
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FLOW AUTOENCODERS ARE EFFECTIVE
PROTEIN TOKENIZERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Protein structure tokenizers enable the creation of multimodal models of protein
structure, sequence, and function. Current approaches to protein structure tok-
enization rely on bespoke components that are invariant to spatial symmetries, but
that are challenging to optimize and scale. We present Kanzi, a flow-based tok-
enizer for tokenization and generation of protein structures. Kanzi consists of a
diffusion autoencoder trained with a flow matching loss. We show that this ap-
proach simplifies several aspects of protein structure tokenizers: frame-based rep-
resentations can be replaced with global coordinates, complex losses are replaced
with a single flow matching loss, and SE(3)-invariant attention operations can be
replaced with standard attention. We find that these changes stabilize the training
of parameter-efficient models that outperform existing tokenizers on reconstruc-
tion metrics at a fraction of the model size and training cost. An autoregressive
model trained with Kanzi outperforms similar generative models that operate over
tokens, although it does not yet match the performance of state-of-the-art contin-
uous diffusion models.

1 INTRODUCTION

The promise of digital biology is to develop machine learning models that are capable of perform-
ing a wide range of tasks, from generating novel therapeutics to reasoning about cellular-level pro-
cesses (Richardson & Richardson, 1989; Cui et al., 2025; Kuhlman & Bradley, 2019). Proteins,
which are essential components of almost all biological processes, are a natural target for machine
learning approaches to biological perception and generation. A recent exciting advance has been
the development of multimodal deep learning models capable of reasoning over protein sequence,
structure, and function (Wang et al., 2024; Zhang et al., 2024; Liu et al., 2024; Gaujac et al., 2024;
Hayes et al., 2025). These models are enabled by structure tokenizers, which convert the continu-
ous three-dimensional protein structures into a sequence of discrete tokens from a finite vocabulary
using vector quantization (Van Den Oord et al., 2017). In these tokenizers, protein structures are
represented as tensors RL×A×3, where L is the sequence length and A is the number of backbone
atoms. Training language models on these discrete token sequences unlocks the possibility of truly
multimodal biological models that excel across representation and generative tasks.

An established practice in protein tokenization is using model components that are invariant to spa-
tial symmetries, namely SE(3) (the special Euclidean group, equivalent to SO(3)⋉R3). This follows
the hypothesis that by explicitly encoding inductive biases, models will not hallucinate physically
implausible samples that break the symmetry. These SE(3)-invariant modules, however, can be chal-
lenging to both optimize at scale and extend to more diverse biological molecules (e.g., proteins with
post-translational modifications, RNA, DNA). Models that can accurately tokenize protein struc-
tures without explicitly encoding spatial symmetries may offer improved flexibility and scalability
for modeling biology. Such models, however, do not currently exist.

Bridging this gap and exploring the performance of non-invariant protein tokenizers is the primary
focus of this work. In this work, we describe Kanzi, a flow-based tokenizer for protein structures.
Kanzi uses a flow matching loss to train a diffusion autoencoder that tokenizes protein structures.
This flow loss simplifies model training by replacing the collection of symmetry-invariant recon-
struction losses that are commonly used to train protein structure tokenizers. Kanzi operates directly
on the 3D coordinates of backbone atoms and uses standard attention rather than SE(3)-invariant

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Learned codebook

Decoding

Autoregressive generation

<latexit sha1_base64="JrA5IU0Vuyi97E/yRJ+xM106AIM=">AAACHXicbVDLSgMxFM34rPU16tJNsAgVpMxIqS6LblxWsA/olCGTZtrQzIPkTrEM8yNu/BU3LhRx4Ub8G9MXaOshgcM593LvPV4suALL+jZWVtfWNzZzW/ntnd29ffPgsKGiRFJWp5GIZMsjigkesjpwEKwVS0YCT7CmN7gZ+80hk4pH4T2MYtYJSC/kPqcEtOSaZScg0Pf8dJi5DvQZkOJcechcOMf6zQWnTyClWXbmmgWrZE2Al4k9IwU0Q801P51uRJOAhUAFUaptWzF0UiKBU8GyvJMoFhM6ID3W1jQkAVOddHJdhk+10sV+JPUPAU/U3x0pCZQaBZ6uHC+qFr2x+J/XTsC/6qQ8jBNgIZ0O8hOBIcLjqHCXS0ZBjDQhVHK9K6Z9IgkFHWheh2AvnrxMGhclu1Kq3JUL1etZHDl0jE5QEdnoElXRLaqhOqLoET2jV/RmPBkvxrvxMS1dMWY9R+gPjK8fwF2i8w==</latexit>

vω(xt, t, ĉ)

<latexit sha1_base64="JrA5IU0Vuyi97E/yRJ+xM106AIM=">AAACHXicbVDLSgMxFM34rPU16tJNsAgVpMxIqS6LblxWsA/olCGTZtrQzIPkTrEM8yNu/BU3LhRx4Ub8G9MXaOshgcM593LvPV4suALL+jZWVtfWNzZzW/ntnd29ffPgsKGiRFJWp5GIZMsjigkesjpwEKwVS0YCT7CmN7gZ+80hk4pH4T2MYtYJSC/kPqcEtOSaZScg0Pf8dJi5DvQZkOJcechcOMf6zQWnTyClWXbmmgWrZE2Al4k9IwU0Q801P51uRJOAhUAFUaptWzF0UiKBU8GyvJMoFhM6ID3W1jQkAVOddHJdhk+10sV+JPUPAU/U3x0pCZQaBZ6uHC+qFr2x+J/XTsC/6qQ8jBNgIZ0O8hOBIcLjqHCXS0ZBjDQhVHK9K6Z9IgkFHWheh2AvnrxMGhclu1Kq3JUL1etZHDl0jE5QEdnoElXRLaqhOqLoET2jV/RmPBkvxrvxMS1dMWY9R+gPjK8fwF2i8w==</latexit>

vω(xt, t, ĉ)
Learned codebook

<latexit sha1_base64="JrA5IU0Vuyi97E/yRJ+xM106AIM=">AAACHXicbVDLSgMxFM34rPU16tJNsAgVpMxIqS6LblxWsA/olCGTZtrQzIPkTrEM8yNu/BU3LhRx4Ub8G9MXaOshgcM593LvPV4suALL+jZWVtfWNzZzW/ntnd29ffPgsKGiRFJWp5GIZMsjigkesjpwEKwVS0YCT7CmN7gZ+80hk4pH4T2MYtYJSC/kPqcEtOSaZScg0Pf8dJi5DvQZkOJcechcOMf6zQWnTyClWXbmmgWrZE2Al4k9IwU0Q801P51uRJOAhUAFUaptWzF0UiKBU8GyvJMoFhM6ID3W1jQkAVOddHJdhk+10sV+JPUPAU/U3x0pCZQaBZ6uHC+qFr2x+J/XTsC/6qQ8jBNgIZ0O8hOBIcLjqHCXS0ZBjDQhVHK9K6Z9IgkFHWheh2AvnrxMGhclu1Kq3JUL1etZHDl0jE5QEdnoElXRLaqhOqLoET2jV/RmPBkvxrvxMS1dMWY9R+gPjK8fwF2i8w==</latexit>

vω(xt, t, ĉ)

(2) Autoregressively generate conditioning tokens

(1) Discrete codebook conditions a flow model

Figure 1: Schematic overview of our approach. (1) A learned discrete codebook conditions a flow
matching model to reconstruct proteins using a diffusion loss. (2) The learned tokens can be used
for downstream autoregressive generation, and the generated tokens condition the diffusion decoder
to generate protein backbones.

geometric attention methods (Jumper et al., 2021; Hayes et al., 2025). Consistent with several
recent works that challenge the inductive bias paradigm (Abramson et al., 2024; Geffner et al.,
2025), Kanzi demonstrates that these simplifications can actually improve tokenizer performance,
achieving superior reconstruction quality over larger models trained on more extensive datasets. We
next train an autoregressive model on tokenized structures from Kanzi to sample plausible protein
structures. While discrete and continuous diffusion models have seen wide use, autoregressive mod-
els are better suited for generating variable-length sequences. This capability is critical for tasks like
motif scaffolding or in situ structure prediction where the protein sequence (and hence length) is
unknown a priori. Despite a relatively modest autoregressive model, we match or outperform larger
tokenized models in terms of generation quality, as measured by standard benchmarks. As a sup-
plementary contribution, we introduce a reconstruction metric, the reconstruction Fréchet Protein
Structure Distance (rFPSD), which utilizes probability divergences to measure structure tokeniza-
tion. This extends prior work in Faltings et al. (2025) and Geffner et al. (2025) that applies these
metrics to generation. We provide an open-source software package as a standalone repository for
end-users.

In summary, our primary contributions are as follows:

1. We present Kanzi, a scalable state-of-the-art flow-based structure tokenizer based on a
novel asymmetric encoder-decoder design.

2. We demonstrate that a simple diffusion loss can replace complex invariant/equivariant tok-
enizer losses, yet still achieve SOTA reconstructions.

3. We use Kanzi to train an autoregressive protein structure generation model. On standard
generative benchmarks, the resulting generations match or outperform existing generative
capabilities. To our knowledge, this is the first tokenized model that produces designable
structures without massive pretraining.

4. We extend prior work developing distributional metrics for proteins to the reconstruction
task to provide broader information on tokenization performance. Through a series of
careful ablations, we demonstrate that while non-invariant encoders can learn scalably,
invariant encoders struggle to condition non-invariant decoders.

2 RELATED WORK

Tokenization. State-of-the-art generative image models frequently first train an image tokenizer,
which downsamples continuous image data to either a discrete or a continuous latent (Esser et al.,
2021; Van Den Oord et al., 2017). Recent works in machine learning for biology have followed suit
by training discrete tokenizers for protein backbone structures, which enable language models to
be trained on sequences of tokens derived from the resulting codebooks (van Kempen et al., 2022;
Steinegger & Söding, 2017; Gaujac et al., 2024; Lin et al., 2023). While tokenized protein models
have underperformed diffusion models on the task of unconditional structure generation, they enable
the construction of multimodal generative models of proteins. ESM3 notably trained a multimodal

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Encoder

Quantize

Linear

Diffusion
Loss

<latexit sha1_base64="OkUKNi8n8CGESS8JBhDHSlq+6N0=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi1WXRjcsK9gFNKJPppB06mYSZSaGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWdOkHCmtON8W5WNza3tnepubW//4PDIPj7pqjiVhHZIzGPZD7CinAna0Uxz2k8kxVHAaS+Y3hd+b0alYrF40vOE+hEeCxYygrWRhrbtTbDOvAjrSRBmJM+Hdt1pOAugdeKWpA4l2kP7yxvFJI2o0IRjpQauk2g/w1Izwmle81JFE0ymeEwHhgocUeVni+Q5ujDKCIWxNE9otFB/b2Q4UmoeBWayiKhWvUL8zxukOrz1MyaSVFNBlofClCMdo6IGNGKSEs3nhmAimcmKyARLTLQpq2ZKcFe/vE66Vw232Wg+Xtdbd2UdVTiDc7gEF26gBQ/Qhg4QmMEzvMKblVkv1rv1sRytWOXOKfyB9fkDOZmUEA==</latexit>

