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ABSTRACT

Perturbative availability poisoning attacks seek to maximize testing error by mak-
ing subtle modifications to training examples that are correctly labeled. Defensive
strategies against these attacks can be categorized based on whether specific in-
terventions are adopted during the training phase. The first approach is training-
time defense, such as adversarial training, which can effectively mitigate poison-
ing effects but is computationally intensive. The other approach is pre-training
purification, e.g., image short squeezing, which consists of several simple com-
pressions but often encounters challenges in dealing with various poison types.
Our work provides a novel disentanglement mechanism to build an efficient pre-
training purification method that achieves superior performance to all existing
defenses. Firstly, we uncover rate-constrained variational autoencoders (VAEs),
demonstrating a clear tendency to suppress poison patterns by minimizing mutual
information in the latent space. We subsequently conduct a theoretical analysis to
offer an explanation for this phenomenon. Building upon these insights, we intro-
duce a disentangle variational autoencoder (D-VAE), capable of disentangling the
added perturbations with learnable class-wise embeddings. Based on this network,
a two-stage purification approach is naturally developed. The first stage focuses
on roughly suppressing poison patterns, while the second stage produces refined,
poison-free results, ensuring effectiveness and robustness across various scenarios
and datasets. Extensive experiments demonstrate the remarkable performance of
our method across CIFAR-10, CIFAR-100, and a 100-class ImageNet-subset.

1 INTRODUCTION

Although machine learning (ML) models often achieve impressive performance on a range of chal-
lenging tasks, their effectiveness can significantly deteriorate in the presence of the gaps between
the training and testing data distributions. One of the most widely studied types of these gaps is
related to the vulnerability of standard models to adversarial examples (Goodfellow et al., 2014;
Madry et al., 2018), posing a significant threat to the inference phase. However, an even more de-
structive and often underestimated threat emerges from malicious perturbations during the training
phase, namely perturbative availability poisoning attacks, which seek to maximize testing error by
making subtle modifications of correctly labeled training examples (Feng et al., 2019).

In the era of big data, vast amounts are freely collected from the Internet, powering remarkable ad-
vances in deep neural networks (Schmidhuber, 2015). Nonetheless, it’s essential to note that online
data may contain proprietary or private information, raising concerns about unauthorized use. Per-
turbative availability poisoning attacks are considered a promising route to data protection (Huang
et al., 2021). Recently, a significant number of efforts have emerged to add those perturbations
to images as shortcuts to disrupt the training process (Yu et al., 2022). On the other hand, data
exploiters perceive these protection techniques as potential threats to a company’s commercial in-
terests, leading to extensive research efforts in developing defenses. Previous research has demon-
strated that training-time defenses, such as adversarial training and adversarial augmentations, can
alleviate poisoning effects. However, their practicality is limited by the massive computational
costs. Recently, preprocessing-based defenses have gained attention with simple compressions like
JPEG and grayscale demonstrating the advantages over adversarial training in computational effi-
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Figure 1: A visual depiction of D-VAE is presented, containing two components. One component
generates reconstructed images x̂, preserving the primary content of poisoned inputs x. The auxil-
iary decoder maps a trainable class-wise embedding uy and latents z to disentangled perturbations
p̂. Here, xc is clean data, and p denote added perturbations. Perturbations are normalized for clarity.

ciency (Liu et al., 2023). However, these methods lack universality, as different compression tech-
niques might be best suited for various poison types. Pre-training purification has demonstrated great
potential in addressing the issue of perturbative availability poisoning attacks in both effectiveness
and efficiency (Liu et al., 2023). This kind of method doesn’t intervene in the model’s training but
instead concentrates on refining the data, which well aligns with the recent theme of data-centric
AI (DCAI) (Zha et al., 2023). Focusing on fundamental data-related issues rather than relying on
untrusted or compromised data leads to more reliable and effective machine learning models.

