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ABSTRACT

Protein structure tokenizers enable the creation of multimodal models of protein
structure, sequence, and function. Current approaches to protein structure tok-
enization rely on bespoke components that are invariant to spatial symmetries, but
that are challenging to optimize and scale. We present Kanzi, a flow-based tok-
enizer for tokenization and generation of protein structures. Kanzi consists of a
diffusion autoencoder trained with a flow matching loss. We show that this ap-
proach simplifies several aspects of protein structure tokenizers: frame-based rep-
resentations can be replaced with global coordinates, complex losses are replaced
with a single flow matching loss, and SE(3)-invariant attention operations can be
replaced with standard attention. We find that these changes stabilize the training
of parameter-efficient models that outperform existing tokenizers on reconstruc-
tion metrics at a fraction of the model size and training cost. An autoregressive
model trained with Kanzi outperforms similar generative models that operate over
tokens, although it does not yet match the performance of state-of-the-art contin-
uous diffusion models.

1 INTRODUCTION

The promise of digital biology is to develop machine learning models that are capable of perform-
ing a wide range of tasks, from generating novel therapeutics to reasoning about cellular-level pro-
cesses (Richardson & Richardson, 1989; Cui et al., 2025; Kuhlman & Bradley, 2019). Proteins,
which are essential components of almost all biological processes, are a natural target for machine
learning approaches to biological perception and generation. A recent exciting advance has been
the development of multimodal deep learning models capable of reasoning over protein sequence,
structure, and function (Wang et al., 2024; Zhang et al., 2024; Liu et al., 2024; Gaujac et al., 2024;
Hayes et al., 2025). These models are enabled by structure tokenizers, which convert the continu-
ous three-dimensional protein structures into a sequence of discrete tokens from a finite vocabulary
using vector quantization (Van Den Oord et al., 2017). In these tokenizers, protein structures are
represented as tensors RL×A×3, where L is the sequence length and A is the number of backbone
atoms. Training language models on these discrete token sequences unlocks the possibility of truly
multimodal biological models that excel across representation and generative tasks.

An established practice in protein tokenization is using model components that are invariant to spa-
tial symmetries, namely SE(3) (the special Euclidean group, equivalent to SO(3)⋉R3). This follows
the hypothesis that by explicitly encoding inductive biases, models will not hallucinate physically
implausible samples that break the symmetry. These SE(3)-invariant modules, however, can be chal-
lenging to both optimize at scale and extend to more diverse biological molecules (e.g., proteins with
post-translational modifications, RNA, DNA). Models that can accurately tokenize protein struc-
tures without explicitly encoding spatial symmetries may offer improved flexibility and scalability
for modeling biology. Such models, however, do not currently exist.

Bridging this gap and exploring the performance of non-invariant protein tokenizers is the primary
focus of this work. In this work, we describe Kanzi, a flow-based tokenizer for protein structures.
Kanzi uses a flow matching loss to train a diffusion autoencoder that tokenizes protein structures.
This flow loss simplifies model training by replacing the collection of symmetry-invariant recon-
struction losses that are commonly used to train protein structure tokenizers. Kanzi operates directly
on the 3D coordinates of backbone atoms and uses standard attention rather than SE(3)-invariant
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(2) Autoregressively generate conditioning tokens  

(1) Discrete codebook conditions a flow model  

Figure 1: Schematic overview of our approach. (1) A learned discrete codebook conditions a flow
matching model to reconstruct proteins using a diffusion loss. (2) The learned tokens can be used
for downstream autoregressive generation, and the generated tokens condition the diffusion decoder
to generate protein backbones.

geometric attention methods (Jumper et al., 2021; Hayes et al., 2025). Consistent with several
recent works that challenge the inductive bias paradigm (Abramson et al., 2024; Geffner et al.,
2025), Kanzi demonstrates that these simplifications can actually improve tokenizer performance,
achieving superior reconstruction quality over larger models trained on more extensive datasets. We
next train an autoregressive model on tokenized structures from Kanzi to sample plausible protein
structures. While discrete and continuous diffusion models have seen wide use, autoregressive mod-
els are better suited for generating variable-length sequences. This capability is critical for tasks like
motif scaffolding or in situ structure prediction where the protein sequence (and hence length) is
unknown a priori. Despite a relatively modest autoregressive model, we match or outperform larger
tokenized models in terms of generation quality, as measured by standard benchmarks. As a sup-
plementary contribution, we introduce a reconstruction metric, the reconstruction Fréchet Protein
Structure Distance (rFPSD), which utilizes probability divergences to measure structure tokeniza-
tion. This extends prior work in Faltings et al. (2025) and Geffner et al. (2025) that applies these
metrics to generation. We provide an open-source software package as a standalone repository for
end-users.

In summary, our primary contributions are as follows:

1. We present Kanzi, a scalable state-of-the-art flow-based structure tokenizer based on a
novel asymmetric encoder-decoder design.

2. We demonstrate that a simple diffusion loss can replace complex invariant/equivariant tok-
enizer losses, yet still achieve SOTA reconstructions.

3. We use Kanzi to train an autoregressive protein structure generation model. On standard
generative benchmarks, the resulting generations match or outperform existing generative
capabilities. To our knowledge, this is the first tokenized model that produces designable
structures without massive pretraining.

4. We extend prior work developing distributional metrics for proteins to the reconstruction
task to provide broader information on tokenization performance. Through a series of
careful ablations, we demonstrate that while non-invariant encoders can learn scalably,
invariant encoders struggle to condition non-invariant decoders.

2 RELATED WORK

Tokenization. State-of-the-art generative image models frequently first train an image tokenizer,
which downsamples continuous image data to either a discrete or a continuous latent (Esser et al.,
2021; Van Den Oord et al., 2017). Recent works in machine learning for biology have followed suit
by training discrete tokenizers for protein backbone structures, which enable language models to
be trained on sequences of tokens derived from the resulting codebooks (van Kempen et al., 2022;
Steinegger & Söding, 2017; Gaujac et al., 2024; Lin et al., 2023). While tokenized protein models
have underperformed diffusion models on the task of unconditional structure generation, they enable
the construction of multimodal generative models of proteins. ESM3 notably trained a multimodal
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(a) (b) (c)

Figure 2: Architectural overview of Kanzi. (a) Kanzi takes a clean structure as input, which is
encoded and passed through a quantization bottleneck. The decoder is provided with the quantized
latents as in-context conditioning, along with a noised version of the protein structure. The train-
ing is supervised by a single diffusion loss that maximizes p(x|ĉ). No auxiliary losses are used.
(b) Our decoder follows the standard diffusion transformer (DiT) presentation, with several notable
deviations. We share adaLN conditioning across all blocks, and each DiT block is a transformer
with pair-biased attention and optional self-conditioning. (c) Our encoder combines raw coordinate
information with sequence positional information. Tokens are mixed using a small stack of trans-
former layers with sliding window attention. Ablations on other encoder variants are described in
Section 4.3 and Appendix E.

discrete diffusion model over sequence, structure, secondary structure, and natural language, which
was capable of generating novel proteins with specified functions (Hayes et al., 2025; Wang et al.,
2024). Following AlphaFold2, protein tokenizers generally rely on SE(3)-invariant architectural
components (e.g., invariant point attention) and SE(3)-invariant losses (e.g., frame-aligned point
error). In contrast with prior work, we use a non-invariant diffusion loss to supervise the tokenizer.

Diffusion and flow matching. State-of-the-art protein structure generation models rely on diffusion,
either discrete or continuous. FrameDiff, RFDiffusion, and Chroma (Yim et al., 2023b; Watson
et al., 2023; Ingraham et al., 2023) generate protein backbones using a denoising process over the
joint translation-rotation group SO(3)⋉R3, while FrameFlow, FoldFlow, and FoldFlow-2 similarly
perform flow matching over the same manifold (Yim et al., 2023a; Bose et al., 2023; Huguet et al.,
2024b). Genie2 and Proteina are more recent attempts to train diffusion models at scale on the
AlphaFold Structure Database (AFDB); these both operate over Cα coordinates (Geffner et al.,
2025; Lin et al., 2024). The latter does not explicitly encode invariances, a strategy we broadly
adopt here. Despite the strong performance of diffusion models, autoregressive models have unique
features that are valuable to the structural biology and machine learning communities. Most notably,
they can be applied to more use cases where the protein size is not known a priori, an important
feature for tasks such as motif scaffolding or in situ structure prediction in electron tomography
images (Yadav et al., 2020; Bunne et al., 2024).

