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ABSTRACT

Discrete representations play a crucial role in many deep learning architectures,
yet their non-differentiable nature poses significant challenges for gradient-based
optimization. To address this issue, various gradient estimators have been devel-
oped, including the Straight-Through Gumbel-Softmax (ST-GS) estimator, which
combines the Straight-Through Estimator (STE) and the Gumbel-based reparam-
eterization trick. However, the performance of ST-GS is highly sensitive to tem-
perature, with its selection often compromising gradient fidelity. In this work, we
propose a simple yet effective extension to ST-GS by employing decoupled tem-
peratures for forward and backward passes, which we refer to as Decoupled ST-
GS. We show that our approach significantly enhances the original ST-GS through
extensive experiments across multiple tasks and datasets. We further investigate
the impact of our method on gradient fidelity from multiple perspectives, includ-
ing the gradient gap and the bias-variance trade-off of estimated gradients. Our
findings contribute to the ongoing effort to improve discrete optimization in deep
learning, offering a practical solution that balances simplicity and effectiveness.

1 INTRODUCTION

Discrete representations have been widely used as a powerful tool in deep learning, offering several
advantages compared to their continuous counterparts. These representations can lead to more effi-
cient data compression (Ballé et al., 2017; Toderici et al., 2017) as well as improved interpretability
in comparison to their continuous counterparts (Vahdat & Kautz, 2020). Their advantage is that the
structure of discrete variables often aligns with categorical semantics, making them easier to inter-
pret in high-level tasks like image synthesis or reinforcement learning (Van Den Oord et al., 2017).
Furthermore, discrete representations can serve as useful inductive bias, enhancing systematic gen-
eralisation across various architectural paradigms (Liu et al., 2021).

The use of discrete latents is prominent across a variety of applications. Notable examples include
discrete latent variable models such as Vector Quantized Variational Autoencoders (VQ-VAEs) (Van
Den Oord et al., 2017), categorical and Bernoulli VAEs (Jang et al., 2016), and hard attention mech-
anisms (Xu, 2015). In reinforcement learning, discrete actions are naturally used for action selection
policies (Mnih et al., 2015). Other critical applications include neural architecture search (Liu et al.,
2018), and model quantization for efficiency (Han et al., 2015).

Despite their advantages, training models with discrete latent variables poses a significant chal-
lenge: non-differentiability. In deep learning, optimization is typically performed via gradient-based
methods, which require differentiable operations to propagate error signals during backpropagation
(Rumelhart et al., 1986). The discrete nature of latent variables, however, breaks this smoothness,
making traditional gradient descent inapplicable. This challenge has spurred considerable research
into techniques for bypassing the non-differentiability of discrete variables during optimization.

Three primary strategies have emerged for dealing with this challenge: policy-based REINFORCE-
style estimators, which uses Monte Carlo-based method that estimates gradients for discrete choices
(Williams, 2004), relaxation-based approaches such as the Gumbel-Softmax trick, which uses con-
tinuous approximations of discrete distributions (Jang et al., 2016), and the Straight-Through Es-
timator (STE) that “short-circuits” the non-differentiability by treating non-differentiable functions
as differentiable during the backward pass (Bengio et al., 2013). Each of these methods aims to
provide gradient estimates for non-differentiable functions in discrete models.
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One popular approach that combines elements from the latter two paradigms is the Straight-Through
Gumbel-Softmax (ST-GS) estimator. This method allows backpropagation through discrete vari-
ables by employing the Gumbel-Max trick for the forward pass and using the STE to approximate
the gradient in the backward pass. While ST-GS has shown promise due to its simplicity and prac-
tical utility, its performance is highly sensitive to the temperature parameter. A lower temperature
sharpens the probability distributions in the forward direction, making the model more determin-
istic, while higher temperatures introduce more stochasticity. However, if the relaxation in the
backward direction is insufficient, gradients fail to propagate effectively through the discretization
step, impairing optimization. This overload poses a trade-off between gradient fidelity and model
performance, with temperature selection often becoming a bottleneck for optimization (Jang et al.,
2016; Maddison et al., 2016).

