϕ(y)− x||22

]
. (19)

Denoising networks can also be trained to output the noisy image y2 from the noisy input image y1508

that comes from the same clean image x. This noise-to-noise manner can be achieved by assuming509

that the noise has a mean of zero as introduced in Noise2Noise (N2N) [31]. This is the objective510

function for the N2N network parameter ϕN2N :511

ϕN2N = argmin
ϕ

E
[
||gϕ(y2)− y1||22

]
. (20)

The N2N manner shows close performance compare to N2C manner with sufficient training data since512

the objective functions of N2C and N2N are aimed on the same network parameter. If ya = x + ea,513

yb = x + eb, and the mean value of ea and eb are zero, the proof is as follows:514

ϕN2C =argmin
ϕ

E
[
||gϕ(y2)− x||22

]
=argmin

ϕ
E
[
||gϕ(y2)||22 − 2x⊺gϕ(y2) + ||x||22

]
=argmin

ϕ
E
[
||gϕ(y2)||22 − 2x⊺gϕ(y2)

]
ϕN2N =argmin

ϕ
E
[
||gϕ(y2)− y1||22

]
=argmin

ϕ
E
[
||gϕ(y2)− (x + e1)||22

]
=argmin

ϕ
E
[
||gϕ(y2)||22 − 2x⊺gϕ(y2)− 2e⊺2gϕ(y2) + ||x + e1||22

]
=argmin

ϕ
E
[
||gϕ(y2)||22 − 2x⊺gϕ(y2)− 2e⊺2gϕ(y2)

]
=argmin

ϕ
E
[
||gϕ(y2)||22 − 2x⊺gϕ(y2)

]
.

(21)

By Eq. 21 we can confirm that the object of ϕN2C and ϕN2N is the identical one.515

A.4.2 Zeroshot Noise2Noise method516

In spite of N2N approaches, it is hard to obtain two different noisy images from the same clean517

scene. To address this hurdle, the Neighbor2Neighbor [32] method is proposed. This allows a pair518

of noisy images to be augmented from a single noisy image coming from the same clean image. In519

Zeroshot-N2N [33], which is adopted in our proposed method, Neighbor2Neighbor is achieved by520

using two different 2D convolutional kernels (D1 and D2) on noisy images. If the noisy image is y, a521

pair of down-sampled images y1, y2 can be represented as:522

y1 = D1(y), y2 = D2(y). (22)

For a noisy image y with a size of H × W × C, the size of y1 and y2 is H
2 × W

2 × C. With523

downsampled images y1 and y2, the loss optimizes gϕ to fit the noise as:524
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argmin
ϕ

||gϕ(y1)− y2||22. (23)

Zeroshot-N2N [33] emphasizes that residual learning, a symmetry loss, and an additional coherence-525

enhancing term are critical for good performance. Zeroshot-N2N proposes two different loss functions,526

the residual loss Lres and the consistency loss Lcons. First, the residual loss optimizes the network527

gϕ to fit the noise instead of image. The loss then becomes as:528

argmin
ϕ

||y1 − gϕ(y1)− y2||22. (24)

To fit the noise in y1 and y2 both, a symmetric loss [34] is applied as:529

Lres(ϕ) =
1

2

(
||y1 − gϕ(y1)− y2||22 + ||y2 − gϕ(y2)− y1||22

)
. (25)

Second, the method constrain consistency by making denoised output of the downsampled image and530

downsampled result of the denoised image like:531

argmin
ϕ

||y1 − gϕ(y1)−D1(y1 − gϕ(y1))||22. (26)

Same as Eq. 25, with the adoption of a symmetric manner, the consistency loss is represented as:532

Lcons(ϕ) =
1

2

(
||y1 − gϕ(y1)−D1(y1 − gϕ(y1))||22 + ||y2 − gϕ(y2)−D2(y2 − gϕ(y2))||22

)
. (27)

The noise removal loss function Lnoise in Zeroshot-N2N becomes the sum of Eq. 25 and Eq. 27,533

expressed as:534

Lnoise = Lres + Lcons. (28)

A.4.3 More Quantitative Results535

We present the comparison results for non-reference metrics, which we did not include in Table 1.536

Table 7 demonstrates that CLODE outperforms other unsupervised methods in terms of perceptual537

quality. Notably, it demonstrates competitive results in terms of BRISQUE and PI, even when538

compared to state-of-the-art supervised methods.539

Table 7: Comparison results on LSRW [4] and LOL [5] in terms of NIQE [44], BRISQUE [45],
PI [46] and Entropy [47]. Within the unsupervised approaches, the best score is displayed in Red.
LLNODE performs better than all other methods, including supervised methods, in terms of PI
(Perceptual Index).

