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Abstract

The modelling of temporal patterns in dynamic graphs is an important current
research issue in the development of time-aware Graph Neural Networks (GNNss).
However, whether or not a specific sequence of events in a temporal graph consti-
tutes a temporal pattern not only depends on the frequency of its occurrence. We
must also consider whether it deviates from what is expected in a temporal graph
where timestamps are randomly shuffled. While accounting for such a random
baseline is important to model temporal patterns, it has mostly been ignored by
current temporal graph neural networks. To address this issue we propose HYPA-
DBGNN, a novel two-step approach that combines (i) the inference of anomalous
sequential patterns in time series data on graphs based on a statistically principled
null model, with (ii) a neural message passing approach that utilizes a higher-
order De Bruijn graph whose edges capture overrepresented sequential patterns.
Our method leverages hypergeometric graph ensembles to identify anomalous
edges within both first- and higher-order De Bruijn graphs, which encode the
temporal ordering of events. Consequently, the model introduces an inductive
bias that enhances model interpretability and leads to improved performance.

1 Introduction

Graphs are powerful representations of complex data used to describe static and dynamic systems.
Not surprisingly, there is a growing collection of successful methods for learning on static [1-3] and
dynamic graphs [4, 5]. A common theme between static and temporal GNNss is that the observed
graphs are usually directly used for message passing. Recently data augmentation techniques have
been proposed to improve the generalizability of GNNs. Such data augmentation techniques have
been considered for a variety of reasons such as to reduce oversquashing [6], improve class homophily
for node classification [7], foster diffusion [8], or include non-dyadic relation-ships [4]. Another
motivation that has recently been highlighted in [9] is the presence of noise in empirically observed
graphs. This motivates augmentation techniques for GNNs that ideally prune spuriously observed
edges, while adding erroneously unobserved edges.

However, addressing noise in observed graphs arguably requires graph correction methods account-
ing for a “random baseline” that allows to distinguish significant patterns from noise, rather than
augmentation methods that are based on heuristics or adjust the graph based on ground truth node
classes. Moreover, the application of GNNs to temporal graphs introduces unique challenges for data
augmentation as we typically want to focus on temporal patterns that are due to the time-ordered
sequence of events. To the best of our knowledge, no existing works have considered graph correction
methods that combine a statistically principled inference of sequential patterns with temporal GNNs.

The contributions of our work are as follows:
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(i) We propose a novel approach to augment message passing based on a statistical null model. This
allows us to infer which temporal sequences in a time-stamped interaction sequence are over- or
under-represented compared to a random baseline graph in which edge frequencies are preserved
while their temporal ordering is shuffled. This approach leads to the time-aware temporal graph
neural network architecture HYPA-DBGNN with statistical principled corrections.

(ii) We demonstrate the correction ability in synthetic temporal graphs. We further show the practical
relevance of our method by evaluating node classification in five empirical temporal graphs
capturing time-stamped proximity events between humans. A comparison of HYPA-DBGNN
with standard De Bruijn Graph Neural Networks without our HYPA-based inference reveals that
our approach yields an improved accuracy in all five data sets. Moreover, a comparison to seven
baseline techniques shows that our method yields the best performance in all empirical data.

Different from prior works, with our work we propose a statistically principled data augmentation
for temporal graph neural networks that uses a statistical ensemble of temporal graphs with a given
weighted topology. Apart from improving temporal GNNs, we further argue that the general approach
of utilizing well-known statistical ensembles of graphs from network science for graph correction
could help to improve the performance of GNNs in data affected by noise.

2 Related Work

Data augmentation for graphs has been explored from various directions with the goal of allowing
machine learning models to better generalize and attend to signal over noise [10]. Many methods have
utilized heuristic graph modification strategies like randomly removing nodes [11, 12], edges [13], or
subgraphs [11, 14] to improve performance and generalizability. Other works have considered adding
virtual nodes [15, 16] or rewiring the network topology, which also addresses oversquashing [6, 17],
with graph transformers operating on a fully connected topology representing an extreme case [18—
20]. Another area of research focused on learning the graph augmentations from the data either in
a preprocessing step [21, 22] or by embedding the augmentation into an end-to-end differentiable
pipeline [23-27]. Network data augmentation has also been explored by going beyond pairwise
connections, either through mediating node interactions via subgraphs [28-31] or by utilizing higher-
order graphs. Examples of higher-order approaches include simplicial networks [32], cellular
complexes [33, 34], hypergraphs [35-37], and time-respecting node sequences [4].

