
Published as a paper at ICLR 2024 Workshop on DPFM

BEYOND HUMAN DATA: SCALING SELF-TRAINING
FOR PROBLEM-SOLVING WITH LANGUAGE MODELS

Avi Singh*, John D Co-Reyes*, Rishabh Agarwal*,
Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J. Liu, James Harrison, Jaehoon Lee, Kelvin Xu,
Aaron Parisi, Abhishek Kumar, Alex Alemi, Alex Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet,
Gamaleldin Elsayed, Hanie Sedghi, Igor Mordatch, Isabelle Simpson, Izzeddin Gur, Jasper Snoek, Jeffrey Pennington,
Jiri Hron, Kathleen Kenealy, Kevin Swersky, Kshiteej Mahajan, Laura Culp, Lechao Xiao, Maxwell L Bileschi,
Noah Constant, Roman Novak, Rosanne Liu, Tris Warkentin, Yundi Qian, Yamini Bansal,
Ethan Dyer, Behnam Neyshabur, Jascha Sohl-Dickstein, Noah Fiedel

*Equal Contribution, All authors are with Google DeepMind.
Correspondence to {singhavi, jcoreyes, rishabhagarwal}@google.com.

ABSTRACT

Fine-tuning language models (LMs) on human-generated data remains a prevalent
practice. However, the performance of such models is often limited by the quan-
tity and diversity of high-quality human data. In this paper, we explore whether
we can go beyond human data on tasks where we have access to scalar feed-
back, for example, on math problems where one can verify correctness. To do so,
we investigate a simple self-training method based on expectation-maximization,
which we call ReSTEM , where we (1) generate samples from the model and filter
them using binary feedback, (2) fine-tune the model on these samples, and (3)
repeat this process a few times. Testing on advanced MATH reasoning and APPS
coding benchmarks using PaLM-2 models, we find that ReSTEM scales favor-
ably with model size and significantly surpasses fine-tuning only on human data.
Overall, our findings suggest self-training with feedback can reduce dependence
on human-generated data.

1 INTRODUCTION

Large Language Models (LLMs) are revolutionizing the landscape of deep learning, showcasing re-
markable capabilities in generating human-quality text and tackling diverse language tasks (Google
et al., 2023; OpenAI, 2023). While supervised fine-tuning (SFT) on human-collected data further
boosts their performance on tasks of interest, acquiring high-quality human data poses a significant
bottleneck. This is particularly demanding for complex problem-solving tasks, requiring significant
resources and expert knowledge. To address this hurdle, model-generated synthetic data emerges as
a promising alternative, offering scalability and cost-effectiveness, provided its quality can be en-
sured. While LLMs hold the potential to self-evaluate generated data, this paper explores a simpler
setting where an external, scalar feedback signal serves as a quality indicator for each sample.

To investigate training on model-generated data, we consider a simple yet powerful self-training
approach for language models that requires only two capabilities: 1) generating samples from the
model and 2) evaluating these samples with a scoring mechanism. To ensure clarity and consistency,
we adopt the terminology of Reinforced Self-Training (Gulcehre et al., 2023) and call this approach
ReSTEM . We show that ReSTEM can be viewed as applying expectation-maximization for rein-
forcement learning (Dayan & Hinton, 1997; Peters & Schaal, 2007), which we present formally in
Section 3. Specifically, ReSTEM alternates between the expectation and maximization steps:

1. Generate (E-step): The language model generates multiple output samples for each
input context. Then, we filter these samples using a binary reward to collect the training
dataset.

1

Published as a paper at ICLR 2024 Workshop on DPFM

15

20

25

30

35

40
4-

sh
ot

 Te
st

 A
cc

ur
ac

y
(%

)

GPT-4

LLaMA-2 70B

WizardMath 70B

MetaMath 70B

Inflection-1

Llemma 34B

Llemma 7B

Mistral 7B (maj@4)

Minerva 62B

Minerva 540B

PaLM 2-S

PaLM 2-L

Grok-0 (33B)

PaLM 2-L (ReSTEM)

PaLM 2-S (ReSTEM)

Reasoning: MATH

30

40

50

60

0-
sh

ot
 A

cc
ur

ac
y

(%
)

PaLM 2-S*

PaLM 2-L

GPT-4

GPT-3.5 (ChatGPT)

WizardCoder 15B

LLaMA-2 70B

Code LLaMA 34B

Code Llama Python 34B

Inflection-1

Mistral 7B

Grok-0 (33B)

PaLM 2-L (ReSTEM)

PaLM 2-S* (ReSTEM)

Code Generation: HumanEval

Figure 1: Self-training with ReSTEM substantially improves test performance of PaLM 2 models
on two challenging benchmarks: MATH and HumanEval. Results for other models are shown for
general progress on these tasks and are typically not comparable due to difference in model scales.
GPT-4 results are taken from Bubeck et al. (2023).

2. Improve (M-step): The original language model is supervised fine-tuned on the training
dataset from the previous Generate step. The fine-tuned model is then used in the next
Generate step.