To train Kanzi, we use a flow matching objective (Esser et al., 2024; Lipman et al., 2022; Lin
et al., 2024). Flow matching interpolates between a source distribution p0 (often a Gaussian) and a
target distribution pdata by integrating along the ODE dxt = vθ(xt, t) dt using a learned vector field
vθ(xt, t) : Rd × [0, 1] → Rd. As the vector field generating the true probability distribution is in
general unknown, one uses conditional flow matching, which constructs a conditional probability
path between prior samples x0 ∼ p0 and data samples x1 ∼ pdata. Explicitly, a general probability
path can be written xt = αtx1 + σtϵ, with ϵ ∼ N (0, 1). This induces a true conditional vector field
u(xt|x0,x1) = α̇tx1 + σ̇tx0, where the dot denotes the time derivative. This is a target we can
regress against; for the standard case of the linear interpolation path, we have xt = (1− t)x0 + tx1

and u(xt|x0,x1) = x1 − x0. For completeness, we present a more thorough derivation of the flow
matching formulation in Appendix F.

Diffusion autoencoders. The idea of using a diffusion model as the decoder in tokenizer recon-
struction is a recent insight in computer vision but has yet to be explored for protein structure
generation (Preechakul et al., 2022). Two recent works, FlowMo and DiTo (Sargent et al., 2025;
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Figure 3: Designable samples generated from an autoregressive model trained on Kanzi tokens.
scRMSDs shown underneath each visualization.
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FoldToken 
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FAPE 
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Better performance  
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Figure 4: Left: Scaling of protein structure tokenizer performance with dataset size and parameter
count. We plot the reconstruction accuracy on the CAMEO test set versus the training dataset size.
Circle area is the model parameter count. Kanzi is competitive with the ESM3 tokenizer, despite a
20-fold smaller parameter count and 400-fold smaller training dataset. Right: Kanzi simplifies the
training pipeline, replacing collections of complex, invariant losses with a single, non-invariant flow
matching loss.

Chen et al., 2025), both study this approach and independently demonstrate SOTA performance
on ImageNet-1k reconstruction. In these works, the use of a diffusion model eliminates the need
for combinations of perceptual and adversarial losses during training, which were critical insights
introduced by VQGAN (Esser et al., 2021). In our case, given the success of recent models like
AlphaFold3, Boltz (Wohlwend et al., 2025), and Proteina in eschewing symmetric architectures for
scalability, we hypothesize that diffusion autoencoders could provide a similar advantage for tok-
enization.

3 METHOD

We train flow-based tokenizers to perform autoregressive generation. The use of a diffusion/flow
model as the decoder allows for considerably more flexibility and scalability in sampling, while the
autoregressive prior trained over quantized sequences provides length-agnostic generation.

3.1 ARCHITECTURE

We design a non-equivariant diffusion autoencoder to tokenize an input structure. It consists of a
lightweight encoder eθ, a substantially deeper decoder dϕ, and a quantization bottleneck. A protein
structure can be represented as a tensor x ∈ RL×A×3, where L is the sequence length and A is
the number of backbone atoms. Generally A = 1 for Cα only models or A = 3 for full backbone
models. Given x, the encoder processes the raw, mean-centered coordinates using a stack of option-
ally pair-biased multi-head self-attention layers. The encoder outputs a latent conditioning sequence
eθ(x) = c ∈ RL×d.

For the quantization layer, we adopt finite scalar quantization (FSQ) and discretize c to a discrete
latent ĉ via ĉ = ⌊ℓ/2⌋ tanh(Linear(c)), where ℓ is the number of levels in each dimension of
FSQ (Mentzer et al., 2023). We generally use 8,5,5,5 for an effective codebook size of 1000. We use
ĉ to condition the diffusion decoder, which outputs dϕ(xt, t, ĉ) = vθ(xt, t, ĉ), with xt the linearly
interpolated noise. We pass gradients to the encoder using the standard straight-through estimator.
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Figure 2 shows all the components of our architecture. First, in contrast with Sargent et al. (2025),
which uses separate concatenated modality streams for both the encoder and the decoder, we use
a single stream for the encoder but concatenated conditioning (i.e., two streams) for the decoder.
Because our data is low-dimensional, we found that this was a critical design choice that allowed
gradients to efficiently propagate through shallow encoders. In addition, the encoder uses sliding
window attention, while the decoder has full bidirectional connectivity. This bias was included to
facilitate autoregressive modeling; see Section E for more discussion. Otherwise, the encoder is
significantly smaller than the decoder in both width and depth, which is a common design choice
for tokenizers. We use relative positional encodings (RoPE) for the decoder, and ablate between
absolute and relative positional encodings for the encoder. Finally, in contrast with the standard
Diffusion Transformer (Peebles & Xie, 2023), we share adaLN weights across layers for time con-
ditioning, which reduces the parameter count by ≈ 30%. We justify this choice in Appendix E. Our
full hyperparameter selections are in Appendix D.1.

3.2 TRAINING

We optimize the entire tokenizer end-to-end using a flow loss

Lflow = Ex1∼pdata,x0∼N (0,1)∥dϕ(xt, t, ĉ)− (x1 − x0)∥22 ĉ = FSQ (eθ(x)) (1)

We again note the relative simplicity of this loss; Figure 4 and Appendix G.1 provide a detailed
description of prior losses to supervise tokenization. We train until convergence using AdamW
with β1 = 0.9, β2 = 0.95, and learning rate η = 1.7 × 10−4. We use a linear warmup and
cosine decay schedule with random rotations on the inputs as augmentations. Details of our train-
ing/hyperparameter configurations are given in Appendix D.1. One advantage of diffusion autoen-
coders is the ability to use classifier-free guidance to improve sample quality. We mask out the
conditioning sequence ĉ with probability 0.1 to enable this option. Following AlphaFold3 and Pro-
teina, we mean-center all proteins using Cα coordinates and augment input structures with random
rotations during training.

3.3 DATASET

While early protein generative models trained primarily on the ∼ 30k distinct structural homologs
in the Protein Data Bank (Bank, 1971), recent works like Proteina and AlphaFold3 have trained
on synthetic AlphaFold2 predictions to achieve significant performance gains. As Proteina and
AlphaFold3 were trained on datasets that require extensive computational resources (Proteina trains
on the full 214M structures in the AFDB, and AlphaFold3 trains on 40M MGnify structures), we
instead train on the Foldseek clustered AlphaFold database, which we denote as DFS. DFS filters
and clusters the AFDB using MMseqs2 and Foldseek and keeps a single representative structure per
cluster. Both Proteina and Genie2 include DFS in their training data. We perform additional filtering
(described in Appendix D.2) which leaves a total of 498,900 structures.

3.4 INFERENCE

Diffusion To sample the full distribution, we can simply run Euler inference using the standard
integrator, i.e., we repeat the following for fixed ĉ and t ∈ [0, 1/N, 2/N, ..., (N − 1)/N ].

xt+∆t = xt + vθ(xt, t, ĉ)∆t (2)

We make several noteworthy additions. A major strength of diffusion tokenizers is their ability to
take advantage of sophisticated sampling strategies at inference time compared to autoregressive or
discrete diffusion samplers. We can construct new flows using classifier-free guidance with guidance
parameter g as follows:

ṽθ(xt, t, ĉ) = vθ(xt, t, ĉ) + g(vθ(xt, t, ĉ)− vθ(xt, t,∅)) (3)

We omit the tilde for the remainder of the paper, with the understanding that we tune classifier-free
guidance unless explicitly stated otherwise. As we use a Gaussian flow, we also have a closed-form
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expression for the corresponding score field

sθ(xt, t, ĉ) =
tvθ(xt, t, ĉ)− xt

1− t
(4)

An analogous expression for the score field with classifier-free guidance applies. A frequent practice
in biological diffusion is to construct an ad hoc stochastic differential equation as an alternative
sampler, as in Equation 5

dxt = vθ(xt, t, c) dt+ g(t)η sθ(xt, t, ĉ) dt+
√
2g(t)γ dWt (5)

This notation largely follows that of Geffner et al. (2025). Setting η = γ = 1 corresponds to standard
Langevin dynamics. However, treating the noise scale γ and the score scale η as hyperparameters
can significantly improve generation quality, although sometimes at the cost of diversity. In our
benchmarks, we provide sampling using both the full distribution (e.g., η = γ = 0) and using noise
and score-scaling as references.

