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ABSTRACT

Fine-tuning language models (LMs) on human-generated data remains a prevalent
practice. However, the performance of such models is often limited by the quan-
tity and diversity of high-quality human data. In this paper, we explore whether
we can go beyond human data on tasks where we have access to scalar feed-
back, for example, on math problems where one can verify correctness. To do so,
we investigate a simple self-training method based on expectation-maximization,
which we call ReSTEM , where we (1) generate samples from the model and filter
them using binary feedback, (2) fine-tune the model on these samples, and (3)
repeat this process a few times. Testing on advanced MATH reasoning and APPS
coding benchmarks using PaLM-2 models, we find that ReSTEM scales favor-
ably with model size and significantly surpasses fine-tuning only on human data.
Overall, our findings suggest self-training with feedback can reduce dependence
on human-generated data.

1 INTRODUCTION

Large Language Models (LLMs) are revolutionizing the landscape of deep learning, showcasing re-
markable capabilities in generating human-quality text and tackling diverse language tasks (Google
et al., 2023; OpenAI, 2023). While supervised fine-tuning (SFT) on human-collected data further
boosts their performance on tasks of interest, acquiring high-quality human data poses a significant
bottleneck. This is particularly demanding for complex problem-solving tasks, requiring significant
resources and expert knowledge. To address this hurdle, model-generated synthetic data emerges as
a promising alternative, offering scalability and cost-effectiveness, provided its quality can be en-
sured. While LLMs hold the potential to self-evaluate generated data, this paper explores a simpler
setting where an external, scalar feedback signal serves as a quality indicator for each sample.

To investigate training on model-generated data, we consider a simple yet powerful self-training
approach for language models that requires only two capabilities: 1) generating samples from the
model and 2) evaluating these samples with a scoring mechanism. To ensure clarity and consistency,
we adopt the terminology of Reinforced Self-Training (Gulcehre et al., 2023) and call this approach
ReSTEM . We show that ReSTEM can be viewed as applying expectation-maximization for rein-
forcement learning (Dayan & Hinton, 1997; Peters & Schaal, 2007), which we present formally in
Section 3. Specifically, ReSTEM alternates between the expectation and maximization steps:

1. Generate (E-step): The language model generates multiple output samples for each
input context. Then, we filter these samples using a binary reward to collect the training
dataset.
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Figure 1: Self-training with ReSTEM substantially improves test performance of PaLM 2 models
on two challenging benchmarks: MATH and HumanEval. Results for other models are shown for
general progress on these tasks and are typically not comparable due to difference in model scales.
GPT-4 results are taken from Bubeck et al. (2023).

2. Improve (M-step): The original language model is supervised fine-tuned on the training
dataset from the previous Generate step. The fine-tuned model is then used in the next
Generate step.

ReSTEM , with its various adaptations (Section A), has demonstrated success in enhancing language
models across diverse domains, including machine translation (Norouzi et al., 2016; Gulcehre et al.,
2023), semantic parsing (Agarwal et al., 2019), preference alignment (Dong et al., 2023), and el-
ementary reasoning (Zelikman et al., 2022; Yuan et al., 2023). However, prior works primarily
applied ReSTEM to relatively small language models (up to 7B parameters), with limited scalabil-
ity observed for larger models (Yuan et al., 2023). Complementing these efforts, our work aims to
investigate the effectiveness and scalability of model-generated synthetic data compared to human-
generated data in two challenging, less explored domains: competition-level mathematical problem-
solving (MATH) (Hendrycks et al., 2021b) and code generation (APPS) (Hendrycks et al., 2021a).

Our empirical findings reveal significant advancements in both mathematical reasoning and code
generation capabilities when applying ReSTEM to PaLM 2 models of varying scales (Figure 1). No-
tably, models fine-tuned on model-generated synthetic data exhibit remarkably larger performance
gains compared to those trained on human-written data (Figure 2, 3). Interestingly, exceeding a
couple of iterations of ReSTEM leads to diminishing improvement, indicating potential overfitting
on small amount of training problems (Figure 4). Additionally, models fine-tuned using ReSTEM

improve pass@k as well as majority voting performance. Furthermore, these fine-tuned models
demonstrate enhanced performance on related but held-out benchmarks, including math problems
(GSM8K and Hungarian HS finals), coding (HumanEval), and Big-Bench Hard tasks. We also
perform ablation studies to investigate the effect of number of model-generated solutions, training
problems, and iterations for ReSTEM fine-tuning. Overall, our findings suggest self-training with
feedback as a promising approach to reduce dependence on human data.