Training Method LSRW LOL
NIQE↓ BRISQUE↓ PI↓ Entropy↑ NIQE↓ BRISQUE↓ PI↓ Entropy↑

Supervised

Afifi et al. [49] 6.655 46.645 6.470 7.065 4.966 33.546 5.741 7.173
RetinexNet [5] - - - - 8.871 51.813 4.955 6.835
URetinexNet [37] 4.154 23.614 3.495 6.762 4.250 15.633 3.372 6.926
LLFlow [1] 3.756 26.671 3.176 7.369 5.709 35.022 4.530 7.141
RetinexFormer [2] 3.549 15.951 3.208 7.131 3.478 17.101 3.102 7.074

Unsupervised

SCI-easy [11] 3.847 25.859 3.259 6.388 7.153 12.424 5.437 5.825
SCI-medium [11] 3.917 22.416 3.159 6.494 7.861 25.870 4.583 6.842
SCI-difficult [11] 4.368 20.692 3.851 5.975 8.060 26.823 4.664 6.675
RUAS [10] 5.426 38.854 4.939 6.442 6.303 11.977 4.571 7.194
ZeroDCE [6] 3.776 23.867 3.156 6.526 7.777 27.301 4.459 6.608
Night-Enhancement [17] 7.208 51.356 6.801 6.544 4.491 27.122 4.436 7.139
PairLIE [13] 3.684 29.816 3.426 6.923 4.083 20.592 3.052 6.823
CLODE 3.827 18.426 3.115 7.025 4.516 8.220 2.914 7.053

A.4.4 Comparison with other iterative methods540

Fig. 9 shows the changes in performance over steps of each curve-adjustment-based method. Each541

comparison method is retrained for 10 steps in the official code provided by the author. To fix the542

number of steps in CLODE to 10, we replace CLODE’s ODE solver with the Euler method, and543
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referred to it as CLODE-Euler. The results show that even within the same number of steps, CLODE-544

Euler performs better than other curve adjustment-based methods. Furthermore, the proposed version,545

CLODE, demonstrates higher performance compared to other methods in most iterative steps.546

In case of ReLLIE [9], it exhibits a decline in performance after 7 steps, emphasizing the need547

for careful selection of the number of iterative steps itself to achieve optimal result, this makes the548

method impractical to use.549
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Figure 9: Changes in PSNR (Peak Signal-to-Noise Ratio) over steps of CLODE, CLODE-Euler,
ReLLIE [9], ZeroDCE++ [8], and ZeroDCE [6]. As CLODE employs a continuous adaptive
step according to the input image, we represent the steps by scaling them from 0 to 1. CLODE
demonstrates superior performance compared to other methods at almost every step.

A.5 More visual results550

We show additional results for CLODE enhancement that we did not show in the main manuscript551

due to lack of space. We present additional visual comparison results for PairLIE [13] and Night-552

Enhancement [17], which demonstrated the best quantitative performance among the unsupervised553

methods in Table 1 of the main manuscript, except for our proposed method (CLODE), in Fig. 10.554

CLODE shows the most robust enhancement results across various image exposure conditions.555

Fig. 11, Fig. 12, Fig. 13 and Fig. 14 show the results for CLODE and CLODE† on LOL [5] and556

SICE [35] validation dataset. Additionally, Fig. 15 shows the visual results with different exposures557

for photos extracted from MSEC [49] and the internet (Filckr: CC BY-NC 2.0).558

Input (b) CLODE(a)

