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Abstract

This paper introduces Data-Centric Graph Condensation (named DCGC), a task- and
model-agnostic method for condensing a large graph into a smaller one by matching the
distribution between two graphs. DCGC defines the distribution of a graph as the trajec-
tories of its node signals (such as node features and node labels) induced by a diffusion
process over the geometric structure, which accommodates multi-order structural informa-
tion. Built upon this, DCGC compresses the topological knowledge of the original graph
into the orders-of-magnitude smaller synthetic one by aligning their distributions in input
space. Compared with existing methods that stick to particular GNN architectures and
require solving complicated optimization, DCGC can be flexibly applied to arbitrary off-
the-shelf GNNs and achieve graph condensation with a much faster speed. Apart from the
cross-architecture generalization ability and training efficiency, experiments demonstrate
that DCGC yields consistently superior performance than existing methods on datasets
with varying scales and condensation ratios.

Keywords: Dataset distillation, Graph Condensation, Data-oriented methods.

1. Introduction

Graphs provide a ubiquitous representation for systems of interactions, from large online
social networks (Fan et al., 2019), user-item recommender systems (Wu et al., 2019), chem-
ical molecules (Stérk et al., 2022), and biological protein interactions (Réau et al., 2023).
The recent success of deep learning methods on graph-structured data, particularly Graph
Neural Networks (GNNs) (Kipf and Welling, 2017; Velickovic et al., 2018), has garnered sig-
nificant attention. However, training deep GNNs on large-scale, real-world graphs requires
tremendous computational and infrastructural resources due to the necessity of performing
layer-by-layer message passing among interconnected nodes (Zeng et al., 2020).

To address this challenge, a natural approach is to compress the graph data. Tradi-
tional methods include graph sparsification (Spielman and Teng, 2011) and graph coars-
ening (Loukas and Vandergheynst, 2018b; Cai et al., 2021; Kumar et al., 2023), but these
often rely on predefined heuristics and lack guidance from the training process (Yang et al.,
2023), leading to suboptimal performance on downstream tasks. A more recent and suc-
cessful technical path is graph condensation or graph distillation (Jin et al., 2022; Liu et al.,
2022; Yang et al., 2023; Zheng et al., 2023; Zhang et al., 2024; Fang et al., 2024; Liu et al.,
2024), a synthesis-based approach that directly learns a small, dense synthetic graph. These
methods are typically guided by gradient-matching (Zhao et al., 2021), aiming to learn a
synthetic graph that replicates the gradient trajectory of model parameters observed when
training on the original graph.

© 2025 H. Zhang & P.S. Yu.
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Figure 1: Limitations of existing gradient matching methods. Top: Gradient matching is
supervised, task-oriented and time-consuming. The success of gradient matching
relies on an accurate matching of the gradient update trajectories. Bottom: In
testing, another GNN has to be trained on the synthetic graph for evaluation. The
differences between the GNNs used in condensation/testing might cause cross-
architecture generalization issues.

Although these gradient-matching methods have achieved promising performance, their
design philosophy leads to unsatisfactory capabilities (Gupta et al., 2024) for several reasons:

e Task- and Model-Oriented Nature. Gradient matching is inherently coupled to a
specific downstream task (e.g., node classification) and a predefined GNN architecture.
This dependency limits its applicability in unsupervised or semi-supervised scenarios
and means the resulting synthetic graph may not generalize well to other tasks or
models.

e Lack of Graph Property Preservation. While the method ensures similar task
performance, it does not guarantee that the synthetic graph preserves the intrinsic
structural and attribute properties of the original graph, such as community structure
or node degree distribution.
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e Computational Inefficiency. The primary motivation for graph condensation is
to improve efficiency. However, gradient-matching methods involve a complex and
expensive bi-level optimization process that requires repeatedly training a GNN on
the original large graph, which undermines the very goal of efficiency.