ĉ

Decoder

<latexit sha1_base64="m9bRsq4DSRBnylJM0EbQuKFl+vY=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae2pWTSO21oJjMkGaEM/Qs3LhRx69+482/MtLPQ1gOBwzn3knOPHwuujet+O4W19Y3NreJ2aWd3b/+gfHjU0lGiGDZZJCLV8alGwSU2DTcCO7FCGvoC2/7kNvPbT6g0j+SDmcbYD+lI8oAzaqz02AupGftBymaDcsWtunOQVeLlpAI5GoPyV28YsSREaZigWnc9Nzb9lCrDmcBZqZdojCmb0BF2LZU0RN1P54ln5MwqQxJEyj5pyFz9vZHSUOtp6NvJLKFe9jLxP6+bmOC6n3IZJwYlW3wUJIKYiGTnkyFXyIyYWkKZ4jYrYWOqKDO2pJItwVs+eZW0LqperVq7v6zUb/I6inACp3AOHlxBHe6gAU1gIOEZXuHN0c6L8+58LEYLTr5zDH/gfP4A4OKREg==</latexit>c

MLP

Timestep

Noised
embedding

Conditioning

Linear

DiT Blocks (xN)

Shared

<latexit sha1_base64="cHmXtudyzo1yUSRJgwBfb5hs7ec=">AAACC3icbVDLSgNBEJyNrxhfUY9ehgQhgoRdkegx6MVjBPOAZFlmJ7PJkNkHM73BsOzdi7/ixYMiXv0Bb/6Nk2QFTSxoKKq66e5yI8EVmOaXkVtZXVvfyG8WtrZ3dveK+wctFcaSsiYNRSg7LlFM8IA1gYNgnUgy4ruCtd3R9dRvj5lUPAzuYBIx2yeDgHucEtCSUyz1fAJD10vGqdODIQNS+VHuUwdOMZw4xbJZNWfAy8TKSBllaDjFz14/pLHPAqCCKNW1zAjshEjgVLC00IsViwgdkQHrahoQnyk7mf2S4mOt9LEXSl0B4Jn6eyIhvlIT39Wd0zvVojcV//O6MXiXdsKDKAYW0PkiLxYYQjwNBve5ZBTERBNCJde3YjokklDQ8RV0CNbiy8ukdVa1atXa7Xm5fpXFkUdHqIQqyEIXqI5uUAM1EUUP6Am9oFfj0Xg23oz3eWvOyGYO0R8YH99TO5s5</latexit>

vω(xt, t)

+Embed

<latexit sha1_base64="OkUKNi8n8CGESS8JBhDHSlq+6N0=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi1WXRjcsK9gFNKJPppB06mYSZSaGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWdOkHCmtON8W5WNza3tnepubW//4PDIPj7pqjiVhHZIzGPZD7CinAna0Uxz2k8kxVHAaS+Y3hd+b0alYrF40vOE+hEeCxYygrWRhrbtTbDOvAjrSRBmJM+Hdt1pOAugdeKWpA4l2kP7yxvFJI2o0IRjpQauk2g/w1Izwmle81JFE0ymeEwHhgocUeVni+Q5ujDKCIWxNE9otFB/b2Q4UmoeBWayiKhWvUL8zxukOrz1MyaSVFNBlofClCMdo6IGNGKSEs3nhmAimcmKyARLTLQpq2ZKcFe/vE66Vw232Wg+Xtdbd2UdVTiDc7gEF26gBQ/Qhg4QmMEzvMKblVkv1rv1sRytWOXOKfyB9fkDOZmUEA==</latexit>

ĉ

Linear

<latexit sha1_base64="ZeSfk/bm2k2uf2i6y9lSYckwmN8=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi1WXRjcsK9gFNKJPppB06mYR5iCX0N9y4UMStP+POv3HSZqGtBwYO59zLPXPClDOlXffbKa2tb2xulbcrO7t7+wfVw6OOSowktE0SnsheiBXlTNC2ZprTXiopjkNOu+HkNve7j1QqlogHPU1pEOORYBEjWFvJ92Osx2GUPc0G3qBac+vuHGiVeAWpQYHWoPrlDxNiYio04VipvuemOsiw1IxwOqv4RtEUkwke0b6lAsdUBdk88wydWWWIokTaJzSaq783MhwrNY1DO5lnVMteLv7n9Y2OroOMidRoKsjiUGQ40gnKC0BDJinRfGoJJpLZrIiMscRE25oqtgRv+curpHNR9xr1xv1lrXlT1FGGEziFc/DgCppwBy1oA4EUnuEV3hzjvDjvzsditOQUO8fwB87nDy3ykcs=</latexit>x1

Sliding window attention

xN

<latexit sha1_base64="m9bRsq4DSRBnylJM0EbQuKFl+vY=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2Ae2pWTSO21oJjMkGaEM/Qs3LhRx69+482/MtLPQ1gOBwzn3knOPHwuujet+O4W19Y3NreJ2aWd3b/+gfHjU0lGiGDZZJCLV8alGwSU2DTcCO7FCGvoC2/7kNvPbT6g0j+SDmcbYD+lI8oAzaqz02AupGftBymaDcsWtunOQVeLlpAI5GoPyV28YsSREaZigWnc9Nzb9lCrDmcBZqZdojCmb0BF2LZU0RN1P54ln5MwqQxJEyj5pyFz9vZHSUOtp6NvJLKFe9jLxP6+bmOC6n3IZJwYlW3wUJIKYiGTnkyFXyIyYWkKZ4jYrYWOqKDO2pJItwVs+eZW0LqperVq7v6zUb/I6inACp3AOHlxBHe6gAU1gIOEZXuHN0c6L8+58LEYLTr5zDH/gfP4A4OKREg==</latexit>c

Embed

Seq id

+

MLP

R

<latexit sha1_base64="jNJDC//RcOijwSyETzYjEXOVxpI=">AAAB83icbVDLSsNAFL2pr1pfVZdugkVwVRKR6rLoxmUF+4AmlMl00g6dTMLMjVhCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSATX6DjfVmltfWNzq7xd2dnd2z+oHh51dJwqyto0FrHqBUQzwSVrI0fBeoliJAoE6waT29zvPjKleSwfcJowPyIjyUNOCRrJ8yKC4yDMnmYDHFRrTt2Zw14lbkFqUKA1qH55w5imEZNIBdG67zoJ+hlRyKlgs4qXapYQOiEj1jdUkohpP5tnntlnRhnaYazMk2jP1d8bGYm0nkaBmcwz6mUvF//z+imG137GZZIik3RxKEyFjbGdF2APuWIUxdQQQhU3WW06JopQNDVVTAnu8pdXSeei7jbqjfvLWvOmqKMMJ3AK5+DCFTThDlrQBgoJPMMrvFmp9WK9Wx+L0ZJV7BzDH1ifP5N+kg4=</latexit>xt

(a) (b) (c)

Figure 2: Architectural overview of Kanzi. (a) Kanzi takes a clean structure as input, which is
encoded and passed through a quantization bottleneck. The decoder is provided with the quantized
latents as in-context conditioning, along with a noised version of the protein structure. The train-
ing is supervised by a single diffusion loss that maximizes p(x|ĉ). No auxiliary losses are used.
(b) Our decoder follows the standard diffusion transformer (DiT) presentation, with several notable
deviations. We share adaLN conditioning across all blocks, and each DiT block is a transformer
with pair-biased attention and optional self-conditioning. (c) Our encoder combines raw coordinate
information with sequence positional information. Tokens are mixed using a small stack of trans-
former layers with sliding window attention. Ablations on other encoder variants are described in
Section 4.3 and Appendix E.

discrete diffusion model over sequence, structure, secondary structure, and natural language, which
was capable of generating novel proteins with specified functions (Hayes et al., 2025; Wang et al.,
2024). Following AlphaFold2, protein tokenizers generally rely on SE(3)-invariant architectural
components (e.g., invariant point attention) and SE(3)-invariant losses (e.g., frame-aligned point
error). In contrast with prior work, we use a non-invariant diffusion loss to supervise the tokenizer.

Diffusion and flow matching. State-of-the-art protein structure generation models rely on diffusion,
either discrete or continuous. FrameDiff, RFDiffusion, and Chroma (Yim et al., 2023b; Watson
et al., 2023; Ingraham et al., 2023) generate protein backbones using a denoising process over the
joint translation-rotation group SO(3)⋉R3, while FrameFlow, FoldFlow, and FoldFlow-2 similarly
perform flow matching over the same manifold (Yim et al., 2023a; Bose et al., 2023; Huguet et al.,
2024b). Genie2 and Proteina are more recent attempts to train diffusion models at scale on the
AlphaFold Structure Database (AFDB); these both operate over Cα coordinates (Geffner et al.,
2025; Lin et al., 2024). The latter does not explicitly encode invariances, a strategy we broadly
adopt here. Despite the strong performance of diffusion models, autoregressive models have unique
features that are valuable to the structural biology and machine learning communities. Most notably,
they can be applied to more use cases where the protein size is not known a priori, an important
feature for tasks such as motif scaffolding or in situ structure prediction in electron tomography
images (Yadav et al., 2020; Bunne et al., 2024).

To train Kanzi, we use a flow matching objective (Esser et al., 2024; Lipman et al., 2022; Lin
et al., 2024). Flow matching interpolates between a source distribution p0 (often a Gaussian) and a
target distribution pdata by integrating along the ODE dxt = vθ(xt, t) dt using a learned vector field
vθ(xt, t) : Rd × [0, 1] → Rd. As the vector field generating the true probability distribution is in
general unknown, one uses conditional flow matching, which constructs a conditional probability
path between prior samples x0 ∼ p0 and data samples x1 ∼ pdata. Explicitly, a general probability
path can be written xt = αtx1 + σtϵ, with ϵ ∼ N (0, 1). This induces a true conditional vector field
u(xt|x0,x1) = α̇tx1 + σ̇tx0, where the dot denotes the time derivative. This is a target we can
regress against; for the standard case of the linear interpolation path, we have xt = (1− t)x0 + tx1

and u(xt|x0,x1) = x1 − x0. For completeness, we present a more thorough derivation of the flow
matching formulation in Appendix F.

Diffusion autoencoders. The idea of using a diffusion model as the decoder in tokenizer recon-
struction is a recent insight in computer vision but has yet to be explored for protein structure
generation (Preechakul et al., 2022). Two recent works, FlowMo and DiTo (Sargent et al., 2025;

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1.27 Å 1.86 Å 0.82 Å 2.00 Å 1.99 Å 1.90Å 0.91Å

Figure 3: Designable samples generated from an autoregressive model trained on Kanzi tokens.
scRMSDs shown underneath each visualization.

ESM3

DPLM2

FoldToken

bio2token

AiDO

IST

dRMSD, direction, binned dRMSD, binned direction

FAPE, violation, histogram

RMSD global, fragment, pairwise, neighbor, dRMSD

Kabsch loss, dRMSD

FAPE, RMSD, dRMSD

FAPE

Kanzi Diffusion loss

Better performance
for less data

Worse performance,
more data

Figure 4: Left: Scaling of protein structure tokenizer performance with dataset size and parameter
count. We plot the reconstruction accuracy on the CAMEO test set versus the training dataset size.
Circle area is the model parameter count. Kanzi is competitive with the ESM3 tokenizer, despite a
20-fold smaller parameter count and 400-fold smaller training dataset. Right: Kanzi simplifies the
training pipeline, replacing collections of complex, invariant losses with a single, non-invariant flow
matching loss.