In this work, we propose a simple yet highly effective improvement to the Gumbel-ST estimator:
decoupling the temperature parameters used for the forward and backward passes. By introducing
distinct temperatures for these passes, we mitigate the issues associated with using a single tem-
perature, which can lead to sub-optimal performance despite extensive hyperparameter tuning. Our
approach, which we refer to as the Decoupled ST-GS, enables more flexible control over the trade-off
between relaxation smoothness during inference and gradient fidelity during training.

Through extensive experiments on both reconstruction and generative modelling tasks, we demon-
strate that the Decoupled ST-GS approach consistently outperforms the vanilla ST-GS. We show
that the use of a single temperature compromises both performance and gradient fidelity, while our
method leads to substantial performance gains by removing the constraint of shared temperatures.
Furthermore, we thoroughly investigate the effect of our method on gradient fidelity by analyzing
the gradient gap and the bias-variance trade-off of the estimated gradients.

Our contributions in this work are threefold:

• We propose Decoupled ST-GS, a novel extension to the Straight-Through Gumbel-Softmax
(ST-GS) estimator, which decouples the temperature parameters for the forward and back-
ward passes, allowing for control of relaxation smoothness during inference independently
of gradient fidelity during training.

• We demonstrate that Decoupled ST-GS achieves significant performance improvements
over the vanilla (state of the art) ST-GS estimator through extensive experiments on diverse
tasks and datasets.

• We conduct a comprehensive analysis of the impact of Decoupled ST-GS on gradient fi-
delity from different perspectives, such as the gradient gap and the bias-variance trade-off
of estimated gradients, providing deeper insights into how our approach improves gradient-
based optimization in discrete latent models.

2 RELATED WORKS

Discrete optimization in deep learning has garnered significant attention due to its applicability in
various tasks such as data compression, generative modelling, and reinforcement learning (RL). A
common challenge in training discrete models is the non-differentiable nature of categorical vari-
ables, which obstructs the use of standard gradient-based optimization methods. To address this,
three major approaches have been proposed: policy-based estimators, relaxation-based methods,
and the Straight-Through Estimator (STE).

Policy-based estimators, such as the REINFORCE algorithm (Williams, 2004), provide a Monte
Carlo-based gradient estimation for discrete variables. However, these methods often suffer from
high variance, making them challenging to apply effectively in large-scale models. Previous works
have sought to reduce this variance by combining control variates with continuous relaxations, yield-
ing low-variance, unbiased gradient estimates (Tucker et al., 2017). Relaxation-based approaches,
such as the Gumbel-Softmax trick (Jang et al., 2016), provide a continuous approximation to cate-
gorical distributions, which allows for smooth gradient flow but comes at the cost of approximating
discrete variables. The temperature parameter in Gumbel-Softmax controls the trade-off between
smoothness and sharpness in the approximation, making it a crucial factor in performance tuning.
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The STE (Bengio et al., 2013) offers an alternative by approximating gradients through non-
differentiable functions. It effectively treats discrete operations as differentiable during backprop-
agation, enabling the use of categorical variables in neural networks. Extensions like ReinMax
(Liu et al., 2024) have been proposed to enhance the accuracy of gradient approximation, using
second-order methods to achieve better performance without introducing significant computational
overhead. The Straight-Through Gumbel-Softmax (ST-GS) estimator (Jang et al., 2016; Maddison
et al., 2016) combines the advantages of both Gumbel-based relaxation and the STE, allowing for
continuous relaxation during training while retaining discrete sampling in the forward pass.

Despite the advantages of ST-GS, its performance is highly sensitive to the temperature parameter,
leading to trade-offs between model performance and gradient fidelity. Previous research has em-
phasized the importance of careful temperature tuning (Jang et al., 2016), yet this often becomes
a bottleneck for optimization, particularly when shared temperatures are used for both the forward
and backward passes. This limitation motivated our work to explore decoupling the temperature for
these two passes, providing greater flexibility in balancing the smoothness of relaxation and gradient
fidelity.

3 PRELIMINARIES

3.1 CATEGORICAL LATENT VARIABLE SETUP

We consider the problem of modelling categorical latent variables in a typical encoder-decoder set-
ting. Let x denote the input data, and z represent the latent variable, which is categorical. The
encoder Eθ(x) maps the input x to a latent representation, while the decoder Dϕ(z) reconstructs
the input from the latent space.