To address these limitations, this paper proposes Data-Centric Graph Condensation
via Diffusion Matching (DCGC). Our approach moves away from gradient matching and
instead embraces the principle of distribution matching (Zhao and Bilen, 2023), learning the
condensed graph by minimizing the divergence between the distributions of the original and
synthetic graphs. Specifically, we draw an analogy between a geometric diffusion process
and message passing in GNNs. This allows us to decompose a graph into a collection of node
signals, where each signal is an aggregation of its multi-order structural information. The
distribution of a graph is then defined by the distribution of these aggregated signals, and
the divergence is efficiently measured and optimized using the Maximum Mean Discrepancy.

DCGC resolves the limitations of prior work in the following ways. First, our approach
is task-agnostic and model-agnostic, as it relies solely on the intrinsic properties of the graph
captured by the diffusion process. Second, by matching the diffusion trajectories of node
features and labels (if available), our method ensures the synthetic graph preserves both
local and global structural properties. Finally, our approach avoids the inefficient bi-level
optimization of gradient matching, and because the diffusion process is independent of any
specific GNN, the resulting synthetic graphs exhibit strong cross-architecture generalization.

We evaluate DCGC on eight graph datasets of varying scales. FExperimental results
demonstrate that our condensed graphs not only preserve important graph properties but
also yield comparable or even better performance than state-of-the-art gradient-matching
methods. Crucially, in cross-architecture settings and on heterophilic datasets, DCGC
exhibits superior and more stable performance, reducing the cross-architecture standard
deviation by an average of 26.3%. In terms of efficiency, DCGC reduces the training time
by 96.4% compared to the fastest existing methods. These results clearly demonstrate the
superiority of DCGC in terms of efficacy, generalization, and efficiency.

2. Preliminaries

Graph Notations. We define a graph as G = {X, A}, which consists of a node feature
matrix X € RV*P for N nodes and a corresponding adjacency matrix A € RV*N . The
primary objective of graph condensation is to synthesize a much smaller graph, denoted
as § = {X',A’}, with N’ nodes (where N’ <« N). This synthetic graph is optimized to
encapsulate the essential properties and statistical information of the original large graph

G.

Supervised Setting. This work addresses graph condensation under a supervised setting.
In the supervised setting, the supervisory information is provided in the form of a one-hot
node label matrix Y € RVXY where C is the total number of classes. We use N, and N,
to denote the number of nodes belonging to class ¢ within the original graph G and the
synthetic graph &, respectively.

Maximum Mean Discrepancy. A pivotal tool for measuring the divergence between
two probability distributions is the Maximum Mean Discrepancy (Gretton et al., 2012)
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Figure 2: Ilustration of graph diffusion process and diffusion matching. The distribution
of a graph is defined as the diffusion trajectories of the node signal (e.g., node
features/labels).

(MMD). Given two distributions, X and Y, the MMD is defined as the largest difference
in expectations over functions within the unit ball of a Reproducing Kernel Hilbert Space
(RKHS) H. Formally, it is expressed as:

MMD(X, Y) = S (Eonx[f(2)] = Ey~v [f(W)]) = llpx — pylln, (1)

where x and y are samples drawn from X and Y, respectively. The terms ux = Ex[¢(x)] and
wy = Ey[¢(y)] represent the mean embeddings of the distributions in the RKHS, with ¢(+)
being the feature map associated with the inner product (-, )3 such that f(-) = (f, ¢(-))n
In practice, minimizing the MMD is achieved by minimizing its squared value, which can
be computed efficiently using the kernel trick:

MMD? (X, Y) = (ux — piy, pixx — fov)
= (ux, px)# + (s por)m — 2 (s o) m
= Ega~x((2), o(x)2 + By gy (6(y), () 2 — 2 Banxy~v (9(), p(y))n
= Eg orox[ri(2, )] + Ey oy [k(y, Y')] — 2 Egox yv sz, y)], o)
2

where £(+,-) is the kernel function associated with the RKHS H. A common choice is the
Gaussian kernel, defined as x(x,y) = exp(—|lx — y|*/(20?)), where o is the bandwidth
parameter.