In this paper, we focus on the pre-training purification paradigm. Our overall approach is to utilize
a disentanglement mechanism to separate the poison signal from the intrinsic signal of the image
with a rate-constrained VAE to obtain clean data. Firstly, we discover that a rate-constrained VAE
can effectively remove poison patterns by minimizing mutual information in latents when compared
to JPEG (Guo et al., 2018), with a derived detailed theoretical explanation. Then, we formulate per-
turbative availability poisoning attacks as the transformation of less-predictive features into highly
predictive ones. This perspective reveals that perturbations with a larger inter-class distance and
smaller intra-class variance can create stronger poisoning attacks by shifting the optimal separating
hyperplane of a Bayes classifier. Subsequently, we show that VAEs are particularly effective at sup-
pressing perturbations possessing these characteristics. Furthermore, we observe that most poison
patterns exhibit lower class-conditional entropy. Thus, we propose a method involving class-wise
embeddings to disentangle these added perturbations. Building upon these findings, we present a
purification framework that offers consistent and adaptable defense against availability poisoning
attacks. With this method, models trained on purified datasets can achieve competitive perfor-
mance, reaching around 91% on CIFAR-10 (Krizhevsky et al., 2009) and 75% on the ImageNet-
subset (Deng et al., 2009), even better than the strongest training-time defenses and diffusion model
purification that requires extra clean data.

In summary, our contributions can be outlined as follows:

• We discover that rate-constrained VAEs exhibit a preference for removing availability poi-
son patterns, and offer a comprehensive theoretical analysis to support this finding.

• We introduce D-VAE, a network that can disentangle the added perturbations. Our ad-
ditional evaluations also show that D-VAE can purify the poisoned data within a mixed
dataset, and increase the volume of poisoned data while adhering to a small ratio (1%).

• On top of the D-VAE, we propose a unified purification framework for countering various
perturbative availability poisoning attacks. Extensive experiments demonstrate the remark-
able performance of our method across CIFAR-10, CIFAR-100, and a 100-class ImageNet-
subset, encompassing multiple poison types and different perturbation strengths, e.g., with
only around 4% drop on ImageNet-subset compared to models trained on clean data.

2 RELATED WORK

2.1 DATA POISONING

Data poisoning attacks (Barreno et al., 2010; Goldblum et al., 2022), involving the manipulation
of training data to disrupt the performance of models during inference, can be broadly categorized
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into two main types: integrity attacks and availability attacks. Integrity attacks aim to manipulate
the model’s output during inference (Barreno et al., 2006; Xiao et al., 2015; Zhao et al., 2017), i.e.,
backdoor attacks (Gu et al., 2017; Schwarzschild et al., 2021; Yu et al., 2023), where the model
behaves maliciously only when presented with data containing specific triggers. In contrast, avail-
ability attacks aim to degrade the overall performance on validation and test datasets (Biggio et al.,
2012; Xiao et al., 2015). Typically, such attacks inject poisoned data into the clean training set. Poi-
soned samples are usually generated by adding unbounded perturbations, and take only a fraction
of the entire dataset (Koh & Liang, 2017; Zhao & Lao, 2022; Lu et al., 2023). These methods are
primarily designed for malicious purposes, and the poisoned samples are relatively distinguishable.

Another recent emerging type is perturbative availability poisoning attacks (Feng et al., 2019; Fowl
et al., 2021; Chen et al., 2023; Liu et al., 2023), where samples from the entire training dataset
undergo subtle modifications (e.g., bounded perturbations ∥ppp∥∞ ≤ 8

255 ), and are correctly labeled.
This type of attack, also known as unlearnable samples, can be viewed as a promising approach for
data protection. Models trained on such datasets often approach random guessing performance on
clean test data. Huang et al. (2021) employ error-minimizing noise (EM) as perturbations. Yuan
& Wu (2021) generate protective noise using an ensemble of neural networks modeled with neural
tangent kernels (NTGA). Fowl et al. (2021) employ targeted adversarial examples (TAP) as poisoned
data. Fu et al. (2022) focuses on conducting robust attacks (REM) against adversarial training.
Subsequently, Yu et al. (2022) explore effecient and surrogate-free attacks (LSP), and extending the
perturbations to be ℓ2 bounded. Recently, Wu et al. (2023) introduce one-pixel shortcuts (OPS),
which enhances the robustness to adversarial training and strong augmentations.