Our work addresses temporal graph data. Temporal GNNs have been developed for both discrete
and continuous time settings [38]. Discrete-time approaches segment the temporal data into time
windows [39, 40] and thus lose information on time-respecting paths within those time windows.
In contrast, continuous-time approaches produce time-evolving node embeddings, focusing on the
temporal variability of network activity at different time points rather than on the patterns occurring
across temporally-ordered interaction sequences [5, 41]. [42, 43] explore temporal augmentation.

3 Background

We consider time respecting paths on graphs as ordered sequences (v, v, ..., v;) of nodes. The
transitions correspond to edges that are not transitive, i.e. the order needs to be respected. To
respect this property, we use higher-order De Bruijn graphs model that encode the probabilities of
whole path sequences explicitly. In this graph model, k-th-order nodes encode overlapping subpaths.
The edges contain the frequency of paths between those nodes: ((vg...vk—1), (v1...vg)). We
use the transitivity assumption as a null model to define anomalies with respect to this reference
base. Anomalies occur in sequences that deviate from this baseline, likely due to correlations and
interdependencies not captured by the transitivity assumption.

We rely on the hypergeometric ensemble to test for anomalous edge frequencies based on node
activity, i.e., their in- and out-degrees. This methodology is extended to test if the frequencies of
paths of length & are anomalous given those of paths of length £ — 1. More specific, the configuration
models [44] provide randomization methods for graphs that shuffle edges while preserving vertex
degrees. Casiraghi and Nanumyan [45] contributed a closed-form expression for the soft configuration
model, which fixes the expected vertex degrees rather than the exact degree sequence. They provide
a probability mass function Pr(X,, = A;;) that describes the probability of observing A,; edges
between nodes ¢ and j in any random realization X . The statistical HYPA framework, introduced
by LaRock et al. [46], quantifies the anomalousness of the edge frequencies in higher-order De Bruijn
graphs by evaluating the HYPA score HY PA®) (u,v) = Pr(X,, < Ayy).



Inference of Sequential Patterns for Neural Message Passing in Temporal Graphs

4 HYPA De Bruijn Graph Neural Network Architecture

We now introduce the HYPA-DBGNN architecture that relies on statistical principled graph aug-
mentation. As outlined before, the used k-th-order De Bruijn graphs capture the observed temporal
dynamics as frequencies of the k-th-order sequences through the edges between k-th-order nodes.
This potentially biased representation yields the foundation for hypergeometric ensembles whose
edge frequencies are induced by the k-1-th-order sub-sequences. The used HYPA score encodes a
highly represented edge whereas a HYPA score approaching zero describes edges that are observed
less than expected with respect to any random realization. Leveraging the HYPA scores as adjacency

matrix Aq(jfj) = HY PAW®) (u,v) leads to corrected graphs with reduced under-represented edges
and balanced overrepresented edges encoding the temporal pattern. The inferred graph corrections
directly include anomaly statistics in the graph topology. This leads to a multi-order augmented
message passing scheme that relies on the inferred graphs with induced bias. For layer [, we define
the update rule of the message passing as

HY PA® (u,v) - hk1-1

H,k’l =o | Wk
’ H(v) - H(u)

; ey

{uevV®):(u,w)eEF) YU{v}

with the previous hidden node representation i_if]lfl, the inferred HYPA score HY PA®) (u, )

(capturing the induced bias), the trainable weight matrices W*! € R XH'™" the normalization
factor based on the HYPA score sum of incoming edges H (v), and the non-linear activation function
0. An overview of the inference process and the proposed neural network architecture for the first- and
second-order graph is shown in Figure 1. We discuss the computational complexity in appendix D.