2 PRELIMINARIES

An autoregressive language model produces an output sequence y = (y1, y2, ....yT ) given a con-
text (or source input) x = (x1, x2, ...xL), where the tokens xl, yt belong to a fixed vocabulary.
Auto-regressive generation involves predicting tokens one at a time, based on the previously gener-
ated tokens. Assuming that the language model is parameterized by θ, the conditional probability
distribution of generating a sequence y given x is

pθ(y | x) =
T∏

t=1

pθ(yt | y<t,x),

with the convention y1:0 = ∅ and y1:t−1 = (y1, y2, ....yt−1). For ease of notation, we define
p(yt|x) := p(yt|y<t, x). The probability of predicting tth token yt, p(yt|x), is determined using a
softmax with temperature γ: p(yt|x) = exp(zt/γ)∑M

i=1 exp(zi/γ)
, where zt is the logit score for the token yt.

2



Published as a paper at ICLR 2024 Workshop on DPFM

Higher values of temperature γ introduces more randomness, while a lower value makes the output
more deterministic by favoring the most probable words.

Given a dataset D of inputs x and human-generated outputs y, supervised fine-tuning (SFT) trains
the policy by minimizing the negative log likelihood loss:

LSFT(θ) = −E(x,y)∼D

[
T∑

t=1

log pθ(yt | y1:t−1,x)

]
. (1)

We also assume access to a deterministic sequence-level (or terminal) reward r(x,y). Then, the
reinforcement learning (RL) objective corresponds to:

LRL(θ) = Ex∼D
[
Ey∼pθ(y|x) [r(x,y)]

]
.

Optimizing LRL loss directly using online RL methods, such as policy gradients, requires updating
and sampling from the policy numerous times during training. However, the computational cost of
fine-tuning on a continual flow of new samples becomes a limitation of online methods, especially
when the sizes of the policy network grow to tens or hundreds of billion parameters. We discuss an
alternative to such online RL approaches in the next section.

3 EXPECTATION-MAXIMIZATION FOR REINFORCED SELF-TRAINING

Expectation-Maximization (EM) for RL We first describe the EM-based framework for RL with
language models, building upon the work by Dayan & Hinton (1997). Let’s define a binary opti-
mality variable O, such that p(O = 1|x,y) ∝ f (r(x,y)), for some non-decreasing non-negative
function f : R → R+. We want to maximize the log-likelihood of observing O = 1 (obtaining high
reward):

log p(O = 1|x) := log
∑
y

pθ(y|x)p(O = 1 | x,y).

However, the sum over all possible sequences y is typically intractable. Instead of maximizing
log p(O = 1;x), one can consider maximizing its ELBO L(pθ, q) with respect to parameters θ and
variational distribution q(y|x). Specifically,

log p(O = 1 | x) = logEq(y|x)

[
p(O = 1 | x,y)pθ(y | x)

q(y | x)

]
≥ Eq(y|x)

[
log

p(O = 1 | x,y)pθ(y|x)
q(y | x)

]
(Jensen’s inequality)

= Eq(y|x) [log p(O = 1 | x,y)]− KL [q(y | x)||pθ(y | x)]
=: L(pθ, q) (2)

The EM algorithm (Dempster et al., 1977) for Equation 2 alternates between an E-step and M-step:
at iteration t, denote the language model parameter to be θt and the variational distribution to be qt.

• E-step: qt+1 = argmaxq L(pθt , q). Since L(pθt , q) can be written as
KL[q(y|x)||q∗(y||x)], qt+1(y | x) ∝ q∗(y | x) := p(O = 1|x,y)pθt(y | x). Thus,
this step is equivalent to weighting the output samples from conditional language model
distribution based on their likelihood of obtaining high rewards.

• M-step: θt+1 := argmaxθ L(pθ, q
t+1) = argmaxθ

∑
y qt+1(y | x) log pθ(y | x). As

such, this step corresponds to maximizing a reward-weighted negative log-likelihood loss.

Alternating between above steps ensures a monotonic improvement in the ELBO: L(pθt+1 , qt+1) ≥
L(pθt , qt+1) ≥ L(pθt , qt).