ReSTEM , with its various adaptations (Section A), has demonstrated success in enhancing language
models across diverse domains, including machine translation (Norouzi et al., 2016; Gulcehre et al.,
2023), semantic parsing (Agarwal et al., 2019), preference alignment (Dong et al., 2023), and el-
ementary reasoning (Zelikman et al., 2022; Yuan et al., 2023). However, prior works primarily
applied ReSTEM to relatively small language models (up to 7B parameters), with limited scalabil-
ity observed for larger models (Yuan et al., 2023). Complementing these efforts, our work aims to
investigate the effectiveness and scalability of model-generated synthetic data compared to human-
generated data in two challenging, less explored domains: competition-level mathematical problem-
solving (MATH) (Hendrycks et al., 2021b) and code generation (APPS) (Hendrycks et al., 2021a).

Our empirical findings reveal significant advancements in both mathematical reasoning and code
generation capabilities when applying ReSTEM to PaLM 2 models of varying scales (Figure 1). No-
tably, models fine-tuned on model-generated synthetic data exhibit remarkably larger performance
gains compared to those trained on human-written data (Figure 2, 3). Interestingly, exceeding a
couple of iterations of ReSTEM leads to diminishing improvement, indicating potential overfitting
on small amount of training problems (Figure 4). Additionally, models fine-tuned using ReSTEM

improve pass@k as well as majority voting performance. Furthermore, these fine-tuned models
demonstrate enhanced performance on related but held-out benchmarks, including math problems
(GSM8K and Hungarian HS finals), coding (HumanEval), and Big-Bench Hard tasks. We also
perform ablation studies to investigate the effect of number of model-generated solutions, training
problems, and iterations for ReSTEM fine-tuning. Overall, our findings suggest self-training with
feedback as a promising approach to reduce dependence on human data.

2 PRELIMINARIES

An autoregressive language model produces an output sequence y = (y1, y2,yT) given a con-
text (or source input) x = (x1, x2, ...xL), where the tokens xl, yt belong to a fixed vocabulary.
Auto-regressive generation involves predicting tokens one at a time, based on the previously gener-
ated tokens. Assuming that the language model is parameterized by θ, the conditional probability
distribution of generating a sequence y given x is

pθ(y | x) =
T∏

t=1

pθ(yt | y<t,x),

with the convention y1:0 = ∅ and y1:t−1 = (y1, y2,yt−1). For ease of notation, we define
p(yt|x) := p(yt|y<t, x). The probability of predicting tth token yt, p(yt|x), is determined using a
softmax with temperature γ: p(yt|x) = exp(zt/γ)∑M

i=1 exp(zi/γ)
, where zt is the logit score for the token yt.

2

Published as a paper at ICLR 2024 Workshop on DPFM

Higher values of temperature γ introduces more randomness, while a lower value makes the output
more deterministic by favoring the most probable words.

Given a dataset D of inputs x and human-generated outputs y, supervised fine-tuning (SFT) trains
the policy by minimizing the negative log likelihood loss:

LSFT(θ) = −E(x,y)∼D

[
T∑

t=1

log pθ(yt | y1:t−1,x)

]
. (1)

We also assume access to a deterministic sequence-level (or terminal) reward r(x,y). Then, the
reinforcement learning (RL) objective corresponds to:

LRL(θ) = Ex∼D
[
Ey∼pθ(y|x) [r(x,y)]

]
.

Optimizing LRL loss directly using online RL methods, such as policy gradients, requires updating
and sampling from the policy numerous times during training. However, the computational cost of
fine-tuning on a continual flow of new samples becomes a limitation of online methods, especially
when the sizes of the policy network grow to tens or hundreds of billion parameters. We discuss an
alternative to such online RL approaches in the next section.

3 EXPECTATION-MAXIMIZATION FOR REINFORCED SELF-TRAINING

Expectation-Maximization (EM) for RL We first describe the EM-based framework for RL with
language models, building upon the work by Dayan & Hinton (1997). Let’s define a binary opti-
mality variable O, such that p(O = 1|x,y) ∝ f (r(x,y)), for some non-decreasing non-negative
function f : R → R+. We want to maximize the log-likelihood of observing O = 1 (obtaining high
reward):

log p(O = 1|x) := log
∑
y

pθ(y|x)p(O = 1 | x,y).

However, the sum over all possible sequences y is typically intractable. Instead of maximizing
log p(O = 1;x), one can consider maximizing its ELBO L(pθ, q) with respect to parameters θ and
variational distribution q(y|x). Specifically,

log p(O = 1 | x) = logEq(y|x)

[
p(O = 1 | x,y)pθ(y | x)

q(y | x)

]
≥ Eq(y|x)

[
log

p(O = 1 | x,y)pθ(y|x)
q(y | x)

]
(Jensen’s inequality)

= Eq(y|x) [log p(O = 1 | x,y)]− KL [q(y | x)||pθ(y | x)]
=: L(pθ, q) (2)

The EM algorithm (Dempster et al., 1977) for Equation 2 alternates between an E-step and M-step:
at iteration t, denote the language model parameter to be θt and the variational distribution to be qt.

• E-step: qt+1 = argmaxq L(pθt , q). Since L(pθt , q) can be written as
KL[q(y|x)||q∗(y||x)], qt+1(y | x) ∝ q∗(y | x) := p(O = 1|x,y)pθt(y | x). Thus,
this step is equivalent to weighting the output samples from conditional language model
distribution based on their likelihood of obtaining high rewards.