Autoregression. We explored both nucleus sampling and min-p sampling for generating the con-
ditioning sequence c, but did not observe any significant difference between the two. All presented
results use nucleus sampling with a cutoff of 0.9. As our generative models are autoregressive, we
can also do best-of-N sampling with the log-likelihood as an inexpensive proxy for decoding quality,
a strategy that has proven useful for large language models (Qiu et al., 2024; Song et al., 2024).
Generally N = 2 or 4 in our experiments.

4 EXPERIMENTS

We evaluate Kanzi on both reconstruction and generative tasks. On reconstruction tasks, we find
that diffusion autoencoders exceed or match the performance of much larger models trained on sub-
stantially more data. On generative tasks, we exceed or match the performance of larger tokenized
models and consistently outperform comparably sized generative models trained on other tokenizers.

4.1 DIFFUSION TOKENIZERS ARE SOTA AT RECONSTRUCTION

We first evaluate Kanzi on reconstruction. We benchmark reconstruction performance against all
structure tokenizers with accessible public repositories: ESM-3, DPLM-2, Bio2Token, FoldToken,
and the InstaDeep Structure Tokenizer (IST). A challenge with evaluating tokenizers is every model
tends to use a different training/test set, which makes it challenging to compare model performance.
To address this, we use a wide range of test datasets (all are held-out from our model, along with
any structural homologs at 80% similarity as determined by Foldseek). We exclude any cases where
we know there is leakage between the benchmark set and the tokenizer. See Appendix G.2 for more
details on these determinations. We use five held-out test datasets: CAMEO, CASP14, CASP15,
CATH, and a held-out subset of DFS. We use RMSD and TM-score to benchmark local and global
measures of reconstruction, and include scores for both full backbone tokenizers and Cα only tok-
enizers. We also introduce the following two auxiliary metrics.

rFPSD (reconstruction Fréchet Protein Structure Distance) provides a distribution-level metric for
reconstruction by using the deep features in a pretrained CATH-classifier. Metrics like RMSD are
biased towards the capabilities of current folding models, and recent work has shown that RMSD
is not a strong predictor of generative capabilities. rFPSD captures the statistics of the distribution,
and our results in Table 1 suggest it may be a useful addition to the metrics used for tokenizer devel-
opment. rFPSD extends the original FPSD metric introduced for measuring generative capabilities
in (Geffner et al., 2025).

[ss]RMSD considers RMSD only over proteins with > 60% of a particular secondary structure
(ss=α, β, c) content. This isolates the failure modes of tokenizers and can help measure a tok-
enizer’s ability to model unstructured regions, which is particularly important for many downstream
therapeutic tasks.

We consider auxiliary metrics only over the CATH dataset, for two reasons. We do not want to
use the AFDB, as we do not want to further bias metrics towards distributions over synthetic struc-
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CAMEO CASP14 CASP15 CATH AFDB

RMSD (↓) TM (↑) RMSD TM RMSD TM RMSD TM [β]RMSD [c]RMSD rFPSD RMSD TM

DPLM2 (118M) 1.651 0.876 1.008 0.951 2.160 0.866 1.641 0.897 1.851 2.067 5.742 4.676 0.810
ESM3 (648M) 0.860 0.955 0.462 0.987 1.021 0.969 1.048 0.957 1.391 1.086 23.399 2.384 0.915
FoldToken (85M) 2.539 0.881 2.194 0.936 6.629 0.744 1.298 0.920 1.575 1.231 71.786 2.161 0.858
IST (11M) 1.637 0.916 0.900 0.960 1.252 0.953 1.201 0.940 1.127 1.246 105.208 2.872 0.862
bio2token (1.1M) 1.076 0.948 1.006 0.952 1.377 0.939 - - 1.361 1.008 - 1.212 0.932

Kanzi (30M) 0.936 0.948 0.861 0.958 1.345 0.951 1.098 0.940 0.774 1.181 27.202 1.069 0.947
Kanzi (30M)* 0.817 0.960 0.698 0.972 1.267 0.963 0.953 0.955 0.658 1.023 7.956 0.870 0.962
Kanzi (11M) 1.016 0.937 0.912 0.954 1.259 0.955 1.156 0.934 0.805 1.239 20.104 1.210 0.934
Kanzi (11M)* 0.863 0.952 0.762 0.968 1.105 0.965 0.994 0.950 0.813 1.058 51.649 0.994 0.952

Table 1: Reconstruction metrics across tokenizers for Cα reconstruction. Kanzi consistently
matches or outperforms much larger models trained on larger datasets. Best result in bold, second
best result underlined. Datasets like CAMEO and CASP are relatively small and have larger vari-
ances. We exclude any cases where a model is explicitly stated to be trained on a held-out dataset.
Starred (*) Kanzi models use η = 0.45, γ = 1.0, g = 2.0. This parameter setting is deliberately
underoptimized; we tuned against a small subset of our AFDB test set (100 structures) and applied
it without adjustment to the held-out non-synthetic datasets. For visual clarity, standard errors are
left to the Appendix.

CAMEO CASP14 CASP15 CATH AFDB

RMSD(↓) TM (↑) RMSD TM RMSD TM RMSD TM RMSD TM

DPLM2 1.631 0.928 0.995 0.959 2.144 0.953 1.717 0.925 4.646 0.880
ESM3 0.861 0.980 0.463 0.994 1.018 0.983 1.151 0.971 2.378 0.944
FoldToken 2.498 0.922 2.323 0.958 6.580 0.809 1.352 0.944 2.120 0.907
IST 1.626 0.954 0.896 0.974 1.244 0.975 1.195 0.956 2.859 0.904
bio2token 1.069 0.963 0.998 0.966 1.367 0.960 0.987 0.958 1.201 0.949

Kanzi (30M) 0.996 0.973 0.889 0.981 1.123 0.980 1.074 0.972 1.165 0.969

Table 2: Full backbone reconstruction. While the gap is less pronounced than Cα only, Kanzi con-
sistently achieves the best or second-best reconstruction across datasets. rFPSD is a Cα only metric
by construction, so it is excluded.

tures. Second, most other natural protein structure datasets are not large enough to provide accurate
estimators for distribution metrics such as rFPSD.

We train both Cα only and full backbone tokenizers, as both are useful depending on the task at
hand. These results are shown in Tables 1 and 2. Kanzi consistently performs best or second best
across dataset categories, despite being trained entirely on synthetic data. The gap is more modest
for full-backbone tokenization, but we again note the significant difference in model and data scale
between Kanzi and models like ESM and DPLM2 (see Figure 4). The gap in rFPSD between
ESM3 and DPLM2 underscores the value of distribution-level metrics for assessing and improving
tokenizer performance: while DPLM2 underperforms ESM3 on reconstruction, it surpasses it on
rFPSD. As prior work has emphasized that strong reconstruction does not necessarily imply high-
quality generation (Geffner et al., 2025; Hsieh et al., 2025), developing better metrics to capture
generative ability during tokenizer training is an important contribution.

4.2 GENERATION

The primary purpose of tokenization is for downstream representations. To evaluate Kanzi’s per-
formance on structure generation, we train an autoregressive model on tokenized sequences from
Kanzi. To broaden the scope of our comparisons, we also train additional autoregressive models on
the DPLM and ESM tokenizers. The full details on these models is in Appendix G.2. These compar-
isons ensure that strong results from our tokenizer can be decoupled from the choice of generative
model (e.g., autoregressive vs discrete diffusion). The full results for ESM3, DPLM-2, ESM3-AR,
and DPLM2-AR are presented in Table 3. Despite having a significantly smaller parameter count
than alternative models, Kanzi-AR exhibits strong performance across quality and diversity metrics.
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Figure 5: All flow losses use the same noise schedule; as numerical values are uninterpretable, we
omit them. (a) Encoders need mixing: A point-wise encoder can achieve remarkably strong recon-
structions (though underperforms token mixing). Downstream generative performance, however,
is poor (see Appendix). (b) Codebook utilization is emergent. Across a large number of archi-
tectural classes, codebook usage shoots up after a large number of gradient steps. (c) Invariant
representations struggle. Common encoders like MPNNs lead to codebook collapse and identical
performance as an unconditional model. While other invariant encoders work, they underperform
simply learning the pose. (d) DAEs are scalable. Larger model sizes converge to the same or lower
loss in fewer gradient steps. Plot is log-log.