2.2 EXISTING DEFENSES

Defenses against perturbative availability poisoning attacks can be categorized into training-time
defenses and pre-training processing. Huang et al. (2021); Liu et al. (2023) demonstrate that these
attacks are robust to data augmentations, e.g., Cutout (DeVries & Taylor, 2017), Mixup (Zhang et al.,
2018). Tao et al. (2021) find that adversarial training (AT) could mitigate poisoning effects, but it is
computationally expensive and cannot fully restore accuracy (Zhang et al., 2019), resulting in a 10%
drop on CIFAR-10. Building on the idea of AT, Qin et al. (2023b) employ adversarial augmentations
(AA) with improved performance, but it still demands intensive training and does not generalize well
to ImageNet-subset. For pre-training defenses, pre-filtering, e.g., gaussian smoothing, mean/median
filtering, also show substantial effects but not comparable to AT (Fowl et al., 2021; Liu et al., 2023).
Recently, Liu et al. (2023) utilize simple compressions including JPEG compression, grayscale, and
bit depth reduction (Wang et al., 2018) to defense, while each technique do not fit all poisoning
approaches. Moreover, it is noted that low-quality JPEG compression, while effective for defense,
significantly degrades image quality. Dolatabadi et al. (2023) and Jiang et al. (2023) employ a
diffusion model for purification, but this method necessitates a substantial amount of additional
clean data to train the diffusion model (Ho et al., 2020; Song et al., 2021), making it impractical.

3 D-VAE: DISENTANGLE PERTURBATIVE POISON PATTERNS

3.1 PRELIMINARIES

Formally, for perturbative availability poisoning attacks, all training data can be perturbed to some
extent, while the labels should remain correct (Feng et al., 2019; Fowl et al., 2021). The task to craft
poisoning perturbations can be formalized into the following bi-level optimization problem:

max
p∈S

E(xc,y)∼D
[
L(F (xc; θ

∗(p)), y)
]

s.t. θ∗(p) = argmin
θ

∑
(x

(i)
c ,y(i))∈T

L(F (x(i)
c + p(i); θ), y(i)),

(1)

where xc is the clean data, and S is the feasible region for perturbations. By adding perturbations
p(i) to samples x(i)

c from the clean training dataset T to formulate the poisoned training dataset P ,
the adversary aims to induce poor generalization of the trained model F to the clean test dataset D.
Conversely, data exploiters aim to obtain the learnable data by employing a mapping g such that:
min
g

E(xc,y)∼D
[
L(F (xc; θ

∗(g)), y)
]

s.t. θ∗(g) = argmin
θ

∑
(x

(i)
c +p(i),y(i))∈P

L(F (g(x(i)
c + p(i)); θ), y(i)),

(2)

where p(i) is defined in Eq. 1, and P is the poisoned training data. In this paper, we focus on
pre-training purification, where g is applied for that purification, before training the classifier.
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Figure 2: (a): Results using VAEs: PSNR/Test Acc. Vs. KLD Loss is assessed on the poisoned
CIFAR-10. (b): Comparison between VAEs and JPEG: PSNR Vs. Test Acc. We adopt JPEG with
quality {2,5,10,30,50,70,90}. Specifically, we include EM, REM, and LSP as attack methods here.

3.2 A VAE CAN EFFECTIVELY MITIGATE THE IMPACT OF POISON PATTERNS WITH ITS
CONSTRAINED REPRESENTATION CAPACITY

The VAE maps the input to a lower-dimensional latent space, generating parameters for a variational
distribution. The decoder reconstructs data from this latent space. The loss function combines a
reconstruction loss (“distortion”) with a Kullback-Leibler (KL) divergence term (“rate”), acting as a
limit on mutual information and serving as a compression regularizer (Bozkurt et al., 2021).