The encoder outputs unnormalized logits, l = {l1, l2, . . . , lk}, where li corresponds to the unnor-
malized log-probability of the i-th category for a categorical variable with k possible categories. The
logits are transformed into probabilities p = {p1, p2, . . . , pk} using the softmax operation:

pi =
exp(li)∑k
j=1 exp(lj)

, ∀i ∈ {1, 2, . . . , k}. (1)

Next, the categorical latent variable z is sampled from this distribution, i.e., z ∼ Categorical(p).
Formally, this involves selecting one of the k categories with probability pi for the i-th category.
The resulting latent variable z can be represented as a one-hot vector:

z = [z1, z2, . . . , zk} zi ∈ {0, 1} ∀i ∈ {1, 2, . . . , k}
k∑

i=1

zi = 1. (2)

In this step, transitioning from probabilities p to the one-hot vector z is non-differentiable (Figure
1b). This presents a key challenge in training the model, as gradients cannot be directly propagated
through the discrete sampling operation. The problem arises when attempting to backpropagate
through the one-hot vector z, which introduces a discontinuity in the gradient flow. Specifically, the
gradient ∂L/∂l, where L is the loss function, cannot be directly computed due to the discrete nature
of z. This, in turn, obstructs the calculation of ∂L/∂θ, which is necessary for gradient descent
updates.

To address this issue, several estimators have been developed to allow gradient-based optimization
with discrete variables, including the Straight-Through Estimator (STE) and the Gumbel-Softmax
Estimator. We now describe these in detail.

3.2 STRAIGHT-THROUGH ESTIMATOR (STE)

The Straight-Through Estimator (STE) (Bengio et al., 2013) offers a simple workaround to the non-
differentiability of discrete variables by treating the discrete sampling operation as identity during
the backward pass. Once the categorical variable z is sampled as a one-hot vector, STE bypasses
the sampling operation in the backward pass, allowing gradients to propagate through the logits l
(Figure 1c).
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Figure 1: Gradient Flow Comparison for different gradient estimation methods. (a) In the continuous
setting, node z is a deterministic variable, and gradients can be propagated back through z and f(z) directly
using the chain rule. (b) When z represents a discrete categorical variable, the sampling process from p breaks
the backpropagation path. (c) Standard STE, where ∂z/∂p is approximated as 1 during the backward pass,
allowing gradients to flow through non-differentiable stochastic nodes. (d) ST-GS with temperature, scaling
logits by a single temperature τ for both forward and backward passes and injecting stochasticity using a
Gumbel noise sample. (e) Decoupled temperature approach with different forward (τf ) and backward (τ b)
temperatures for independent control of forward and backward passes.

Formally, let z be the one-hot vector computed by sampling from p. In the forward pass, z is used
directly:

z = one-hot(p). (3)

However, during the backward pass, instead of differentiating through the one-hot vector z, STE
bypasses this step by using the softmax probabilities p directly for gradient calculation:

∂L
∂l

=
∂L
∂z

∂z

∂p

∂p

∂l
(4)

≈ ∂L
∂z

∂p

∂l

(
since

∂z

∂p
≈ 1

)
(5)

In other words, the gradients are computed as if the sampling step were differentiable. This ap-
proximation allows gradients to propagate through the logits l via the softmax function, enabling
gradient-based optimization despite the non-differentiability of the one-hot vector z.

3.3 GUMBEL RELAXATION-BASED ESTIMATORS

The Gumbel-Softmax estimator (Jang et al., 2016) provides a differentiable approximation to sam-
pling from a categorical distribution. The core idea is to replace the non-differentiable sampling step
with a differentiable softmax function applied to logits perturbed by Gumbel noise during training.
Specifically, let g be a vector of k independent samples from the Gumbel(0, 1) distribution. The
Gumbel-Softmax sample can be computed as:

ẑ = softmax
(
l

τ
+ g

)
(6)

where τ is a temperature parameter that controls the entropy of the categorical distribution from
which we are effectively sampling. During testing, however, this Gumbel-Softmax relaxation is
discretized into a one-hot vector as follows:

z = one-hot(argmax(ẑ)) (7)
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The temperature plays a crucial role in the performance of this estimator. Lower values of τ sharpen
the distribution, making it closer to a one-hot vector, while higher values of τ smooth the distribution,
encouraging exploration by assigning non-negligible probabilities to all categories. This trade-off
between exploration (higher τ ) and exploitation (lower τ ) is a key consideration in tasks where
balancing these two aspects is critical for model performance.