EM with non-negative rewards. If the rewards are non-negative and f is set to the identity function,
then p(O = 1|x,y) ∝ r(x,y) which implies qt+1(y | x) ∝ r(x,y)pθt(y | x). In this scenario,
the updated policy parameters θt+1 resulting from the M-step at iteration t are given by:

θt+1 := argmax
θ

Ex∼D

[
Ey∼pt

θ(y|x) [r(x,y) log pθ(y | x)]
]
. (3)
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Algorithm 1: ReST (Expectation-Maximization). Given a initial policy (e.g., pre-trained LM),
ReSTEM iteratively applies Generate and Improve steps to update the policy.
Input: D: Training dataset, Dval: Validation dataset, L(x,y; θ): loss, r(x,y): Non-negative

reward function, I: number of iterations, N : number of samples per context
for i = 1 to I do

// Generate (E-step)
Generate dataset Di by sampling: Di = { (xj ,yj)|Nj=1 s.t. xj ∼ D, yj ∼ pθ(y|xj) }

Annotate Di with the reward r(x,y).
// Improve (M-step)
while reward improves on Dval do

Optimise θ to maximize objective: J(θ) = E(x,y)∼Di
[r(x,y) log pθ(y|x)]

end
end
Output: Policy pθ

Comparing the above equation with the RL objective LRL reveals the key distinction between stan-
dard RL and EM-based RL: how output data is sampled. Standard RL continuously updates the
policy and uses this latest policy to collect data. In contrast, EM-based RL employs a fixed sam-
pling policy from the previous iteration, decoupling data collection from policy optimization. This
decoupling in EM-based approaches enables easier scaling to large policy networks (e.g., LLMs).

ReSTEM Motivated by the EM framework, we now discuss a simplified version of ReST approach
by Gulcehre et al. (2023). This approach, which we call ReSTEM for clarity, decouples data col-
lection (E-step) and policy optimization (M-step) in a typical RL pipeline. Algorithm 1 outlines the
ReSTEM algorithm with multiple iterations, where each iteration corresponds to one Generate
and Improve step. We describe these steps in detail below.

• Generate (E-step): In this step, we generate a dataset Di by sampling many output se-
quences from the current policy pθ: Di = { (xj ,yj)|Nj=1 s.t. xj ∼ D, yj ∼ pθ(y|xj) }.
Here, the inputs are resampled from the original dataset xj ∼ D. The output sequences in
Di are then scored with a binary reward function r(x,y). Unlike Gulcehre et al. (2023),
we refrain from augmenting Di with human-generated outputs as such data may not always
be optimal for learning or it might not be easily available. In our experiments, we condi-
tion the language model using a few-shot prompt with programs for code generation and
step-by-step solutions for math problems.

• Improve (M-step): In the ith iteration, we use the new dataset Di from Generate step
to fine-tune the policy pθ. Contrary to Gulcehre et al. (2023), we always fine tune the base
pretrained language model to minimize task-specific over-fitting and minimize drift from
the base model. For fine-tuning, we minimize the reward-weighted negative log-likelihood
loss J(θ) = E(x,y)∼Di

[r(x,y) log pθ(y|x)]. Once the policy is improved, a new dataset
of better quality samples can be created once again.

Remark. Our experiments focus on problem-solving settings with binary rewards (either 0 or 1),
unlike the bounded real-valued rewards assumed by Gulcehre et al. (2023). Specifically, for each
Generate step, Gulcehre et al. (2023) perform multiple Improve steps, where each Improve
step can be viewed as an M-step with the function f(r(x,y)) = r(x,y) > τ , where τ ∈ R+

increases in successive M-steps. However, with binary rewards, any value of τ ∈ (0, 1) corresponds
to the identical Improve steps.

4 RELATED WORK

Several prior methods can be instantiated using the expectation-maximization framework presented
in Section 3, including Expert Iteration (ExiT) (Anthony et al., 2017), Self-Taught Reasoner (Zelik-
man et al., 2022), Iterative Maximum Likelihood (Liang et al., 2016; Agarwal et al., 2019), Reward
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weighted regression (Peters & Schaal, 2007), and Reward ranked fine-tuning (Dong et al., 2023).
Please refer to Appendix A for a detailed discussion of these methods and their relation to ReSTEM .

5 EXPERIMENTS AND ANALYSIS

The goal of our experiments is to answer the following questions:

1. How effective is ReSTEM compared to fine-tuning on human-generated data?

2. How many iterations are needed for optimal performance? How quickly does ReSTEM

leads to overfitting on training set?