Chen et al., 2025), both study this approach and independently demonstrate SOTA performance
on ImageNet-1k reconstruction. In these works, the use of a diffusion model eliminates the need
for combinations of perceptual and adversarial losses during training, which were critical insights
introduced by VQGAN (Esser et al., 2021). In our case, given the success of recent models like
AlphaFold3, Boltz (Wohlwend et al., 2025), and Proteina in eschewing symmetric architectures for
scalability, we hypothesize that diffusion autoencoders could provide a similar advantage for tok-
enization.

3 METHOD

We train flow-based tokenizers to perform autoregressive generation. The use of a diffusion/flow
model as the decoder allows for considerably more flexibility and scalability in sampling, while the
autoregressive prior trained over quantized sequences provides length-agnostic generation.

3.1 ARCHITECTURE

We design a non-equivariant diffusion autoencoder to tokenize an input structure. It consists of a
lightweight encoder eθ, a substantially deeper decoder dϕ, and a quantization bottleneck. A protein
structure can be represented as a tensor x ∈ RL×A×3, where L is the sequence length and A is
the number of backbone atoms. Generally A = 1 for Cα only models or A = 3 for full backbone
models. Given x, the encoder processes the raw, mean-centered coordinates using a stack of option-
ally pair-biased multi-head self-attention layers. The encoder outputs a latent conditioning sequence
eθ(x) = c ∈ RL×d.

For the quantization layer, we adopt finite scalar quantization (FSQ) and discretize c to a discrete
latent ĉ via ĉ = ⌊ℓ/2⌋ tanh(Linear(c)), where ℓ is the number of levels in each dimension of
FSQ (Mentzer et al., 2023). We generally use 8,5,5,5 for an effective codebook size of 1000. We use
ĉ to condition the diffusion decoder, which outputs dϕ(xt, t, ĉ) = vθ(xt, t, ĉ), with xt the linearly
interpolated noise. We pass gradients to the encoder using the standard straight-through estimator.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2 shows all the components of our architecture. First, in contrast with Sargent et al. (2025),
which uses separate concatenated modality streams for both the encoder and the decoder, we use
a single stream for the encoder but concatenated conditioning (i.e., two streams) for the decoder.
Because our data is low-dimensional, we found that this was a critical design choice that allowed
gradients to efficiently propagate through shallow encoders. In addition, the encoder uses sliding
window attention, while the decoder has full bidirectional connectivity. This bias was included to
facilitate autoregressive modeling; see Section E for more discussion. Otherwise, the encoder is
significantly smaller than the decoder in both width and depth, which is a common design choice
for tokenizers. We use relative positional encodings (RoPE) for the decoder, and ablate between
absolute and relative positional encodings for the encoder. Finally, in contrast with the standard
Diffusion Transformer (Peebles & Xie, 2023), we share adaLN weights across layers for time con-
ditioning, which reduces the parameter count by ≈ 30%. We justify this choice in Appendix E. Our
full hyperparameter selections are in Appendix D.1.

3.2 TRAINING

We optimize the entire tokenizer end-to-end using a flow loss

Lflow = Ex1∼pdata,x0∼N (0,1)∥dϕ(xt, t, ĉ)− (x1 − x0)∥22 ĉ = FSQ (eθ(x)) (1)

We again note the relative simplicity of this loss; Figure 4 and Appendix G.1 provide a detailed
description of prior losses to supervise tokenization. We train until convergence using AdamW
with β1 = 0.9, β2 = 0.95, and learning rate η = 1.7 × 10−4. We use a linear warmup and
cosine decay schedule with random rotations on the inputs as augmentations. Details of our train-
ing/hyperparameter configurations are given in Appendix D.1. One advantage of diffusion autoen-
coders is the ability to use classifier-free guidance to improve sample quality. We mask out the
conditioning sequence ĉ with probability 0.1 to enable this option. Following AlphaFold3 and Pro-
teina, we mean-center all proteins using Cα coordinates and augment input structures with random
rotations during training.

3.3 DATASET

While early protein generative models trained primarily on the ∼ 30k distinct structural homologs
in the Protein Data Bank (Bank, 1971), recent works like Proteina and AlphaFold3 have trained
on synthetic AlphaFold2 predictions to achieve significant performance gains. As Proteina and
AlphaFold3 were trained on datasets that require extensive computational resources (Proteina trains
on the full 214M structures in the AFDB, and AlphaFold3 trains on 40M MGnify structures), we
instead train on the Foldseek clustered AlphaFold database, which we denote as DFS. DFS filters
and clusters the AFDB using MMseqs2 and Foldseek and keeps a single representative structure per
cluster. Both Proteina and Genie2 include DFS in their training data. We perform additional filtering
(described in Appendix D.2) which leaves a total of 498,900 structures.

3.4 INFERENCE

Diffusion To sample the full distribution, we can simply run Euler inference using the standard
integrator, i.e., we repeat the following for fixed ĉ and t ∈ [0, 1/N, 2/N, ..., (N − 1)/N].

xt+∆t = xt + vθ(xt, t, ĉ)∆t (2)

We make several noteworthy additions. A major strength of diffusion tokenizers is their ability to
take advantage of sophisticated sampling strategies at inference time compared to autoregressive or
discrete diffusion samplers. We can construct new flows using classifier-free guidance with guidance
parameter g as follows:

ṽθ(xt, t, ĉ) = vθ(xt, t, ĉ) + g(vθ(xt, t, ĉ)− vθ(xt, t,∅)) (3)

We omit the tilde for the remainder of the paper, with the understanding that we tune classifier-free
guidance unless explicitly stated otherwise. As we use a Gaussian flow, we also have a closed-form

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

expression for the corresponding score field

sθ(xt, t, ĉ) =
tvθ(xt, t, ĉ)− xt

1− t
(4)

An analogous expression for the score field with classifier-free guidance applies. A frequent practice
in biological diffusion is to construct an ad hoc stochastic differential equation as an alternative
sampler, as in Equation 5

dxt = vθ(xt, t, c) dt+ g(t)η sθ(xt, t, ĉ) dt+
√
2g(t)γ dWt (5)

This notation largely follows that of Geffner et al. (2025). Setting η = γ = 1 corresponds to standard
Langevin dynamics. However, treating the noise scale γ and the score scale η as hyperparameters
can significantly improve generation quality, although sometimes at the cost of diversity. In our
benchmarks, we provide sampling using both the full distribution (e.g., η = γ = 0) and using noise
and score-scaling as references.

Autoregression. We explored both nucleus sampling and min-p sampling for generating the con-
ditioning sequence c, but did not observe any significant difference between the two. All presented
results use nucleus sampling with a cutoff of 0.9. As our generative models are autoregressive, we
can also do best-of-N sampling with the log-likelihood as an inexpensive proxy for decoding quality,
a strategy that has proven useful for large language models (Qiu et al., 2024; Song et al., 2024).
Generally N = 2 or 4 in our experiments.

4 EXPERIMENTS

We evaluate Kanzi on both reconstruction and generative tasks. On reconstruction tasks, we find
that diffusion autoencoders exceed or match the performance of much larger models trained on sub-
stantially more data. On generative tasks, we exceed or match the performance of larger tokenized
models and consistently outperform comparably sized generative models trained on other tokenizers.

4.1 DIFFUSION TOKENIZERS ARE SOTA AT RECONSTRUCTION

We first evaluate Kanzi on reconstruction. We benchmark reconstruction performance against all
structure tokenizers with accessible public repositories: ESM-3, DPLM-2, Bio2Token, FoldToken,
and the InstaDeep Structure Tokenizer (IST). A challenge with evaluating tokenizers is every model
tends to use a different training/test set, which makes it challenging to compare model performance.
To address this, we use a wide range of test datasets (all are held-out from our model, along with
any structural homologs at 80% similarity as determined by Foldseek). We exclude any cases where
we know there is leakage between the benchmark set and the tokenizer. See Appendix G.2 for more
details on these determinations. We use five held-out test datasets: CAMEO, CASP14, CASP15,
CATH, and a held-out subset of DFS. We use RMSD and TM-score to benchmark local and global
measures of reconstruction, and include scores for both full backbone tokenizers and Cα only tok-
enizers. We also introduce the following two auxiliary metrics.

rFPSD (reconstruction Fréchet Protein Structure Distance) provides a distribution-level metric for
reconstruction by using the deep features in a pretrained CATH-classifier. Metrics like RMSD are
biased towards the capabilities of current folding models, and recent work has shown that RMSD
is not a strong predictor of generative capabilities. rFPSD captures the statistics of the distribution,
and our results in Table 1 suggest it may be a useful addition to the metrics used for tokenizer devel-
opment. rFPSD extends the original FPSD metric introduced for measuring generative capabilities
in (Geffner et al., 2025).

[ss]RMSD considers RMSD only over proteins with > 60% of a particular secondary structure
(ss=α, β, c) content. This isolates the failure modes of tokenizers and can help measure a tok-
enizer’s ability to model unstructured regions, which is particularly important for many downstream
therapeutic tasks.

We consider auxiliary metrics only over the CATH dataset, for two reasons. We do not want to
use the AFDB, as we do not want to further bias metrics towards distributions over synthetic struc-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

CAMEO CASP14 CASP15 CATH AFDB

RMSD (↓) TM (↑) RMSD TM RMSD TM RMSD TM [β]RMSD [c]RMSD rFPSD RMSD TM

DPLM2 (118M) 1.651 0.876 1.008 0.951 2.160 0.866 1.641 0.897 1.851 2.067 5.742 4.676 0.810
ESM3 (648M) 0.860 0.955 0.462 0.987 1.021 0.969 1.048 0.957 1.391 1.086 23.399 2.384 0.915
FoldToken (85M) 2.539 0.881 2.194 0.936 6.629 0.744 1.298 0.920 1.575 1.231 71.786 2.161 0.858
IST (11M) 1.637 0.916 0.900 0.960 1.252 0.953 1.201 0.940 1.127 1.246 105.208 2.872 0.862
bio2token (1.1M) 1.076 0.948 1.006 0.952 1.377 0.939 - - 1.361 1.008 - 1.212 0.932

Kanzi (30M) 0.936 0.948 0.861 0.958 1.345 0.951 1.098 0.940 0.774 1.181 27.202 1.069 0.947
Kanzi (30M)* 0.817 0.960 0.698 0.972 1.267 0.963 0.953 0.955 0.658 1.023 7.956 0.870 0.962
Kanzi (11M) 1.016 0.937 0.912 0.954 1.259 0.955 1.156 0.934 0.805 1.239 20.104 1.210 0.934
Kanzi (11M)* 0.863 0.952 0.762 0.968 1.105 0.965 0.994 0.950 0.813 1.058 51.649 0.994 0.952

Table 1: Reconstruction metrics across tokenizers for Cα reconstruction. Kanzi consistently
matches or outperforms much larger models trained on larger datasets. Best result in bold, second
best result underlined. Datasets like CAMEO and CASP are relatively small and have larger vari-
ances. We exclude any cases where a model is explicitly stated to be trained on a held-out dataset.
Starred (*) Kanzi models use η = 0.45, γ = 1.0, g = 2.0. This parameter setting is deliberately
underoptimized; we tuned against a small subset of our AFDB test set (100 structures) and applied
it without adjustment to the held-out non-synthetic datasets. For visual clarity, standard errors are
left to the Appendix.