Sequence Data (N=235) Observations with Bias  Pr(Xyw < f(i, D)) ipartite Message Bipartite
1AXC..BXC | 4..BXC 7 . AX 30 0.9 Layer Passing Layers Layer Class
2..BXC SAXC..BXC |8 ’ ’ gg g
3BXC..BXD | 6..BXC..BXD]|... .. 100 0.97

AX m BX m XC = XD AXC m AXD m BXC ™ BXD Null Model (Expectatlon) Correctlun (Induced Bias)
EDGE COUNTS PATH COUNTS 097
(a) (b) (c)

Figure 1: Inference procedure leading to the dynamic graph used for neural message passing. (a)
Example of sequence data adapted from LaRock et al. [46]. (b) Multi-order De Bruijn Graphs are
obtained form the sequences. First-order is blue (background) and higher-order is orange. They
are compared to a random graph ensemble null model with shuffled time-stamped k-1-order edges.
(c) The graphs are corrected by introducing a statistical principled bias that revalues all edges
(waxcy = wpxp)y > Wpxc)) and removes under-represented edges, i.e. edges that appear with
a high probability less than expected ((AX D)). (d) The multi-order graph neural network is trained
respecting the inferred graphs. The node features are transferred between the higher- and first-order
nodes with bipartite layers.

5 Experimental Evaluation

We compare our architecture with graph representation learning methods (EVO [47], HONEM [48],
DeepWalk [49] and Node2Vec [50]) and deep graph learning methods (GCN [1], LGNN [51],
TGN [5] and DBGNN [4]). The models are evaluated with cross validation with parameter search.We
describe the evaluation in detail in Appendix A and the model architecture in detail in Appendix B.

We use synthetic data with two classes of nodes to demonstrate the type of patterns that only our
model can learn. Importantly, it contains a heterogeneous sequence (e.g. (vo, v1, v2) f) distribution
of time-stamped edges or events (here: (vo, v1)t,, (V1,V2)t,,to < t1) between nodes. The learnable
sequential pattern is an increased class-assortativity, i.e. edges are temporally ordered such that
same class events are preferred followed by each other (e.g. leading to (A, A, A, B)). Hence, these
higher-order sequences with nodes from the same group are over-expressed compared to what we
would expect by shuffling the temporal-order of the timestamped-edges between the nodes (e.g.
(A, B, A, A)). Our experiments on empirical data leverage the five empirical time series datasets on
dynamic graphs from [4]. The data sets are Highschool2011 and Highschool2012 [52], Hospital [53],
StudentSMS [54], and Workplace2016 [55]. Table 1 and Table 2 show that HYPA-DBGNN has not
only superior performance but is also the only model that is able to learn the synthetic pattern.
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Table 1: Comparison of HYPA-DBGNN baselines for the synthetic data sets. The table presents
the balanced accuracy and its standard deviation for the static node classification task on dynamic
graphs as obtained through the outlined experiments. The Unweighted Sampling data set contains a
heterogeneous sequence distribution of time-stamped edges with shuffled temporal order. The adapted
distribution of sequences in Weighted Sampling encodes a sequential pattern such that time-stamped
edges between nodes of the same class are overrepresented but not necessarily very frequent.

EVO

Representation Learning HONEM DeepWalk Node2Vec

Unweighted Sampling 40.00 £31.62 80.00+25.82 60.00+21.08 60.00 +21.08

Weighted Sampling 40.00 £31.62 80.00+25.82 60.00+21.08 60.00 +21.08

Deep Graph Learning GCN LGNN DBGNN TGN HYPA-DBGNN
Unweighted Sampling 50.00 £33.33  50.00+0.00 45.00£28.38 50.00 +0.00 45.00 £ 15.81
Weighted Sampling 45.00 £28.38 50.00+0.00 45.00+15.81 50.00 £ 0.00 100.00 + 0.00

Table 2: Comparison of HYPA-DBGNN with node representation learning and deep graph learning
baselines for dynamic graphs. The table presents the balanced accuracy and its standard deviation for
the models on empirical static node classification tasks for dynamic graphs. We mark the best results.