3. How does ReSTEM affect pass@k and majority voting performance?

4. If we fine-tune using model-generated data on a specific task, do we see positive transfer
to related tasks? Is there any performance degradation compared to the base model when
evaluating our fine-tuned models on a broad suite of tasks?

5. How much input data do we need to get most of the performance gains from ReSTEM? Is
one iteration of ReSTEM sufficient?

Training Datasets. We evaluate ReSTEM primarily on mathematical problem solving using the
Hendrycks’ MATH dataset (Hendrycks et al., 2021b) and code generation using the APPS (Intro-
ductory) dataset (Hendrycks et al., 2021a). MATH and APPS (Introductory) contain 7500 and 2342
training problems respectively. We select these tasks because the model outputs can be automat-
ically evaluated as correct or incorrect, perfectly suited for ReSTEM . Both these datasets offer
binary rewards: on MATH, model-generated answers can be easily verified for correctness using the
ground-truth answer, while on APPS, test cases determine whether the generated code is correct.

Models. We use the PaLM 2 models (Google et al., 2023) with public APIs on Google Cloud for
experiments, including PaLM 2-S (Bison), PaLM 2-S* (Codey), and PaLM 2-L (Unicorn).

Evaluation. We report generalization performance using the test splits of the MATH and APPS
(Introductory) datasets. For measuring transfer performance, we look at GSM8K (Cobbe et al.,
2021), Hungarian HS finals (Paster, 2023), and HumanEval (Chen et al., 2021) datasets. We also
evaluate our models using the Big-Bench Hard (Suzgun et al., 2022) benchmark to evaluate general
capabilities. All evaluations follow the settings from Google et al. (2023), unless specified otherwise.

Implementation Details. During each iteration of ReSTEM , we generated a fixed number of so-
lutions per problem for the E-step: 32 for the MATH dataset and 64 for the APPS dataset. For
generating solutions, we sample from the language model using top-K sampling with K=40 and
temperature of 0.7. However, directly using all these model-generated solutions can lead to an im-
balanced dataset, as we will have a lot more correct solutions for the easier problems. To mitigate
this, we introduced a cut-off threshold for the maximum number of solutions per problem, a design
choice also used by Zelikman et al. (2022), included in the fine-tuning dataset: 10 for both MATH
and APPS. This approach ensures diversity in the training data and safeguards against overfitting
on easier problems. For fine-tuning, we use the few-shot prompt (and the question) as input to the
model, and use the model-generated solutions as targets. We only apply the next token prediction
loss (Equation 1) on the targets.

5.1 RESTEM ON MATH AND APPS

Figures 2 and 3 show the performance of ReSTEM when trained on the MATH and APPS datasets,
respectively. We see that MATH benefits from performing multiple iterations of ReSTEM , both in
terms of performance on the MATH test set, as well as transfer to GSM8K. On the other hand, we
see that most of the gains for APPS come from the first iteration, and the performing more iterations
leads to a regression in performance on both APPS and HumanEval.

Interestingly, Figures 2 and 3 demonstrate that fine-tuning on model-generated solutions substan-
tially outperforms using human-written solutions, especially for the PaLM 2-L model. This aligns
with findings of Yuan et al. (2023) and recent work on distilling LLMs using model-generated
data (Agarwal et al., 2023; Gu et al., 2023). However, unlike Yuan et al. (2023), who observed
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Figure 2: ReSTEM for math problem-solving. Test performance on MATH and GSM8K (transfer)
for PaLM 2-S* and PaLM 2-L as a function of ReSTEM iterations. We also report performance of
models fine-tuned via SFT on human-generated data as a baseline. Iteration 0 corresponds to pre-
trained model performance. Following Google et al. (2023), we use greedy decoding for evaluation.
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Figure 3: ReSTEM for code-generation. Test performance on APPS (introductory) and Hu-
manEval (transfer) for PaLM 2-S* and PaLM 2-L as a function of ReSTEM iterations.

diminishing returns from model-generated data on GSM8K when scaling model capacity, our re-
sults suggest an opposite trend: ReSTEM leads to larger performance gains as model capacity in-
creases. On the MATH dataset, the test accuracy improvement with ReSTEM is 5.94% for PaLM
2-S compared to 6.34% for the larger PaLM 2-L model. Similarly, on the APPS dataset, improve-
ments are 5.6% for PaLM 2-S* compared to 6.4% for PaLM 2-L. This is in addition to the fact
that the larger models start with a much stronger initial performance, and improvements on these
benchmarks generally get harder as the baseline performance goes up.