• M-step: θt+1 := argmaxθ L(pθ, q
t+1) = argmaxθ

∑
y qt+1(y | x) log pθ(y | x). As

such, this step corresponds to maximizing a reward-weighted negative log-likelihood loss.

Alternating between above steps ensures a monotonic improvement in the ELBO: L(pθt+1 , qt+1) ≥
L(pθt , qt+1) ≥ L(pθt , qt).

EM with non-negative rewards. If the rewards are non-negative and f is set to the identity function,
then p(O = 1|x,y) ∝ r(x,y) which implies qt+1(y | x) ∝ r(x,y)pθt(y | x). In this scenario,
the updated policy parameters θt+1 resulting from the M-step at iteration t are given by:

θt+1 := argmax
θ

Ex∼D

[
Ey∼pt

θ(y|x) [r(x,y) log pθ(y | x)]
]
. (3)

3

Published as a paper at ICLR 2024 Workshop on DPFM

Algorithm 1: ReST (Expectation-Maximization). Given a initial policy (e.g., pre-trained LM),
ReSTEM iteratively applies Generate and Improve steps to update the policy.
Input: D: Training dataset, Dval: Validation dataset, L(x,y; θ): loss, r(x,y): Non-negative

reward function, I: number of iterations, N : number of samples per context
for i = 1 to I do

// Generate (E-step)
Generate dataset Di by sampling: Di = { (xj ,yj)|Nj=1 s.t. xj ∼ D, yj ∼ pθ(y|xj) }

Annotate Di with the reward r(x,y).
// Improve (M-step)
while reward improves on Dval do

Optimise θ to maximize objective: J(θ) = E(x,y)∼Di
[r(x,y) log pθ(y|x)]

end
end
Output: Policy pθ

Comparing the above equation with the RL objective LRL reveals the key distinction between stan-
dard RL and EM-based RL: how output data is sampled. Standard RL continuously updates the
policy and uses this latest policy to collect data. In contrast, EM-based RL employs a fixed sam-
pling policy from the previous iteration, decoupling data collection from policy optimization. This
decoupling in EM-based approaches enables easier scaling to large policy networks (e.g., LLMs).

ReSTEM Motivated by the EM framework, we now discuss a simplified version of ReST approach
by Gulcehre et al. (2023). This approach, which we call ReSTEM for clarity, decouples data col-
lection (E-step) and policy optimization (M-step) in a typical RL pipeline. Algorithm 1 outlines the
ReSTEM algorithm with multiple iterations, where each iteration corresponds to one Generate
and Improve step. We describe these steps in detail below.

• Generate (E-step): In this step, we generate a dataset Di by sampling many output se-
quences from the current policy pθ: Di = { (xj ,yj)|Nj=1 s.t. xj ∼ D, yj ∼ pθ(y|xj) }.
Here, the inputs are resampled from the original dataset xj ∼ D. The output sequences in
Di are then scored with a binary reward function r(x,y). Unlike Gulcehre et al. (2023),
we refrain from augmenting Di with human-generated outputs as such data may not always
be optimal for learning or it might not be easily available. In our experiments, we condi-
tion the language model using a few-shot prompt with programs for code generation and
step-by-step solutions for math problems.

• Improve (M-step): In the ith iteration, we use the new dataset Di from Generate step
to fine-tune the policy pθ. Contrary to Gulcehre et al. (2023), we always fine tune the base
pretrained language model to minimize task-specific over-fitting and minimize drift from
the base model. For fine-tuning, we minimize the reward-weighted negative log-likelihood
loss J(θ) = E(x,y)∼Di

[r(x,y) log pθ(y|x)]. Once the policy is improved, a new dataset
of better quality samples can be created once again.

Remark. Our experiments focus on problem-solving settings with binary rewards (either 0 or 1),
unlike the bounded real-valued rewards assumed by Gulcehre et al. (2023). Specifically, for each
Generate step, Gulcehre et al. (2023) perform multiple Improve steps, where each Improve
step can be viewed as an M-step with the function f(r(x,y)) = r(x,y) > τ , where τ ∈ R+

increases in successive M-steps. However, with binary rewards, any value of τ ∈ (0, 1) corresponds
to the identical Improve steps.

4 RELATED WORK

Several prior methods can be instantiated using the expectation-maximization framework presented
in Section 3, including Expert Iteration (ExiT) (Anthony et al., 2017), Self-Taught Reasoner (Zelik-
man et al., 2022), Iterative Maximum Likelihood (Liang et al., 2016; Agarwal et al., 2019), Reward

4

Published as a paper at ICLR 2024 Workshop on DPFM

weighted regression (Peters & Schaal, 2007), and Reward ranked fine-tuning (Dong et al., 2023).
Please refer to Appendix A for a detailed discussion of these methods and their relation to ReSTEM .

5 EXPERIMENTS AND ANALYSIS

The goal of our experiments is to answer the following questions:

1. How effective is ReSTEM compared to fine-tuning on human-generated data?

2. How many iterations are needed for optimal performance? How quickly does ReSTEM

leads to overfitting on training set?

3. How does ReSTEM affect pass@k and majority voting performance?

4. If we fine-tune using model-generated data on a specific task, do we see positive transfer
to related tasks? Is there any performance degradation compared to the base model when
evaluating our fine-tuned models on a broad suite of tasks?