Model Highschool2011  Highschool2012 Hospital StudentSMS  Workplace2016
EVO 43.68 £10.91 50.05 £ 7.30 25.83+829 55.05+639 26.50%12.08
HONEM 59.00 + 10.61 50.49 +£9.31 3944 +17.57 5381728 83.17+11.14
DeepWalk 54.64 £ 17.70 49.65 £12.97 2458 £10.92 52.78 +7.83 20.54 £9.51
Node2Vec 54.64 £ 17.70 49.65 £ 12.97 2458 £10.92 52.31+7.70 20.54 £9.51
GCN 55.00 £ 13.37 59.35+11.13 4347 +£9.03 5450+£640 73.33+12.60
LGNN 57.72 £ 9.85 5143 +17.94 44.03 £9.03 52.71+£6.63 84.83 +14.77
DBGNN 61.54 +11.13 64.93 + 15.26 52.50+£19.27 57.72+£529 8442 +15.59
TGN 61.52 +11.25 41.52 £6.19 50.27 £ 14.83 50.67 +4.10 80.16 £ 18.71
HYPA-DBGNN 63.25 +£16.18 66.41 +10.24 7639 £17.12 60.66 +6.11  88.29 + 10.51

6 Conclusion

In this work, we propose HYPA-DBGNN, a novel deep graph learning architecture that accounts for
time-respecting paths in temporal graph data with high temporal resolution. Different from existing
graph learning methods that employ neural message passing along time-respecting paths, we introduce
a two-step approach which first infers anomalous sequential patterns based on an analytically tractable
null model for time-respecting paths that preserves both the topology and the frequency, but not the
temporal ordering, of time-stamped edges. In a second step, we apply neural message passing on
an augmented higher-order De Bruijn graph, whose edges capture time-respecting paths that are
overrepresented compared to the expectation from that random baseline. An experimental evaluation
of our approach in a synthetic model and five empirical data sets on temporal graphs reveals that our
proposed method considerably improves node classification compared to seven baseline methods in
all studied data sets, with performance gains ranging from 2.27 % to 45.5 %.

Despite these contributions, our work raises a number of open questions that we did not address
within the scope of this work. Future studies building on our work could thus additionally consider
richer node and edge information, which is likely to further improve the performance of our model.
Moreover, the framework of hypergeometric statistical ensembles allows to include non-homogeneous
“edge propensities” based, e.g., on a homophily of nodes with similar attributes. This could possibly
be used to generate domain-specific null models leading to a graph learning architecture that includes
a non-trivial inductive bias, which we did not explore in this work. Bridging the gap between the
application of statistical graph ensembles in network science and deep graph learning, we finally
argue that our work opens broader perspectives for the integration of statistical graph inference, graph
augmentation, and neural message passing. In particular, applying our method to the inference of
(first-order) edges in static graphs could be a promising approach to address the issue that empirical
graphs are rarely unspoiled reflections of reality, but are often subject to measurement errors and
noise. The need to combine graph inference techniques with neural message passing [56—58] has
recently been identified as a major challenge for deep graph learning, and our work can be seen as a
step in this direction.
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A Details about Experimental Evaluation

We compare our architecture with graph representation learning methods (EVO [47], HONEM [48],
DeepWalk [49] and Node2Vec [50]) and deep graph learning methods (GCN [1], LGNN [51],
TGN [5] and DBGNN [4]). For the representation learning models Node2Vec and EVO we adhere to
the original configurations, i.e. we use an embedding size of d = 128 and a random walk length of
I = 80, repeated » = 10 times. As context size we use £ = 10. For Node2Vec we select the return
parameter (p) and the in-out parameter (q) from the set 0.25,0.5, 1, 2, 4. The deep learning models
(GCN, LGNN, DBGNN, and our proposed model) consist of three layers. Following the approach of
[4], we set the size of the last layer to ho = 16, while the sizes of the preceding layers are determined
during model selection. The study range for hy and ~; encompasses 4, 8, 16, 32 over a maximum
of 5000 epochs as per [4]. The higher-order path length is fixed to &k = 2 for HYPA-DBGNN and
DBGNN because it is shown as optimal by Qarkaxhija et al. [4] for the given data sets. Stochastic
Gradient Descent (SGD) serves as our optimization function, with the learning rate set to 0.001,
which showed the best performances. We use dropout regularization with a dropout rate of 0.4 to
mitigate overfitting and we incorporate class weights in the loss function to address imbalanced
training datasets.