Building on this, the Straight-Through Gumbel-Softmax (ST-GS) estimator (Maddison et al., 2016)
aims to bridge the gap between the continuous relaxation of the Gumbel-Softmax during training
and the discrete nature required during testing. In the forward pass, the Gumbel-Max trick is used
to sample a one-hot vector as follows:

ẑ = softmax
(
l

τ
+ g

)
(8)

z = one-hot(argmax(ẑ)) (9)
During the backward pass, akin to the STE, the one-hot vector z is replaced by a Gumbel-Softmax
approximation ẑ (as done in 6) for the gradient computation (Figure 1d):

∂L
∂l

=
∂L
∂z

∂z

∂ẑ

∂ẑ

∂l
(10)

≈ ∂L
∂z

∂ẑ

∂l

(
since

∂z

∂ẑ
≈ 1

)
(11)

This approach enables gradient-based optimization while preserving the discrete nature of the latent
variable in the forward pass.

4 METHODOLOGY

In this section, we discuss the limitation of using a single temperature in ST-GS and describe our
proposed method, Decoupled ST-GS, which improves the original ST-GS by introducing separate
independent temperature parameters for the forward and backward passes. Our approach is designed
to increase gradient fidelity and performance by addressing the trade-offs inherent in the selection
of a single temperature in the standard ST-GS estimator.

4.1 RETHINKING A SINGLE TEMPERATURE

The traditional ST-GS estimator relies on a single temperature parameter to control the smoothness
of the relaxation in both the forward and backward passes. However, we argue that using a single
temperature throughout the training process, even after performing a comprehensive hyperparame-
ter search, cannot adequately capture the asymmetry between the forward and backward operations
of the model. This limitation stems from the distinct roles played by the encoder and decoder: the
encoder maps continuous inputs into discrete latent variables, while the decoder reconstructs contin-
uous outputs from these discrete representations. Given this fundamental asymmetry, the gradients
flowing through the encoder and decoder should be handled differently to optimize performance.

Secondly, in the standard ST-GS estimator, a single temperature τ controls the sharpness of the
categorical distribution in both the forward and backward passes. This shared temperature often
presents a trade-off between sharpness and gradient fidelity. A low temperature τ sharpens the
categorical distribution, leading to a discrete-like sampling process, but can introduce high variance
in the gradients. Conversely, a higher τ smooths the distribution and reduces gradient variance, but
compromises the sharpness of the forward pass, which is critical for performance in tasks requiring
discrete representations.

These observations motivate our proposal to decouple the temperature values for the forward and
backward passes, enabling finer control over both the relaxation smoothness in the forward pass and
the gradient fidelity in the backward pass.

4.2 DECOUPLING FORWARD AND BACKWARD TEMPERATURES

The core idea behind the Decoupled ST-GS approach is to use two distinct temperature parameters:
τf for the forward pass and τ b for the backward pass (Figure 1e). The forward temperature τf
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governs the sharpness of the categorical distribution used when sampling the discrete latent variable,
whereas the backward temperature τ b controls the smoothness of the gradient approximation with
respect to the logits.

4.2.1 FORWARD PASS: SAMPLING WITH TEMPERATURE τf

The forward pass in our method follows the standard ST-GS process. Given the unnormalized logits
l from the encoder, we compute the forward Gumbel-Softmax samples as:

ẑf = softmax
(

l

τf
+ g

)
(12)

where g represents the Gumbel noise sampled from the Gumbel(0, 1) distribution, and τf is the
forward temperature.1 The forward pass then proceeds by discretizing the relaxed distribution using
the argmax function to obtain a one-hot representation:

z = one-hot
(
argmax ẑf

)
(13)

Here, τf controls the sharpness of the categorical distribution. Lower values of τf produce sharper,
more discrete samples, closely resembling the one-hot vector sampled from the original categorical
distribution. In contrast, higher values of τf generate softer samples, which can still capture some
uncertainty in the categorical assignment.