5. How much input data do we need to get most of the performance gains from ReSTEM? Is
one iteration of ReSTEM sufficient?

Training Datasets. We evaluate ReSTEM primarily on mathematical problem solving using the
Hendrycks’ MATH dataset (Hendrycks et al., 2021b) and code generation using the APPS (Intro-
ductory) dataset (Hendrycks et al., 2021a). MATH and APPS (Introductory) contain 7500 and 2342
training problems respectively. We select these tasks because the model outputs can be automat-
ically evaluated as correct or incorrect, perfectly suited for ReSTEM . Both these datasets offer
binary rewards: on MATH, model-generated answers can be easily verified for correctness using the
ground-truth answer, while on APPS, test cases determine whether the generated code is correct.

Models. We use the PaLM 2 models (Google et al., 2023) with public APIs on Google Cloud for
experiments, including PaLM 2-S (Bison), PaLM 2-S* (Codey), and PaLM 2-L (Unicorn).

Evaluation. We report generalization performance using the test splits of the MATH and APPS
(Introductory) datasets. For measuring transfer performance, we look at GSM8K (Cobbe et al.,
2021), Hungarian HS finals (Paster, 2023), and HumanEval (Chen et al., 2021) datasets. We also
evaluate our models using the Big-Bench Hard (Suzgun et al., 2022) benchmark to evaluate general
capabilities. All evaluations follow the settings from Google et al. (2023), unless specified otherwise.

Implementation Details. During each iteration of ReSTEM , we generated a fixed number of so-
lutions per problem for the E-step: 32 for the MATH dataset and 64 for the APPS dataset. For
generating solutions, we sample from the language model using top-K sampling with K=40 and
temperature of 0.7. However, directly using all these model-generated solutions can lead to an im-
balanced dataset, as we will have a lot more correct solutions for the easier problems. To mitigate
this, we introduced a cut-off threshold for the maximum number of solutions per problem, a design
choice also used by Zelikman et al. (2022), included in the fine-tuning dataset: 10 for both MATH
and APPS. This approach ensures diversity in the training data and safeguards against overfitting
on easier problems. For fine-tuning, we use the few-shot prompt (and the question) as input to the
model, and use the model-generated solutions as targets. We only apply the next token prediction
loss (Equation 1) on the targets.

5.1 RESTEM ON MATH AND APPS

Figures 2 and 3 show the performance of ReSTEM when trained on the MATH and APPS datasets,
respectively. We see that MATH benefits from performing multiple iterations of ReSTEM , both in
terms of performance on the MATH test set, as well as transfer to GSM8K. On the other hand, we
see that most of the gains for APPS come from the first iteration, and the performing more iterations
leads to a regression in performance on both APPS and HumanEval.

Interestingly, Figures 2 and 3 demonstrate that fine-tuning on model-generated solutions substan-
tially outperforms using human-written solutions, especially for the PaLM 2-L model. This aligns
with findings of Yuan et al. (2023) and recent work on distilling LLMs using model-generated
data (Agarwal et al., 2023; Gu et al., 2023). However, unlike Yuan et al. (2023), who observed

5

Published as a paper at ICLR 2024 Workshop on DPFM

0 1 2 3
Num iterations

20

25

30

35

40

Pa
ss

@
1

Te
st

 A
cc

ur
ac

y
(%

) Hendrycks MATH

Palm-2-S Palm-2-L Palm-2-L-SFT Palm-2-S-SFT

0 1 2 3
Num iterations

60

70

80

Pa
ss

@
1

Te
st

 A
cc

ur
ac

y
(%

) Transfer to GSM8K

Figure 2: ReSTEM for math problem-solving. Test performance on MATH and GSM8K (transfer)
for PaLM 2-S* and PaLM 2-L as a function of ReSTEM iterations. We also report performance of
models fine-tuned via SFT on human-generated data as a baseline. Iteration 0 corresponds to pre-
trained model performance. Following Google et al. (2023), we use greedy decoding for evaluation.

0 1 2
Num iterations

18

20

22

24

26

Pa
ss

@
1

Te
st

 A
cc

ur
ac

y
(%

) APPS (Introductory)

Palm-2-S* Palm-2-L Palm-2-L-SFT Palm-2-S*-SFT

0 1 2
Num iterations

40

45

50

55
Pa

ss
@

1
Te

st
 A

cc
ur

ac
y

(%
) Transfer to HumanEval

Figure 3: ReSTEM for code-generation. Test performance on APPS (introductory) and Hu-
manEval (transfer) for PaLM 2-S* and PaLM 2-L as a function of ReSTEM iterations.

diminishing returns from model-generated data on GSM8K when scaling model capacity, our re-
sults suggest an opposite trend: ReSTEM leads to larger performance gains as model capacity in-
creases. On the MATH dataset, the test accuracy improvement with ReSTEM is 5.94% for PaLM
2-S compared to 6.34% for the larger PaLM 2-L model. Similarly, on the APPS dataset, improve-
ments are 5.6% for PaLM 2-S* compared to 6.4% for PaLM 2-L. This is in addition to the fact
that the larger models start with a much stronger initial performance, and improvements on these
benchmarks generally get harder as the baseline performance goes up.