Figure 10: Comparative visualization results with (a) PairLIE [13] and (b) night-enhancement [17]
on LOL [5] and SICE [35]. Images are taken from LSRW [4] and SICE [35] Part2.
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Ground-TruthCLODEInput CLODE†

Figure 11: Visualization results on LOL [5]. While CLODE demonstrates superior enhancement
results, user control with CLODE† produces images that more closely resemble the ground-truth
image.
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Ground-TruthCLODEInput CLODE†

Figure 12: Visualization results on LOL [5] and SICE [35]. While CLODE demonstrates superior
enhancement results, user control with CLODE† produces images that more closely resemble the
ground-truth image.
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Ground-TruthInput CLODE CLODE†

Figure 13: Visualization results on SICE [35]. While CLODE demonstrates superior enhancement
results, user control with CLODE† produces images that more closely resemble the ground-truth
image.
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Ground-TruthInput CLODE CLODE†

Figure 14: Visualization results on SICE [35]. While CLODE demonstrates superior enhancement
results, user control with CLODE† produces images that more closely resemble the ground-truth
image.
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CLODEInput CLODEInput

By julochka (Flickr: CC BY-NC 2.0)

Figure 15: Visualization results on MSEC [49] and extracted from internet (Flickr by julochka). Even
with diverse inputs of various exposures, CLODE show robust result in an unsupervised manner.
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NeurIPS Paper Checklist559

1. Claims560

Question: Do the main claims made in the abstract and introduction accurately reflect the561

paper’s contributions and scope?562

Answer: [Yes]563

Justification: We presented the contributions and effects of our method in the abstract and564

introduction, and demonstrated them through experiments.565

Guidelines:566

• The answer NA means that the abstract and introduction do not include the claims567

made in the paper.568

• The abstract and/or introduction should clearly state the claims made, including the569

contributions made in the paper and important assumptions and limitations. A No or570

NA answer to this question will not be perceived well by the reviewers.571

• The claims made should match theoretical and experimental results, and reflect how572

much the results can be expected to generalize to other settings.573

• It is fine to include aspirational goals as motivation as long as it is clear that these goals574

are not attained by the paper.575

2. Limitations576

Question: Does the paper discuss the limitations of the work performed by the authors?577

Answer: [Yes]578

Justification: There is a "Limitation" section containing information about the execution579

speed of our method.580

Guidelines:581

• The answer NA means that the paper has no limitation while the answer No means that582

the paper has limitations, but those are not discussed in the paper.583

• The authors are encouraged to create a separate "Limitations" section in their paper.584

• The paper should point out any strong assumptions and how robust the results are to585

violations of these assumptions (e.g., independence assumptions, noiseless settings,586

model well-specification, asymptotic approximations only holding locally). The authors587

should reflect on how these assumptions might be violated in practice and what the588

implications would be.589

• The authors should reflect on the scope of the claims made, e.g., if the approach was590

only tested on a few datasets or with a few runs. In general, empirical results often591

depend on implicit assumptions, which should be articulated.592

• The authors should reflect on the factors that influence the performance of the approach.593

For example, a facial recognition algorithm may perform poorly when image resolution594

is low or images are taken in low lighting. Or a speech-to-text system might not be595

used reliably to provide closed captions for online lectures because it fails to handle596

technical jargon.597

• The authors should discuss the computational efficiency of the proposed algorithms598

and how they scale with dataset size.599

• If applicable, the authors should discuss possible limitations of their approach to600

address problems of privacy and fairness.601

• While the authors might fear that complete honesty about limitations might be used by602

reviewers as grounds for rejection, a worse outcome might be that reviewers discover603

limitations that aren’t acknowledged in the paper. The authors should use their best604

judgment and recognize that individual actions in favor of transparency play an impor-605

tant role in developing norms that preserve the integrity of the community. Reviewers606

will be specifically instructed to not penalize honesty concerning limitations.607

3. Theory Assumptions and Proofs608

Question: For each theoretical result, does the paper provide the full set of assumptions and609

a complete (and correct) proof?610
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Answer: [Yes]611

Justification: Our paper reports the theoretical approaches of the NODE reformulation612

process for curve adjustment equations.613

Guidelines:614

• The answer NA means that the paper does not include theoretical results.615

• All the theorems, formulas, and proofs in the paper should be numbered and cross-616

referenced.617

• All assumptions should be clearly stated or referenced in the statement of any theorems.618