At this stage, the forward pass is identical to the ST-GS estimator: it uses the Gumbel-Max trick to
sample discrete latent variables for use by the decoder. However, in contrast to ST-GS, we introduce
a different temperature for the backward pass.

4.2.2 BACKWARD PASS: GRADIENT APPROXIMATION WITH TEMPERATURE τ b

During the backward pass, instead of using the same forward temperature for gradient calculation,
we employ a distinct backward temperature τ b for the Gumbel-Softmax relaxation. This is critical
for ensuring that the gradient estimates properly account for the encoder-decoder asymmetry without
being overly constrained by the same temperature as used in the forward pass.

As in ST-GS, the backward pass operates by approximating the gradients using a Gumbel-Softmax
relaxation. However, unlike the vanilla ST-GS, our method modifies the temperature used for this
approximation, calculating the gradient with a relaxed Gumbel-Softmax sample ẑb as follows:

ẑb = softmax
(

l

τ b
+ g

)
(14)

The gradient computation then proceeds similarly to the standard STE process, as explained in the
preliminaries. Specifically, during backpropagation, we compute the gradients by treating the one-
hot sampled vector z from the forward pass as if it were differentiable while using the relaxed ẑb

for gradient estimation:

∂L
∂l

=
∂L
∂z

∂z

∂ẑb

∂ẑb

∂l
(15)

≈ ∂L
∂z

∂ẑb

∂l

(
since

∂z

∂ẑb
≈ 1

)
(16)

Here, the temperature τ b controls the smoothness of the gradient estimation in the backward pass,
allowing for more flexible and precise optimization compared to the single-temperature approach.

4.2.3 OVERALL PROCESS

To clarify our approach, we provide a simplified pseudocode outlining the forward and backward
passes of the proposed Decoupled ST-GS method.

1In Jang et al., the temperature is applied to the sum l+g, i.e., softmax((l+g)/τf ). This choice is sensible
for them because they are relaxing what would be a categorical draw at τf = 0; in our case, we are relaxing
deterministic selection at τf = 0. In our conceptualization, the temperature is related to exploration instead of
exploitation (selecting the best).
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Algorithm 1 Decoupled ST-GS Estimator

1: Input: Logits l, Forward temperature τf , Backward temperature τ b

2: Forward Pass:
3: Sample Gumbel noise g ∼ Gumbel(0, 1)
4: Compute relaxed logits: ẑf = softmax

(
l
τf + g

)
5: Compute one-hot vector: z = one-hot

(
argmax(ẑf )

)
6: Return z for use by decoder
7: Backward Pass:
8: Compute relaxed logits for backward pass using same Gumbel noise sample: ẑb =

softmax
(

l
τb + g

)
9: Compute gradient using ẑb instead of z

10: Perform backpropagation using the relaxed gradients

In this pseudocode, we illustrate the use of different temperatures for the forward and backward
passes. During the forward pass, the forward temperature τf is used to sample a one-hot vector
from the Gumbel-Softmax distribution, while during the backward pass, the backward temperature
τ b controls the smoothness of the gradients.

By allowing the use of different temperatures, we can balance between the need for discreteness
during the forward pass and smooth gradient approximations in the backward pass, tailoring the
process to the encoder and decoder’s respective roles. Through extensive experimentation, we show
that this decoupled temperature approach leads to significant performance improvements and better
gradient fidelity.

5 EXPERIMENTS AND RESULTS

5.1 PERFORMANCE ANALYSIS

5.1.1 RECONSTRUCTION TASK

We first evaluate our method on a standard reconstruction task using binary autoencoders across
three datasets: MNIST (Deng, 2012), CIFAR10 (Krizhevsky, 2009), and SVHN (Netzer et al.,
2011). The architecture used for this experiment consists of a convolutional encoder and decoder
with residual connections (He et al., 2016) and a latent space dimension of 8× 8× 32. Each model
was trained for 100 epochs with a batch size of 64.

The first set of results in Fig. 2 show the heatmaps of the validation loss for different datasets across
various forward (τf ) and backward (τ b) temperature settings, averaged over 5 seeds. The plots
highlight that configurations with higher backward temperatures and lower forward temperatures
yielded the best reconstruction performance. Specifically, performance plateaued when τf was set
to 0.3 and τ b reached 3. Beyond these values, further improvements in reconstruction loss were
minimal, suggesting the optimal temperature range is constrained within these bounds.