3. Methodology

3.1. Condensation via Distribution Matching

A natural approach to property-preserving graph condensation is to ensure the distribution
of the synthetic graph (S) closely resembles that of the original graph (G) (Zhao and Bilen,
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2023). This goal can be formulated as minimizing a divergence measure D between the two

distributions:
smin,, D(E.S) 3)
However, defining a meaningful distribution for a graph is inherently challenging. Unlike
traditional data types (e.g., images) where samples are often independent and identically
distributed (i.i.d.), graph data is non-Euclidean and exhibits strong dependencies. A node’s
features are influenced by its neighbors and the graph topology, making them non-i.i.d.
This interdependence necessitates a joint modeling of attributes and structure, which is
non-trivial. Consequently, traditional distribution matching techniques that rely on i.i.d.
assumptions (Zhao and Bilen, 2023) are inadequate for graph-structured data. The core
challenge is thus to find a proper way to characterize the distribution of a graph and to
quantify the divergence between two such distributions.

3.1.1. NODE DIFFUSION TRAJECTORIES AS A MEASUREMENT OF GRAPH DISTRIBUTION

To resolve the challenge of defining a graph distribution, we turn to the graph diffusion
process (Kondor and Vert, 2004; Wang et al., 2021; Wu et al., 2023). This process utilizes a
diffusion ODE to characterize the evolution of a graph signal (e.g., node features) under the
spatial constraints of the graph structure. Formally, let H be the node signal; its diffusion
process is defined as:

T k), 1O = 1, (ODE)

H(t) =exp(—Kt) H(0), (solution)

where H(t) is the node signal matrix at time ¢, and K is the generalized diffusion kernel.
A representative kernel is the heat kernel (Kondor and Vert, 2004), K = L, where L is the
(normalized) graph Laplacian. The DCGC method proposed in this paper is built upon
K=L.

The graph diffusion process provides a principled way to define the graph distribution.
Given an initial signal H(0), the diffused signal H(¢) captures how information propagates
through the structure. By varying ¢, this process naturally encodes multi-scale information:
small ¢ captures local patterns, while large ¢ reflects global dependencies.

Based on this, we define the distribution of a graph at time ¢ as follows:

Definition 1 Given a graph G with initial node signals H(0) = H, we define the node
stgnal distribution over G at time t, termed G(t), as:

G(t) £ H(t), g(t) ~ G(t) (4)
where g(t) is a sample from G(t), denoting the signal of a node at time t (i.e., a row of
H(t)).

For the synthetic graph S, we similarly use S(¢). Our diffusion matching objective aims
to match the distributions of the two graphs at all times ¢:

smin,, D(G(),8(1), Vi > 0 (5)
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3.1.2. DISCRETIZATION AND EFFICIENT COMPUTATION OF GRAPH DIFFUSION

While the diffusion process provides a powerful framework, the continuous and unbounded
time ¢ must be discretized into a finite set of time steps {to,t1,--- ,tr} for practical imple-
mentation.

Furthermore, directly computing the matrix exponential exp(—Lt) is computationally
prohibitive for large graphs. To address this, we use Euler’s method for an efficient approx-
imation. Fuler’s method discretizes the continuous differential equation into the following
iterative update rule:

H(t+ At) = H(t) — At - LH(¢) (6)

where At is the step size. This approach avoids the matrix exponential, significantly re-
ducing complexity, and allows us to balance efficiency and fidelity by adjusting At and
T.

3.1.3. LEVERAGING SUPERVISION

In supervised scenarios, nodes are associated with labels Y (e.g., one-hot vectors). We can
treat these labels as another node signal that diffuses over the graph, which is conceptually
aligned with label propagation algorithms (Xiaojin and Zoubin, 2002).

To synchronize the diffusion of features and labels, we concatenate them into a unified
signal matrix H = [X||Y] € RV*(P+C) which is then used as the initial input H(0) to the
diffusion process.

Additionally, in the supervised setting, we introduce a class-wise diffusion matching
objective, which has the following formulation for time t:

i DGCt7SCt ) :1727"'707 7
s in,  D(Ge(®); (1)), e (7)

where G.(t) = H,(t), contains only the node signals belonging to class c¢. This class-wise
loss focuses on matching the signal distribution for each class individually, thereby learning
a more discriminative synthetic graph beneficial for node classification tasks.