Train-test performance gap. Figure 4 shows that while training set performance increases linearly
with the number of ReSTEM iterations, test set performance does not. For MATH, test performance
improvements are small after the first iteration, and for APPS, we actually observe a regression in
performance in the second iteration. We suspect that the regression in performance is likely due to
overfitting on the small set of training problems. Since the APPS dataset is about a third of the size
of the MATH dataset, it suffers more from this problem.

5.2 IMPACT ON PASS@K AND MAJORITY-VOTING PERFORMANCE

To investigate the impact of fine-tuning with ReSTEM on the diversity of the final model’s generated
outputs, we evaluate pass@k (Chen et al., 2021) and majority voting (Wang et al., 2023) performance
of the fine-tuned PaLM 2-L model relative to the base model.

Pass@K measures the probability that at least one of the top k-generated solution for a problem is
correct, that is, outputs the correct answer for math problems or passes all the unit tests for code

6

Published as a paper at ICLR 2024 Workshop on DPFM

0 1 2 3
Num iterations

35

40

45

50

55

60

Pa
ss

@
1

Pe
rfo

rm
an

ce
 (%

)

Hendrycks MATH

Palm-2-L (Train) Palm-2-L (Test)

0 1 2
Num iterations

20

30

40

50

60

Pa
ss

@
1

Pe
rfo

rm
an

ce
 (%

)

APPS (Introductory)

Palm-2-L (Train) Palm-2-L (Test)

Figure 4: Train-test performance gap on (left) MATH with PaLM-2-L, and (right) APPS with
PaLM-2-S*, as a function of ReSTEM iterations.

0 20 40 60
Num samples (K)

40%

60%

80%

Pa
ss

 @
 K

 Te
st

 A
cc

ur
ac

y
(%

)

HumanEval

PaLM-2-L
PaLM-2-L (ReST)

2 4 6 8 10
Num samples (K)

10%

20%

30%

40%

Pa
ss

 @
 K

 Te
st

 A
cc

ur
ac

y
(%

)
APPS (Introductory)

PaLM-2-L
PaLM-2-L (ReST)

0 20 40 60
Num samples (K)

20%

30%

40%

50%

60%

70%

80%

Pa
ss

 @
 K

 Te
st

 A
cc

ur
ac

y
(%

)

Hendrycks MATH

Palm-2-L
Palm-2-L (ReST)

Figure 5: Pass@K results for PaLM-2-L pretrained model as well as model fine-tuned with
ReSTEM . For a fixed number of samples K, fine-tuning with ReSTEM substantially improves
Pass@K performance. We set temperature to 1.0 and use nucleus sampling with p = 0.95.

generation. Figure 5 shows the performance of Palm-2-L on the pass@K metric. We see that
model obtained after ReSTEM fine-tuning is stronger for all values of K, with the performance gap
typically being the highest for K=1.

Majority voting first samples a diverse set of reasoning paths instead of only taking the greedy one,
and then selects the most consistent answer by marginalizing out the sampled reasoning paths. For
Hendrycks MATH, it is possible to use majority voting to maximize Pass@1 performance, and we
find that when using 64 samples per question, the PaLM 2-L fine-tuned with ReSTEM obtains a test
accuracy of 48.82, while the base model gets 44.02.

5.3 ABLATION STUDIES

Impact of multiple iterations Our results show that multiple iterations can sometimes lead to
over-fitting on the train set (Figure 4). This raises the question of whether multiple iterations are
necessary. Is it better to collect a larger dataset and perform just a single iteration of ReSTEM? To
investigate this, we collect a dataset with the base PaLM-2-L model on Hendrycks MATH that is 3×
as many solutions per problem as used in a single iteration of ReSTEM for the E-step. Fine-tuning
with this dataset results in pass@1 performance of 40.3%, which is lower than the 41% in second
and 41.9% in third iteration, as shown in Figure 2. These results indicate that performing multiple
iterations of ReSTEM leads to higher performance compared a single iteration with 3x the data.

Impact of dataset size Since one of the main ingredients needed for ReSTEM is a dataset of
input contexts (e.g., questions for MATH), we are interested in evaluating the effect of number of
input problems. The results from our dataset ablations using the PaLM-2-L model on Hendrycks
MATH, Figure 6 (left), show that utilizing just 1000 MATH questions results in significant gains,
implying that the method is very efficient in the number of prompts needed. However, we noted a
slight decrease in performance when using 4,000 questions compared to 2,000, indicating potential
variance in the fine-tuning process. Ideally, conducting this experiment multiple times would help

7

Published as a paper at ICLR 2024 Workshop on DPFM

quantify this variance, but this is prohibitively resource-intensive. Overall, we find that ReSTEM is
quite sample efficient and gains from ReSTEM improve as we increase the dataset size.

0 1000 2000 4000 7000
Number of questions

34
35
36
37
38
39
40

Pa
ss

@
1

Pe
rfo

rm
an

ce
 (%

) Hendrycks MATH (Test)

SFT (7K) SFT (5K) ReST * (5K) ReSTEM (5K)
Method (Num questions)

34

36

38

40

42

Pa
ss

@
1

Pe
rfo

rm
an

ce
 (%

)

Hendrycks MATH (Test)

Figure 6: Left. Performance for a single iteration of ReSTEM as a function of dataset size (number
of questions) on MATH. Right. Comparing ReSTEM with SFT on MATH. SFT refers to fine-tuning
on human data, while ReST* refers to a version of ReSTEM with one iteration that uses only one
correct sample per problem. Here, ReST denotes ReSTEM with 3 iterations. For each method, we
denote the number of questions in parenthesis.