While the heatmap provides visual insight into the effective temperature ranges, we further visualise
these results using line plots, shown in the second row of Fig. 2. Notably, when only one temperature
was tuned, performance improvements were relatively minor, as seen in the red markers on the line
plot (which correspond to the heatmap’s diagonal elements). This supports our hypothesis that a
single-temperature approach is insufficient to capture the inherent asymmetry between the encoder
and decoder in autoencoders. In contrast, the use of decoupled temperatures in our method led to
significant performance gains, as shown in the line plot. Additionally, the small error bars indicate
low variance across experiments, confirming the robustness of these results.

We also experimented with temperature scheduling, where forward and backward temperatures were
dynamically adjusted throughout training. However, as detailed in B, this approach did not yield any
substantial improvements over fixed temperature settings.

7
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Figure 2: Validation loss results for binary autoencoder across different forward and backward temperatures.
Performance improves with higher τ b and lower τf , plateauing at τf = 0.3 and τ b = 3.

5.1.2 GENERATIVE MODELLING

Next, we evaluated our method in a generative modelling task using categorical variational au-
toencoders (VAEs) (Kingma, 2013) on MNIST. Two experimental setups were tested: one with 8
categorical dimensions and 4 latent dimensions and another with 16 categorical dimensions and 12
latent dimensions. Both models used a 3-layer MLP encoder and decoder and were trained for 160
epochs using 10 different seeds.

As in the reconstruction experiment, we varied the forward and backward temperatures across a grid
of values. The resulting heatmaps and line plots (Figures 3 and 4) show the performance trends. In
both setups, the best generative performance occurred in the lower triangle of the heatmap, where
τf > τ b. Similar to the reconstruction task, tuning a single temperature led to limited improve-
ments, as illustrated by the red markers in the line plot. These results emphasize the importance of
independently optimizing both forward and backward temperatures for achieving optimal generative
performance.
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Figure 3: Validation BCE loss results for 8×4 categorical VAE across different forward and backward tempera-
tures. The optimal region is located in the lower triangle, where τf > τ b while there is negligible improvement
in performance when the single temperature version is tuned.
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Figure 4: Validation cross-entropy loss results for 16× 12 categorical variational autoencoder, similarly illus-
trating that performance improves when τf > τ b and becomes stagnant when τf = τ b.

5.2 GRADIENT FIDELITY ANALYSIS

5.2.1 GRADIENT GAP

In the binary autoencoder experiments, due to the large latent space, computing exact gradients was
computationally prohibitive (see appendix C for details about exact gradient calculation). Therefore,
we used a proxy metric called the gradient gap (Huh et al., 2023) G to assess the fidelity of the
gradients produced by the Gumbel-Softmax relaxation. The gradient gap measures the squared
L2 norm of the difference between the gradients computed from forward passes using continuous
relaxations and discrete samples (see appendix D for more details).

Figure 5 presents the gradient gap for different temperature configurations. We observed a significant
decrease in the gradient gap with increasing backward temperature. This suggests that the backward
temperature plays a key role in enhancing gradient fidelity by aligning the discrete gradients more
closely with the relaxed gradients. These results underscore the importance of carefully tuning τ b to
minimize the gradient gap and improve the quality of the gradient estimates.
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Figure 5: Log(Gradient Gap) heatmap for binary autoencoder. The gradient gap decreases with higher
backward temperature, indicating better alignment between continuous relaxations and discrete samples.

5.2.2 BIAS-VARIANCE ANALYSIS

For the 8× 4 categorical VAE, we conducted an exact gradient analysis, allowing for a detailed bias
and variance study. Specifically, we calculated the bias of the estimated gradients by comparing them
to the exact gradients obtained during the categorical VAE training process. These exact gradients
were computed by considering all possible hidden states, calculating the error for each, and then
computing the expected loss weighted by the probability of each configuration being selected (see
appendix C for more details). This analysis provided insights into the accuracy of the gradient
estimates generated by the Gumbel-Softmax relaxation.
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In this experiment, we focused on the optimal configuration derived from the performance results:
a forward temperature of τf = 1.6 and a backward temperature of τ b = 1.3. We varied one
temperature while keeping the other fixed and plotted the resulting bias and variance of the gradients.
Figure 6 shows that increasing the backward temperature reduced both the bias and variance of the
gradient estimates, indicating that the backward temperature has a stabilizing effect on gradient
estimation, reducing noise and improving gradient reliability.