3.2. Training of DCGC
3.2.1. INITIALIZATION

Given a condensation ratio r, the number of nodes in the condensed graph is N' = N x r.
Then, in the supervised setting, we initialize the labels of a condensed graph Y’ such that
the proportion of each class in the condensed graph is the same as that in the original
full graph, i.e., % = [%], and > N, = N. Note that in the unsupervised setting, we
do not have to initialize the labels. The initialization of node features X’ and adjacency
matrix A’ of the synthetic graph S is important to the optimization process, Empirically,
we found that the traditional random initialization methods (e.g., Xavier initialization) lead
to slow convergence speed and poor performance. To this end, we adopt a simple strategy
to initialize the node feature matrix X’ and the graph adjacency matrix A’. For each class
¢, we randomly select N/ nodes from the original graph having the same label and use their
features to initialize X/. In this way, we wish the synthetic graph had individual node
features similar to those of the original graph.



DATA-CENTRIC GRAPH CONDENSATION

For the adjacency matrix A’, we use a learnable matrix P € R "*N' t6 parameterize A’
and initialize P such that the obtained A’ exhibits desired properties. Given P, we obtain
A’ = o(P+P") such that A’ is a symmetric matrix, and any entry is in the range of (0, 1).
o(+) is the sigmoid function. We initialize P such that the on-diagonal terms of A’ to be
a value €, close to 1, while off-diagonal terms to be a small value e close to 0. In this
way, we initialize a synthetic graph that primarily consists of self-loops, thereby reducing
the noisy edges that random initialization may introduce.

3.2.2. DISTRIBUTION MATCHING WITH MMD LOSS

The proposed model DCGC seeks to learn the synthetic graph by minimizing the MMD
between the distribution G of the original full graph G, and the distribution S of the synthetic
graph S given a class ¢ (if node labels are available) and time ¢:

L.(t) = MMD?(G.(t),Sc(t))
= gﬁ(gc(t), g.(t)) + E K(sc(t), s(t)) — 2 E K(ge(t), 8c(t))

N! N! N, N¢
= ZZK(SCJ(t),SC] -2 ZZ K(Ge,i(t), Sc,j(t))-

i=1 j=1 i=1 j=1

(8)

The last step discards the term E x(g.(t), g.(t)) since it only depends on the original graph
G

G and is not involved in the optimization process. Note that Eq. 8 specifies the class id ¢ in

the supervised setting, while in the unsupervised setting we can neglect the subscript c¢. For

Hw*yllg)
202 )

the kernel k(-,-), we utilize the most widely-used Gaussian kernel k(x,y) = exp(—
and o is the bandwidth hyperparameter.

3.2.3. REGULARIZATION ON THE ADJACENCY MATRIX A’

Note that the original graph G is an undirected and unweighted graph with a symmetric
adjacency matrix A’, and each entry A’ij € {0,1}. Therefore, we apply an additional
regularization loss function directly on the learned adjacency matrix A’, encouraging each
entry to be close to either 0 or 1:

reg—ZZA (1-43) (9)
=1 j=1
After the training process ends, we sparsify A’ such that each entry is binarized to {0,1}
according to whether A;j is larger or smaller than 0.5.

3.2.4. OVERALL OBJECTIVE FUNCTION

The overall learning objective is the weighted summation of the diffusion matching loss and
the regularization loss. Formally,

min £ = ZZEC )+ A+ Lieg, (10)

t=0 c=1



ZHANG YU

where A is the trade-off hyperparameter.

3.2.5. COMPLEXITY ANALYSIS

Finally, we analyze the complexity of DCGC. We use Dy to denote the dimension of H,
which will vary for the unsupervised and supervised settings. Also, we use E and E’ to
denote the number of edges in the original graph G and the synthetic graph S, respectively.
Note that there is E < N2, and E/ <= N'’?. The training cost comes from three parts:
1) Computing the signal distribution of the original graph G requires O(ET Dp), while
this process is non-parametric and can be obtained via one-step preprocessing. Therefore,
the computation overhead of this step is negligible compared with the entire condensation
process. 2) Computing the signal distribution of the condensed graph requires O(E'TH) =
O(N"TH). 3) Computing the MMD loss for all ¢ and ¢ takes O(T - C - ZcC:l N/(N.+ N/)),
which depends on the number of nodes in each class. Yet, notice that chzl N/(N.+ N]) <
S NJ(N+N') = N’(N+N'), and the equality holds if and only if there is only one class.
Therefore, it is reduced to O(TCN'(N + N')). Considering that N’ < N, and both C' and
T are small constants in practice, the overall complexity is slightly greater than O(NN) and
much smaller than O(N?), and therefore DCGC is time and memory-efficient.