Train-test performance gap. Figure 4 shows that while training set performance increases linearly
with the number of ReSTEM iterations, test set performance does not. For MATH, test performance
improvements are small after the first iteration, and for APPS, we actually observe a regression in
performance in the second iteration. We suspect that the regression in performance is likely due to
overfitting on the small set of training problems. Since the APPS dataset is about a third of the size
of the MATH dataset, it suffers more from this problem.

5.2 IMPACT ON PASS@K AND MAJORITY-VOTING PERFORMANCE

To investigate the impact of fine-tuning with ReSTEM on the diversity of the final model’s generated
outputs, we evaluate pass@k (Chen et al., 2021) and majority voting (Wang et al., 2023) performance
of the fine-tuned PaLM 2-L model relative to the base model.

Pass@K measures the probability that at least one of the top k-generated solution for a problem is
correct, that is, outputs the correct answer for math problems or passes all the unit tests for code
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Figure 5: Pass@K results for PaLM-2-L pretrained model as well as model fine-tuned with
ReSTEM . For a fixed number of samples K, fine-tuning with ReSTEM substantially improves
Pass@K performance. We set temperature to 1.0 and use nucleus sampling with p = 0.95.

generation. Figure 5 shows the performance of Palm-2-L on the pass@K metric. We see that
model obtained after ReSTEM fine-tuning is stronger for all values of K, with the performance gap
typically being the highest for K=1.

Majority voting first samples a diverse set of reasoning paths instead of only taking the greedy one,
and then selects the most consistent answer by marginalizing out the sampled reasoning paths. For
Hendrycks MATH, it is possible to use majority voting to maximize Pass@1 performance, and we
find that when using 64 samples per question, the PaLM 2-L fine-tuned with ReSTEM obtains a test
accuracy of 48.82, while the base model gets 44.02.

5.3 ABLATION STUDIES

Impact of multiple iterations Our results show that multiple iterations can sometimes lead to
over-fitting on the train set (Figure 4). This raises the question of whether multiple iterations are
necessary. Is it better to collect a larger dataset and perform just a single iteration of ReSTEM? To
investigate this, we collect a dataset with the base PaLM-2-L model on Hendrycks MATH that is 3×
as many solutions per problem as used in a single iteration of ReSTEM for the E-step. Fine-tuning
with this dataset results in pass@1 performance of 40.3%, which is lower than the 41% in second
and 41.9% in third iteration, as shown in Figure 2. These results indicate that performing multiple
iterations of ReSTEM leads to higher performance compared a single iteration with 3x the data.

Impact of dataset size Since one of the main ingredients needed for ReSTEM is a dataset of
input contexts (e.g., questions for MATH), we are interested in evaluating the effect of number of
input problems. The results from our dataset ablations using the PaLM-2-L model on Hendrycks
MATH, Figure 6 (left), show that utilizing just 1000 MATH questions results in significant gains,
implying that the method is very efficient in the number of prompts needed. However, we noted a
slight decrease in performance when using 4,000 questions compared to 2,000, indicating potential
variance in the fine-tuning process. Ideally, conducting this experiment multiple times would help
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quantify this variance, but this is prohibitively resource-intensive. Overall, we find that ReSTEM is
quite sample efficient and gains from ReSTEM improve as we increase the dataset size.
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Figure 6: Left. Performance for a single iteration of ReSTEM as a function of dataset size (number
of questions) on MATH. Right. Comparing ReSTEM with SFT on MATH. SFT refers to fine-tuning
on human data, while ReST* refers to a version of ReSTEM with one iteration that uses only one
correct sample per problem. Here, ReST denotes ReSTEM with 3 iterations. For each method, we
denote the number of questions in parenthesis.

Comparing model-generated data with human data A key strength of ReSTEM is its ability
to generate multiple correct solutions for each problem. This provides valuable additional training
data compared to human-generated data, which typically offers only a single solution per problem.
While this makes a comparison in Figures 2 and 3 not entirely fair, it also highlights the potential of
ReSTEM to boost performance with diverse and correct solutions.