Conversely, increasing the forward temperature while holding the backward temperature constant
led to an increase in both bias and variance, suggesting that higher forward temperatures introduce
more variability into the gradient estimates. These findings highlight that forward and backward
temperatures have distinct, complementary effects on gradient fidelity, reinforcing the need to tune
each temperature separately.

(a) Log(Relative Bias) with τf = 1.6 (b) Log(Relative Bias) with τ b = 1.3

(c) Log(Relative Std) with τf = 1.6 (d) Log(Relative Std) with τ b = 1.3

Figure 6: Bias and variance trends for the 8 × 4 categorical VAE. Both bias and variance increase as the
forward temperature rises, with the backward temperature fixed at τ b = 1.3. Conversely, bias and variance
decrease as the backward temperature increases while holding the forward temperature constant at τf = 1.6.

6 CONCLUSION

In this work, we introduced the Decoupled ST-GS estimator, a simple but effective extension of the
ST-GS method that allows for distinct temperature values in the forward and backward passes. Our
approach addresses the limitation of using a single temperature, which often compromises perfor-
mance and gradient accuracy in ST-GS. Through extensive experiments across various tasks and
datasets, we demonstrated that our method consistently outperforms the vanilla ST-GS estimator,
offering substantial improvements in both model performance and gradient fidelity.

The flexibility provided by decoupling the temperature allows for finer control over the trade-off
between relaxation smoothness during inference and gradient fidelity during training. We also pro-
vided an in-depth analysis of the gradient gap and the bias-variance trade-off in gradient estimation,
showing that our approach mitigates these issues by allowing independent tuning of temperatures
for the forward and backward passes.
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A EXPERIMENTAL SETUP DETAILS

A.1 BINARY AUTOENCODER ARCHITECTURE

For the binary autoencoder experiments, we used a convolutional encoder and decoder with residual
connections. The encoder consists of several convolutional layers which project the data into a latent
space of dimension 8 × 8 × 32. The decoder mirrors this architecture, upsampling the latent space
back to the input dimensionality.

We used the MNIST, CIFAR10, and SVHN datasets, without any form of input normalisation. All
models were trained for 100 epochs with a batch size of 64, and we applied the Adam optimizer
with a learning rate of 3× 10−4. Each experiment was carried out with 5 different seeds.

A.2 CATEGORICAL VAE ARCHITECTURE

For the categorical VAE experiments, we employed a 3-layer MLP encoder and decoder. The en-
coder architecture consists of layers projecting the input from 784 dimensions (flattened images)
down to 512, then to 256, and finally to the categorical latent space with dimensions 8 × 4 or
16 × 12. The decoder mirrors this structure, projecting from the latent space back to the original
dimensionality.

We trained the models for 160 epochs using the RAdam optimizer without any input normalisation
on MNIST. Two experimental setups were tested: 1) 8 categorical dimensions × 4 latent dimensions
with a learning rate of 5×10−4. 2) 16 categorical dimensions × 12 latent dimensions with a learning
rate of 7× 10−4. Each experiment was carried out with 10 different seeds.

A.3 TEMPERATURE TUNING PROCESS

The forward (τf ) and backward (τ b) temperatures were tuned by conducting grid searches over a set
of predefined values. For the binary autoencoder experiments, τf was varied between 0.3 and 3.0,
while τ b was varied between 0.3 and 6.0. For the categorical VAE, we experimented with values of
τf and τ b ranging from 0.3 to 3.0.

Through the heatmap visualizations (see Figures 2, 3 and 4 in the main text), it became clear that
distinct temperature configurations were crucial for performance optimization and that symmetric
temperature settings (i.e., τf = τ b) led to suboptimal results in both reconstruction and generative
tasks.