4. Experiments

In this section, we conduct experiments to compare the proposed DCGC with SOTA graph
condensation methods.

4.1. Experimental Setups

Datasets. Following previous literature (Jin et al., 2022; Liu et al., 2022), we conduct
experiments on six node classification datasets: Cora, Citeseer, Pubmed (Yang et al., 2016),
Flickr, Reddit (Zeng et al., 2020), and Ogbn-arXiv (Hu et al., 2020). For a fair comparison,
we use the public splits for all datasets.

Settings. We consider both the unsupervised setting and the supervised setting. In the
unsupervised setting, the node labels are unknown, and in this setting, we evaluate whether
the condensed graphs can preserve important properties of the original graphs. While in
the supervised setting, we evaluate the performance of GNNs when trained on the synthetic
graphs using the given labels.

Competitors. We compare our proposed method with four SOTA graph condensation
methods: GCond (Jin et al., 2022), GCDM (Liu et al., 2022), SGDD (Yang et al., 2023),
GDEM (Liu et al., 2023), GEOM (Zhang et al., 2024), and GCSR (Liu et al., 2024).
Following (Jin et al., 2022), we also compare with three traditional selection-based methods:
Herding (Welling, 2009), K-center (Sener and Savarese, 2018), and graph coarsening (Huang
et al., 2021). The training performance using the original full graph is provided for reference
as well.

Implementation Details. We implement the proposed method with Pytorch and DGL (Wang
et al., 2019). In the training stage, we first initialize the node feature matrix X’ and A’
according to the proposed strategies. Then X’ and A’ are optimized using Eq. 10. In the
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Table 1: Property preservation comparison in the unsupervised setting. The condensation
ratios r for Cora, Citeseer, and Pubmed are 2.6%, 1.8% and 0.6%, respectively.

Metric Dataset GCDM FGC GDEM DCGC

Cora 0.092 0.078 0.073 0.065

REE Citeseer 0.089 0.074 0.069 0.067
Pubmed 0.152 0.139 0.128 0.109

Cora 0.197 0.214 0.146 0.121

DE in 10* Citeseer 0.148 0.125 0.099 0.092
Pubmed 0.175 0.149 0.138 0.104

evaluation stage, we train a 2-layer GCN model (Kipf and Welling, 2017) of hidden dimen-
sion 512 using the condensed graph and then report the accuracy on the testing nodes of
the original graph. We repeat all experiments 20 times and report the average performance
with standard deviation.

Hyperparameter settings. For the initialization of the adjacency matrix A’, we set
gon = 0.999. and e, = 0.001. The diffusion time interval is set as At = 1, and the
maximum diffusion step is set as T = 5. For the bandwidth of the Gaussian kernel function
when computing the MMD distance, we set 202 as the median ¢, distance of the samples
since it is dataset-sensitive. A = le — 3 for all datasets.

4.2. Graph Property Preservation

In this section, we evaluate if the condensed graph can preserve the properties of the original
graph well. Since this task is not relevant to node labels, we consider the unsupervised
setting, and compare the performance of DCGC with other methods that do not require
not labels. Following (Kumar et al., 2023), we consider the following metrics:

e Relative Eigen Error (REE) (Loukas and Vandergheynst, 2018a) measures the
m o\
spectral similarity between two graphs. REFE = % > MS\%M, where A and \, are
i=1 '
the top m eigenvalues corresponding to the original graph Laplacian matrix L and
condensed graph Laplacian matrix L/, respectively. m is the eigenvalue number, and

we set m = 100.

e The Dirichlet energy (DE) of the synthetic graph § = (X', A’), which is de-
fined according to &’s feature matrix X’ and Laplacian matrix L': DE(X',L/) =
tr(X'TL/X') = = Y L[] — @)

For both metrics. lower values indicate that the condensed graphs have better preserved the
properties of the original graph. The results are presented in Table 1, which demonstrates
that the synthetic graph learned by DCGC can better preserve the properties of the original
graph in terms of REE and DE.
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Table 2: Comparison with SOTA methods regarding testing accuracy (%). Bold entries
are the best results. DCGC outperforms existing methods on almost all datasets
and all condemnation ratios.