Comparing model-generated data with human data A key strength of ReSTEM is its ability
to generate multiple correct solutions for each problem. This provides valuable additional training
data compared to human-generated data, which typically offers only a single solution per problem.
While this makes a comparison in Figures 2 and 3 not entirely fair, it also highlights the potential of
ReSTEM to boost performance with diverse and correct solutions.

In order to enable an apples-to-apples comparison, we conduct the following study: we select all
Hendrycks MATH questions for which we have at least one correct model-generated solution, result-
ing in about 5K questions. For these 5K questions, we run two fine-tuning experiments: SFT(5K)
where we fine-tune on human-written solutions (one per question), and ReST∗(5K) where we fine-
tune on model-generated solutions (also one per question, selected at random).

The results in Figure 6 (right), show that ReSTEM outperforms fine-tuning on human data even in
this much more restricted setting. Furthermore, the efficacy of ReST(5K) over ReST∗(5K) highlights
the additional gain in performance that we can obtain by spending more compute on sampling a large
number of solutions and performing multiple iterations of ReSTEM .

5.4 IMPACT ON REASONING CAPABILITIES

We also evaluated the impact of broader reasoning capabilities in Appendix B. Figure 7 shows the
performance of ReSTEM -finetuned models, and compares them against the base PaLM-2 model. We
see no major degradation on any of the tasks on the BBH suite. Further, we find that the model fine-
tuned on Hendrycks MATH significantly outperforms the base model on this suite when using chain-
of-thought prompting, and the model fine-tuned on APPS also shows slight performance gains.

To stress test the math problem-solving capabilities on a held-out “real-world” evaluation set, we
also evaluate our model on the 2023 Hungarian high school finals exam in mathematics, akin to
Grok. As shown in Figure 8, we find that PaLM-2-L fine-tuned with ReSTEM performs well on this
exam, surpassing the performance of all existing models except GPT-4.

6 DISCUSSION

In this paper, we propose training on model-generated data combined with a reward function, via
ReSTEM , for improving the performance of LLMs on problem-solving tasks. Furthermore, we
demonstrate that ReSTEM is theoretically grounded in the application of expectation-maximization
to RL. We evaluate ReSTEM on mathematical problem solving and code generation, and show
that ReSTEM offers significant performance gains at a relatively low computational cost, especially

8

Published as a paper at ICLR 2024 Workshop on DPFM

when compared to the cost of pre-training. Our experiments also show that ReSTEM does not lead
to regression on other tasks. We conduct a number of ablations to better understand the strengths
and weaknesses of this method, and find that it is data-efficient, but also requires some vigilance to
avoid over-fitting.

There are a number of limitations associated with ReSTEM . First, this method requires a
moderately-sized training set of problems or prompts, which would need to be collected (from hu-
mans) for any new task of interest. Second, ReSTEM also requires access to a manually-designed
or learned reward function, ideally one that can be computed automatically. Finally, while ReSTEM

allows significant performance improvements in pass@1 performance, it may not quite close the
gap to pass@K performance for the same task (with a sufficiently large K). Future research in self-
improvement in language models should focus on automating manual parts of the pipeline (likely
through language models as well), and explore algorithmic improvements that reduce the gap to
pass@K performance.

REFERENCES

Rishabh Agarwal, Chen Liang, Dale Schuurmans, and Mohammad Norouzi. Learning to generalize
from sparse and underspecified rewards. In International conference on machine learning, pp.
130–140. PMLR, 2019.

Rishabh Agarwal, Nino Vieillard, Piotr Stanczyk, Sabela Ramos, Matthieu Geist, and Olivier
Bachem. Gkd: Generalized knowledge distillation for auto-regressive sequence models. arXiv
preprint arXiv:2306.13649, 2023.

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and
tree search. Advances in neural information processing systems, 30, 2017.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg, Harsha Nori, Hamid Palangi,
Marco Túlio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experi-
ments with GPT-4. CoRR, abs/2303.12712, 2023. doi: 10.48550/ARXIV.2303.12712. URL
https://doi.org/10.48550/arXiv.2303.12712.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Peter Dayan and Geoffrey E Hinton. Using expectation-maximization for reinforcement learning.
Neural Computation, 9(2):271–278, 1997.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical society: series B (methodological), 39(1):
1–22, 1977.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan, Shizhe Diao, Jipeng Zhang, Kashun Shum,
and Tong Zhang. Raft: Reward ranked finetuning for generative foundation model alignment.
arXiv preprint arXiv:2304.06767, 2023.

9

https://doi.org/10.48550/arXiv.2303.12712

Published as a paper at ICLR 2024 Workshop on DPFM

Google, Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre
Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical
report. arXiv preprint arXiv:2305.10403, 2023.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Knowledge distillation of large language models.
arXiv preprint arXiv:2306.08543, 2023.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. arXiv preprint arXiv:2105.09938, 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021b.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei
Han. Large language models can self-improve. CoRR, abs/2210.11610, 2022. doi: 10.48550/
ARXIV.2210.11610. URL https://doi.org/10.48550/arXiv.2210.11610.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D Forbus, and Ni Lao. Neural symbolic machines:
Learning semantic parsers on freebase with weak supervision. arXiv preprint arXiv:1611.00020,
2016.