• The proofs can either appear in the main paper or the supplemental material, but if619

they appear in the supplemental material, the authors are encouraged to provide a short620

proof sketch to provide intuition.621

• Inversely, any informal proof provided in the core of the paper should be complemented622

by formal proofs provided in appendix or supplemental material.623

• Theorems and Lemmas that the proof relies upon should be properly referenced.624

4. Experimental Result Reproducibility625

Question: Does the paper fully disclose all the information needed to reproduce the main ex-626

perimental results of the paper to the extent that it affects the main claims and/or conclusions627

of the paper (regardless of whether the code and data are provided or not)?628

Answer: [Yes]629

Justification: Our paper includes main experimental results as well as ablation experiment630

results.631

Guidelines:632

• The answer NA means that the paper does not include experiments.633

• If the paper includes experiments, a No answer to this question will not be perceived634

well by the reviewers: Making the paper reproducible is important, regardless of635

whether the code and data are provided or not.636

• If the contribution is a dataset and/or model, the authors should describe the steps taken637

to make their results reproducible or verifiable.638

• Depending on the contribution, reproducibility can be accomplished in various ways.639

For example, if the contribution is a novel architecture, describing the architecture fully640

might suffice, or if the contribution is a specific model and empirical evaluation, it may641

be necessary to either make it possible for others to replicate the model with the same642

dataset, or provide access to the model. In general. releasing code and data is often643

one good way to accomplish this, but reproducibility can also be provided via detailed644

instructions for how to replicate the results, access to a hosted model (e.g., in the case645

of a large language model), releasing of a model checkpoint, or other means that are646

appropriate to the research performed.647

• While NeurIPS does not require releasing code, the conference does require all submis-648

sions to provide some reasonable avenue for reproducibility, which may depend on the649

nature of the contribution. For example650

(a) If the contribution is primarily a new algorithm, the paper should make it clear how651

to reproduce that algorithm.652

(b) If the contribution is primarily a new model architecture, the paper should describe653

the architecture clearly and fully.654

(c) If the contribution is a new model (e.g., a large language model), then there should655

either be a way to access this model for reproducing the results or a way to reproduce656

the model (e.g., with an open-source dataset or instructions for how to construct657

the dataset).658

(d) We recognize that reproducibility may be tricky in some cases, in which case659

authors are welcome to describe the particular way they provide for reproducibility.660

In the case of closed-source models, it may be that access to the model is limited in661

some way (e.g., to registered users), but it should be possible for other researchers662

to have some path to reproducing or verifying the results.663

5. Open access to data and code664
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Question: Does the paper provide open access to the data and code, with sufficient instruc-665

tions to faithfully reproduce the main experimental results, as described in supplemental666

material?667

Answer: [Yes]668

Justification: In our paper, we include the rationale behind NODE reformulation along669

with the workflow, and provide the network architecture in the appendix. This ensures670

reproducibility, and we will also provide the code upon acceptance.671

Guidelines:672

• The answer NA means that paper does not include experiments requiring code.673

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/674

public/guides/CodeSubmissionPolicy) for more details.675

• While we encourage the release of code and data, we understand that this might not be676

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not677

including code, unless this is central to the contribution (e.g., for a new open-source678

benchmark).679

• The instructions should contain the exact command and environment needed to run to680

reproduce the results. See the NeurIPS code and data submission guidelines (https:681

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.682

• The authors should provide instructions on data access and preparation, including how683

to access the raw data, preprocessed data, intermediate data, and generated data, etc.684