. Other graph size reduction methods Condensation Methods
Dataset  Ratio (r)
Herding K-Center Coarsening GCond GCDM SGDD GDEM GEOM GCSR DCGC ‘Whole
1.30% 67.0+1.3 64.0+2.3 31.2+0.2 79.8+1.3  69.4+1.3  80.1+0.7 80.7+0.6 81.9+1.0 79.9+0.7 82.7+0.6
Cora 2.60% 73.4+1.0 73.2+12 65.2+0.6 80.1+0.6  77.2+04 80.6+0.8 81.2+0.5 82.3+0.9 80.6+0.8 83.0+0.6 82.7+0.5
5.20% 76.8+0.1 76.7+0.1 70.640.1 79.3+0.3  79.4+0.1 80.4+16 81.3+0.5 82.6+05 81.2+06 83.1+05
0.90% 57.1+15 52.442.8 52.2+0.4 70.5+1.2  62.0+0.1  69.5+0.4 72.3+0.3 69.7+1.5 70.2+0.6  72.6+0.6
Citeseer 1.80% 66.7+1.0 64.3+1.0 59.0+0.5 70.6+04 69.5+1.1  70.2+0.8 72.6+0.6 70.1+0.7 T71.7+0.9 73.1+05 T72.440.4
3.60% 69.040.1 69.1+0.1 65.340.5 69.8+1.4  69.8+02 70.3+1.7 72.6+05 70.5+0.9 74.0+0.4 73.0+0.5
0.08% 76.7+0.7 64.5+2.7 18.1+0.1 76.5+0.2 75.7+0.3 76.7+0.4 T7.7x0.7 T77.9+1.1 77.8+08 78.4+05
Pubmed 0.15% 76.2+0.5 69.4+0.7 28.7+4.1 T7.1+05  77.3+01 T7.5+04 784418 78.1+09 78.2+07 78.9+0.3 79.8+0.4
0.30% 78.0+0.5 69.1+0.1 65.340.5 77.9+14  T783+09 T78.2+08 78.2+0.8 78.2+0.8 78.4+06 79.5+0.3
0.10% 42.5+1.8 42.040.7 41.9+0.2 46.5+04 46.84+0.2 46.9+0.1 46.9+0.8 47.0+0.1 46.6+0.3 47.6+0.3
Flickr 0.50% 43.940.9 43.2+0.1 44.5+0.1 47.1+0.1  47.9+03 47.1+03 47.1+1.3 483405 46.6+02 48.2+0.3 50.2+0.3
1.00% 44.4+0.6 44.1+0.4 44.6+0.1 47.1+0.1 475401  47.1+01  47.2+06 484409 46.8+02 48.9+0.1
0.05% 53.1+25 46.6+2.3 40.9+0.5 88.0+1.8  86.5+1.1  90.5+2.1  90.8+0.3 89.9+0.1  90.5+0.2 90.9+1.4
Reddit 0.10% 62.7+1.0 53.04+3.3 42.840.8 89.6+0.7 88.3+0.8 91.6+1.0 91.3+0.2 90.2+0.1 91.2+02 91.7+0.9 93.9+0.0
0.20% 71.04+1.6 58.54+2.1 47.4+0.9 90.1+0.5  89.2+0.7 91.6+1.8 91.7+04 90.6+0.9 92.2+0.1 92.5+0.6
0.05% 52.4+18 47.2+3.0 35.440.3 59.2+1.1 56.2+0.3  60.8+1.3 63.7+0.8 57.6+0.6 60.6+1.1 65.2+0.7
arXiv 0.25% 58.6+1.2 56.840.8 43.540.2 63.2+0.3  59.6+04 65.8+1.2 63.840.6 62.3+0.3 65.44+08 66.1+0.6 71.4+0.1
0.50% 60.4+0.8 60.3+0.4 50.4+0.1 64.0+04 62.4+0.1 66.3+0.8 64.1+0.3 65.0+0.8 65.9+0.6 66.9+0.4

4.3. Utility in Training GNNs

Comparison on common benchmarks. In Table 2, we present the performance com-
parison between the proposed DCGC and the baseline methods under node classification
tasks. The experimental results demonstrate that our proposed method performs on par or
even better than SOTA gradient-matching methods on all datasets and condensation ratios,
which strongly illustrates the effectiveness of DCGC across different datasets.