B TEMPERATURE SCHEDULING EXPERIMENTS

In an effort to explore whether temperature scheduling could further improve performance, we con-
ducted a series of experiments where forward (τf ) and backward (τ b) temperatures were dynami-
cally adjusted during training. The motivation for this approach stemmed from the observation that
a fixed temperature combination of τf = 0.3 and τ b = 3 yielded the best performance in the CI-
FAR10 reconstruction task. We hypothesized that starting or ending with this combination, while
varying the temperatures over time, might lead to additional improvements in reconstruction quality.

Table B.1 summarizes the results of these scheduling experiments. Several scheduling strategies
were tested, but the results indicate that scheduling yielded no substantial improvement over the
fixed temperature settings. For instance, while schedules such as τf : 1 → 0.3, τ b : 1 → 2
and τf : 0.3 → 0.03, τ b : 1 → 3 showed a marginally better validation loss of 2.642 × 10−3,
this improvement was not significant when compared to the fixed combination of τf = 0.3 and
τ b = 3. Other schedules generally performed worse, with some configurations like τf : 1 → 2 and
τ b : 1 → 0.3 showing considerably higher validation losses.

In conclusion, while temperature scheduling offered a flexible way to explore various configurations,
it did not provide a meaningful improvement over the fixed best-performing setting. Therefore, we
recommend using fixed temperatures for this particular task, as they offer simpler implementation
without sacrificing performance.
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Table 1: CIFAR10 Temperature Scheduling Results

τf τ b Validation Loss (1e-3)

1 → 0.3
1 → 0.3 3.783 ± 0.154

1 2.751 ± 0.054
1 → 2 2.642 ± 0.074

1
1 → 0.3 4.579 ± 0.111

1 3.580 ± 0.213
1 → 2 2.889 ± 0.019

1 → 2
1 → 0.3 4.700 ± 0.134

1 4.600 ± 0.121
1 → 2 3.470 ± 0.116

0.3 → 0.03 5 → 3 2.688 ± 0.079
1 → 3 2.641 ± 0.051

0.3 → 2 5 → 3 2.997 ± 0.096
1 → 3 3.009 ± 0.028

C BIAS AND VARIANCE COMPUTATION

For the categorical VAE, it was possible to perform exact gradient analysis by directly comput-
ing the gradient of the exact categorical log-likelihood during training. The bias and variance of
the estimated gradients were calculated by comparing the approximate gradient (obtained from the
Gumbel-Softmax relaxation) to this exact gradient.

The exact gradient was computed by iterating over all possible configurations of the categorical
latent variables and calculating their expectation. This allows for a precise reference point to which
we can compare the approximate gradients.

We conducted this analysis by tracking the gradient of the encoder output across multiple forward
and backward temperature configurations. The approximate gradient was calculated 1024 times us-
ing different random Gumbel noise draws, and its mean and standard deviation were computed. The
bias was then defined as the difference between the exact gradient and the mean of the approximate
gradients, normalized by the exact gradient:

Relative Bias Ratio =
Exact Gradient − Mean Approximate Gradient

Exact Gradient

The variance was computed as the standard deviation of the approximate gradients. These metrics
were visualized in a grid of temperature settings, and it was observed that increasing the backward
temperature τ b led to reduced bias and variance, while increasing τf resulted in higher bias and
variance (see Figure 6).

D GRADIENT GAP CALCULATION

Given the computational limitations in performing exact gradient analysis for the binary autoen-
coder’s large latent space, we instead computed the gradient gap, denoted by G. The gradient gap
is defined as the squared L2 norm of the difference between the gradients obtained from continuous
relaxations (ẑf ) and the gradients from discrete samples (z):

G =

∥∥∥∥∂L(Dϕ(ẑ
f ))

∂l
− ∂L(Dϕ(z))

∂l

∥∥∥∥
2

This measure helps quantify the alignment between the gradients obtained from the Gumbel-
Softmax relaxation and the true discrete gradients, particularly in cases where exact gradient com-
putation is intractable. The backward temperature τ b plays a critical role in reducing this gap, as
shown in the main results (Figure 5).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

E COMPUTATIONAL RESOURCES

All experiments were conducted on a machine with an NVIDIA A100/4090 GPU and 40GB of
RAM. Due to the computational demands of tuning both forward and backward temperatures, ex-
periments were parallelized across multiple GPU cores where possible.
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