Since perturbative availability poisoning attacks have demonstrated vulnerability to compression
techniques like JPEG, we first investigate whether a rate-constrained VAE can eliminate these poison
patterns and obtain the restored learnable samples. In essence, we introduce an updated loss function
incorporating a rate constraint as follows (P is the poisoned dataset, and x is the poisoned image):

LVAE =
∑

x,y∈P

∥x− x̂∥22︸ ︷︷ ︸
distortion

+λ · max(KLD(z,N (0, I)), kldlimit)︸ ︷︷ ︸
rate constraint

,
(3)

where z is the latent feature, x̂ is the reconstructed image, the KLD Loss is formulated from Kingma
& Welling (2014) and provided in the Appendix B.1, and the kldlimit serves as the upper bound for the
KLD loss. Then, we proceed to train the VAE on the poisoned CIFAR-10. Subsequently, we report
the accuracy on the clean test set achieved by a ResNet-18 trained on the reconstructed images. In
Figure 2(a), reducing the KLD loss decreases reconstruction quality (measured by PSNR between x̂
and x). This reduction can eliminate added poison patterns and original valuable features. The right
image of Figure 2(a) shows that increased removal of poison patterns in x̂ correlates with improved
test accuracy. However, heavily corrupting x̂ by further reducing kldlimit removes more valuable
features, leading to a drop in test accuracy. In Figure 2(b), the comparison with JPEG at various
quality settings shows that when processed through VAEs and JPEG to achieve similar PSNR, test
accuracy with VAEs is higher than JPEG. This suggests that VAEs are significantly more effective at
eliminating poison patterns than JPEG compression, when achieving similar levels of reconstruction
quality. Then, we delve into the reasons why VAEs can exhibit such preference.

3.3 THEORETICAL ANALYSIS AND INTRINSIC CHARACTERISTICS

Given that the feature extractor’s function in mapping input data to the latent space is pivotal for the
classification process conducted by DNNs, we conduct our analysis on the latent features v.

Hyperplane shift caused by poisoning attacks. Consider the following binary classification prob-
lem with regards to the features extracted from the data v = (vc,v

t
s) consisting of a predictive

feature vc of a Gaussian mixture Gc and a non-predictive feature vt
s which follows:

y
u·a·r∼ {0, 1}, vc ∼ N (µy

c ,Σc), v
t
s ∼ N (µt,Σt), vc ⊥⊥ vt

s, Pr(y = 0) = Pr(y = 1). (4)

Proposition 1 For the features v = (vc,v
t
s) following the distribution (4), the optimal separating

hyperplane using a Bayes classifier is formulated by:

wT
c (v

∗
c − µ0

c + µ1
c

2
) = 0, where wc = Σ−1

c (µ0
c − µ1

c). (5)

The proof is provided in Appendix A.1. Subsequently, we assume that a malicious attacker modifies
vt
s to vs of the following distributions Gs to make it predictive for training a Bayes classifier:

y
u·a·r∼ {0, 1}, vs ∼ N (µy

s ,Σs), vc ⊥⊥ vs. (6)
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Theorem 1 Consider features from the training data for the Bayes classifier is modified from v =
(vc,v

t
s) in Eq. 4 to v = (vc,vs) in Eq. 6, the hyperplane is shifted with a distance given by:

d =
∥wT

s (vs − µ0
s+µ1

s
2

)∥
2

∥wc∥2
, where wc = Σ−1

c (µ0
c − µ1

c), ws = Σ−1
s (µ0

s − µ1
s). (7)

The proof is provided in Appendix A.2. When conducting evaluations on the testing data that follows
the same distribution as the clean data v = (vc,v

t
s), with the term vs in Eq. 7 replaced by vt

s, it
leads to a greater prediction error if ∥ws∥2 ≫ ∥wc∥2. Theorem 1 indicates that perturbations which
create strong attacks tend to have a larger inter-class distance and a smaller intra-class variance.

Error when aligning with a normal distribution. Consider a variable v = (v1, . . . , vd) following
a mixture of two Gaussian distributions G:

y
u·a·r∼ {0, 1}, v ∼ N (µy,Σ), vi ⊥⊥ vj , Pr(y = 0) = Pr(y = 1),

vi ∼ N (µy
i , σi), pvi(v) = [N (v;µ0

i , σi) +N (v;µ1
i , σi)]/2.