CAMEO CASP14 CASP15 CATH AFDB

RMSD(↓) TM (↑) RMSD TM RMSD TM RMSD TM RMSD TM

DPLM2 1.631 0.928 0.995 0.959 2.144 0.953 1.717 0.925 4.646 0.880
ESM3 0.861 0.980 0.463 0.994 1.018 0.983 1.151 0.971 2.378 0.944
FoldToken 2.498 0.922 2.323 0.958 6.580 0.809 1.352 0.944 2.120 0.907
IST 1.626 0.954 0.896 0.974 1.244 0.975 1.195 0.956 2.859 0.904
bio2token 1.069 0.963 0.998 0.966 1.367 0.960 0.987 0.958 1.201 0.949

Kanzi (30M) 0.996 0.973 0.889 0.981 1.123 0.980 1.074 0.972 1.165 0.969

Table 2: Full backbone reconstruction. While the gap is less pronounced than Cα only, Kanzi con-
sistently achieves the best or second-best reconstruction across datasets. rFPSD is a Cα only metric
by construction, so it is excluded.

tures. Second, most other natural protein structure datasets are not large enough to provide accurate
estimators for distribution metrics such as rFPSD.

We train both Cα only and full backbone tokenizers, as both are useful depending on the task at
hand. These results are shown in Tables 1 and 2. Kanzi consistently performs best or second best
across dataset categories, despite being trained entirely on synthetic data. The gap is more modest
for full-backbone tokenization, but we again note the significant difference in model and data scale
between Kanzi and models like ESM and DPLM2 (see Figure 4). The gap in rFPSD between
ESM3 and DPLM2 underscores the value of distribution-level metrics for assessing and improving
tokenizer performance: while DPLM2 underperforms ESM3 on reconstruction, it surpasses it on
rFPSD. As prior work has emphasized that strong reconstruction does not necessarily imply high-
quality generation (Geffner et al., 2025; Hsieh et al., 2025), developing better metrics to capture
generative ability during tokenizer training is an important contribution.

4.2 GENERATION

The primary purpose of tokenization is for downstream representations. To evaluate Kanzi’s per-
formance on structure generation, we train an autoregressive model on tokenized sequences from
Kanzi. To broaden the scope of our comparisons, we also train additional autoregressive models on
the DPLM and ESM tokenizers. The full details on these models is in Appendix G.2. These compar-
isons ensure that strong results from our tokenizer can be decoupled from the choice of generative
model (e.g., autoregressive vs discrete diffusion). The full results for ESM3, DPLM-2, ESM3-AR,
and DPLM2-AR are presented in Table 3. Despite having a significantly smaller parameter count
than alternative models, Kanzi-AR exhibits strong performance across quality and diversity metrics.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

103 104 105

Gradient steps

Fl
ow

 lo
ss

~1A

~1.5A

(a)
Full
Window-8
Window-4
Linear

0 50000 100000
Gradient steps

0.5

0.6

0.7

0.8

0.9

1.0

Co
de

bo
ok

 u
tili

za
tio

n

(b)

20000 40000
Gradient steps (250k)

10 1

100

Fl
ow

 lo
ss

Unconditional loss

~1.3A

~1.0A

(c)
MPNN
R&C

Learned
None

103 104 105

Gradient steps

Fl
ow

 lo
ss

(d)
WS-4 (Large)
WS-4 (Medium)
WS-4 (Small)

Figure 5: All flow losses use the same noise schedule; as numerical values are uninterpretable, we
omit them. (a) Encoders need mixing: A point-wise encoder can achieve remarkably strong recon-
structions (though underperforms token mixing). Downstream generative performance, however,
is poor (see Appendix). (b) Codebook utilization is emergent. Across a large number of archi-
tectural classes, codebook usage shoots up after a large number of gradient steps. (c) Invariant
representations struggle. Common encoders like MPNNs lead to codebook collapse and identical
performance as an unconditional model. While other invariant encoders work, they underperform
simply learning the pose. (d) DAEs are scalable. Larger model sizes converge to the same or lower
loss in fewer gradient steps. Plot is log-log.

Kanzi-AR overpredicts alpha helices, a known issue for models that heavily rely on synthetic data.
This can be resolved by additional post-training steps (as done in Huguet et al. (2024a)), which we
leave to future work. We also noticed that evaluations across models have a substantial amount
of variance depending on sampling; for instance, our benchmarking on DPLM-2 outperforms the
scRMSD results reported in Wang et al. (2024) but underperforms the reported scTM values. To
ensure reproducibility, we describe our generation and benchmarking process for all models in Ap-
pendix G.2.

Model QUALITY DIVERSITY

Designability (↑) scRMSD (↓) scTM (↑) Diversity (↓) Novelty (↓) α% β% c%

ESM3 (650M/32) 0.476 10.898 0.702 0.705 0.730 82.9 5.1 11.9
ESM3 (650M/256) 0.460 6.959 0.7199 0.604 0.692 74.9 11.5 13.6
ESM3-AR (300M) 0.520 4.252 0.804 0.241 0.751 38.6 16.8 44.6
DPLM2 (650M) 0.486 3.314 0.814 0.263 0.735 42.5 15.2 42.3
DPLM2-AR (300M) 0.320 8.989 0.706 0.308 0.772 41.2 18.0 40.8
Kanzi-AR (250M)

(η=0) 0.328 4.210 0.724 0.271 0.715 71.9 6.5 21.6
(η=0.66) 0.562 3.781 0.795 0.408 0.773 88.7 0.7 10.7
(η=0.66, BoN) 0.617 3.655 0.807 0.386 0.763 88.2 0.8 11.0

Table 3: Generative evaluation across models. Bold = best (per column), underline = second-best.
The first ESM3 records are with 32 and 256 steps, respectively, (i.e., for the latter, every pass de-
codes a single new token). Kanzi-AR consistently shows strong performance across metrics. As
an additional contribution, we use best-of-N sampling (N = 2) with log-likelihoods as our reward
proxy to improve performance, demonstrating that our autoregressive prior learns a meaningful dis-
tribution.

4.3 ABLATIONS AND DESIGN CHOICES

This section contains a curated list of ablations and design choices we made. We present a more
thorough list of findings in the appendix. Each bolded item has a corresponding reference in Fig-
ure 5.

Encoders need token mixing for generation, but not for reconstruction. When operating on
coordinates without any invariant transforms, because the input itself carries raw positional infor-
mation, it isn’t obvious that pooling of local information should occur in the same way as it does in
image tokenizers or invariant protein structure tokenizers (see Section I.2 for more discussion). We
ablate the window size on encoder transformers – full attention, window size 8, window size 4, and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

window size 0 (corresponding to a point-wise MLP on the raw coordinates). Surprisingly, the latter
suffices for good reconstructions, but substantially harms downstream generations.

Codebook utilization is emergent. A surprising but reproducible phenomenon was the emergence
of high codebook utilization after extended training. At the start of training, the raw coordinates
are highly correlated, which in FSQ leads to low usage. Over time, this spreads out, signifying
an increase in codebook utilization (see Appendix E for additional approaches we tried to increase
codebook usage).

Invariant representations struggle. Most existing tokenizers use an invariant encoder; we exper-
iment with two variants of this design choice – that is, we use an invariant encoder to inform an
equivariant decoder. We experiment with a learned relative rotation between the encoder and de-
coder, which encourages the model to learn an invariant representation, and an explicitly invariant
input. Both cases underperform simply allowing the model to tokenize the pose for both recon-
struction and generation. Most graph-based invariant models (like MPNN, a common choice for
proteins) lead to codebook collapse and the same flow loss as a purely unconditional model.

Diffusion autoencoders are scalable tokenizers. An advantage of transformer layers that use stan-
dard attention is their scalability. While this is computationally challenging to explore, small-scale
experiments we performed (<0.2B parameters) consistently showed that larger models reach the
same performance as smaller models after fewer steps, and model performance continues to improve
with extended training. We observed no evidence of overfitting, and continued to see performance
improvements well over 100k gradient steps during training.

5 OUTLOOK AND LIMITATIONS

In this work, we present a new approach for structure tokenization. We demonstrate that for the
task of protein structure tokenization, diffusion autoencoders that utilize standard attention simplify
model training while enjoying performance equal to or better than other state-of-the-art generative
models. An autoregressive model trained on Kanzi tokens is, to our knowledge, the first tokenized
structure model competitive with models like ESM3 or DPLM2 that use large-scale pre-training.
Additional work is necessary to close the performance gap between models that leverage tokeniza-
tion for structure generation, as described here, and state-of-the-art diffusion models.

Our work has several key limitations. We primarily train on the AFDB, which is synthetically biased;
our introduction of the rFPSD metric was an attempt to measure these effects. For computational
reasons, our models are quite small. It is challenging to know how these models will actually per-
form as data size, model size, and training time are increased, as was studied in Geffner et al. (2025).
Similarly, we only train on proteins of size < 256. Geffner et al. (2025) showed that a fine-tuning
stage with larger proteins could dramatically improve long protein designability. We expect that
with appropriate computational resources, our models might realize similar gains. Our generative
models are trained on Cα tokenizers, a choice driven by computational limitations. During train-
ing, we were surprised to observe only small differences between Cα and full backbone tokenizers.
Extending generation to the full-backbone and all-atom case is an important future direction.

We close by noting that while diffusion models remain state-of-the-art for protein generation, to-
kenization has much to offer structural biology and protein design. Biology is filled with diverse
representations – cryoEM and cryoET images, single cell data, multiplexed immunofluorescence
data, structural and natural language descriptions of proteins, etc. Tokenized representations are
uniquely amenable to multimodal tasks beyond generation. We believe that much like the interplay
between images, text, video, and audio, building large foundation models for the life sciences will
require robust tokenized representations across data modalities.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility of our results. Our training relies entirely on
public data (Varadi et al., 2022). The main text describes the core model architecture (Section 3.1)
and training objective. We fully describe all hyperparameters in Appendix D.1 and dataset process-
ing steps in Appendix D.2. We describe our evaluation metrics with code references in Appendix C.1
and Appendix C.2. Source code and instructions for reproducing all experiments will be released
publicly after the review period, once anonymization and cleanup are complete.

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, 630(8016):493–500, 2024.

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. arXiv preprint arXiv:2209.15571, 2022.

Protein Data Bank. Protein data bank. Nature New Biol, 233(223):10–1038, 1971.

Avishek Joey Bose, Tara Akhound-Sadegh, Guillaume Huguet, Kilian Fatras, Jarrid Rector-Brooks,
Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael Bronstein, and Alexan-
der Tong. Se (3)-stochastic flow matching for protein backbone generation. arXiv preprint
arXiv:2310.02391, 2023.

Charlotte Bunne, Yusuf Roohani, Yanay Rosen, Ankit Gupta, Xikun Zhang, Marcel Roed, Theo
Alexandrov, Mohammed AlQuraishi, Patricia Brennan, Daniel B Burkhardt, et al. How to build
the virtual cell with artificial intelligence: Priorities and opportunities. Cell, 187(25):7045–7063,
2024.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, et al. Pixart: Fast training of diffusion transformer for photoreal-
istic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

Shoufa Chen, Mengmeng Xu, Jiawei Ren, Yuren Cong, Sen He, Yanping Xie, Animesh Sinha, Ping
Luo, Tao Xiang, and Juan-Manuel Perez-Rua. Gentron: Diffusion transformers for image and
video generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6441–6451, 2024.