The data sets used do not have an independent test set, nor are they large enough to define a robust
dedicated test set. This makes it challenging to directly evaluate model performance on unknown data.
To compare various Graph Neural Network (GNN) architectures, we adopt a conventional approach
as documented in literature [59-61]. For the assessment of model generalizability, we employ a
nested cross-validation strategy with N = 10 repetitions. The data undergoes stratified partitioning
into nine training and one testing fold, further divided into stratified training and validation subsets
(80/20%) within each repetition. Subsequently, we select the best-performing model and epoch
based on its validation set performance. Finally, we evaluate the chosen model’s performance on the
test set, reporting the mean and standard deviation of the respective metric across all N repetitions.
For comparability, we use the same folds and splits for all experiments. Besides the random splits,
the random initialization of the model also contributes to the variability captured by the standard
deviation. For reproducibility, we fix the random splits and reuse a common seed in every repetition
for the random initialization of model weights and dropout candidates.

B Model Architecture

Figure 2: Illustration of the HYPA-DBGNN ar-

chitecture. The architecture uses node features

e anae g as inputs. In our case the node id is given as a
gl one-hot encoding even though present features
™ might be used. The bipartite mapping propa-
gates the first-order node features to the first- and
higher-order graph. The edge weights are given
as HYPA scores such that the HYPA scores define
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ear removed from the graph. Hence the used graphs
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C Similarities in Temporal Sequences Between Empirical and Synthetic Data

The synthetic data set encodes a pattern of increased class-assortativity that is learned by HYPA-
DBGNN. Figure 3 shows the deviation from the expected edge frequencies in terms of HYPA scores
for the used data sets regarding the incident nodes, i.e. for each node the distribution of the average
HYPA score of incident edges is plotted.
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The second-order plot shows the increased class-assortativity for nodes of class 0 in the Weighted
Sampling data set. The incident second-order edges have on average a larger HYPA score and thus
are more often overrepresented compared to edges incident to nodes of class 1. Due to the statistic
principled inferred graph, HYPA-DBGNN is able to learn this pattern.

Also, Hospital and Workplace2016 emit such under- and overrepresented sequential patterns in both
graphs that are related to distinct node classes. In Hospital second-order edges incident to nodes of
class 0 and 1 are overly often overrepresented. However, the first-order edges incident to nodes of
class 0 and 1 differ in its statistics. This observed connection between node classes and the sequential
patterns containing the respective nodes supports the superior performance of HYPA-DBGNN for
Hospital and Workplace2016.
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Figure 3: Distribution of average HYPA scores of incident edges. For each node v; the average
. . o (k) .
HYPA score is determined with HY PA" " (v;) = m Z(vi,vj)eS(vj) HY PA® (v;,v;) with the

incident edges S(v;) = {(v;,v;) € E® : v; € V(®)}. The box plots show the distribution of theses
scores with respect to node classes. The synthetic data set is Weighted Sampling.

D Comments on Computational Complexity

There are two distinct steps to be considered when arguing about the complexity of our approach.
First, there is the preprocessing step that creates the augmented graphs,i.e., the competition of the
HYPA scores and the removal of the under-represented paths. Second, the graph neural network is
trained on that graphs. For both steps, the complexity is determined by the number of edges in the
higher-order De Bruijn graph. In the preprocessing, we calculate the HYPA score for higher-order
edges.

The worst-case for the number of higher-order edges is given by the number of different sequences of
length k, i.e., |V|* for a network with |V | nodes. However, two arguments show that we can expect
much lower complexity in real-world data. First of all, real-world networks are usually sparse, which
implies that most sequences cannot occur as they would otherwise violate the network topology.

LaRock et al. [46] use this argument, and prove that the complexity of their algorithm can be tightened
with AG*) < [V|2A\¥, where |V| denotes the number of nodes in the first-order graph G and ) is
the leading eigenvalue of the binary adjacency matrix of G. They conclude, that the HYPA score
calculation scales linearly with the number of paths [V in the given data set for sparse real-world
graphs, a moderate order k, and a sufficiently large N. [4] also uses the argument of sparsity to
further limit the complexity of the De Bruijn graph. They note that the number of walks of length k
becoming higher-order edges in the higher-order De Bruijn graph is also limited by >, y Afj < |V,

where A is the k-th power of the binary adjacency matrix A of G.