(8)

Each dimensional feature vi is also modeled as a Gaussian mixture. To start, we normalize each
feature through a linear operation to achieve a distribution with zero mean and unit variance. The
linear operation and the modified density function can be expressed as follows:

zi =
vi − µ̂i√

(σi)
2 + (δi)

2
, pzi(v) =

p0(v) + p1(v)

2
, p0(v) = N (v;−δ̂i, σ̂i), p1(v) = N (v; δ̂i, σ̂i)

where µ̂i =
µ0
i + µ1

i

2
, δi = |µ

0
i − µ1

i

2
|, δ̂i = δi/

√
(σi)

2 + (δi)
2, σ̂i = σi/

√
(σi)

2 + (δi)
2.

(9)

Theorem 2 Denote ri = δi
σi

> 0, the Kullback–Leibler divergence between pzi(v) in (9) and a
standard normal distribution N (v; 0, 1) is bounded by:

1

2
ln (1 + (ri)

2)− ln 2 ≤ KLD(pzi(v)∥N (v; 0, 1)) ≤ 1

2
ln (1 + (ri)

2), (10)

and observes the following property:
↑ ri =⇒ ↑ S(ri) = KLD(pzi(v)∥N (v; 0, 1)). (11)

The proof for Eq. 9 and Theroem 2 is provided in Appendix A.3.

Remark 1 Consequently, if we aim to estimate a normalized Gaussian mixture distribution zi ∼
pzi(v) using P̂ subject to KLD(P̂∥N (0, 1)) < ϵ. Then for features vi ∈ {V |rV < S−1(ϵ)}, we
can employ an identical mapping P̂ = pzi(v) to estimate the distributions of zi, resulting in zero
estimation error. However, for features vi /∈ {V |rV < S−1(ϵ)}, an estimation error, denoted as∫∞
−∞[P̂ (v)− pzi(v)]

2dv, is inevitable, and is proportional to (rvi
− S−1(ϵ)). And the estimated P̂

is constrained to have a smaller r, making it less predictive for classification.

Remark 1 indicates that perturbative patterns that make strong poisoning attacks tend to suffer from
larger errors when estimating with distributions subject to the constraint on the KLD. Thus, the
training of a rate-constrained VAE includes simulating the process of mapping the data to latent
representations and aligning them with a normal distribution to a certain extent. The decoder learns
to reconstruct the input data from the resampled latents z. Consequently, the highly predictive
shortcuts are subdued or eliminated in the reconstructed data x̂.

Proposition 2 The conditional entropy of a Gaussian mixture vs of Gs in Eq. 6 is given by:

H(vs|yi) =
dim(vs)

2
(1 + ln(2π)) +

1

2
ln |Σs|, (12)

where dim(vs) is the dimensions of the features. If each feature vds is independent, then:

H(vs|yi) =
dim(vs)

2
(1 + ln(2π)) +

dim(vs)∑
d=1

lnσd
s . (13)

As the inter-class distance ∆s = ∥µ0
s − µ1

s∥2 is constrained to ensure the invisibility of the poison
patterns, most availability poison patterns exhibit a relatively low intra-class variance. Proposition 2
suggests that the class-conditional entropy of the perturbations is comparatively low. Adversarial
poisoning (Fowl et al., 2021) could be an exception since they can maximize latent space shifts with
minimal perturbation in the RGB space. However, the preference to be removed by VAE still holds.
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Algorithm 1 Purification of poisoned samples with D-VAE
1: Input: poisoned dataset P0 , D-VAE (Eϕ, Dθc , Dθp , uy), kldlimit: kld1, kld2
2: # First stage: recover and remove heavy poison patterns by training D-VAE with small kld1
3: Randomly initialize (ϕ, θc, θp, uy), and using Adam to minimize Eq. 14 on P0 with kld1
4: Inference with trained VAE on P0, and save a new dataset P1 with sample x1 = x0 − p̂0

5: # Second stage: generate purified data by training D-VAE with larger kld2
6: Randomly initialize (ϕ, θc, θp, uy), and using Adam to minimize Eq. 14 on P1 with kld2
7: Inference with trained VAE on P1, and save a new dataset P2 with sample x2 = x1 − p̂1