Kanzi-AR overpredicts alpha helices, a known issue for models that heavily rely on synthetic data.
This can be resolved by additional post-training steps (as done in Huguet et al. (2024a)), which we
leave to future work. We also noticed that evaluations across models have a substantial amount
of variance depending on sampling; for instance, our benchmarking on DPLM-2 outperforms the
scRMSD results reported in Wang et al. (2024) but underperforms the reported scTM values. To
ensure reproducibility, we describe our generation and benchmarking process for all models in Ap-
pendix G.2.

Model QUALITY DIVERSITY

Designability (↑) scRMSD (↓) scTM (↑) Diversity (↓) Novelty (↓) α% β% c%

ESM3 (650M/32) 0.476 10.898 0.702 0.705 0.730 82.9 5.1 11.9
ESM3 (650M/256) 0.460 6.959 0.7199 0.604 0.692 74.9 11.5 13.6
ESM3-AR (300M) 0.520 4.252 0.804 0.241 0.751 38.6 16.8 44.6
DPLM2 (650M) 0.486 3.314 0.814 0.263 0.735 42.5 15.2 42.3
DPLM2-AR (300M) 0.320 8.989 0.706 0.308 0.772 41.2 18.0 40.8
Kanzi-AR (250M)

(η=0) 0.328 4.210 0.724 0.271 0.715 71.9 6.5 21.6
(η=0.66) 0.562 3.781 0.795 0.408 0.773 88.7 0.7 10.7
(η=0.66, BoN) 0.617 3.655 0.807 0.386 0.763 88.2 0.8 11.0

Table 3: Generative evaluation across models. Bold = best (per column), underline = second-best.
The first ESM3 records are with 32 and 256 steps, respectively, (i.e., for the latter, every pass de-
codes a single new token). Kanzi-AR consistently shows strong performance across metrics. As
an additional contribution, we use best-of-N sampling (N = 2) with log-likelihoods as our reward
proxy to improve performance, demonstrating that our autoregressive prior learns a meaningful dis-
tribution.

4.3 ABLATIONS AND DESIGN CHOICES

This section contains a curated list of ablations and design choices we made. We present a more
thorough list of findings in the appendix. Each bolded item has a corresponding reference in Fig-
ure 5.

Encoders need token mixing for generation, but not for reconstruction. When operating on
coordinates without any invariant transforms, because the input itself carries raw positional infor-
mation, it isn’t obvious that pooling of local information should occur in the same way as it does in
image tokenizers or invariant protein structure tokenizers (see Section I.2 for more discussion). We
ablate the window size on encoder transformers – full attention, window size 8, window size 4, and
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window size 0 (corresponding to a point-wise MLP on the raw coordinates). Surprisingly, the latter
suffices for good reconstructions, but substantially harms downstream generations.

Codebook utilization is emergent. A surprising but reproducible phenomenon was the emergence
of high codebook utilization after extended training. At the start of training, the raw coordinates
are highly correlated, which in FSQ leads to low usage. Over time, this spreads out, signifying
an increase in codebook utilization (see Appendix E for additional approaches we tried to increase
codebook usage).

Invariant representations struggle. Most existing tokenizers use an invariant encoder; we exper-
iment with two variants of this design choice – that is, we use an invariant encoder to inform an
equivariant decoder. We experiment with a learned relative rotation between the encoder and de-
coder, which encourages the model to learn an invariant representation, and an explicitly invariant
input. Both cases underperform simply allowing the model to tokenize the pose for both recon-
struction and generation. Most graph-based invariant models (like MPNN, a common choice for
proteins) lead to codebook collapse and the same flow loss as a purely unconditional model.

Diffusion autoencoders are scalable tokenizers. An advantage of transformer layers that use stan-
dard attention is their scalability. While this is computationally challenging to explore, small-scale
experiments we performed (<0.2B parameters) consistently showed that larger models reach the
same performance as smaller models after fewer steps, and model performance continues to improve
with extended training. We observed no evidence of overfitting, and continued to see performance
improvements well over 100k gradient steps during training.

5 OUTLOOK AND LIMITATIONS

In this work, we present a new approach for structure tokenization. We demonstrate that for the
task of protein structure tokenization, diffusion autoencoders that utilize standard attention simplify
model training while enjoying performance equal to or better than other state-of-the-art generative
models. An autoregressive model trained on Kanzi tokens is, to our knowledge, the first tokenized
structure model competitive with models like ESM3 or DPLM2 that use large-scale pre-training.
Additional work is necessary to close the performance gap between models that leverage tokeniza-
tion for structure generation, as described here, and state-of-the-art diffusion models.

Our work has several key limitations. We primarily train on the AFDB, which is synthetically biased;
our introduction of the rFPSD metric was an attempt to measure these effects. For computational
reasons, our models are quite small. It is challenging to know how these models will actually per-
form as data size, model size, and training time are increased, as was studied in Geffner et al. (2025).
Similarly, we only train on proteins of size < 256. Geffner et al. (2025) showed that a fine-tuning
stage with larger proteins could dramatically improve long protein designability. We expect that
with appropriate computational resources, our models might realize similar gains. Our generative
models are trained on Cα tokenizers, a choice driven by computational limitations. During train-
ing, we were surprised to observe only small differences between Cα and full backbone tokenizers.
Extending generation to the full-backbone and all-atom case is an important future direction.

We close by noting that while diffusion models remain state-of-the-art for protein generation, to-
kenization has much to offer structural biology and protein design. Biology is filled with diverse
representations – cryoEM and cryoET images, single cell data, multiplexed immunofluorescence
data, structural and natural language descriptions of proteins, etc. Tokenized representations are
uniquely amenable to multimodal tasks beyond generation. We believe that much like the interplay
between images, text, video, and audio, building large foundation models for the life sciences will
require robust tokenized representations across data modalities.
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6 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility of our results. Our training relies entirely on
public data (Varadi et al., 2022). The main text describes the core model architecture (Section 3.1)
and training objective. We fully describe all hyperparameters in Appendix D.1 and dataset process-
ing steps in Appendix D.2. We describe our evaluation metrics with code references in Appendix C.1
and Appendix C.2. Source code and instructions for reproducing all experiments will be released
publicly after the review period, once anonymization and cleanup are complete.
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A LLM USAGE STATEMENT

Large Language Models were used for polishing grammar, finding typos, and creating plotting code.

B ETHICS STATEMENT

AI for biology has the potential to significantly improve human health, but can also be used for ill.
We strongly support the principles outlined in Responsible AI x Biodesign.

C METRICS

C.1 STANDARD METRICS

This section describes all of the metrics we use in assessing model performance throughout the
paper. To encourage reproducibility, we release all of these along with any relevant data with our
code submission.

RMSD: We use the Kabsch algorithm, for which there are numerous standard implementations, to
align two structures before computing RMSD.

TM-score: We use biotite’s implementation in biotite.structure.tm score to compute the
TM score between predicted and sampled structure. There are small differences between the biotite
implementation and the tmtools implementation, but in our experiments these were on the order of
≈ 0.01, so we used the former as it parallelizes more easily.
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Designability: We follow standard practice and use ProteinMPNN in Cα only mode to inverse fold
eight putative sequences, then use ESMFold to fold those into eight output structures. We compute
the RMSD/TM score between all eight and report the lowest/highest one.

Diversity: We compute the TM-score between all pairs of designable structures. A challenge with
autoregressive models is they produce variable sequence lengths, which can bias diversity results to
lower outputs. To mitigate this and provide a fair comparison without needing to generate thousands
of structures, we take all pairs within ten residues in size. We report the average over all pairwise
comparisons.