Ansong Ni, Jeevana Priya Inala, Chenglong Wang, Alex Polozov, Christopher Meek, Dragomir
Radev, and Jianfeng Gao. Learning math reasoning from self-sampled correct and partially-
correct solutions. In The Eleventh International Conference on Learning Representations, 2022.

Mohammad Norouzi, Samy Bengio, Navdeep Jaitly, Mike Schuster, Yonghui Wu, Dale Schuurmans,
et al. Reward augmented maximum likelihood for neural structured prediction. Advances In
Neural Information Processing Systems, 29, 2016.

OpenAI. Gpt-4 technical report, 2023.

Keiran Paster. Testing language models on a held-out high school national finals
exam. https://huggingface.co/datasets/keirp/hungarian_national_hs_
finals_exam, 2023.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In Proceedings of the 24th international conference on Machine learning, pp. 745–
750, 2007.

Du Phan, Matthew D Hoffman, David Dohan, Sholto Douglas, Tuan Anh Le, Aaron Parisi, Pavel
Sountsov, Charles Sutton, Sharad Vikram, and Rif A Saurous. Training chain-of-thought via
latent-variable inference. arXiv preprint arXiv:2312.02179, 2023.

Alessandro Sordoni, Xingdi Yuan, Marc-Alexandre Côté, Matheus Pereira, Adam Trischler, Ziang
Xiao, Arian Hosseini, Friederike Niedtner, and Nicolas Le Roux. Joint prompt optimization of
stacked llms using variational inference. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
pdf?id=1PL1NIMMrw.

10

https://doi.org/10.48550/arXiv.2210.11610
https://huggingface.co/datasets/keirp/hungarian_national_hs_finals_exam
https://huggingface.co/datasets/keirp/hungarian_national_hs_finals_exam
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw

Published as a paper at ICLR 2024 Workshop on DPFM

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuanqi Tan, and Chang Zhou. Scal-
ing relationship on learning mathematical reasoning with large language models. arXiv preprint
arXiv:2308.01825, 2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

APPENDIX

A RELATED WORK

Several prior methods can be instantiated using the expectation-maximization framework presented
in Section 3. We discuss methods and their relation to ReSTEM in this section.

• Expert Iteration (ExiT) (Anthony et al., 2017) alternates between two steps: expert im-
provement and policy distillation. During the expert improvement step (E-step), we com-
bine a base policy with a search procedure to generate samples from a better policy, called
the expert policy. Then, in the policy distillation step (M-step), we use these expert samples
to train the base policy in a supervised way, effectively improving it to match the expert
policy. While ExiT used monte-carlo tree-search, we simply use temperature sampling
for collecting samples from the expert policy in ReST. That said, improving the E-step in
ReST using the ExIT framework via search and planning procedures with language models
would be interesting for future work. For example, Huang et al. (2022) implement a single
iteration of ReSTEM on simple math reasoning problems. However, unlike our setup, they
do not assume access to a correctness reward and instead employ majority-voting (Wang
et al., 2023) as a search procedure within the E-step.

• Self-Taught Reasoner (STaR) (Zelikman et al., 2022) employed greedy decoding instead
of temperature sampling for the E-step in ReSTEM . Additionally, STaR proposed ratio-
nalization as an alternative to temperature sampling, where the language model is provided
with the correct answer as part of the input to generate correct solutions for difficult prob-
lems. However, in our preliminary experiments, rationalization leads to substantial increase
in false positive solutions that result in correct answer but with incorrect reasoning.

• Rejection Sampling Fine-tuning (RFT) (Yuan et al., 2023) improves reasoning per-
formance on GSM8K and corresponds to running a single generate (E-step) and im-
prove (M-step) of ReSTEM . While RFT demonstrated limited performance improvements
on GSM8K with increasing language model capacity, ReSTEM achieves larger gains on
more challenging APPS and MATH benchmarks when scaling PaLM 2 model capacity.
Moreover, we observe that using multiple iterations of ReSTEM result in larger perfor-
mance gains.

• Iterative Maximum Likelihood (IML) optimizes a policy using a reward-weighted log-
likelihood objective on self-collected data. IML has been shown to perform well with
relatively small-scale language models for semantic parsing (Liang et al., 2016; Agarwal
et al., 2019), machine translation (Wu et al., 2016) and simple math reasoning (Ni et al.,
2022). Each E-step and M-step in IML is performed over a mini-batch of training examples
instead of the entire training dataset, as done in ReSTEM . In IML, the learned policy
can significantly diverge from the initial pretrained model, which can manifest as task-
specific overfitting, where the model performs well on the target task but loses its ability
to generalize to other tasks or domains. Additionally, the tightly coupled nature of data
collection and policy optimization in IML leads to high computational cost with large LMs,
making it significantly more expensive than ReSTEM .