8: Inference with trained VAE on P2, and save a new dataset P3 with sample x3 = x̂2

9: Return purified dataset P3

3.4 D-VAE: RATE-CONSTRAINED VAE WITH POISON DISENTANGLEMENT

Given that the poison patterns for each class exhibit low entropy, this implies that they can primarily
be reconstructed using representations with limited capacity. Since poison patterns are typically
crafted to be sample-wise, we propose to integrate trainable class-wise embeddings uy and latents
z into the decoding network to facilitate the reconstruction of these poison patterns. The overall
network is in Figure 1, and the improved loss to optimize the D-VAE (Eϕ, Dθc , Dθp , uy) is given:

LD-VAE =
∑

x,y∈P

∥x− x̂∥22︸ ︷︷ ︸
distortion

+ ∥(x− x̂)− p̂∥22︸ ︷︷ ︸
recover poison patterns

+λ · max(KLD(z,N (0, I)), kldlimit)︸ ︷︷ ︸
rate constraint

,
(14)

where µ,σ = Eϕ(x), z is sampled from N (µ,σ), x̂ = Dθc(z), disentangled poison patterns p̂ =

Dθp(uy + z). Similar to training VAEs using Eq. 3, minimizing ∥x− x̂∥22 in Eq. 14 also compels
the decoder to fully utilize the latents z for reconstruction. However, when setting a low upper
limit on the KLD loss, x̂ cannot be perfectly reconstructed and contains very few poison patterns,
resulting in a significant portion of poison patterns p remaining in the residuals x− x̂. Inspired by
this, aligning x− x̂ with p̂ allows the network to be able to map uy + z to the poison patterns.

3.5 PURIFY POISONED SAMPLES WITH D-VAE

Given that a large KLD limit fails to effectively surpress the poisoning attacks, while a small one
might significantly deteriorate the quality of reconstructed images, we introduce a two-stage purifi-
cation framework as shown in Algorithm 1. In the first stage, we use a small kldlimit to train the VAE
with the poisoned dataset P0. This approach allows us to reconstruct a significant portion of the poi-
son patterns. During inference, we subtract the input x0 from P0 by the predicted poison patterns
p̂0 and obtain these modified images as P1. In the second stage, we set a larger kldlimit for training.
After subtracting x1 by p̂1 and saving it as x2 in the first inference. Since the poison patterns are
learned in an unsupervised manner, it is challenging to achieve complete reconstruction. Hence, we
proceed with a second inference and obtain the output x̂2 as the final result.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and models. We choose three commonly used datasets: CIFAR-10, CIFAR-
100 (Krizhevsky et al., 2009), and a subset of ImageNet (Deng et al., 2009) comprising the first 100
classes. For CIFAR-10 and CIFAR-100, we maintain the original size of 32 × 32. Regarding the
ImageNet subset, we follow prior research (Huang et al., 2021), and resize the image to 224× 224.
In our main experiments, we adopt the ResNet-18 (He et al., 2016) model as both the surrogate and
target model. To evaluate transferability, we include various classifiers, such as ResNet-50 (RN-50),
DenseNet-121 (DN-121) (Huang et al., 2017), MobileNet-V2 (MN-v2) (Sandler et al., 2018).

Perturbative availability poisoning attacks. We examine several representative attacking methods
with various perturbation bounds. The majority of methods rely on a surrogate model, including
NTGA (Yuan & Wu, 2021), EM (Huang et al., 2021), REM (Fu et al., 2022), TAP (Fowl et al., 2021),
SEP (Chen et al., 2023), and employ the ℓ∞ bound. On the other hand, surrogate-free methods such
as LSP (Yu et al., 2022) and AR (Sandoval-Segura et al., 2022) utilize the ℓ2 bound. Additionally,
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OPS (Wu et al., 2023) utilizes the ℓ0 bound. The diversity of these attacking methods can validate
the generalization capacity of our proposed purification framework.