Furthermore, higher-order networks are even sparser than what we would expect based on the first-
order topology. This is because the number of different time-respecting paths occurring on a network
is generally much lower than the number of possible paths. [4] demonstrate this (see in the appendix)
by plotting the number of realized walks at each length and showing that in empirical graphs only
a small fraction of walks is realized due to the restriction to time-respecting paths. By studying
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the complexity of the used empirical data set, they argue that De Bruijn graphs are applicable to
real-world tasks.

We consider a path data set .S with IV entries. The number of edges in the k-th-order De Bruijn graph
is denoted as AG*). LaRock et al. [46] state that the asymptotic runtime of HYPA is O(N +AG*)).
A trivial upper-bound for AG*) is the fully connected case with [V |*+1. This trivial case is also
considered by [4] when they argue that the complexity of message passing on the De Bruijn graph is
bounded.

E Properties of Empirical Data

Table 3: Overview of time series data and ground truth node classes used in the experiments. §
describes the maximum time difference for edges to be considered part of a casual walk.

Data Set Ref. |[V| [E| [V®| |E®@]| Classes (Sizes) 5
Highschool2011 [52] 126 3355 3042 17141 2 (85/41) 4
Highschool2012  [52] 180 4399 3965 20614 2(132/48) 4
Hospital [53] 75 2052 2028 15500 4 (29/27/11/8) 4
StudentSMS [54] 429 1160 733 846 2 (314/115) 4
Workplace2016  [55] 92 1491 1431 7121 5(34/26/15/13/4) 4

0
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F Additional Results

Table 4: Comparison of our architecture (HYPA-DBGNN) with different machine learning models.
The balanced accuracy is given in Table 2. The results are obtained as described in Appendix A. The
best results are marked.

Data Set Model Fl-score-macro Precision-macro  Recall-macro
Highschool2011 EVO 39.51 £11.50 39.38 £19.64 43.68 £ 10.91
HONEM 57.54 £ 11.52 58.19 £ 13.09 59.00 + 10.61
DeepWalk 53.70 + 18.55 53.47 £19.61 54.64 + 17.70
Node2Vec 53.70 + 18.55 53.47 £ 19.61 54.64 + 17.70
GCN 48.55 +15.49 49.45 + 18.52 55.00 + 13.37
LGNN 52.66 = 14.71 53.57 £15.97 57.72 £9.85
DBGNN 57.08 £ 11.35 61.78 £ 10.75 61.54+11.13
TGN 57.32+£9.84 59.56 +10.59 61.52+11.25
HYPA-DBGNN  59.60 + 15.04 62.55 + 14.38 63.25 + 16.18
Highschool2012 EVO 46.83 +9.44 4797 +18.15 50.05 +7.30
HONEM 50.58 £9.49 53.89 +15.27 50.49 +9.31
DeepWalk 48.79 + 13.02 49.75 + 13.77 49.65 + 12.97
Node2Vec 48.79 £ 13.02 49.75 £ 13.77 49.65 £ 12.97
GCN 54.53 +10.82 56.94 + 12.00 59.35+11.13
LGNN 45.32 + 16.88 51.43 + 14.63 51.43+17.94
DBGNN 60.22 + 13.73 63.18 = 12.57 64.93 + 15.26
TGN 38.32 £5.37 35.86 £5.36 41.52+6.19
HYPA-DBGNN  60.58 = 12.12 66.23 + 13.01 66.41 = 10.24
Hospital EVO 20.05 + 6.64 19.12 £9.20 25.00 +7.86
HONEM 34.88 +18.22 36.88 +23.53 37.50 £ 17.35
DeepWalk 20.00 £9.53 18.76 £9.68 23.89 £ 1091
Node2Vec 20.00 £9.53 18.76 +9.68 23.89 + 1091
GCN 37.38 £8.67 33.83 £ 8.00 43.47 £9.03
LGNN 35.81 +8.96 32.75 +10.64 44.03 £9.03
DBGNN 47.87 £20.02 4821 £21.79 51.67 +20.34
TGN 46.50 + 13.60 50.83 + 8.89 49.16 £ 16.95
HYPA-DBGNN  71.80 = 19.18 71.50 = 20.95 74.31 + 17.45
StudentSMS EVO 54.62 £7.73 55.63 £9.53 55.05+£6.39
HONEM 5246 +9.71 55.65 £ 14.29 53.81+£7.28
DeepWalk 52.08 £7.19 53.18 £ 7.61 52.78 +7.83
Node2Vec 51.87 £7.39 52.13 £6.90 52.31+7.70
GCN 53.85+£6.39 54.39 £ 6.27 54.50 £ 6.40
LGNN 46.79 £5.27 52.70 £ 6.07 52.71 £ 6.63
DBGNN 56.87 £ 5.05 58.55 £5.58 5772 +5.29
TGN 48.98 +4.50 50.71 £3.10 50.67 £ 4.10
HYPA-DBGNN  60.47 + 6.68 61.40 = 7.00 60.66 + 6.11
Workplace2016  EVO 22.74 £ 12.34 21.84 +14.18 26.50 + 12.08
HONEM 77.75 £ 11.70 79.53 +13.50 79.46 + 10.32
DeepWalk 17.23 £8.77 16.30 £9.42 20.54 £9.51
Node2Vec 17.23 £8.77 16.30 £9.42 20.54 £9.51
GCN 68.56 + 14.78 66.21 + 16.88 73.33 £12.60
LGNN 82.96 + 15.65 84.32 £ 15.04 84.83 +14.77
DBGNN 81.16 £19.16 81.33 £20.14 84.42 +15.59
TGN 78.71 £20.32 79.95 +22.21 80.16 = 18.71