• The authors should provide scripts to reproduce all experimental results for the new685

proposed method and baselines. If only a subset of experiments are reproducible, they686

should state which ones are omitted from the script and why.687

• At submission time, to preserve anonymity, the authors should release anonymized688

versions (if applicable).689

• Providing as much information as possible in supplemental material (appended to the690

paper) is recommended, but including URLs to data and code is permitted.691

6. Experimental Setting/Details692

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-693

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the694

results?695

Answer: [Yes]696

Justification: We included details about the dataset used for training in the main manuscript,697

while other hyperparameters, weights, etc., are documented in the appendix.698

Guidelines:699

• The answer NA means that the paper does not include experiments.700

• The experimental setting should be presented in the core of the paper to a level of detail701

that is necessary to appreciate the results and make sense of them.702

• The full details can be provided either with the code, in appendix, or as supplemental703

material.704

7. Experiment Statistical Significance705

Question: Does the paper report error bars suitably and correctly defined or other appropriate706

information about the statistical significance of the experiments?707

Answer: [Yes]708

Justification: We provide detailed information on low-light performance validation, the709

impact of main contributions, and performance validation through ablation studies.710

Guidelines:711

• The answer NA means that the paper does not include experiments.712

• The authors should answer "Yes" if the results are accompanied by error bars, confi-713

dence intervals, or statistical significance tests, at least for the experiments that support714

the main claims of the paper.715
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• The factors of variability that the error bars are capturing should be clearly stated (for716

example, train/test split, initialization, random drawing of some parameter, or overall717

run with given experimental conditions).718

• The method for calculating the error bars should be explained (closed form formula,719

call to a library function, bootstrap, etc.)720

• The assumptions made should be given (e.g., Normally distributed errors).721

• It should be clear whether the error bar is the standard deviation or the standard error722

of the mean.723

• It is OK to report 1-sigma error bars, but one should state it. The authors should724

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis725

of Normality of errors is not verified.726

• For asymmetric distributions, the authors should be careful not to show in tables or727

figures symmetric error bars that would yield results that are out of range (e.g. negative728

error rates).729

• If error bars are reported in tables or plots, The authors should explain in the text how730

they were calculated and reference the corresponding figures or tables in the text.731

8. Experiments Compute Resources732

Question: For each experiment, does the paper provide sufficient information on the com-733

puter resources (type of compute workers, memory, time of execution) needed to reproduce734

the experiments?735

Answer: [Yes]736

Justification: We provide information about the GPU resources used and the execution time.737

Guidelines:738

• The answer NA means that the paper does not include experiments.739

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,740

or cloud provider, including relevant memory and storage.741

• The paper should provide the amount of compute required for each of the individual742

experimental runs as well as estimate the total compute.743

• The paper should disclose whether the full research project required more compute744

than the experiments reported in the paper (e.g., preliminary or failed experiments that745

didn’t make it into the paper).746

9. Code Of Ethics747

Question: Does the research conducted in the paper conform, in every respect, with the748

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?749

Answer: [Yes]750

Justification: We have reviewed the ethical guidelines (Code of Ethics) and ensured compli-751

ance.752

Guidelines:753

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.754

• If the authors answer No, they should explain the special circumstances that require a755

deviation from the Code of Ethics.756

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-757

eration due to laws or regulations in their jurisdiction).758

10. Broader Impacts759

Question: Does the paper discuss both potential positive societal impacts and negative760

societal impacts of the work performed?761

Answer: [NA]762

Justification: There is no societal impact of our work.763

Guidelines:764

• The answer NA means that there is no societal impact of the work performed.765
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• If the authors answer NA or No, they should explain why their work has no societal766

impact or why the paper does not address societal impact.767

• Examples of negative societal impacts include potential malicious or unintended uses768

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations769

(e.g., deployment of technologies that could make decisions that unfairly impact specific770

groups), privacy considerations, and security considerations.771

• The conference expects that many papers will be foundational research and not tied772

to particular applications, let alone deployments. However, if there is a direct path to773

any negative applications, the authors should point it out. For example, it is legitimate774

to point out that an improvement in the quality of generative models could be used to775

generate deepfakes for disinformation. On the other hand, it is not needed to point out776

that a generic algorithm for optimizing neural networks could enable people to train777

models that generate Deepfakes faster.778

• The authors should consider possible harms that could arise when the technology is779

being used as intended and functioning correctly, harms that could arise when the780

technology is being used as intended but gives incorrect results, and harms following781

from (intentional or unintentional) misuse of the technology.782

• If there are negative societal impacts, the authors could also discuss possible mitigation783

strategies (e.g., gated release of models, providing defenses in addition to attacks,784