Competing defensive methods. We include two training-time defenses: adversarial training (AT)
with ϵ = 8/255 (Wen et al., 2023) and adversarial augmentations (AA) (Qin et al., 2023b). Among
the pre-training methods, we include ISS (Liu et al., 2023), consisting of bit depth reduction (BDR),
Grayscale, and JPEG, as well as AVATAR (Dolatabadi et al., 2023) (denoted as AVA.), which em-
ploys a diffusion model trained on the clean CIFAR-10 dataset to purify. For a fair comparison, we
choose to report the test accuracy from the last epoch. More details are in the Appendix C.2.

Model Training. To ensure consistent training procedures for the classification model, we have
formalized the standard training approach. For CIFAR-10, we use 60 epochs, while for CIFAR-
100 and the ImageNet subset, 100 epochs are allowed. In all experiments, we use SGD optimizer
with an initial learning rate of 0.1 and the CosineAnnealingLR scheduler, keeping a consistent batch
size of 128. For D-VAE training on poisoned CIFAR-10/100 dataset, we use a KLD limit of 1.0
in the first stage and 3.0 in the second stage, with only a single ×0.5 downsampling to preserve
image quality. For ImageNet, which has higher-resolution images, we employ more substantial
downsampling (×0.125) in the first stage and set a KLD limit of 1.5, while the second stage remains
the same as with CIFAR. When comparing the poisoned input and the reconstructed output, these
hyperparameters yield PSNRs of around 28 for CIFAR and 30 for ImageNet.

4.2 VALIDATE THE EFFECTIVENESS OF THE DISENTANGLED POISON PATTERNS

The availability poisoning attack can be analyzed from the standpoint of shortcut learning (Yu
et al., 2022). It has been empirically shown that DNNs trained on the poisoned training data
have a tendency to memorize a substantial portion of the perturbations, and subsequently attain
high accuracy when applied to data that shares these same perturbations (Liu et al., 2023).

Table 1: Testing accuracy (%) of models trained
on reconstructed poisoned dataset P̂ .

Datasets Test Set EM REM NTGA LSP AR OPS

CIFAR-10
T 9.71 19.84 29.20 15.16 13.09 18.54
D 9.65 19.51 28.66 15.34 12.96 18.73
P 91.35 99.96 99.91 99.95 100.0 99.72

CIFAR-100
T 1.41 6.45 - 4.24 1.63 11.29
D 1.39 7.69 - 4.03 1.68 10.77
P 98.88 96.47 - 99.12 100.0 99.59

In this section, we aim to illustrate that the dis-
entangled perturbations remain effective as potent
attacks and can be regarded as equivalent to the
original poisoned data P . Initially, we look into
the amplitude of the perturbations in terms of ℓ2-
norm. The amplitude of groundtruth p is around
1.0 for LSP and AR, and about 1.5 for others. The
generated p̂ has an amplitude of about 1.8 for OPS
and around 0.7 to 1.0 for others. Notably, the am-

plitude of p̂ is comparable to that of p, with p̂ being slightly smaller than p except for OPS.

Subsequently, we construct a new poisoned dataset denoted as P̂ by incorporating the disentangled
perturbations p̂ into the clean training set T . We proceed to train a model using P̂ , and subsequently
evaluate its performance on three distinct sets: the clean training set T , the clean testing set D, and
the original poisoned dataset P . From the results in Table 1, it becomes apparent that the recon-
structed dataset continues to significantly degrade the accuracy on clean data. In fact, compared to
the attacking performance of P in Table 2 and Table 3, P̂ even manages to achieve an even superior
attacking performance in most instances with less amplitude. During testing on the original poi-
soned dataset, the accuracy levels are notably high, often approaching 100%. This outcome serves
as an indicator of the effectiveness of the disentanglement process.

4.3 EXPERIMENTAL RESULTS ON THE PURIFIED DATA

CIFAR-10 poison purification. To evaluate the effectiveness of our purification framework, we
conducted initial experiments on CIFAR-10. As shown in Table 2, our method consistently provides
comprehensive protection against perturbative availability poisoning attacks with varying perturba-
tion bounds and attack methods. In contrast, ISS relies on multiple simple compression techniques
and requires adaptive selection of these methods, resulting in subpar defense performance. Notably,
when compared to adversarial training, our method achieved an approximately 6% improvement in
performance. Even compared with AVATAR, which utilizes a diffusion model trained on the clean
CIFAR-10 data, our methods achieve superior performance across all attack methods. Our methods
excel, especially on OPS attacks, which often perturb a pixel to its maximum value, creating a robust
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Table 2: Clean test accuracy (%) of models trained on the poisoned CIFAR-10 dataset and with our
proposed method Vs. other defenses. Our results on additional classifiers are at the rightmost.