Cross-architecture generalization performance. One important limitation of ex-
isting methods is that they all rely on a predefined GNN encoder during the condensation
process, which might lead to poor cross-architecture generalization ability. In this sec-
tion, we empirically validate the generalization ability of the proposed DCGC on Cora,
Citeseer, Pubmed, and Ogbn-arXiv. The condensation process of DCGC involves no en-
coders. In evaluation, we consider different-architectured GNN classifiers: GCN (Kipf and
Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Velickovic et al., 2018), and
APPNP (Klicpera et al., 2019). We also report the average performance with standard
deviation across different architectures. A small standard deviation indicates that the con-
densed graph has relatively stable performance across classifiers with different architectures,
so a model with a higher average accuracy and a smaller standard deviation is preferred. As
demonstrated in Table 3, the proposed DCGC achieves high average accuracy with low Std.
across different GNN architectures. This indicates DCGC ’s superior generalization ability
across different architectures. These results clearly demonstrate the superior advantages of
DCGC as a data-centric condensation method.

Performance on heterophilic graphs. Another potential limitation of existing
gradient-matching methods is that when the model used for graph condensation is sub-
optimal, the subsequent GNN model might suffer from significant performance degradation
even if it has a proper architecture. To verify this, we perform experiments on two het-
erophilic datasets, Amazon-Rating and Actor (Pei et al., 2020). In Table 4, we present the
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Table 3: Cross-architecture generalization performance comparison. The condensed graphs
are obtained via GCN (except DCGC, which is data-centric), while tested using
six different GNN architectures: GCN, SAGE, GAT, and APPNP, and the overall
performance is reflected by the average testing accuracy (Avg.) and its standard
deviation (Std.).

Datasets Methods Architectures Statistics
GCN SAGE GAT APPNP Avg.  Std.

GCond 80.1 78.2 66.2 78.5 75.8  6.42

GCDM 79.4 78.5 73.2 77.8 772  2.76

Cora SGDD 79.8 80.4 75.8 78.4 78.6  2.05
= 2.6% GDEM 81.2 80.3 80.5 82.1 81.0 0.81
= GEOM 83.6 83.7 82.7 81.9 83.0 0.84
DCGC 83.0 83.2 82.7 83.3 83.1 0.27

GCond 70.6 66.2 55.4 69.6 65.5 6.96

GCDM 69.5 67.1 62.5 69.1 67.1 3.21

Citeseer SGDD 70.2 67.8 65.7 70.7 68.6 2.31
— 18Y% GDEM 72.6 71.7 71.5 72.1 72.0 0.49
"= e GEOM 743 741 742 74.0 74.2 0.13
DCGC 73.2 72.5 72.9 72.7 72.8 0.30

GCond 77.1 76.2 74.8 77.9 76.5 1.33

GCDM 77.3 75.7 77.9 78.2 773 1.11

Pubmed SGDD 77.5 76.9 76.8 78.7 77.5  0.87
= 0.15% GDEM 78.4 77.1 76.9 78.1 77.6  0.74
T GEOM 78.7 77.2 77.5 78.9 781 0.85
DCGC 78.9 78.6 79.4 79.5 79.1 0.42

performance of GCond and SFGC using distinct GNN architectures for condensing het-
erophilic graphs. Note that GCN (Kipf and Welling, 2017) usually performs sub-optimally
on heterophilic graphs, while GPR-GNN (Chien et al., 2021) is good at both homophilic
and heterophilic graphs. We can observe that when using the same architecture for con-
densation and testing, all methods achieve close performance to training the architecture
on the full graph. However, graphs condensed by GCN fail to give satisfying performance
when evaluated using GPRGNN and are far from training GPRGNN on the full graph. By
contrast, the proposed DCGC is able to give a consistently close performance to the full
graph regardless of the architecture.