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from785

feedback over time, improving the efficiency and accessibility of ML).786

11. Safeguards787

Question: Does the paper describe safeguards that have been put in place for responsible788

release of data or models that have a high risk for misuse (e.g., pretrained language models,789

image generators, or scraped datasets)?790

Answer: [NA]791

Justification: Our proposed model does not include a high risk for misuse.792

Guidelines:793

• The answer NA means that the paper poses no such risks.794

• Released models that have a high risk for misuse or dual-use should be released with795

necessary safeguards to allow for controlled use of the model, for example by requiring796

that users adhere to usage guidelines or restrictions to access the model or implementing797

safety filters.798

• Datasets that have been scraped from the Internet could pose safety risks. The authors799

should describe how they avoided releasing unsafe images.800

• We recognize that providing effective safeguards is challenging, and many papers do801

not require this, but we encourage authors to take this into account and make a best802

faith effort.803

12. Licenses for existing assets804

Question: Are the creators or original owners of assets (e.g., code, data, models), used in805

the paper, properly credited and are the license and terms of use explicitly mentioned and806

properly respected?807

Answer: [Yes]808

Justification: We will accurately specify the original owner’s license and share the code809

upon acceptance. Additionally, the source and the original owner’s name for the single810

image used in the appendix have been indicated on the image.811

Guidelines:812

• The answer NA means that the paper does not use existing assets.813

• The authors should cite the original paper that produced the code package or dataset.814

• The authors should state which version of the asset is used and, if possible, include a815

URL.816

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.817
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• For scraped data from a particular source (e.g., website), the copyright and terms of818

service of that source should be provided.819

• If assets are released, the license, copyright information, and terms of use in the820

package should be provided. For popular datasets, paperswithcode.com/datasets821

has curated licenses for some datasets. Their licensing guide can help determine the822

license of a dataset.823

• For existing datasets that are re-packaged, both the original license and the license of824

the derived asset (if it has changed) should be provided.825

• If this information is not available online, the authors are encouraged to reach out to826

the asset’s creators.827

13. New Assets828

Question: Are new assets introduced in the paper well documented and is the documentation829

provided alongside the assets?830

Answer: [NA]831

Justification: We do not introduce new assets in this paper.832

Guidelines:833

• The answer NA means that the paper does not release new assets.834

• Researchers should communicate the details of the dataset/code/model as part of their835

submissions via structured templates. This includes details about training, license,836

limitations, etc.837

• The paper should discuss whether and how consent was obtained from people whose838

asset is used.839

• At submission time, remember to anonymize your assets (if applicable). You can either840

create an anonymized URL or include an anonymized zip file.841

14. Crowdsourcing and Research with Human Subjects842

Question: For crowdsourcing experiments and research with human subjects, does the paper843

include the full text of instructions given to participants and screenshots, if applicable, as844

well as details about compensation (if any)?845

Answer: [NA]846

Justification: Our paper does not involve crowdsourcing nor research with human subjects.847

Guidelines:848

• The answer NA means that the paper does not involve crowdsourcing nor research with849

human subjects.850

• Including this information in the supplemental material is fine, but if the main contribu-851

tion of the paper involves human subjects, then as much detail as possible should be852

included in the main paper.853

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,854

or other labor should be paid at least the minimum wage in the country of the data855

collector.856

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human857

Subjects858

Question: Does the paper describe potential risks incurred by study participants, whether859

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)860

approvals (or an equivalent approval/review based on the requirements of your country or861

institution) were obtained?862

Answer: [NA]863

Justification: Our paper does not involve crowdsourcing nor research with human subjects.864

Guidelines:865

• The answer NA means that the paper does not involve crowdsourcing nor research with866

human subjects.867
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• Depending on the country in which research is conducted, IRB approval (or equivalent)868

may be required for any human subjects research. If you obtained IRB approval, you869

should clearly state this in the paper.870

• We recognize that the procedures for this may vary significantly between institutions871

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the872

guidelines for their institution.873

• For initial submissions, do not include any information that would break anonymity (if874

applicable), such as the institution conducting the review.875
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