Novelty: We report the average TM score of the closest match in the CATH reference database over
all designable structures. We found searching over the full PDB to be computationally too expensive
on our hardware.

C.2 AUXILIARY METRICS
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Figure 6: rFPSD converges after 5k samples.

[ss]RMSD: Alpha helices are highly structured
and quite easy for models to reconstruct, beta
sheets less so, and coils the most unstructured
secondary structure element. This metric com-
putes RMSD on proteins that are more than
60% one type of secondary structure to provide
a more fine-grained view of reconstruction ca-
pabilities.

rFPSD: We compute rFPSD over the CATH
dataset by taking features from the trained
GearNet fold classifier from Geffner et al.
(2025). We have two datasets of features, one
from the original CATH dataset and one from
the tokenized and reconstructed CATH dataset.
We fit Gaussians to these features using stan-
dard estimators and compute the Wasserstein distance as

rFPSD = ∥µr − µc∥22 +Tr
(
Σr +Σc − 2(ΣrΣc)

1/2
)

where the subscripts c and r reference the fit CATH and reconstructions respectively.

FPSD was originally introduced in Geffner et al. (2025). A similar metric was introduced in Faltings
et al. (2025). We choose the former over the latter primarily as the latter uses the ESM3 structure
tokenizer, which is trained on a large number of synthetic structures and carries all of the biases of to-
kenization. While not conclusive, the observation that DPLM-2 has a lower rFPSD than ESM3 (but
a higher RMSD) is encouraging for the notion that we can hill-climb rFPSD to develop tokenizers
with better generative capabilities.

Why do we only measure rFPSD on CATH? The goal of our additional metrics are to provide
measurements of quality beyond per-sample quality, which RMSD and TM-score provide, and to
correct for biases endowed by model and data choices. The estimators for the Gaussian fitting are

µ =
1

N

N∑
i=1

xi Σ =
1

N − 1

N∑
i−1

(xi − µ)(xi − µ)⊺

For Gaussian noise, both estimators are unbiased and obey the Central Limit Theorem. We empir-
ically estimated that we required a minimum of 5,000 samples to get low variance estimators. We
show this in Figure 6. The CATH dataset provides both the diversity and sample count required. We
explicitly did not want to use synthetic data to avoid biases like overprediction of alpha helices.
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D MODEL

This section contains details on the full model training pipeline.

D.1 HYPERPARAMETERS

We train with AdamW, β1 = 0.9, β2 = 0.95. We train tokenizer models with the following configu-
rations (bold indicates base models used for most experiments). We train most models on 1-2 H100s
(when training with two GPUs, we use 4 micro-steps for an effective batch size of 256). For each
micro step, the elements in the batch are composed of a single protein with randomly augmented
views. This allows us to avoid masking/batching with different sequence lengths.

Parameter Value
Batch size 32
Encoder layers 2
Decoder layers 8/12
Attention heads 8
Encoder channels 256/384/512
Decoder channels 256/512/784
Pair-bias channels 64
FSQ levels (8, 5, 5, 5)
MLP factor 4
Dropout 0.1

Learning rate 1.7× 10−4

Warmup iters 1000
LR decay iters 100000
Minimum LR 1× 10−4

Gradient clip 1.0/None

Sliding window size 4/8/16/None
Micro-steps (grad accum.) 8

QKNorm True/False

Table 4: Training configuration hyperparameters.

D.2 DATA PREPROCESSING

We train on the Foldseek-clustered AFDB DFS. We perform the following filtering steps

1. We remove all chains with coil percentage ¿ 70%.
2. We remove all chains with mean residue-wise pLDDT ¡ 80.
3. We keep only chains where 80% of the residues have pLDDT ¿ 70.
4. We filter all structural homologs of chains in our test sets: a subset of the AFDB (already

filtered), CAMEO, CASP14, CASP15, and a subset of CATH.

The first two requirements are fairly important to ensure high quality structures. We did not ablate
the effect of the last step; various other works like Bose et al. (2023) have imposed similar filtering
criteria.

During training, we mean-center all coordinates using Cα position (we do this for full backbone
data as well).

It is easy to see that one cannot have a diffusion process that is invariant to translations, since the
probability mass would not integrate to one (Garcia Satorras et al., 2021). It is standard to instead
define a diffusion process over a subspace of Rn, i.e., the zero center-of-mass subspace. The noise
interpolation in flow matching is thus well defined, since if ϵ ∼ N (0, 1) and x both have center-of-
mass zero, then xt = tx+ (1− t)ϵ also does by linearity (Hoogeboom et al., 2022).
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We augment proteins with random rotations during training, computed using the following snippet:

1 from scipy.spatial.transform import Rotation
2 def sample_uniform_rotation(shape=tuple()):
3 return torch.tensor(
4 Rotation.random(prod(shape)).as_matrix()
5 ).reshape(*shape, 3, 3)

D.3 INFERENCE

Diffusion sampling: As mentioned in the main text, we use classifier-free guidance, score anneal-
ing, and noise annealing. For the most part, we take the parameters from Proteina without further
exploration. A major advantage of the diffusion autoencoder paradigm is the noise/score scale can
be tuned to the particular task at hand. Best-of-N sampling: In Table 3, we include a single result
using best-of-2 sampling. Best-of-N sampling is a unique strength of autoregressive models; in each
forward pass, we store the log-likelihood, and decode the sequence with the best log-likelihood.
The fact that we have a computationally inexpensive closed-form log-likelihood is a unique strength
of autoregressive models; computing log-likelihoods requires a full ODE integration for diffusion
models. In other words, the log-likelihood gives us a free estimator for the downstream model
quality before running the diffusion process or designability checks. We include this primarily to
demonstrate that our learned discrete codebook encodes useful knowledge about the token quality.

A valid concern with best-of-N sampling is mode collapse; the strong diversity metrics in Table 3
emphasize that this is not the case with our results.

E ABLATIONS

This section contains a list of all ablations that we conducted in addition to those presented in
the main text. We highlight ablations with positive results in purple, negative results in red, and
ambiguous results in blue. 1

AdaLN: Standard diffusion models use adaptive layer normalization to condition the model on
time, but this time conditioning relies on thick linear layers and takes 27% of all model parameters.
Subsequent work (Chen et al., 2023) used a variant, adaLN-single, which uses a single adaLN MLP
on the first layer and has lightweight projections for all subsequent layers. We explore a third
option, where a single MLP is shared across all layers. We find that while adaLN-single trains very
unstably, weight sharing across layers provides equal performance as the standard DiT approach.
We add adaLN weight-sharing to Kanzi.

Learned rotational invariance: To learn rotational invariance, we add an additional random relative
rotation between the encoded protein and the encoded noise. This encourages the model to learn an
invariant representation, a fact we confirm by observing the Hamming and MSE distances between
the learned vectors. These models can train, but are extremely stochastic. Intuitively, the model
needs to learn how the conditioning vector can relate in very arbitrary ways to the diffusion process.
We ran trials at several random seeds and witnessed very different codebook utilizations. That
coupled with the reconstruction performance being worse on CATH by about 0.4Å made us reject
this change. We exclude learned rotational invariance from Kanzi.

Cross-attention conditioning: Some work suggests that cross attention may be more effective at
conditioning diffusion transformers for more complex conditioning sequences (Chen et al., 2024).