In order to enable an apples-to-apples comparison, we conduct the following study: we select all
Hendrycks MATH questions for which we have at least one correct model-generated solution, result-
ing in about 5K questions. For these 5K questions, we run two fine-tuning experiments: SFT(5K)
where we fine-tune on human-written solutions (one per question), and ReST∗(5K) where we fine-
tune on model-generated solutions (also one per question, selected at random).

The results in Figure 6 (right), show that ReSTEM outperforms fine-tuning on human data even in
this much more restricted setting. Furthermore, the efficacy of ReST(5K) over ReST∗(5K) highlights
the additional gain in performance that we can obtain by spending more compute on sampling a large
number of solutions and performing multiple iterations of ReSTEM .

5.4 IMPACT ON REASONING CAPABILITIES

We also evaluated the impact of broader reasoning capabilities in Appendix B. Figure 7 shows the
performance of ReSTEM -finetuned models, and compares them against the base PaLM-2 model. We
see no major degradation on any of the tasks on the BBH suite. Further, we find that the model fine-
tuned on Hendrycks MATH significantly outperforms the base model on this suite when using chain-
of-thought prompting, and the model fine-tuned on APPS also shows slight performance gains.

To stress test the math problem-solving capabilities on a held-out “real-world” evaluation set, we
also evaluate our model on the 2023 Hungarian high school finals exam in mathematics, akin to
Grok. As shown in Figure 8, we find that PaLM-2-L fine-tuned with ReSTEM performs well on this
exam, surpassing the performance of all existing models except GPT-4.

6 DISCUSSION

In this paper, we propose training on model-generated data combined with a reward function, via
ReSTEM , for improving the performance of LLMs on problem-solving tasks. Furthermore, we
demonstrate that ReSTEM is theoretically grounded in the application of expectation-maximization
to RL. We evaluate ReSTEM on mathematical problem solving and code generation, and show
that ReSTEM offers significant performance gains at a relatively low computational cost, especially
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when compared to the cost of pre-training. Our experiments also show that ReSTEM does not lead
to regression on other tasks. We conduct a number of ablations to better understand the strengths
and weaknesses of this method, and find that it is data-efficient, but also requires some vigilance to
avoid over-fitting.

There are a number of limitations associated with ReSTEM . First, this method requires a
moderately-sized training set of problems or prompts, which would need to be collected (from hu-
mans) for any new task of interest. Second, ReSTEM also requires access to a manually-designed
or learned reward function, ideally one that can be computed automatically. Finally, while ReSTEM

allows significant performance improvements in pass@1 performance, it may not quite close the
gap to pass@K performance for the same task (with a sufficiently large K). Future research in self-
improvement in language models should focus on automating manual parts of the pipeline (likely
through language models as well), and explore algorithmic improvements that reduce the gap to
pass@K performance.
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APPENDIX

A RELATED WORK

Several prior methods can be instantiated using the expectation-maximization framework presented
in Section 3. We discuss methods and their relation to ReSTEM in this section.

• Expert Iteration (ExiT) (Anthony et al., 2017) alternates between two steps: expert im-
provement and policy distillation. During the expert improvement step (E-step), we com-
bine a base policy with a search procedure to generate samples from a better policy, called
the expert policy. Then, in the policy distillation step (M-step), we use these expert samples
to train the base policy in a supervised way, effectively improving it to match the expert
policy. While ExiT used monte-carlo tree-search, we simply use temperature sampling
for collecting samples from the expert policy in ReST. That said, improving the E-step in
ReST using the ExIT framework via search and planning procedures with language models
would be interesting for future work. For example, Huang et al. (2022) implement a single
iteration of ReSTEM on simple math reasoning problems. However, unlike our setup, they
do not assume access to a correctness reward and instead employ majority-voting (Wang
et al., 2023) as a search procedure within the E-step.

• Self-Taught Reasoner (STaR) (Zelikman et al., 2022) employed greedy decoding instead
of temperature sampling for the E-step in ReSTEM . Additionally, STaR proposed ratio-
nalization as an alternative to temperature sampling, where the language model is provided
with the correct answer as part of the input to generate correct solutions for difficult prob-
lems. However, in our preliminary experiments, rationalization leads to substantial increase
in false positive solutions that result in correct answer but with incorrect reasoning.