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using
diffusion models with self-conditioning. arXiv preprint arXiv:2208.04202, 2022.

Yinbo Chen, Rohit Girdhar, Xiaolong Wang, Sai Saketh Rambhatla, and Ishan Misra. Diffusion
autoencoders are scalable image tokenizers. arXiv preprint arXiv:2501.18593, 2025.

Haotian Cui, Alejandro Tejada-Lapuerta, Maria Brbić, Julio Saez-Rodriguez, Simona Cristea, Hani
Goodarzi, Mohammad Lotfollahi, Fabian J Theis, and Bo Wang. Towards multimodal foundation
models in molecular cell biology. Nature, 640(8059):623–633, 2025.

Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning–
based protein sequence design using proteinmpnn. Science, 378(6615):49–56, 2022.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 12873–12883, 2021.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Felix Faltings, Hannes Stark, Tommi Jaakkola, and Regina Barzilay. Protein fid: Improved evalua-
tion of protein structure generative models. arXiv preprint arXiv:2505.08041, 2025.

Christopher Fifty, Ronald G Junkins, Dennis Duan, Aniketh Iyengar, Jerry W Liu, Ehsan Amid,
Sebastian Thrun, and Christopher Ré. Restructuring vector quantization with the rotation trick.
arXiv preprint arXiv:2410.06424, 2024.

Ruiqi Gao, Emiel Hoogeboom, Jonathan Heek, Valentin De Bortoli, Kevin P. Murphy, and Tim
Salimans. Diffusion meets flow matching: Two sides of the same coin, 2024. URL https:
//diffusionflow.github.io/. Blog post.

Zhangyang Gao, Cheng Tan, Jue Wang, Yufei Huang, Lirong Wu, and Stan Z Li. Foldtoken: Learn-
ing protein language via vector quantization and beyond. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, pp. 219–227, 2025.

Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max Welling. E (n)
equivariant normalizing flows. Advances in Neural Information Processing Systems, 34:4181–
4192, 2021.

Benoit Gaujac, Jérémie Donà, Liviu Copoiu, Timothy Atkinson, Thomas Pierrot, and Thomas D
Barrett. Learning the language of protein structure. arXiv preprint arXiv:2405.15840, 2024.

Tomas Geffner, Kieran Didi, Zuobai Zhang, Danny Reidenbach, Zhonglin Cao, Jason Yim, Mario
Geiger, Christian Dallago, Emine Kucukbenli, Arash Vahdat, et al. Proteina: Scaling flow-based
protein structure generative models. arXiv preprint arXiv:2503.00710, 2025.

Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert
Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years
of evolution with a language model. Science, 387(6736):850–858, 2025.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
sion for molecule generation in 3d. In International conference on machine learning, pp. 8867–
8887. PMLR, 2022.

Cheng-Yen Hsieh, Xinyou Wang, Daiheng Zhang, Dongyu Xue, Fei Ye, Shujian Huang, Zaixiang
Zheng, and Quanquan Gu. Elucidating the design space of multimodal protein language models.
arXiv preprint arXiv:2504.11454, 2025.

Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and Alexan-
der Rives. Learning inverse folding from millions of predicted structures. In International con-
ference on machine learning, pp. 8946–8970. PMLR, 2022.

Guillaume Huguet, James Vuckovic, Kilian Fatras, Eric Thibodeau-Laufer, Pablo Lemos, Riashat
Islam, Chenghao Liu, Jarrid Rector-Brooks, Tara Akhound-Sadegh, Michael Bronstein, et al.
Sequence-augmented se (3)-flow matching for conditional protein generation. Advances in neural
information processing systems, 37:33007–33036, 2024a.

Guillaume Huguet, James Vuckovic, Kilian Fatras, Eric Thibodeau-Laufer, Pablo Lemos, Riashat
Islam, Chenghao Liu, Jarrid Rector-Brooks, Tara Akhound-Sadegh, Michael Bronstein, et al.
Sequence-augmented se (3)-flow matching for conditional protein generation. Advances in neural
information processing systems, 37:33007–33036, 2024b.

John B Ingraham, Max Baranov, Zak Costello, Karl W Barber, Wujie Wang, Ahmed Ismail, Vincent
Frappier, Dana M Lord, Christopher Ng-Thow-Hing, Erik R Van Vlack, et al. Illuminating protein
space with a programmable generative model. Nature, 623(7989):1070–1078, 2023.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

11

https://diffusionflow.github.io/
https://diffusionflow.github.io/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Brian Kuhlman and Philip Bradley. Advances in protein structure prediction and design. Nature
reviews molecular cell biology, 20(11):681–697, 2019.

Xiaohan Lin, Zhenyu Chen, Yanheng Li, Xingyu Lu, Chuanliu Fan, Ziqiang Cao, Shihao Feng,
Yi Qin Gao, and Jun Zhang. Protokens: A machine-learned language for compact and informative
encoding of protein 3d structures. 2023.

Yeqing Lin, Minji Lee, Zhao Zhang, and Mohammed AlQuraishi. Out of many, one: Design-
ing and scaffolding proteins at the scale of the structural universe with genie 2. arXiv preprint
arXiv:2405.15489, 2024.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Andrew Liu, Axel Elaldi, Nathan Russell, and Olivia Viessmann. Bio2token: All-atom tokenization
of any biomolecular structure with mamba. arXiv preprint arXiv:2410.19110, 2024.

Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantiza-
tion: Vq-vae made simple. arXiv preprint arXiv:2309.15505, 2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn. Dif-
fusion autoencoders: Toward a meaningful and decodable representation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 10619–10629, 2022.

Jiahao Qiu, Yifu Lu, Yifan Zeng, Jiacheng Guo, Jiayi Geng, Chenhao Zhu, Xinzhe Juan, Ling Yang,
Huazheng Wang, Kaixuan Huang, et al. Treebon: Enhancing inference-time alignment with
speculative tree-search and best-of-n sampling. arXiv preprint arXiv:2410.16033, 2024.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Janes S Richardson and David C Richardson. The de novo design of protein structures. Trends in
biochemical sciences, 14(7):304–309, 1989.

Kyle Sargent, Kyle Hsu, Justin Johnson, Li Fei-Fei, and Jiajun Wu. Flow to the mode: Mode-seeking
diffusion autoencoders for state-of-the-art image tokenization. arXiv preprint arXiv:2503.11056,
2025.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Yifan Song, Guoyin Wang, Sujian Li, and Bill Yuchen Lin. The good, the bad, and the greedy:
Evaluation of llms should not ignore non-determinism. arXiv preprint arXiv:2407.10457, 2024.

Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Harmonic self-conditioned flow
matching for multi-ligand docking and binding site design. arXiv preprint arXiv:2310.05764,
2023.

Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein sequence searching for
the analysis of massive data sets. Nature biotechnology, 35(11):1026–1028, 2017.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Michel van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Cameron LM Gilchrist,
Johannes Söding, and Martin Steinegger. Foldseek: fast and accurate protein structure search.
Biorxiv, pp. 2022–02, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina
Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, et al. Alphafold protein
structure database: massively expanding the structural coverage of protein-sequence space with
high-accuracy models. Nucleic acids research, 50(D1):D439–D444, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu. Dplm-2:
A multimodal diffusion protein language model. arXiv preprint arXiv:2410.13782, 2024.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eise-
nach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of
protein structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

Jeremy Wohlwend, Gabriele Corso, Saro Passaro, Noah Getz, Mateo Reveiz, Ken Leidal, Wojtek
Swiderski, Liam Atkinson, Tally Portnoi, Itamar Chinn, et al. Boltz-1 democratizing biomolecular
interaction modeling. BioRxiv, pp. 2024–11, 2025.

Pinku Yadav, Olivier Rigo, Corinne Arvieu, Emilie Le Guen, and Eric Lacoste. In situ monitoring
systems of the slm process: On the need to develop machine learning models for data processing.
Crystals, 10(6):524, 2020.

Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah
Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast
protein backbone generation with se (3) flow matching. arXiv preprint arXiv:2310.05297, 2023a.

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
and Tommi Jaakkola. Se (3) diffusion model with application to protein backbone generation.
arXiv preprint arXiv:2302.02277, 2023b.

Jiayou Zhang, Barthelemy Meynard-Piganeau, James Gong, Xingyi Cheng, Yingtao Luo, Hugo Ly,
Le Song, and Eric Xing. Balancing locality and reconstruction in protein structure tokenizer.
bioRxiv, pp. 2024–12, 2024.

A LLM USAGE STATEMENT

Large Language Models were used for polishing grammar, finding typos, and creating plotting code.

B ETHICS STATEMENT

AI for biology has the potential to significantly improve human health, but can also be used for ill.
We strongly support the principles outlined in Responsible AI x Biodesign.

C METRICS

C.1 STANDARD METRICS

This section describes all of the metrics we use in assessing model performance throughout the
paper. To encourage reproducibility, we release all of these along with any relevant data with our
code submission.

RMSD: We use the Kabsch algorithm, for which there are numerous standard implementations, to
align two structures before computing RMSD.

TM-score: We use biotite’s implementation in biotite.structure.tm score to compute the
TM score between predicted and sampled structure. There are small differences between the biotite
implementation and the tmtools implementation, but in our experiments these were on the order of
≈ 0.01, so we used the former as it parallelizes more easily.

13

https://responsiblebiodesign.ai/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Designability: We follow standard practice and use ProteinMPNN in Cα only mode to inverse fold
eight putative sequences, then use ESMFold to fold those into eight output structures. We compute
the RMSD/TM score between all eight and report the lowest/highest one.

Diversity: We compute the TM-score between all pairs of designable structures. A challenge with
autoregressive models is they produce variable sequence lengths, which can bias diversity results to
lower outputs. To mitigate this and provide a fair comparison without needing to generate thousands
of structures, we take all pairs within ten residues in size. We report the average over all pairwise
comparisons.

Novelty: We report the average TM score of the closest match in the CATH reference database over
all designable structures. We found searching over the full PDB to be computationally too expensive
on our hardware.

C.2 AUXILIARY METRICS

101 102 103 104

Number of samples

0

200

400

600

800

1000

1200

1400

rF
PS

D

Feature dims
4D
8D
16D
32D
64D
128D
256D
512D

Figure 6: rFPSD converges after 5k samples.

[ss]RMSD: Alpha helices are highly structured
and quite easy for models to reconstruct, beta
sheets less so, and coils the most unstructured
secondary structure element. This metric com-
putes RMSD on proteins that are more than
60% one type of secondary structure to provide
a more fine-grained view of reconstruction ca-
pabilities.

rFPSD: We compute rFPSD over the CATH
dataset by taking features from the trained
GearNet fold classifier from Geffner et al.
(2025). We have two datasets of features, one
from the original CATH dataset and one from
the tokenized and reconstructed CATH dataset.
We fit Gaussians to these features using stan-
dard estimators and compute the Wasserstein distance as

rFPSD = ∥µr − µc∥22 +Tr
(
Σr +Σc − 2(ΣrΣc)

1/2
)

where the subscripts c and r reference the fit CATH and reconstructions respectively.