HYPA-DBGNN  85.82 +12.23 85.42 + 13.75 88.29 +10.51
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G Variants of HYPA-DBGNN

In this section, we present other variations of our main HYPA-DBGNN architecture.

G.1 Base Architecture without Anomalies (HYPA-DBGNN )

Replacing the HYPA scores with the absolute edge frequencies in the message passing procedure
leads to the original message passing layers proposed by Kipf and Welling [1]. The overall structure
including the bipartite layers is kept. The comparison of this model (HYPA-DBGNN™) with HYPA-
DBGNN reinforces the understanding of the significance of HYPA scores.

G.2 Edge Embedded HYPA Scores (HYPA-DBGNNY)

For HYPA-DBGNN the HYPA scores are used in a graph model selection step to enhance the
message passing. Whereas for HYPA-DBGNN¥ the HYPA scores are understood as additional edge
attributes whose significance is learned by an adapted graph convolution operation that embeds the
edge attributes into the incident node attributes during message passing in the first graph neural
network layers. The augmented propagation rule is given as

. 1 /- .
= |3 — (hfj’,OW’“’l + hekw’“ve) , @)
i —~ c;j g i
j
with the first hidden representation Eﬁ;o of node u € V*), the inferred HYPA scores in /. for

the k-th-order edge ¢f; € E*), the trainable weight matrices W*! € R "xH" for the nodes and
Whe e RE'1 for the edges and the normalization factor ¢;; as defined by Kipf and Welling [1].

G.3 Z-Score as Replacement for HYPA Scores (HYPA-DBGNN?)

The HYPA scores are based on the CDF. A a replacement for the CDF, a transformed Z-score instead
of the HYPA score is implemented in HYPA-DBGNNZ . The underlying soft configuration model
provides the needed expected value and variance with

E[X;;] = m=2
[X55] = m 7 3
and
M —m Eij
Var(X;;] =m 1M 4
needed to define the Z-score as
Aij — E[Xy]

T Van ?
Opposing to the HYPA score the Z-score is unbounded and possibly negative. Edges with negative
Z-score are excluded because they are under-represented. Likewise in HYPA-DBGNN in most
cases under-represented edges are removed, too, because their HYPA scores is approximately zero.
Additionally, edges with a Z-score smaller than one are removed with the same argument of not
having an unexpected large contribution to the graph and only beeing larger than 0 due to noisy
fluctuations in the frequencies. The resulting restricted Z-score is logarithmically transformed due to
observed large spread in empirical data, leading to the final replacement for the HYPA-score:

oo 0 if z(e;5) < 1,
Z(eyy) = {log(z(eij)) otherwise ©

H Ablation Study - Impact of Statistical Information
We conduct an ablation study in which we compare our architectures HYPA-DBGNN, HYPA-
DBGNN¥ and HYPA-DBGNN? to the base architecture HYPA-DBGNN ~ that is not using statistical
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information. We aim to answer the question of what effect the addition of statistical information has
on the prediction capability of the architectures in Table 5.

