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Abstract— Viewpoint planning is an important task in any
application where objects or scenes need to be viewed from
different angles to achieve sufficient coverage. The mapping
of confined spaces such as shelves is an especially challenging
task since objects occlude each other and the scene can
only be observed from the front, thus with limited possible
viewpoints. In this paper, we propose a deep reinforcement
learning framework that generates promising views aiming at
reducing the map entropy. Additionally, the pipeline extends
standard viewpoint planning by predicting adequate minimally
invasive push actions to uncover occluded objects and increase
the visible space. Using a 2.5D occupancy height map as
state representation that can be efficiently updated, our system
decides whether to plan a new viewpoint or perform a push. To
learn feasible pushes, we use a neural network to sample push
candidates on the map and have human experts manually label
them to indicate whether the sampled push is a good action to
perform. As simulated and real-world experimental results with
a robotic arm show, our system is able to significantly increase
the mapped space compared to different baselines, while the
executed push actions highly benefit the viewpoint planner with
only minor changes to the object configuration.

I. INTRODUCTION

Viewpoint planning (VPP) is crucial in robotic applica-
tions for understanding the environment, such as identi-
fying occluded objects [1], estimating fruit yields [2], or
determining optimal grasping positions [3]. However, VPP
performance varies with the scenario, as environments can
constrain actions and reduce possible coverage. Especially,
confined spaces, such as shelves or refrigerators, limit robots
to only a few viewpoints, making mapping difficult when
multiple objects are present.

In particular, without the top-down view from above a
scene the identification and mapping of objects can be
difficult, especially for objects hidden behind others or closer
to the back of a shelf. While manipulation actions can
unveil such occluded space, human preferences in indoor
environment arrangement must be considered [4]. Therefore,
minimally invasive pushing actions are preferred to avoid
unwanted layout changes. Additionally, identifying promis-
ing non-prehensile push positions is easier than grasping
poses for object rearrangement, due to the limited number
of possible actions.
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Fig. 1: Motivation of our approach. The robot aims to create a
complete 2.5D occupancy height map of the shelf board, which is
challenging due to large objects blocking the view. However, by
manipulating the right box, the information value of the viewpoint
increases significantly due to the newly uncovered object (white
circle).

Fig.1 shows an example scenario where a packed shelf
board needs to be mapped. As can be seen, a short minimally
invasive push is sufficient to move one of the larger boxes,
exposing the space behind it and unveil the previously
occluded can.

In this paper, we present a novel framework called view-
point push planning, which uses deep reinforcement learning
(DRL) to perform VPP in confined scenarios and predict
suitable non-prehensile push actions to improve shelf cover-
age. As map representation our framework generates a 2.5D
occupancy height map from 3D point clouds obtained from
an RGB-D image. Furthermore, We use a push prediction
network trained in a supervised manner to output the best
pushing action. An action selection method is used to decide
whether VPP or a pushing action is best given the current
situation. DRL can learn the best viewpoints from experience
and generalize them to different configurations, avoiding
unnecessary push actions that alter the environment too
much.

Regarding related work, we differ from Zeng et al. [5],
since we use no computationally expensive octomap ray
casting. Besides, previous work in the area of interaction with
objects in confined spaces has concentrated on reasoning
about individual objects [6]—[8] or their retrieval [9]—[13]
but not on the complete apriori mapping of the shelf. Fur-
thermore we differ from Miao et al. [14], since we perform
no time intensive 3d reconstruction of the objects.

The experimental evaluation of our approach shows that
our learned VPP significantly reduces map entropy compared
to two baselines and two VPP systems from the literature
[15], [16]. Our complete framework, including push predic-



tions, further reduces entropy. The main contributions of our
work are as follows:
o« A 2.5D heightmap representation for confined space
mapping
o A deep reinforcement learning-based viewpoint plan-
ning framework with pushing actions
« A qualitative and quantitative evaluation on a real robot
and in simulation, including the usability of our map
representation for object reasoning and

II. OUR APPROACH

In the following, we first give an overview of our system
and introduce our framework in detail afterwards.