FPSD was originally introduced in Geffner et al. (2025). A similar metric was introduced in Faltings
et al. (2025). We choose the former over the latter primarily as the latter uses the ESM3 structure
tokenizer, which is trained on a large number of synthetic structures and carries all of the biases of to-
kenization. While not conclusive, the observation that DPLM-2 has a lower rFPSD than ESM3 (but
a higher RMSD) is encouraging for the notion that we can hill-climb rFPSD to develop tokenizers
with better generative capabilities.

Why do we only measure rFPSD on CATH? The goal of our additional metrics are to provide
measurements of quality beyond per-sample quality, which RMSD and TM-score provide, and to
correct for biases endowed by model and data choices. The estimators for the Gaussian fitting are

µ =
1

N

N∑
i=1

xi Σ =
1

N − 1

N∑
i−1

(xi − µ)(xi − µ)⊺

For Gaussian noise, both estimators are unbiased and obey the Central Limit Theorem. We empir-
ically estimated that we required a minimum of 5,000 samples to get low variance estimators. We
show this in Figure 6. The CATH dataset provides both the diversity and sample count required. We
explicitly did not want to use synthetic data to avoid biases like overprediction of alpha helices.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D MODEL

This section contains details on the full model training pipeline.

D.1 HYPERPARAMETERS

We train with AdamW, β1 = 0.9, β2 = 0.95. We train tokenizer models with the following configu-
rations (bold indicates base models used for most experiments). We train most models on 1-2 H100s
(when training with two GPUs, we use 4 micro-steps for an effective batch size of 256). For each
micro step, the elements in the batch are composed of a single protein with randomly augmented
views. This allows us to avoid masking/batching with different sequence lengths.

Parameter Value
Batch size 32
Encoder layers 2
Decoder layers 8/12
Attention heads 8
Encoder channels 256/384/512
Decoder channels 256/512/784
Pair-bias channels 64
FSQ levels (8, 5, 5, 5)
MLP factor 4
Dropout 0.1

Learning rate 1.7× 10−4

Warmup iters 1000
LR decay iters 100000
Minimum LR 1× 10−4

Gradient clip 1.0/None

Sliding window size 4/8/16/None
Micro-steps (grad accum.) 8

QKNorm True/False

Table 4: Training configuration hyperparameters.

D.2 DATA PREPROCESSING

We train on the Foldseek-clustered AFDB DFS. We perform the following filtering steps

1. We remove all chains with coil percentage ¿ 70%.
2. We remove all chains with mean residue-wise pLDDT ¡ 80.
3. We keep only chains where 80% of the residues have pLDDT ¿ 70.
4. We filter all structural homologs of chains in our test sets: a subset of the AFDB (already

filtered), CAMEO, CASP14, CASP15, and a subset of CATH.

The first two requirements are fairly important to ensure high quality structures. We did not ablate
the effect of the last step; various other works like Bose et al. (2023) have imposed similar filtering
criteria.

During training, we mean-center all coordinates using Cα position (we do this for full backbone
data as well).

It is easy to see that one cannot have a diffusion process that is invariant to translations, since the
probability mass would not integrate to one (Garcia Satorras et al., 2021). It is standard to instead
define a diffusion process over a subspace of Rn, i.e., the zero center-of-mass subspace. The noise
interpolation in flow matching is thus well defined, since if ϵ ∼ N (0, 1) and x both have center-of-
mass zero, then xt = tx+ (1− t)ϵ also does by linearity (Hoogeboom et al., 2022).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We augment proteins with random rotations during training, computed using the following snippet:

1 from scipy.spatial.transform import Rotation
2 def sample_uniform_rotation(shape=tuple()):
3 return torch.tensor(
4 Rotation.random(prod(shape)).as_matrix()
5).reshape(*shape, 3, 3)

D.3 INFERENCE

Diffusion sampling: As mentioned in the main text, we use classifier-free guidance, score anneal-
ing, and noise annealing. For the most part, we take the parameters from Proteina without further
exploration. A major advantage of the diffusion autoencoder paradigm is the noise/score scale can
be tuned to the particular task at hand. Best-of-N sampling: In Table 3, we include a single result
using best-of-2 sampling. Best-of-N sampling is a unique strength of autoregressive models; in each
forward pass, we store the log-likelihood, and decode the sequence with the best log-likelihood.
The fact that we have a computationally inexpensive closed-form log-likelihood is a unique strength
of autoregressive models; computing log-likelihoods requires a full ODE integration for diffusion
models. In other words, the log-likelihood gives us a free estimator for the downstream model
quality before running the diffusion process or designability checks. We include this primarily to
demonstrate that our learned discrete codebook encodes useful knowledge about the token quality.

A valid concern with best-of-N sampling is mode collapse; the strong diversity metrics in Table 3
emphasize that this is not the case with our results.

E ABLATIONS

This section contains a list of all ablations that we conducted in addition to those presented in
the main text. We highlight ablations with positive results in purple, negative results in red, and
ambiguous results in blue. 1

AdaLN: Standard diffusion models use adaptive layer normalization to condition the model on
time, but this time conditioning relies on thick linear layers and takes 27% of all model parameters.
Subsequent work (Chen et al., 2023) used a variant, adaLN-single, which uses a single adaLN MLP
on the first layer and has lightweight projections for all subsequent layers. We explore a third
option, where a single MLP is shared across all layers. We find that while adaLN-single trains very
unstably, weight sharing across layers provides equal performance as the standard DiT approach.
We add adaLN weight-sharing to Kanzi.

Learned rotational invariance: To learn rotational invariance, we add an additional random relative
rotation between the encoded protein and the encoded noise. This encourages the model to learn an
invariant representation, a fact we confirm by observing the Hamming and MSE distances between
the learned vectors. These models can train, but are extremely stochastic. Intuitively, the model
needs to learn how the conditioning vector can relate in very arbitrary ways to the diffusion process.
We ran trials at several random seeds and witnessed very different codebook utilizations. That
coupled with the reconstruction performance being worse on CATH by about 0.4Å made us reject
this change. We exclude learned rotational invariance from Kanzi.

Cross-attention conditioning: Some work suggests that cross attention may be more effective at
conditioning diffusion transformers for more complex conditioning sequences (Chen et al., 2024).

1Warning: For execution speed, we often relied on the flow loss as proxy for downstream performance.
One has to be careful while doing this. The comparison is valid and correlates well with reconstruction for
identical noise schedules and invariance/equivariance setups, but this is no longer true when encoder symmetry
properties change. An encoder that does not learn the pose will almost always have a higher flow loss than one
that does learn the pose, even if the former has better reconstructions. In all of the ambiguous cases, we check
reconstructions on about 1k CATH structures. To aid the interested reader, we present flow losses in the plots
associated with each ablation and annotate approximate reconstructions. We often omit the actual numerical
values of the flow loss, since it is effectively uninterpretable as a numerical value (though extremely useful to
compare performance across experiments).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

20k 40k
Gradient steps

100Fl
ow

 lo
ss

(a)

Baseline
aLN-single
aLN-shared

25k 50k
Gradient steps

0.0

0.2

0.4

0.6

0.8
Co

de
bo

ok
 u

tili
za

tio
n

(b)

Seed[0]
Seed[1137]

50k 100k
Gradient steps

10 2

10 1

100

Ha
m

m
ing

 d
ist

an
ce

(c)

Learned invariance
No invariance

25k 50k
Gradient steps

0.2

0.4

0.6

0.8

Co
de

bo
ok

 u
tili

za
tio

n

(d)

No jitter
Jitter

25k 50k
Gradient steps

10 1

100

Fl
ow

 lo
ss

~1A

~2.3A

(e)

Concatenation
Cross Attention

25k 50k
Gradient steps

10 1

100

Fl
ow

 lo
ss

GPT-reg
Baseline

4

5

6

7

GPT prior loss

(f)

Figure 7: (a) adaLN-single trains unstably, but sharing the weights across all layers matches base-
line performance and reduces parameter count by 30%. (b) Two runs at different starting seeds with
learned augmentations show very different codebook utilizations. (c) Rotational augmentation in-
creases the Hamming similarity between different views of the same protein, which by default are
totally different sequences. (d) Codebook jitter mostly just reduces codebook utilization. (e) Cross
attention unambiguously makes performance worse. (f) The baseline and GPT-regularized version
have identical flow losses, but the GPT-regularized version has an additional per-token cross-entropy
loss (the baseline version stays at the random initialization log(1000)).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

We explore conditioning our decoder with cross attention, where the input is a six-eight layer en-
coder. Our cross attention layers follow standard practices and attend to the main diffusion trunk
following each self-attention layer (Vaswani et al., 2017; Peebles & Xie, 2023). This unambigu-
ously hurts performance, so we exclude it from the model.

Curriculum learning: Since the non-invariant version worked quite well, we thought we could tran-
sition slowly between a non-invariant and a learned invariant version by gradually augmenting with
larger and larger rotations during training (using spherical linear interpolation). This did not help at
all and mostly just harmed codebook utilization and flow loss. We exclude curriculum rotational
invariance from training.

Explicit rotational invariance: Similar to above, it seems reasonable that an invariant represen-
tation could condition a non-equivariant decoder. As we discuss in Section 4.3, certain invariant
encoders like MPNN (Dauparas et al., 2022), a common choice for protein design tasks, immedi-
ately led to codebook collapse and poor performance on par with unconditional flow models. We
explored other variants. In particular, we embedded the distances between coordinates dij into fea-
ture vectors, giving inputs with shape L× L× d. We applied successive layers of row and column
attention, then took a mean down a sequence axis as the conditioning input. This worked slightly
better in that the model didn’t immediately collapse, but didn’t really provide any tangible benefit
beyond the aesthetic benefit that different poses would encode to the same protein. We exclude
explicit rotational invariance from the model.

Low codebook utilization: FSQ typically has very high codebook utilization (Mentzer et al., 2023),
but as our data is low dimensional and highly correlated at input, many values ended up in the same
“bin” which led to low usage. We explored a variety of options to increase codebook utilization.
As mentioned in the main text, we eventually realized that we could get high codebook usage by
just letting the model train longer, but we leave the discussion here as a potentially useful record of
ablations.

Codebook jitter: One strategy to encourage higher codebook use is to “jitter” the codewords. This
is typically used in VQVAE; for FSQ, we add a small noise term before bin quantization. This noise
term was quite small but generally made results worse. We exclude codebook jitter from model
training.

Rotational transforms: Recently, Fifty et al. (2024) saw improvements in tokenization from applying
a generalized rotation before and after the quantization step. This seemed to add complexity but have
basically no effect on our task specifically, so we exclude rotational transforms from the model.

Non-linear embeddings: We initially started with just a linear upsampling layer, as is done in Geffner
et al. (2025). Since linear layers preserve correlations in highly structured ways, we went from
Linear to Linear -> Swish -> Linear -> LayerNorm. We ablated all of these carefully; the
addition of both the non-linearity and the layer normalization both seem important. We add non-
linear point-wise encodings to Kanzi.

GPT prior: Prior works have suggested adding a small GPT-regularization term to encourage code-
books to learn tokens more suitable for autoregressive, next-token-prediction modeling (Radford
et al., 2018; 2019; Vaswani et al., 2017). We ablate training a small GPT model (2 layers, dimen-
sion 512) in tandem with our tokenizers. The cross-entropy GPT loss is added as a regularization
term to the diffusion loss. We did not fully ablate these results on generative capabilities, but the
autoregressive regularization did not harm reconstructions.