1Warning: For execution speed, we often relied on the flow loss as proxy for downstream performance.
One has to be careful while doing this. The comparison is valid and correlates well with reconstruction for
identical noise schedules and invariance/equivariance setups, but this is no longer true when encoder symmetry
properties change. An encoder that does not learn the pose will almost always have a higher flow loss than one
that does learn the pose, even if the former has better reconstructions. In all of the ambiguous cases, we check
reconstructions on about 1k CATH structures. To aid the interested reader, we present flow losses in the plots
associated with each ablation and annotate approximate reconstructions. We often omit the actual numerical
values of the flow loss, since it is effectively uninterpretable as a numerical value (though extremely useful to
compare performance across experiments).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

20k 40k
Gradient steps

100Fl
ow

 lo
ss

(a)

Baseline
aLN-single
aLN-shared

25k 50k
Gradient steps

0.0

0.2

0.4

0.6

0.8
Co

de
bo

ok
 u

tili
za

tio
n

(b)

Seed[0]
Seed[1137]

50k 100k
Gradient steps

10 2

10 1

100

Ha
m

m
ing

 d
ist

an
ce

(c)

Learned invariance
No invariance

25k 50k
Gradient steps

0.2

0.4

0.6

0.8

Co
de

bo
ok

 u
tili

za
tio

n

(d)

No jitter
Jitter

25k 50k
Gradient steps

10 1

100

Fl
ow

 lo
ss

~1A

~2.3A

(e)

Concatenation
Cross Attention

25k 50k
Gradient steps

10 1

100

Fl
ow

 lo
ss

GPT-reg
Baseline

4

5

6

7

GPT prior loss

(f)

Figure 7: (a) adaLN-single trains unstably, but sharing the weights across all layers matches base-
line performance and reduces parameter count by 30%. (b) Two runs at different starting seeds with
learned augmentations show very different codebook utilizations. (c) Rotational augmentation in-
creases the Hamming similarity between different views of the same protein, which by default are
totally different sequences. (d) Codebook jitter mostly just reduces codebook utilization. (e) Cross
attention unambiguously makes performance worse. (f) The baseline and GPT-regularized version
have identical flow losses, but the GPT-regularized version has an additional per-token cross-entropy
loss (the baseline version stays at the random initialization log(1000)).
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We explore conditioning our decoder with cross attention, where the input is a six-eight layer en-
coder. Our cross attention layers follow standard practices and attend to the main diffusion trunk
following each self-attention layer (Vaswani et al., 2017; Peebles & Xie, 2023). This unambigu-
ously hurts performance, so we exclude it from the model.

Curriculum learning: Since the non-invariant version worked quite well, we thought we could tran-
sition slowly between a non-invariant and a learned invariant version by gradually augmenting with
larger and larger rotations during training (using spherical linear interpolation). This did not help at
all and mostly just harmed codebook utilization and flow loss. We exclude curriculum rotational
invariance from training.

Explicit rotational invariance: Similar to above, it seems reasonable that an invariant represen-
tation could condition a non-equivariant decoder. As we discuss in Section 4.3, certain invariant
encoders like MPNN (Dauparas et al., 2022), a common choice for protein design tasks, immedi-
ately led to codebook collapse and poor performance on par with unconditional flow models. We
explored other variants. In particular, we embedded the distances between coordinates dij into fea-
ture vectors, giving inputs with shape L× L× d. We applied successive layers of row and column
attention, then took a mean down a sequence axis as the conditioning input. This worked slightly
better in that the model didn’t immediately collapse, but didn’t really provide any tangible benefit
beyond the aesthetic benefit that different poses would encode to the same protein. We exclude
explicit rotational invariance from the model.

Low codebook utilization: FSQ typically has very high codebook utilization (Mentzer et al., 2023),
but as our data is low dimensional and highly correlated at input, many values ended up in the same
“bin” which led to low usage. We explored a variety of options to increase codebook utilization.
As mentioned in the main text, we eventually realized that we could get high codebook usage by
just letting the model train longer, but we leave the discussion here as a potentially useful record of
ablations.

Codebook jitter: One strategy to encourage higher codebook use is to “jitter” the codewords. This
is typically used in VQVAE; for FSQ, we add a small noise term before bin quantization. This noise
term was quite small but generally made results worse. We exclude codebook jitter from model
training.

Rotational transforms: Recently, Fifty et al. (2024) saw improvements in tokenization from applying
a generalized rotation before and after the quantization step. This seemed to add complexity but have
basically no effect on our task specifically, so we exclude rotational transforms from the model.

Non-linear embeddings: We initially started with just a linear upsampling layer, as is done in Geffner
et al. (2025). Since linear layers preserve correlations in highly structured ways, we went from
Linear to Linear -> Swish -> Linear -> LayerNorm. We ablated all of these carefully; the
addition of both the non-linearity and the layer normalization both seem important. We add non-
linear point-wise encodings to Kanzi.

GPT prior: Prior works have suggested adding a small GPT-regularization term to encourage code-
books to learn tokens more suitable for autoregressive, next-token-prediction modeling (Radford
et al., 2018; 2019; Vaswani et al., 2017). We ablate training a small GPT model (2 layers, dimen-
sion 512) in tandem with our tokenizers. The cross-entropy GPT loss is added as a regularization
term to the diffusion loss. We did not fully ablate these results on generative capabilities, but the
autoregressive regularization did not harm reconstructions.

E.1 PAIR-BIASING AND SELF-CONDITIONING

Pair-biasing is a technique where the attention scores QKT in a transformer are biased by projecting
learned pair features zij ∈ RL×L×d in each layer. These are very common in protein design models
since their introduction in AlphaFold2 (Jumper et al., 2021; Abramson et al., 2024). However,
AlphaFold2 and AlphaFold3 both use triangular updates, which many subsequent works forgo due
to their computational cost. Thus, it is actually quite unclear if pair-biasing is actually helpful when
used without the additional use of triangular attention.

Similarly, self-conditioning (described in Stärk et al. (2023) and Chen et al. (2022)) condi-
tions a flow model on previous predictions. Instead of a flow field vθ(xt, t, ĉ), we now have
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a flow field vθ(xt, x̃1, t, ĉ), where x̃1 is a coarse prediction of the clean data from the previ-
ous timestep. Self-conditioning is implemented during training by providing a coarse predic-
tion 50% of the time; the remainder of the time, we simply drop out the prediction (i.e., we do
vθ(xt,∅, t, ĉ)). Various works have reported improved performance by using self-conditioning.
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Figure 8: Codebook usage decreases with pair-
bias and self-conditioning

We found it difficult to fully disentangle
the effects of self-conditioning and pair bias-
ing. A complicating challenge was we ulti-
mately care about downstream generative per-
formance, which reconstruction alone does not
track with. For this reason, we conducted a
series of ablations on pair-biasing (no trian-
gular updates), self-conditioning, and the two
combined, all for a small 11M parameter
model. These results are summarized in Ta-
ble 5 and visualized in Figure 9. Our primary
conclusion was that while pair-biasing and self-
conditioning seemed to help reduce both RMSD and TM-score, the effect was not enormous, and
our 30M models without either addition were already at 1Å resolution or better. Moreover, self-
conditioning (possibly due to the large 50% dropout probability) tended to harm codebook utiliza-
tion. While codebook utilization is not a good per se, it is a useful measure to track. This drop
is shown in Figure 8. Given these complexifiers, we did not include self-conditioning and op-
tionally included pair-biasing in our models. However, we think exploring self-conditioning and
pair-biasing, and how they impact generative capabilities, is a potentially fruitful future avenue of
research.

Method RMSD TM-score

CAMEO

Baseline 1.812 ± 0.702 0.932 ± 0.053
Pair bias 1.741 ± 0.671 0.933 ± 0.053
Self-cond 1.670 ± 0.679 0.938 ± 0.051
Pair bias + Self-cond 1.619 ± 0.602 0.943 ± 0.042

CATH

Baseline 1.519 ± 0.446 0.953 ± 0.027
Pair bias 1.551 ± 0.534 0.947 ± 0.037
Self-cond 1.431 ± 0.543 0.957 ± 0.030
Pair bias + Self-cond 1.420 ± 0.422 0.958 ± 0.028

CASP14

Baseline 1.833 ± 0.665 0.948 ± 0.032
Pair bias 1.674 ± 0.465 0.954 ± 0.021
Self-cond 1.596 ± 0.473 0.960 ± 0.018
Pair bias + Self-cond 1.561 ± 0.434 0.964 ± 0.016

AFDB

Baseline 1.282 ± 0.421 0.964 ± 0.023
Pair bias 1.141 ± 0.318 0.972 ± 0.014
Self-cond 1.122 ± 0.356 0.972 ± 0.017
Pair bias + Self-cond 1.233 ± 0.459 0.965 ± 0.028

Table 5: Pair-bias and self-conditioning ablation summary statistics (mean ± std) for RMSD and
TM-score across datasets.