A. Overview

We consider the problem of mapping a confined shelf
environment using a stationary robotic arm to capture as
much of the shelf board as possible, despite occlusions
from various objects. We consider the following problem.
Our system receives a depth map from an RGB-D camera
on the arm’s end-effector and back-projects it into a 2.5D
occupancy height map, as shown in Fig. 2. To facilitate faster
convergence of the DRL-agent for viewpoint planning, we
use a variational auto-encoder [17] to encode the height map
into a 32-dimensional latent space. Furthermore, we sample
push proposals to predict the best minimally invasive push
action for unveiling additional space on the height map and
to address the occlusion issue. Depending on the change in
mapped space, an action selection method decides whether
the best action is a push, moving to a new viewpoint, or if
the mapping process is complete.

B. Environment Representation

We use a 2.5D representation of the environment since it
can be efficiently updated. From a depth image, we compute
the corresponding point cloud and orthographically back-
project it into the top-down view of the scene to calculate a
2.5D occupancy height map as shown in Fig.3. To update the
map, we implemented log-odds for occupancy updates [18]
and update only the cells in the current field of view. For
the height component of the map, we use the maximum
measured height value for each cell.

In case grasping requires a more accurate representation of
the objects, our map can be used to plan a path to the object,
while the actual grasping action can be performed on a local
higher dimensional representation. As previous approaches
have shown, 2.5D representations can be used to compute
grasping points and manipulate objects [19]-[21].

C. Viewpoint Planning (VPP)

In this paper, we use DRL to generate the next best view
for VPP, aiming to map the environment as completely as
possible. We generate three fixed viewpoints at the beginning
of each episode, as in [22], to generate an initial map with at
least 50% coverage, reducing the need for the agent to learn
initial viewpoints that stay the same for each configuration.
To evaluate the agent’s quality, we use entropy h(M),

information gain IG(M), and motion cost ¢(p;) as defined

below: .
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h(M) is the ratio of unknown cells m/, to total cells of map

M at time t. We consider cells with occupancy probability
occ > 0.5 4+ Tynknown as occupied, occ < 0.5 — Tynknown
as free, and unknown otherwise. IG(M) indicates the per-
centage decrease of unknown cells m,, from time step ¢t — 1
to t. ¢(p) is the Euclidean distance between two viewpoints
pe—1 and py.

During training, an episode ends if the change of h(M)
for the last three viewpoints is below threshold 74, and
the sum of changes is below threshold 7,,,. We terminate
the episode if any part of the arm has contact with an object
or an object drops in or out of the shelf.

Next, we define the actions, observations, and the reward
function of our agent.

1) Action Space: As action we use the 5D Cartesian
pose (x,y, z, pitch, yaw) of the camera on the end effector.

2) Observation Space: The observation space consists of
the latent space of the state representation (32), the last action
in Cartesian coordinates (5), the information gain (1) the
agent receives from this viewpoint, as well as the motion
cost (1) to move there. Furthermore, we also included the
collision indication (1) and the center point of the largest
unknown area in the map (3) to give the agent an indication
of a promising region of interest.

3) Reward: We keep the reward function as simple as
possible to aid the training. The reward consists of two parts:

—25, if collision or drop from shelf

Tsparse = (4)
0, else

Tcont = Q ok _C(pt) + ﬁ * IG(M) ®)

Tsparse Penalizes each contact with the object. Since the goal
is to map the environment in as few time steps as possible,
we penalize each step in r.,,; according to the move cost
¢(pt). The higher IG(M ), the more space has been unveiled
during one step, which is positively rewarded. o and § are
used to weight closer viewpoints with the effectiveness of
the viewpoint. Finally, the total reward can be expressed as
T = Tsparse + Tcont-

D. Push Prediction

Standard viewpoint planning performs actions aiming at
minimizing the entropy without altering the environment. In
contrast, interactive perception [23] as proposed in this paper
performs additional actions to change the current object
configuration to support perception and coverage of the
environment. However, any manipulation action constitutes
a trade-off between reducing the entropy of the environment
and disrupting the current configuration of the scene. Thus,
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Fig. 2: Framework Overview: Our system converts a depth map from an RGB-D camera into a point cloud. This cloud is backprojected
into a 2.5D occupancy height map and fed into a variational auto-encoder to obtain the latent space. Push proposals are then sampled
from this space. The latent space is used for the viewpoint planner to select the next best view, while the push proposals predict the best
push candidate. An action selection method decides whether to map or perform a predicted push or next viewpoint action.