By comparing HYPA-DBGNN to HYPA-DBGNN™ we see that the statistical information play an
important role for all data sets but most importantly it becomes visible that the improvements for
Hospital are indeed related to the additional information.

HYPA-DBGNN?¥ with edge encoded statistical features performs better than the uninformed baseline
but is most of the time significant weaker than HYPA-DBGNN. The structural graph correction
applied in HYPA-DBGNN is still missing even when the edge encoder is able to learn the significance
of the HYPA scores. HYPA-DBGNN? performs weak for data sets where we don’t see direct
patterns in the analysis but works well for Hospital. It needs to be explored why the Z-score is more
susceptible for data sets with weak or no patterns.

Table 5: Ablation study for HYPA-DBGNN. The best results are marked.

Model Highschool2011  Highschool2012  Hospital StudentSMS  Workplace2016
HYPA-DBGNN 63.25 +16.18 66.41 + 10.24 76.39 £17.12 60.66 + 6.11  88.29 + 10.51
HYPA-DBGNNE  61.54 + 13.62 64.94+17.71 59.03 +12.72 60.46+9.42  88.50 +13.57
HYPA-DBGNN?Z  53.97 +17.59 59.63 +15.74 69.31+11.74 53.45+7.50 88.42+10.88
HYPA-DBGNN~ 57.67 £17.16 64.49 +15.27 55.83+19.27 56.23+10.41 86.46 +12.65

I Ablation Study - Impact of Individual Parts

Table 6: Ablation study for HYPA-DBGNN showing the balanced accuracy. Subsequently parts of
the model are removed. (a) contains the complete HYPA-DBGNN model. In (b) the HYPA scores are
removed such that the statistical information are not passed to the model. In (c) we further remove
the first bipartite layer that maps the first-order node features to the second-order nodes and replace it
by a second-order one-hot encoding (OHE). In (d) we additionally remove the complete second-order
message passing (MP).

In (e) we use the base HYPA-DBGNN but replace the first-order OHE with available features. Only
Highschool2011 and Highschool2012 contain node features. Those are the classes the students
belong to. We suspect that those features are not informative for the given prediction task.

Model Highschool2011  Highschool2012  Hospital StudentSMS ~ Workplace2016
(a) base HYPA-DBGNN 63.25 +16.18 66.41 +10.24 76.39 £17.12 60.66 +6.11  88.29 +10.51
(b) without HYPA scores 57.67+17.16 64.49 + 15.27 55.83+19.27 5623 +10.41 86.46 + 12.65
(c) OHE instead bipartite layer 61.54+11.13 64.93 £ 15.26 52.50+19.27 57.72+529  84.42+15.59
(d) without second-order MP 55.00 + 13.37 59.35+11.13 43.47+9.03 5450+640  73.33+12.60
(e) HYPA-DBGNN with features  59.12 + 20.24 62.43 + 10.06 - - -

J TGN Adaptations

We implement TGN as proposed by Rossi et al. [5] Instead of a link prediction layer, we add a node
prediction layer as the last stage. The embedding size is fixed to 32 as for the other models. For
TGN the training procedure is adapted due to its dynamic origin. The proposed training procedure
for dynamic node predictions splits the events into fixed-size temporal batches and predicts the next
node state for the nodes affected by the events. The batches are temporally divided into train and
test batches. Opposing, the static prediction task splits the nodes into train and test sets. We try to
keep as much from the original training procedure as possible to favor the memory based architecture.
Hence, we train the model on all event batches of size 200 but restrict the training nodes to the train
set with fixed class. The last prediction for the given test nodes is used to evaluate the performance.
This is not necessary in the last batch of events. For the synthetic data the batch size is increased
to 200.000 since each of the 223 events has its own timestamps which leads to infeasible training
time with lower batch sizes. Compared to the other deep learning methods the model the losses are
updated more often because they are updated for every event batch and not only for every node batch.
Consequently, we adapt the learning rate to 0.0001 and the originally used optimizer Adam to obtain
improved results.
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K Reference Implementation

A reference implementation is given at https://github. com/jvpichowski/HYPA-DBGNN
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