E.1 PAIR-BIASING AND SELF-CONDITIONING

Pair-biasing is a technique where the attention scores QKT in a transformer are biased by projecting
learned pair features zij ∈ RL×L×d in each layer. These are very common in protein design models
since their introduction in AlphaFold2 (Jumper et al., 2021; Abramson et al., 2024). However,
AlphaFold2 and AlphaFold3 both use triangular updates, which many subsequent works forgo due
to their computational cost. Thus, it is actually quite unclear if pair-biasing is actually helpful when
used without the additional use of triangular attention.

Similarly, self-conditioning (described in Stärk et al. (2023) and Chen et al. (2022)) condi-
tions a flow model on previous predictions. Instead of a flow field vθ(xt, t, ĉ), we now have

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

a flow field vθ(xt, x̃1, t, ĉ), where x̃1 is a coarse prediction of the clean data from the previ-
ous timestep. Self-conditioning is implemented during training by providing a coarse predic-
tion 50% of the time; the remainder of the time, we simply drop out the prediction (i.e., we do
vθ(xt,∅, t, ĉ)). Various works have reported improved performance by using self-conditioning.

10k 20k 30k 40k 50k
Gradient steps

0.25

0.50

0.75

1.00

Co
de

bo
ok

 u
tili

za
tio

n

Baseline
Pair bias
Self cond.
PB + SC

Figure 8: Codebook usage decreases with pair-
bias and self-conditioning

We found it difficult to fully disentangle
the effects of self-conditioning and pair bias-
ing. A complicating challenge was we ulti-
mately care about downstream generative per-
formance, which reconstruction alone does not
track with. For this reason, we conducted a
series of ablations on pair-biasing (no trian-
gular updates), self-conditioning, and the two
combined, all for a small 11M parameter
model. These results are summarized in Ta-
ble 5 and visualized in Figure 9. Our primary
conclusion was that while pair-biasing and self-
conditioning seemed to help reduce both RMSD and TM-score, the effect was not enormous, and
our 30M models without either addition were already at 1Å resolution or better. Moreover, self-
conditioning (possibly due to the large 50% dropout probability) tended to harm codebook utiliza-
tion. While codebook utilization is not a good per se, it is a useful measure to track. This drop
is shown in Figure 8. Given these complexifiers, we did not include self-conditioning and op-
tionally included pair-biasing in our models. However, we think exploring self-conditioning and
pair-biasing, and how they impact generative capabilities, is a potentially fruitful future avenue of
research.

Method RMSD TM-score

CAMEO

Baseline 1.812 ± 0.702 0.932 ± 0.053
Pair bias 1.741 ± 0.671 0.933 ± 0.053
Self-cond 1.670 ± 0.679 0.938 ± 0.051
Pair bias + Self-cond 1.619 ± 0.602 0.943 ± 0.042

CATH

Baseline 1.519 ± 0.446 0.953 ± 0.027
Pair bias 1.551 ± 0.534 0.947 ± 0.037
Self-cond 1.431 ± 0.543 0.957 ± 0.030
Pair bias + Self-cond 1.420 ± 0.422 0.958 ± 0.028

CASP14

Baseline 1.833 ± 0.665 0.948 ± 0.032
Pair bias 1.674 ± 0.465 0.954 ± 0.021
Self-cond 1.596 ± 0.473 0.960 ± 0.018
Pair bias + Self-cond 1.561 ± 0.434 0.964 ± 0.016

AFDB

Baseline 1.282 ± 0.421 0.964 ± 0.023
Pair bias 1.141 ± 0.318 0.972 ± 0.014
Self-cond 1.122 ± 0.356 0.972 ± 0.017
Pair bias + Self-cond 1.233 ± 0.459 0.965 ± 0.028

Table 5: Pair-bias and self-conditioning ablation summary statistics (mean ± std) for RMSD and
TM-score across datasets.

F OVERVIEW OF FLOW MATCHING

Flow matching is extensively described elsewhere: see Lipman et al. (2022) or Albergo & Vanden-
Eijnden (2022) for original presentations and Esser et al. (2024) for a more applied discussion.
Flow matching generalizes diffusion models (Song et al., 2020; Ho et al., 2020), which similarly
interpolate between two distributions. While the distinction between flow matching and diffusion
is often stated to be straight vs curved paths, this is more of a property of the sampler being used
(see Gao et al. (2024) for a good discussion). As mentioned earlier, for Gaussian flows on Rn, we

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

1.5

Ba
se

lin
e

1.81 ± 0.7 Å
CAMEO

0.0

0.5

1.0

1.5

Pa
ir

bi
as

1.74 ± 0.7 Å

0.0

0.5

1.0

1.5

Se
lf

co
nd

itio
nin

g 1.67 ± 0.7 Å

2 4
RMSD (Å)

0.0

0.5

1.0

1.5

Pa
ir

bi
as

 +
 se

lf
co

nd
.

1.62 ± 0.6 Å

0.0

0.5

1.0

1.5
1.52 ± 0.4 Å
CATH

0.0

0.5

1.0

1.5
1.55 ± 0.5 Å

0.0

0.5

1.0

1.5
1.43 ± 0.5 Å

2 4
RMSD (Å)

0.0

0.5

1.0

1.5
1.42 ± 0.4 Å

0.0

0.5

1.0

1.5

2.0
1.83 ± 0.7 Å
CASP14

0.0

0.5

1.0

1.5

2.0
1.67 ± 0.5 Å

0.0

0.5

1.0

1.5

2.0
1.60 ± 0.5 Å

2 4
RMSD (Å)

0.0

0.5

1.0

1.5

2.0
1.56 ± 0.4 Å

0.0

0.5

1.0

1.5
1.28 ± 0.4 Å
AFDB

0.0

0.5

1.0

1.5
1.14 ± 0.3 Å

0.0

0.5

1.0

1.5
1.12 ± 0.4 Å

2 4
RMSD (Å)

0.0

0.5

1.0

1.5

De
ns

ity

1.23 ± 0.5 Å

Figure 9: Histogram of RMSDs for pair bias and self-conditioning ablations across datasets.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

have closed-form expressions to convert between the score and the learned vector field. For this
reason, we often use the terms interchangeably. Flow objectives are a good fit for many molecu-
lar diffusion tasks because they avoid the instabilities at early or late timesteps (images solve this
problem by clipping, which is not as easy to do for points in R3).

For completeness, we present the standard flow matching objective and parameterization in notation
consistent with the remainder of the paper. Given a data distribution p1 and an easy to sample prior
p0, we wish to learn a family of functions u(xt, t) : Rd × [0, 1] → Rd that would push from the
distribution p0 to p1. If we did have access to a closed-form expression for u(xt, t), then we could
simply optimize

LFM = Et∼U(0,1),xt∼p1

[
∥u(xt, t)− vθ(xt, t)∥2

]
However, we do not have such a u(xt, t). The critical insight of conditional flow matching is that
one can construct a conditional path

u(xt, t) = Ex1∼p1,x0∼p0

[
u(xt|x0,x1, t)p(xt|x0,x1, t)

p(xt, t)

]
In this expression, we have introduced a family of conditional probability paths p(·|·, ·, t) that in-
duces conditional vector fields u(·|·, ·, t). As we do not know p(x, t), we still cannot regress against
u(xt, t). However, if we define

LCFM = Et∼U(0,1),x0∼p0,x1∼p1,xt∼p(xt|x0,x1,t)

[
∥u(xt|x0,x1, t)− vθ(xt, t)∥2

]
then by observing that ∇θLFM = ∇θLCFM , we note that we can optimize LCFM to regress
vθ(xt, t) towards the true vector field. In words, we construct a probability path between two distri-
butions, sample a point from each distribution, sample a time t ∈ [0, 1], and use the aforementioned
probability path to sample xt. As noted earlier, the standard choice is the linear probability path

p(xt|x0,x1, t) = N (xt|tx1 + (1− t)x0, σ
2)

where we take σ = 0 in our experiments (though this is not strictly required, see Gao et al. (2024)).
This gives rise to the simple vector field u(xt|x0,x1, t) = (x1 − x0).

G COMPARISONS

This section contains further details on the models we benchmark against.

G.1 PRIOR TOKENIZATION LOSSES

First, we describe the objectives prior works have optimized against and discuss the pitfalls of each.

FAPE. The frame-aligned point error (FAPE) loss has become the canonical SE(3)-invariant loss
since AlphaFold2 (Jumper et al., 2021). Define a frame by a translation rotation pair Ti = (Ri, ti).
The action of a frame on a vector xj is Tixj = Rxj + ti. Given predicted coordinates, predicted
frames, true coordinates, and true frames xj , Ti,x

true
j , T true

i , the FAPE loss is defined by

FAPE(xj , Ti,x
true
j , T true

i) = ∥T−1
i xj − T true

i
−1

xtrue
j ∥2 (6)

Every point is put into the local reference frame defined by every amino acid. It is easy to show that
this loss is invariant under rotations and translations, but not reflections as chirality is important for
biomolecules.

FAPE was very impactful, but it has several drawbacks. It scales quadratically between the atom
count and the frames. It requires clamping to train stably and can still be very unstable in early
training, and thus often requires an associated binned cross-entropy version. Errors in bond angles
can cause kinks in the optimization spectra; AlphaFold2 uses several supplemental bond angle and
violation losses to help reduce these issues.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

dRMSD An alternative to FAPE, used by Hayes et al. (2025), is dRMSD, where we regress against
inter-atom distances within a ground truth and a predicted structure. Explicitly, let dij = ∥xi−xj∥2.
Then dRMSD is given by

dRMSD = ∥dpred
ij − dtrue

ij ∥2 (7)

dRMSD is invariant under chirality since ∥xi − xj∥2 = ∥(−xi)− (−xj)∥2. ESM3 thus introduced
an additional “backbone vector loss,” whose primary purpose seems to be to break the chirality
symmetry in proteins. Like FAPE, dRMSD is quadratic in atom count, and can struggle to optimize
long-range contacts due to being dominated by errors from numerous short range interactions.

RMSD Some works, notably Liu et al. (2024) and Gao et al. (2025), directly optimize the RMSD.
This requires performing a rigid alignment using the Kabsch algorithm. This has several issues.
First, backpropagating through the Kabsch algorithm is non-trivial and can’t be done at low pre-
cision, which makes efficient training challenging. Second, even at float32 precision, the Kabsch
algorithm has discontinuities whenever singular values are particularly close. It also requires a deter-
minant correction, which can invert the handedness of a rotation and introduce another discontinuity.
These cause instabilities during training. Third, while these alignments work fine at small datasets,
they tend to regress to the mean at larger scale, which makes them less suited for modeling more
disordered structures and targets of therapeutic interest. Finally, the SVD based alignment is O(L3)
in the sequence length L, though this may be faster in practice using iterative approximations to the
SVD

Most other losses (such as the multiple losses used in FoldToken) are derivatives or binned versions
of one of the three discussed here designed to help mitigate some of these issues.