(a) Occupancy map (b) Height map

Fig. 3: Example of 2.5D state representation after mapping. The left
image displays occupancy probability, while the right image shows
cell height. Brighter colors indicate higher values.

Label: Positive

Label: Negative

Fig. 4: Two object configurations with a sampled push candidate
for each (red arrow). Brighter colors indicate higher object height.
Unknown space is marked in dark blue. Labels indicate expert
evaluation of push candidate quality in terms of invasiveness and
additional uncovered space.

we focus on minimally invasive actions to achieve a balance
between these competing requirements. In particular, we use
non-prehensile push actions since they are easy to compute
and carry out in confined spaces, while other types of ma-
nipulation actions would increase the computational efforts
due to the constraints of the environment.

1) Learning of the Push Prediction Network: To predict
the best push to aid the VPP, we use an approach similar to
Eitel et al. [24] to learn a prediction network that outputs
the best push of the current scene, modified to predict the
best minimally invasive push candidate that increases the
mapped area while balancing the trade-off mentioned above.
Therefore, three human experts labeled 5,000 simulated map
configurations and an additional 850 configurations of the

real-world scene with binary labels “’positive” or “negative”
for the starting point and direction of the push. Example
images including the labels are shown in Fig. 4. Note
that we used manual rather than automatically generated
labels because without computationally expensive physics
simulations, it is difficult to automatically calculate the effect
that pushing of an object may have on the object itself as well
as on its neighbours. Instead, we rely on human expertise.

2) Generation of Push Proposals: To generate push pro-
posals, we ray cast from three positions outside the shelf to
the back of the shelf, sampling the 3D Cartesian coordinate
of the first occupied cell along the ray as a push candi-
date, along with eight push angles and a predefined push
length. Push maps are generated, as input to the network,
by translating the starting point to the center of the map
and rotating the image. Our prediction network consists of
five convolution layers followed by max-pooling and ReLLU
activation. We train with the labeled push maps using Adam
optimizer and learning rate of le — 4. In inference, we feed
the push proposal maps into the network and execute the
push with the highest output of the network..

E. Action Selection

To decide whether another push is needed, we assume the
VPP agent and push prediction network are both optimal.
Therefore, VPP is always performed until the VPP agent
terminates (II-C). If the previous push did not lead to an
entropy reduction of Ah(M) > Tpus,, We terminate the
mapping process without performing any further pushes.

III. EXPERIMENTAL EVALUATION

The experiments aim to demonstrate the improved map-
ping result of our framework by evaluating entropy reduction,
number of steps needed, planning time, and object displace-
ment of our complete pipeline. We compare the performance
to different baselines in simulation and real-world experi-
ments. For the simulation, we use Pybullet [25] and for the
real-world experiments ROS [26]. For all experiments we
use a URS with a Robotiq 2f85 gripper and a Realsense



Simulation | Entropy Reduction
Ours 30.0% £ 0.9%
Random 15.5% + 0.6%
RSE [16] 16.5% + 0.5%
GMC [15] 21.8% + 0.8%

Real World | entropy reduction
Ours 26.1% £ 1.0%
Random 20.3% + 1.0%

TABLE I: Evaluation of the viewpoint planner: Reduced entropy
compared to the initial entropy of the map computed with 3P (three
fixed viewpoints). Each metric is shown with its standard error.
The experiments were carried out in 100 simulated and 15 real-
world scenarios. As can be seen, our approach lead to the highest
reduction in entropy in comparison to all baselines. The reduction
is significant according to the paired t-test with a p-value of 0.05.