4.4. Ablation Studies and Efficiency Comparison

Effects of the components in DCGC. Next, we investigate the importance of each
component of DCGC. The loss function of DCGC (in Eq. 10) consists of three parts: feature-
level signal, label-level signal, and regularization loss, while the last only takes effect when
both the former ones exist. Therefore, we investigate the impact of using each individual loss
separately on the performance of DCGC. In Table 5, we present the results on Ogbn-arXiv
dataset. It is observed that using merely the feature signal or label signal can lead to sub-
optimal performance. This indicates that solely considering the feature distribution or label
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Table 4: Performance of graph condensation methods on heterophilic graphs. The column
C denotes the GNN model for condensation, while the row T denotes the GNN
model for evaluation (training/testing). GNNs good at heterophilic graphs fail on
graphs condensed by homophilic GNNs.

Datasets Methods Rating (r = 0.4%) Actor (r = 1.3%)
T/C GCN GPRGNN GCN GPRGNN
GCond 44.37 40.92 27.35 28.41
SGDD 45.81 42.19 28.16 28.44
GCN GDEM 46.75 29.85
GEOM 45.92 42.10 29.06 29.26
DCGC 46.98 29.93
Whole 48.70 30.59
GCond 41.18 41.59 31.26 36.68
SGDD 41.92 42.58 33.39 37.74
GDEM 43.52 38.52
GPRGNN GEOM 42.15 43.08 34.82 38.51
DCGC 43.71 38.77
Whole 44.88 39.30

Table 5: Performance of removing feature signal /label signal /regularization loss on Ogbn-
arXiv dataset.

Variants r=0.06% r=0.25% r=0.50%
w/o label signal 56.1 59.8 61.1
w/o feature signal 34.3 39.9 43.2
W/0 Lyeg 65.9 66.5 67.2
DCGC 65.2 66.1 66.9

distribution over the graph is insufficient to capture the distribution of the entire graph,
especially when the graph’s structure is complex. In addition, an interesting observation
is that adding the regularization loss L,y on the synthetic graph’s adjacency matrix A’
slightly impairs its utility in training GNNs. However, this step is necessary for obtaining
a reasonable sparse graph structure.

Effects of the DCGC'’s initialization strategies. Next, we investigate the impor-
tance of the initialization strategies, which are assessed by removing the feature matrix
initialization and adjacency matrix initialization from DCGC, respectively. In Fig. 3, we
present the training curves of training loss and test accuracy w.r.t. the epoch on Ogbn-
arXiv dataset (r = 0.5%). It can be observed that with the proposed two initialization
strategies, the initial loss is set to be very low, resulting in a good starting point in the
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Figure 3: Ablation studies on initialization strategies

Table 6: Training time comparison on Ogbn-arXiv dataset.
r GCond GCDM SGDD GDEM DEOM DCGC
0.06%  351s 325 s 349 s 47 s 437s  11.69 s

0.25% 448 s 358 s 417 s 59 s 482 s  12.21 s
0.50% 603 s 411 s 576 s 64 s 695 s 13.84 s

optimization space. This not only significantly accelerates the model’s convergence speed
but also makes it easier for the model to converge to better values, reducing the risk of
getting stuck in local optima. Removing any one of the initialization methods significantly
increases the training difficulty of the model, which may lead to sub-optimal performance.

Comparison of training time. Finally, we validate the efficiency of the proposed
DCGC by comparing its training time with SOTA graph condensation methods. Following
previous evaluation settings (Jin et al., 2022; Yang et al., 2023), we report the training time
of 50 epochs on Ogbn-arXiv dataset in Table 6. As shown in Table 6, DCGC achieves a
much faster training speed compared with existing methods for all condensation ratios. To
be specific, DCGC reduces the epoch-wise training time by 96.4% compared with SOTA
gradient matching methods (note that GDEM is also distribution-matching based). Fur-
thermore, as the graph condensation r increases, the training time of DCGC increases to a
lesser extent compared to other methods. This indicates that our proposed DCGC exhibits
better scalability relative to other methods.
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