• Rejection Sampling Fine-tuning (RFT) (Yuan et al., 2023) improves reasoning per-
formance on GSM8K and corresponds to running a single generate (E-step) and im-
prove (M-step) of ReSTEM . While RFT demonstrated limited performance improvements
on GSM8K with increasing language model capacity, ReSTEM achieves larger gains on
more challenging APPS and MATH benchmarks when scaling PaLM 2 model capacity.
Moreover, we observe that using multiple iterations of ReSTEM result in larger perfor-
mance gains.

• Iterative Maximum Likelihood (IML) optimizes a policy using a reward-weighted log-
likelihood objective on self-collected data. IML has been shown to perform well with
relatively small-scale language models for semantic parsing (Liang et al., 2016; Agarwal
et al., 2019), machine translation (Wu et al., 2016) and simple math reasoning (Ni et al.,
2022). Each E-step and M-step in IML is performed over a mini-batch of training examples
instead of the entire training dataset, as done in ReSTEM . In IML, the learned policy
can significantly diverge from the initial pretrained model, which can manifest as task-
specific overfitting, where the model performs well on the target task but loses its ability
to generalize to other tasks or domains. Additionally, the tightly coupled nature of data
collection and policy optimization in IML leads to high computational cost with large LMs,
making it significantly more expensive than ReSTEM .
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• Reward weighted regression (RWR) (Peters & Schaal, 2007) corresponds to EM where
we set p(O = 1|x,y) ∝ exp (r(x,y)) in Section 3. RWR can be easily has been previ-
ously applied to robotic control, as it can be easily applied to non-binary reward functions.
Norouzi et al. (2016) build on RWR to propose a general variant of IML for machine trans-
lation.

• Reward ranked fine-tuning (RAFT) (Dong et al., 2023) can be interpreted as alternating
between E-step and M-step over mini-batches, where E-step uses the the output sample with
maximum reward for each input context. For binary reward functions, RAFT is analogous
to IML and as such, can be viewed as an instantiation of ReSTEM .

Other related works: TRICE (Phan et al., 2023) proposes an EM-based approach to maximize the
marginal log-likelihood (MML) of generating a correct answer for a reasoning problem, where the
chain-of-thought rationale is treated as a latent variable. While E-step in ReSTEM simply corre-
sponds to sampling from the model and filtering with a binary reward, TRICE uses Markov-chain
Monte Carlo with a control variate to approximate the MML gradient. Sordoni et al. (2023) propose
a gradient-free EM-based approach, similar to RAFT, for prompt-optimization for frozen LLMs.

B IMPACT ON REASONING CAPABILITIES
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Figure 7: Comparing the ReSTEM models to the base model on the Big-Bench Hard suite of tasks.

General capabilities. BIG-Bench provides a suite of over 200 tasks that can be used to probe LLMs’
performance across a range of fields and capabilities. BIG-Bench Hard (BBH) (Suzgun et al., 2022)
is a subset of 23 BIG-Bench tasks where the previous generation of LLMs, such as Codex and PaLM
540B, performed below the average human rater. We follow the experimental setup of Google et al.
(2023) and evaluate using both few-shot and chain-of-thought prompting.

Figure 7 shows the performance of ReSTEM -finetuned models, and compares them against the base
PaLM-2 model. We see no major degradation on any of the tasks on the BBH suite. Further, we
find that the model fine-tuned on Hendrycks MATH significantly outperforms the base model on this
suite when using chain-of-thought prompting, and the model fine-tuned on APPS also shows slight
performance gains. When using direct prompting, all three models perform similarly.

Problem-solving. To stress test the math problem-solving capabilities on a held-out “real-world”
evaluation set, we evaluate our model on the 2023 Hungarian high school finals exam in mathemat-
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ics, akin to Grok. We follow the evaluation protocol from Paster (2023). Specifically, we evaluate
the PaLM 2-L model, fine-tuned with ReSTEM on Hendrycks MATH, using the 1-shot prompt from
Grok, sample solutions using temperature 0.1, and manually grade the outputs using the rubric pro-
vided by the examiners. The results from evaluation are shown in Figure 8. We find that PaLM-2-L
fine-tuned with ReSTEM performs well on this exam, surpassing the performance of all existing
models except GPT-4.
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Figure 8: Transfer results on Hungarian HS Finals Exam. Results for models other than PaLM-2-
L finetuned with ReSTEM are taken from Paster (2023). Several models specialized for mathematics
perform well on the widely-used GSM8K benchmark but perform poorly on the Hungarian exam.
In contrast, PaLM 2-L model fine-tuned with ReSTEM performs well on both these benchmarks.
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