D405 camera mounted on top of the end effector. For the
reinforcement learning agent, we use the stable-baselines3
framework [27] with the TQC algorithm [28]. We set the
following thresholds for the experiments: Tynknown = 0.2,
Tsingle = 0.01, Tgym = 0.05, and 75, = 0.01. For our ex-
periments we use a shelf with size of 40 cm x 80 cm x 40 cm.
The implementation of our learning pipeline is available on
Github'.

A. Evaluation of the Viewpoint Planner

To evaluate our viewpoint planner individually, we ex-
ecuted the 3-point fixed planner (3P) used for training
and evaluated how much our learned planner improves the
resulting map. Furthermore, we evaluated our viewpoint
planner (VPP) against a random method, a greedy planner by
Delmerico et al. [16] (RSE), and a global planner by Pan et
al. [15] (GMC), which we adapted to work in our confined-
space multi-object scenario. We compared against RSE to
show the limitation of greedy planners, and against GMC to
demonstrate the overall benefit of a learned approach over a
sample-based method.

For the experiments, we sampled 100 shelf configurations
in simulation and 15 in real-world, each with 8 to 10
objects. As can be seen in Tab. I, our agent outperformed all
baselines in simulation, significantly according to the paired
t-test, with an on average 30% reduced entropy compared
to the 3P, while needing 4.94 viewpoints. Furhtermore, it
outperforms the random agent in simulation as well as
during real-world experiments, confirming its capabilities.
RSE performed worse or equal to the random agent, due
to its greedy properties, while GMC had an 8% less entropy
reduction than our VPP and took 7.29,s per step, whereas
our approach planned the next viewpoint in 0.040,s.

B. Evaluation of the Viewpoint Push Planner

We evaluated our complete pipeline by calculating entropy
before and after push actions, and comparing a method using
randomly selected push candidates to our push prediction
network. Each pipeline iteration terminates according to the

Thttps://github.com/NilsDengler/view-point-pushing

(a) Before pushing

(b) After pushing

Fig. 5: Qualitative example of an occupancy map update in simula-
tion after a minimally invasive push. (a) shows the map before the
push (green indicates unknown space), with the arrow indicating
the planned push action. (b) shows the map after the push, where
the cells in the marked area became visible due to the push.

Simulati Entropy Reducti Displ #iterations | #object drops
Learned Push 27.62% + 2.2 *0.24cm £ 0.03 | 3.5+0.24 4
Random Push 37.05% + 2.6 0.34cm +0.03 3.7+£0.21 21

TABLE II: Evaluation of the viewpoint push planner pipeline:
Reduced entropy, object displacement, pipeline iterations, and drops
shown with standard error. Experiments conducted in 100 simulated
scenarios. Complete pipeline reduced entropy further. Trained push
proposal network led to less object displacement compared to
random selection method. Paired t-test shows significant difference
in object displacement (p=0.05).

criteria in Sec. II-E, and we evaluated it on the same 100
simulated environments as in III-A. In Tab. II, both pushing
methods reduced the map entropy resulting from VPP alone,
with an average of 3.5 and 3.7 pipeline iterations. Our
method improved over the random method by reducing the
likelihood of object drops and large object displacements. In
100 simulated trials, our learned pipeline reduced the number
of object drops by 80% and reduced the displacement by
29.4% compared to the random method. We tested different
push lengths and found that Scm is optimal in terms of
the trade-off between entropy reduction and configuration
disruption. Fig.5 shows a qualitative comparison of a map
before and after a push action. On average, our method takes
0.31 s to sample the push candidates, while the network takes
0.1s for inference. To summarize, our pipeline aids VPP
while maintaining the overall structure of the scene, and can
be easily transferred to a real-robot system without loss of
performance, as demonstrated in the accompanying video.

IV. CONCLUSION

We presented a novel pipeline for interactive viewpoint
planning in confined spaces, which was tested in simulated
and real-world scenarios using a robotic arm with an RGB-
D camera. Our system outperformed several baselines and
demonstrated its ability to to increase the mapped space,
due to minimally invasive push actions. Furthermore, we
evaluated the real-time performance of our system and made
our code available on Github'.
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