G.2 MODELS

ESM-3 We pull the model as described at https://github.com/evolutionaryscale/esm. Sev-
eral others have observed that ESM3, having been trained on a large amount of metagenomic data,
struggles to generate designable sequences. Geffner et al. (2025) reports designability of 22%. We
find that we can improve on this slightly by increasing the number of steps from the default 8 on the
GitHub up to a single token per step. We hypothesize this is partially because the ESM3 tokenizer is
so high variance; even at high designabilities, the mean scRMSD remains high due to a few decoded
structures with incredibly high RMSDs (>20 Å).

ESM-AR ESM-AR was trained from scratch on a mix of AFDB data and PDB data. It has dimension
1280, MLP dilation factor 2, 16 layers, and 16 heads. Otherwise, it is a standard transformer with
pre-LayerNorms and GELU activation functions. ESM-AR seems to improve ESM3’s designability
performance, but does not continually scale with techniques like best-of-N sampling, which we
again attribute to the aforementioned high variance decoding in the ESM3 decoder.

DPLM2 We pull the DPLM2 weights/code from https://github.com/bytedance/dplm, and oth-
erwise follow the generation example exactly using generate dplm2.py. A potential issue we noted
was while our generations had similar scRMSDs as those reported in Wang et al. (2024), we slightly
underperformed the reported scTM values. The difference of ≈ 0.14 seems large, but given that
scRMSD is generally acknowledged to be a more accurate reflection of protein structure that TM,
seems within reason.

The DPLM-2 structure tokenizer is fine-tuned on 220k structures sourced from the PDB + SwissProt.
However, the structure encoder is a large pretrained GVP-Transformer (Hsu et al., 2022) trained on
12 million AFDB structures. We thus include these in the DPLM-2 data count for Figure 4.

DPLM-AR The DPLM-2 codebook has size 8192, compared to the 4096 token ESM codebook.
Other than the projection and embedding layers, the DPLM-AR model is identical to the ESM-AR
model. Unlike the ESM-AR model, the DPLM-AR model slightly underperforms DPLM2.

IST We used the 1.7k codebook tokenizer, but were unable to generate any des-
ignable structures using the generative models released with the InstaDeep Structure To-
kenizer. Otherwise, we exactly followed the encoding/decoding process described in
https://github.com/InstaDeepai/protein-structure-tokenizer.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

CAMEO CASP14 CASP15 CATH AFDB

RMSD (↓) TM (↑) RMSD TM RMSD TM RMSD TM RMSD TM

DPLM2 1.651±1.39 0.876±0.14 1.008±0.39 0.951±0.02 2.160±1.75 0.866±0.12 1.641±1.27 0.897±0.09 4.676±6.04 0.810±0.15
ESM3 0.860±1.60 0.955±0.09 0.462±0.33 0.987±0.02 1.021±1.89 0.969±0.05 1.048±1.70 0.957±0.07 2.384±4.08 0.915±0.11
FoldToken 2.539±3.03 0.881±0.12 2.194±2.90 0.936±0.08 6.629±8.63 0.744±0.29 1.298±1.57 0.920±0.06 2.161±1.44 0.858±0.09
IST 1.637±1.86 0.916±0.13 0.900±0.21 0.960±0.01 1.252±0.29 0.953±0.02 1.201±0.72 0.940±0.04 2.872±3.46 0.862±0.11
bio2token 1.076±0.27 0.948±0.06 1.006±0.24 0.952±0.02 1.377±0.41 0.939±0.06 0.993±0.25 0.942±0.04 1.212±0.49 0.932±0.04

Kanzi (30M) 0.936±0.27 0.948±0.04 0.861±0.13 0.958±0.01 1.345±0.46 0.951±0.02 1.098±0.56 0.940±0.04 1.069±0.49 0.947±0.03
Kanzi (30M)* 0.817±0.29 0.960±0.03 0.698±0.14 0.972±0.01 1.267±0.55 0.963±0.01 0.953±0.57 0.955±0.04 0.870±0.39 0.962±0.02
Kanzi (11M) 1.016±0.31 0.937±0.05 0.912±0.13 0.954±0.01 1.259±0.33 0.955±0.01 1.156±0.69 0.934±0.04 1.210±0.69 0.934±0.04
Kanzi (11M) 0.863±0.25 0.952±0.04 0.762±0.10 0.968±0.01 1.105±0.35 0.965±0.01 0.994±0.65 0.950±0.04 0.994±0.46 0.952±0.03

Table 6: Reconstruction metrics across tokenizers for Cα reconstruction with errors. Smaller
datasets unsurprisingly have very large error bars. An advantage of diffusion tokenizers is they
tend to have lower variances across the board. Other tokenizers seem to have a small number of
coordinates with catastrophically high RMSDs, which leads to really large standard deviations.

CAMEO CASP14 CASP15 CATH AFDB

RMSD (↓) TM (↑) RMSD TM RMSD TM RMSD TM RMSD TM

DPLM2 1.631±1.39 0.928±0.09 0.995±0.39 0.959±0.04 2.144±1.75 0.953±0.08 1.717±1.85 0.925±0.08 4.646±6.03 0.880±0.14
ESM3 0.861±1.60 0.980±0.05 0.463±0.33 0.994±0.00 1.018±1.87 0.983±0.06 1.151±2.20 0.971±0.06 2.378±4.08 0.944±0.11
FoldToken 2.498±3.06 0.922±0.09 2.323±3.01 0.958±0.07 6.580±8.64 0.809±0.22 1.352±1.84 0.944±0.05 2.120±1.44 0.907±0.08
IST 1.626±1.84 0.954±0.08 0.896±0.21 0.974±0.01 1.244±0.29 0.975±0.01 1.195±0.71 0.956±0.04 2.859±3.45 0.904±0.11
bio2token 1.069±0.28 0.963±0.04 0.998±0.24 0.966±0.01 1.367±0.42 0.960±0.04 0.987±0.25 0.958±0.03 1.201±0.49 0.949±0.03

Kanzi (30M)* 0.996±0.31 0.973±0.03 0.889±0.20 0.981±0.01 1.123±0.28 0.980±0.01 1.074±0.51 0.972±0.02 1.165±0.50 0.969±0.02

Table 7: Reconstruction metrics across tokenizers for full backbone reconstruction with errors.

bio2token We pulled weights and scripts from https://github.com/flagshippioneering/bio2token.
As bio2token operates over point clouds, rather than frames, we tokenized and reconstructed Cα
and full backbone coordinates separately. We excluded bio2token from CATH comparisons as it is
explicitly trained on the entirety of CATH.

FoldToken4 We pull FoldToken from https://github.com/A4Bio/FoldToken open and follow
the described reconstruction process. The language model FoldGPT described in the original paper
does not have publicly available weights.

Other tokenizers There are three additional tokenizers we do not explicitly benchmark against, de-
scribed in Zhang et al. (2024), Zhang et al. (2024), and Lin et al. (2023). The former has significant
GPU and RAM requirements that made it infeasible to do thorough benchmarks on A100s. None
of the three have public models with generative capabilities, so we opt to focus on tokenizers that
demonstrate downstream performance along generative axes and provide good coverage of different
tokenization techniques.

H EXTENDED RESULTS

This section contains the tables from the main text with additional error bars. Our primary obser-
vation is that transformer based tokenizers seem to have a number of catastrophic errors that lead
to very high variances in the output. We will make all these experiments public along with our
benchmarking repo upon acceptance and deanonymization.

I EXTENDED THOUGHTS

This section contains extended discussion of several non-critical points raised in the main text. We
welcome further discussion on any of the following.

I.1 CONNECTIONS BETWEEN DIFFUSION MODELS AND THE STRUCTURE DECODER

On first pass, it is somewhat surprising that DAEs are so parameter efficient. The original structure
module in Jumper et al. (2021) actually reused weights for each iteration of the structure decoder.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

This required careful tuning and several techniques to prevent instability during training. Subsequent
methods that use the structure decoder in a generative or tokenization context generally opt not to
share weights (Gaujac et al., 2024; Yim et al., 2023b). The structure decoder can be thought of
as a very coarse diffusion model with only 8 steps, where the prior is the identity rotation. Our
diffusion transformer generalizes this to take an arbitrary number of steps. From this perspective,
the performance of diffusion transformers (both in our work and in models like AlphaFold3) makes
much more sense.

I.2 WHY CAN POINTWISE LAYERS RECONSTRUCT SO WELL?

We found it intriguing that even very small window sizes with sliding window attention (SWA)
gave good reconstructions, so we ablated a simple pointwise MLP. These ablations are discussed in
Section 4.3. While these models underperformed our models with SWA, they nonetheless gave re-
constructions of around 1.3 Å. However, generative models trained over these codebooks performed
very poorly. Why is this?

The purpose of the encoder in an image tokenizer like VQGAN is to pool local information to create
meaningful representations. This has both a semantic and a technical motivation. Semantically,
the encoder learns local components of an image, and powerful attention mechanisms can then
learn long-range interactions. Technically, the downsampling reduces the sequence length of the
transformer to a manageable size

Because our protein structure tokenizers operate on raw coordinates, there is already some long-
range information present, since (roughly speaking) proteins near the start or the end of the chain
will often have bigger numerical values than ones near the center. Since this information is already
present, the model just needs to learn to transform it in a way that’s more amenable for sequence
modeling, which is not that hard. Because generative models explicitly operate on sequences of
tokens, however, this representation is not necessarily amenable to generation.

I.3 THE CASE FOR AUTOREGRESSIVE GENERATION

Most models in the protein generation space are diffusion or discrete diffusion models, with good
reason. These models work really well. They have saturated designability over the past year and
they’re proven to create proteins that can be designed in a lab. One could be forgiven for thinking
that the focus on autoregressive models is unnecessary.

However, a major benefit of autoregressive models is that sequence lengths can be learned. The use
of diffusion models seems to be heavily entrenched into the protein folding/inverse folding problem,
where the sequence length is known a priori. When a model folds a sequence into a structure, by
design it knows the structure size. Being able to generate protein sequences of variable lengths is
a critical skill as we move towards more diverse tasks. The canonical example is in situ modeling,
where one cannot purify a single protein so the sequence length is unknown. In principle, one could
sample a bunch of different lengths with a diffusion model and score them, but this comes with its
own set of issues. A human operator would need to make this decision beforehand and results would
likely be quite brittle (e.g., the difference between having two and three proteins at inference time
would be substantial). An autoregressive model could just learn to generate proteins of appropriate
size a priori.

There are other examples (e.g., binding to membrane proteins, which is particularly important for
therapeutics). With enough a priori information, a diffusion model generally outperforms an au-
toregressive model because it has full bidirectional communication. This gives diffusion models a
significant advantage in benchmarks like designability, where people typically just generate proteins
of different sizes. However, we generally think that as we move to more complex, in-the-wild tasks,
giving our models the capability to reason about protein size will be a valuable capability.

24

	Introduction
	Related work
	Method
	Architecture
	Training
	Dataset
	Inference

	Experiments
	Diffusion tokenizers are SOTA at reconstruction
	Generation
	Ablations and Design Choices

	Outlook and limitations
	Reproducibility Statement
	LLM Usage Statement
	Ethics Statement
	Metrics
	Standard metrics
	Auxiliary metrics

	Model
	Hyperparameters
	Data preprocessing
	Inference

	Ablations
	Pair-biasing and self-conditioning

	Overview of flow matching
	Comparisons
	Prior tokenization losses
	Models

	Extended results
	Extended thoughts
	Connections between diffusion models and the structure decoder
	Why can pointwise layers reconstruct so well?
	The case for autoregressive generation