F OVERVIEW OF FLOW MATCHING

Flow matching is extensively described elsewhere: see Lipman et al. (2022) or Albergo & Vanden-
Eijnden (2022) for original presentations and Esser et al. (2024) for a more applied discussion.
Flow matching generalizes diffusion models (Song et al., 2020; Ho et al., 2020), which similarly
interpolate between two distributions. While the distinction between flow matching and diffusion
is often stated to be straight vs curved paths, this is more of a property of the sampler being used
(see Gao et al. (2024) for a good discussion). As mentioned earlier, for Gaussian flows on Rn, we
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Figure 9: Histogram of RMSDs for pair bias and self-conditioning ablations across datasets.
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have closed-form expressions to convert between the score and the learned vector field. For this
reason, we often use the terms interchangeably. Flow objectives are a good fit for many molecu-
lar diffusion tasks because they avoid the instabilities at early or late timesteps (images solve this
problem by clipping, which is not as easy to do for points in R3).

For completeness, we present the standard flow matching objective and parameterization in notation
consistent with the remainder of the paper. Given a data distribution p1 and an easy to sample prior
p0, we wish to learn a family of functions u(xt, t) : Rd × [0, 1] → Rd that would push from the
distribution p0 to p1. If we did have access to a closed-form expression for u(xt, t), then we could
simply optimize

LFM = Et∼U(0,1),xt∼p1

[
∥u(xt, t)− vθ(xt, t)∥2

]
However, we do not have such a u(xt, t). The critical insight of conditional flow matching is that
one can construct a conditional path

u(xt, t) = Ex1∼p1,x0∼p0

[
u(xt|x0,x1, t)p(xt|x0,x1, t)

p(xt, t)

]
In this expression, we have introduced a family of conditional probability paths p(·|·, ·, t) that in-
duces conditional vector fields u(·|·, ·, t). As we do not know p(x, t), we still cannot regress against
u(xt, t). However, if we define

LCFM = Et∼U(0,1),x0∼p0,x1∼p1,xt∼p(xt|x0,x1,t)

[
∥u(xt|x0,x1, t)− vθ(xt, t)∥2

]
then by observing that ∇θLFM = ∇θLCFM , we note that we can optimize LCFM to regress
vθ(xt, t) towards the true vector field. In words, we construct a probability path between two distri-
butions, sample a point from each distribution, sample a time t ∈ [0, 1], and use the aforementioned
probability path to sample xt. As noted earlier, the standard choice is the linear probability path

p(xt|x0,x1, t) = N (xt|tx1 + (1− t)x0, σ
2)

where we take σ = 0 in our experiments (though this is not strictly required, see Gao et al. (2024)).
This gives rise to the simple vector field u(xt|x0,x1, t) = (x1 − x0).

G COMPARISONS

This section contains further details on the models we benchmark against.

G.1 PRIOR TOKENIZATION LOSSES

First, we describe the objectives prior works have optimized against and discuss the pitfalls of each.

FAPE. The frame-aligned point error (FAPE) loss has become the canonical SE(3)-invariant loss
since AlphaFold2 (Jumper et al., 2021). Define a frame by a translation rotation pair Ti = (Ri, ti).
The action of a frame on a vector xj is Tixj = Rxj + ti. Given predicted coordinates, predicted
frames, true coordinates, and true frames xj , Ti,x

true
j , T true

i , the FAPE loss is defined by

FAPE(xj , Ti,x
true
j , T true

i ) = ∥T−1
i xj − T true

i
−1

xtrue
j ∥2 (6)

Every point is put into the local reference frame defined by every amino acid. It is easy to show that
this loss is invariant under rotations and translations, but not reflections as chirality is important for
biomolecules.

FAPE was very impactful, but it has several drawbacks. It scales quadratically between the atom
count and the frames. It requires clamping to train stably and can still be very unstable in early
training, and thus often requires an associated binned cross-entropy version. Errors in bond angles
can cause kinks in the optimization spectra; AlphaFold2 uses several supplemental bond angle and
violation losses to help reduce these issues.
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dRMSD An alternative to FAPE, used by Hayes et al. (2025), is dRMSD, where we regress against
inter-atom distances within a ground truth and a predicted structure. Explicitly, let dij = ∥xi−xj∥2.
Then dRMSD is given by

dRMSD = ∥dpred
ij − dtrue

ij ∥2 (7)

dRMSD is invariant under chirality since ∥xi − xj∥2 = ∥(−xi)− (−xj)∥2. ESM3 thus introduced
an additional “backbone vector loss,” whose primary purpose seems to be to break the chirality
symmetry in proteins. Like FAPE, dRMSD is quadratic in atom count, and can struggle to optimize
long-range contacts due to being dominated by errors from numerous short range interactions.

RMSD Some works, notably Liu et al. (2024) and Gao et al. (2025), directly optimize the RMSD.
This requires performing a rigid alignment using the Kabsch algorithm. This has several issues.
First, backpropagating through the Kabsch algorithm is non-trivial and can’t be done at low pre-
cision, which makes efficient training challenging. Second, even at float32 precision, the Kabsch
algorithm has discontinuities whenever singular values are particularly close. It also requires a deter-
minant correction, which can invert the handedness of a rotation and introduce another discontinuity.
These cause instabilities during training. Third, while these alignments work fine at small datasets,
they tend to regress to the mean at larger scale, which makes them less suited for modeling more
disordered structures and targets of therapeutic interest. Finally, the SVD based alignment is O(L3)
in the sequence length L, though this may be faster in practice using iterative approximations to the
SVD

Most other losses (such as the multiple losses used in FoldToken) are derivatives or binned versions
of one of the three discussed here designed to help mitigate some of these issues.

G.2 MODELS

ESM-3 We pull the model as described at https://github.com/evolutionaryscale/esm. Sev-
eral others have observed that ESM3, having been trained on a large amount of metagenomic data,
struggles to generate designable sequences. Geffner et al. (2025) reports designability of 22%. We
find that we can improve on this slightly by increasing the number of steps from the default 8 on the
GitHub up to a single token per step. We hypothesize this is partially because the ESM3 tokenizer is
so high variance; even at high designabilities, the mean scRMSD remains high due to a few decoded
structures with incredibly high RMSDs (>20 Å).

ESM-AR ESM-AR was trained from scratch on a mix of AFDB data and PDB data. It has dimension
1280, MLP dilation factor 2, 16 layers, and 16 heads. Otherwise, it is a standard transformer with
pre-LayerNorms and GELU activation functions. ESM-AR seems to improve ESM3’s designability
performance, but does not continually scale with techniques like best-of-N sampling, which we
again attribute to the aforementioned high variance decoding in the ESM3 decoder.

DPLM2 We pull the DPLM2 weights/code from https://github.com/bytedance/dplm, and oth-
erwise follow the generation example exactly using generate dplm2.py. A potential issue we noted
was while our generations had similar scRMSDs as those reported in Wang et al. (2024), we slightly
underperformed the reported scTM values. The difference of ≈ 0.14 seems large, but given that
scRMSD is generally acknowledged to be a more accurate reflection of protein structure that TM,
seems within reason.

The DPLM-2 structure tokenizer is fine-tuned on 220k structures sourced from the PDB + SwissProt.
However, the structure encoder is a large pretrained GVP-Transformer (Hsu et al., 2022) trained on
12 million AFDB structures. We thus include these in the DPLM-2 data count for Figure 4.

DPLM-AR The DPLM-2 codebook has size 8192, compared to the 4096 token ESM codebook.
Other than the projection and embedding layers, the DPLM-AR model is identical to the ESM-AR
model. Unlike the ESM-AR model, the DPLM-AR model slightly underperforms DPLM2.