11

Published as a paper at ICLR 2024 Workshop on DPFM

• Reward weighted regression (RWR) (Peters & Schaal, 2007) corresponds to EM where
we set p(O = 1|x,y) ∝ exp (r(x,y)) in Section 3. RWR can be easily has been previ-
ously applied to robotic control, as it can be easily applied to non-binary reward functions.
Norouzi et al. (2016) build on RWR to propose a general variant of IML for machine trans-
lation.

• Reward ranked fine-tuning (RAFT) (Dong et al., 2023) can be interpreted as alternating
between E-step and M-step over mini-batches, where E-step uses the the output sample with
maximum reward for each input context. For binary reward functions, RAFT is analogous
to IML and as such, can be viewed as an instantiation of ReSTEM .

Other related works: TRICE (Phan et al., 2023) proposes an EM-based approach to maximize the
marginal log-likelihood (MML) of generating a correct answer for a reasoning problem, where the
chain-of-thought rationale is treated as a latent variable. While E-step in ReSTEM simply corre-
sponds to sampling from the model and filtering with a binary reward, TRICE uses Markov-chain
Monte Carlo with a control variate to approximate the MML gradient. Sordoni et al. (2023) propose
a gradient-free EM-based approach, similar to RAFT, for prompt-optimization for frozen LLMs.

B IMPACT ON REASONING CAPABILITIES

Boolean Expressio
ns

Causal Judgement

Date Understa
nding

Disambiguation QA

Dyck Languages

Formal Fallacies

Geometric
Shapes

Hyperbaton

Movie Recommendation

Multi-s
tep Arith

metic [
Two]
Navigate

Object C
ounting

Penguins in
 a Table

Reasoning about Colored Objects

Ruin Names

Salient Tra
nslation Error Detectio

n
Snarks

Sports U
ndersta

nding

Temporal Sequences

Web of Lies

Word Sortin
g

Logical Deductio
n (avg)

Tracking Shuffled Objects
(avg)

Big-Bench Hard (BBH) Task

30

40

50

60

70

80

90

100

Fe
w-

sh
ot

 P
er

fo
rm

an
ce

 w
ith

 C
oT

PaLM 2-L PaLM 2-L (APPS) PaLM 2-L (MATH)

CoT Direct
Prompt Type

60

65

70

75

80

Av
er

ag
e

BB
H

Pe
rfo

rm
an

ce

PaLM 2-L
PaLM 2-L (APPS)
PaLM 2-L (MATH)

Figure 7: Comparing the ReSTEM models to the base model on the Big-Bench Hard suite of tasks.

General capabilities. BIG-Bench provides a suite of over 200 tasks that can be used to probe LLMs’
performance across a range of fields and capabilities. BIG-Bench Hard (BBH) (Suzgun et al., 2022)
is a subset of 23 BIG-Bench tasks where the previous generation of LLMs, such as Codex and PaLM
540B, performed below the average human rater. We follow the experimental setup of Google et al.
(2023) and evaluate using both few-shot and chain-of-thought prompting.

Figure 7 shows the performance of ReSTEM -finetuned models, and compares them against the base
PaLM-2 model. We see no major degradation on any of the tasks on the BBH suite. Further, we
find that the model fine-tuned on Hendrycks MATH significantly outperforms the base model on this
suite when using chain-of-thought prompting, and the model fine-tuned on APPS also shows slight
performance gains. When using direct prompting, all three models perform similarly.

Problem-solving. To stress test the math problem-solving capabilities on a held-out “real-world”
evaluation set, we evaluate our model on the 2023 Hungarian high school finals exam in mathemat-

12

Published as a paper at ICLR 2024 Workshop on DPFM

ics, akin to Grok. We follow the evaluation protocol from Paster (2023). Specifically, we evaluate
the PaLM 2-L model, fine-tuned with ReSTEM on Hendrycks MATH, using the 1-shot prompt from
Grok, sample solutions using temperature 0.1, and manually grade the outputs using the rubric pro-
vided by the examiners. The results from evaluation are shown in Figure 8. We find that PaLM-2-L
fine-tuned with ReSTEM performs well on this exam, surpassing the performance of all existing
models except GPT-4.

20 30 40 50 60 70
Hungarian HS Finals Exam Score (%)

30

40

50

60

70

80

90

GS
M

8K
 S

co
re

 (%
)

MetaMath 7B

MetaMath Mistral 7B OpenChat 3.5

Code Llama 34B

Llemma 34B
GPT-3.5 Turbo

GPT-4

Grok-0 (33B)

Grok-1

Qwen 7B

Claude 2

Mistral 7B

MAmmoTH 7B

PaLM 2-L (ReSTEM)

Exam Score vs GSM8K Performance of Various Models

Figure 8: Transfer results on Hungarian HS Finals Exam. Results for models other than PaLM-2-
L finetuned with ReSTEM are taken from Paster (2023). Several models specialized for mathematics
perform well on the widely-used GSM8K benchmark but perform poorly on the Hungarian exam.
In contrast, PaLM 2-L model fine-tuned with ReSTEM performs well on both these benchmarks.

13

	Introduction
	Preliminaries
	Expectation-Maximization for Reinforced Self-Training
	Related work
	Experiments and analysis
	ReSTEM on MATH and APPS
	Impact on Pass@K and Majority-Voting Performance
	Ablation Studies
	Impact on Reasoning Capabilities

	Discussion
	Related work
	Impact on Reasoning capabilities