IST We used the 1.7k codebook tokenizer, but were unable to generate any des-
ignable structures using the generative models released with the InstaDeep Structure To-
kenizer. Otherwise, we exactly followed the encoding/decoding process described in
https://github.com/InstaDeepai/protein-structure-tokenizer.
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CAMEO CASP14 CASP15 CATH AFDB

RMSD (↓) TM (↑) RMSD TM RMSD TM RMSD TM RMSD TM

DPLM2 1.651±1.39 0.876±0.14 1.008±0.39 0.951±0.02 2.160±1.75 0.866±0.12 1.641±1.27 0.897±0.09 4.676±6.04 0.810±0.15
ESM3 0.860±1.60 0.955±0.09 0.462±0.33 0.987±0.02 1.021±1.89 0.969±0.05 1.048±1.70 0.957±0.07 2.384±4.08 0.915±0.11
FoldToken 2.539±3.03 0.881±0.12 2.194±2.90 0.936±0.08 6.629±8.63 0.744±0.29 1.298±1.57 0.920±0.06 2.161±1.44 0.858±0.09
IST 1.637±1.86 0.916±0.13 0.900±0.21 0.960±0.01 1.252±0.29 0.953±0.02 1.201±0.72 0.940±0.04 2.872±3.46 0.862±0.11
bio2token 1.076±0.27 0.948±0.06 1.006±0.24 0.952±0.02 1.377±0.41 0.939±0.06 0.993±0.25 0.942±0.04 1.212±0.49 0.932±0.04

Kanzi (30M) 0.936±0.27 0.948±0.04 0.861±0.13 0.958±0.01 1.345±0.46 0.951±0.02 1.098±0.56 0.940±0.04 1.069±0.49 0.947±0.03
Kanzi (30M)* 0.817±0.29 0.960±0.03 0.698±0.14 0.972±0.01 1.267±0.55 0.963±0.01 0.953±0.57 0.955±0.04 0.870±0.39 0.962±0.02
Kanzi (11M) 1.016±0.31 0.937±0.05 0.912±0.13 0.954±0.01 1.259±0.33 0.955±0.01 1.156±0.69 0.934±0.04 1.210±0.69 0.934±0.04
Kanzi (11M) 0.863±0.25 0.952±0.04 0.762±0.10 0.968±0.01 1.105±0.35 0.965±0.01 0.994±0.65 0.950±0.04 0.994±0.46 0.952±0.03

Table 6: Reconstruction metrics across tokenizers for Cα reconstruction with errors. Smaller
datasets unsurprisingly have very large error bars. An advantage of diffusion tokenizers is they
tend to have lower variances across the board. Other tokenizers seem to have a small number of
coordinates with catastrophically high RMSDs, which leads to really large standard deviations.

CAMEO CASP14 CASP15 CATH AFDB

RMSD (↓) TM (↑) RMSD TM RMSD TM RMSD TM RMSD TM

DPLM2 1.631±1.39 0.928±0.09 0.995±0.39 0.959±0.04 2.144±1.75 0.953±0.08 1.717±1.85 0.925±0.08 4.646±6.03 0.880±0.14
ESM3 0.861±1.60 0.980±0.05 0.463±0.33 0.994±0.00 1.018±1.87 0.983±0.06 1.151±2.20 0.971±0.06 2.378±4.08 0.944±0.11
FoldToken 2.498±3.06 0.922±0.09 2.323±3.01 0.958±0.07 6.580±8.64 0.809±0.22 1.352±1.84 0.944±0.05 2.120±1.44 0.907±0.08
IST 1.626±1.84 0.954±0.08 0.896±0.21 0.974±0.01 1.244±0.29 0.975±0.01 1.195±0.71 0.956±0.04 2.859±3.45 0.904±0.11
bio2token 1.069±0.28 0.963±0.04 0.998±0.24 0.966±0.01 1.367±0.42 0.960±0.04 0.987±0.25 0.958±0.03 1.201±0.49 0.949±0.03

Kanzi (30M)* 0.996±0.31 0.973±0.03 0.889±0.20 0.981±0.01 1.123±0.28 0.980±0.01 1.074±0.51 0.972±0.02 1.165±0.50 0.969±0.02

Table 7: Reconstruction metrics across tokenizers for full backbone reconstruction with errors.

bio2token We pulled weights and scripts from https://github.com/flagshippioneering/bio2token.
As bio2token operates over point clouds, rather than frames, we tokenized and reconstructed Cα
and full backbone coordinates separately. We excluded bio2token from CATH comparisons as it is
explicitly trained on the entirety of CATH.

FoldToken4 We pull FoldToken from https://github.com/A4Bio/FoldToken open and follow
the described reconstruction process. The language model FoldGPT described in the original paper
does not have publicly available weights.

Other tokenizers There are three additional tokenizers we do not explicitly benchmark against, de-
scribed in Zhang et al. (2024), Zhang et al. (2024), and Lin et al. (2023). The former has significant
GPU and RAM requirements that made it infeasible to do thorough benchmarks on A100s. None
of the three have public models with generative capabilities, so we opt to focus on tokenizers that
demonstrate downstream performance along generative axes and provide good coverage of different
tokenization techniques.

H EXTENDED RESULTS

This section contains the tables from the main text with additional error bars. Our primary obser-
vation is that transformer based tokenizers seem to have a number of catastrophic errors that lead
to very high variances in the output. We will make all these experiments public along with our
benchmarking repo upon acceptance and deanonymization.

I EXTENDED THOUGHTS

This section contains extended discussion of several non-critical points raised in the main text. We
welcome further discussion on any of the following.

I.1 CONNECTIONS BETWEEN DIFFUSION MODELS AND THE STRUCTURE DECODER

On first pass, it is somewhat surprising that DAEs are so parameter efficient. The original structure
module in Jumper et al. (2021) actually reused weights for each iteration of the structure decoder.
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This required careful tuning and several techniques to prevent instability during training. Subsequent
methods that use the structure decoder in a generative or tokenization context generally opt not to
share weights (Gaujac et al., 2024; Yim et al., 2023b). The structure decoder can be thought of
as a very coarse diffusion model with only 8 steps, where the prior is the identity rotation. Our
diffusion transformer generalizes this to take an arbitrary number of steps. From this perspective,
the performance of diffusion transformers (both in our work and in models like AlphaFold3) makes
much more sense.

I.2 WHY CAN POINTWISE LAYERS RECONSTRUCT SO WELL?

We found it intriguing that even very small window sizes with sliding window attention (SWA)
gave good reconstructions, so we ablated a simple pointwise MLP. These ablations are discussed in
Section 4.3. While these models underperformed our models with SWA, they nonetheless gave re-
constructions of around 1.3 Å. However, generative models trained over these codebooks performed
very poorly. Why is this?

The purpose of the encoder in an image tokenizer like VQGAN is to pool local information to create
meaningful representations. This has both a semantic and a technical motivation. Semantically,
the encoder learns local components of an image, and powerful attention mechanisms can then
learn long-range interactions. Technically, the downsampling reduces the sequence length of the
transformer to a manageable size

Because our protein structure tokenizers operate on raw coordinates, there is already some long-
range information present, since (roughly speaking) proteins near the start or the end of the chain
will often have bigger numerical values than ones near the center. Since this information is already
present, the model just needs to learn to transform it in a way that’s more amenable for sequence
modeling, which is not that hard. Because generative models explicitly operate on sequences of
tokens, however, this representation is not necessarily amenable to generation.

I.3 THE CASE FOR AUTOREGRESSIVE GENERATION

Most models in the protein generation space are diffusion or discrete diffusion models, with good
reason. These models work really well. They have saturated designability over the past year and
they’re proven to create proteins that can be designed in a lab. One could be forgiven for thinking
that the focus on autoregressive models is unnecessary.

However, a major benefit of autoregressive models is that sequence lengths can be learned. The use
of diffusion models seems to be heavily entrenched into the protein folding/inverse folding problem,
where the sequence length is known a priori. When a model folds a sequence into a structure, by
design it knows the structure size. Being able to generate protein sequences of variable lengths is
a critical skill as we move towards more diverse tasks. The canonical example is in situ modeling,
where one cannot purify a single protein so the sequence length is unknown. In principle, one could
sample a bunch of different lengths with a diffusion model and score them, but this comes with its
own set of issues. A human operator would need to make this decision beforehand and results would
likely be quite brittle (e.g., the difference between having two and three proteins at inference time
would be substantial). An autoregressive model could just learn to generate proteins of appropriate
size a priori.

There are other examples (e.g., binding to membrane proteins, which is particularly important for
therapeutics). With enough a priori information, a diffusion model generally outperforms an au-
toregressive model because it has full bidirectional communication. This gives diffusion models a
significant advantage in benchmarks like designability, where people typically just generate proteins
of different sizes. However, we generally think that as we move to more complex, in-the-wild tasks,
giving our models the capability to reason about protein size will be a valuable capability.
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