Norm Attacks/Countermeasures w/o AT AA BDR Gray JPEG AVA. Ours RN-50 DN-121 MN-v2

Clean (no poison) 94.57 85.17 92.27 88.95 92.74 85.47 89.61 93.29 93.08 93.73 83.61

ℓ∞ = 8
255

NTGA (Yuan & Wu, 2021) 11.10 83.63 77.92 57.80 65.26 78.97 80.72 89.21 88.96 89.28 78.72
EM (Huang et al., 2021) 12.26 84.43 67.11 81.91 19.50 85.61 89.54 91.42 91.62 91.64 81.10
TAP (Fowl et al., 2021) 25.44 83.89 55.84 80.18 21.50 84.99 89.13 90.48 90.50 90.51 81.28
REM (Fu et al., 2022) 22.43 86.01 64.99 32.36 62.35 84.40 86.06 86.38 85.91 86.74 79.27

SEP (Chen et al., 2023) 6.63 83.48 61.07 81.21 8.47 84.97 89.56 90.74 90.86 90.76 80.98

ℓ2 = 1.0
LSP (Yu et al., 2022) 13.14 84.56 80.39 40.25 73.63 79.91 81.15 91.20 90.15 91.10 80.26

AR (Sandoval-Segura et al., 2022) 12.50 82.01 49.14 29.14 36.18 84.97 89.64 91.77 90.53 90.99 82.26

ℓ0 = 1 OPS (Wu et al., 2023) 22.03 9.48 64.02 19.58 19.43 77.33 71.62 88.95 88.10 88.78 81.40

Table 3: Test acc. (%) of models
trained on poisoned CIFAR-100.

Attacks w/o AT AA ISS AVA. Ours

Clean 77.61 59.65 69.09 71.59 61.09 70.72

EM 12.30 59.07 42.89 61.91 61.09 68.79
TAP 13.44 57.91 35.10 57.33 60.47 65.54
REM 16.80 59.34 50.12 58.13 60.90 68.52
SEP 4.66 57.93 27.77 57.76 59.80 64.02
LSP 2.91 58.93 53.28 53.06 52.17 67.73
AR 2.71 58.77 26.77 56.60 60.33 63.73
OPS 12.56 7.28 36.78 54.45 44.24 65.10

Table 4: Test acc. (%) of
models trained on poisoned
ImageNet-subset.

Attacks w/o AT AA ISS Ours

Clean 80.52 55.94 71.56 76.92 76.78

EM 1.08 56.74 3.82 72.44 74.80
TAP 12.56 55.36 71.38 73.24 76.56
REM 2.54 59.34 20.92 58.13 72.56
LSP 2.50 58.93 46.58 53.06 76.06

Table 5: Performance on poi-
soned CIFAR-10 with larger
bounds: ℓ∞ = 16

255 and ℓ2 = 2.0.
Attacks w/o AT AA ISS AVA. Ours

EM 10.09 84.02 49.23 83.62 85.61 91.06
TAP 18.45 83.46 52.92 84.98 89.43 90.55
REM 23.22 35.41 50.92 75.50 52.26 79.18
SEP 12.05 83.98 56.71 85.00 88.96 90.93
LSP 15.45 79.10 59.10 41.41 41.70 86.43

shortcut that evades most defenses. Our approach can effectively disentangle the majority of these
additive perturbations in the first stage. The subsequent subtraction process can significantly miti-
gate the poisoning attacks, resulting in the poison-free data in the second stage. The performance
of training different classification models on our purified data is reported in the rightmost column of
Table 2. As can be observed, our method indeed restores the learnability of data samples.

CIFAR-100/ImageNet-subset poison purification. We then expand our experiments to include
CIFAR-100 and a 100-class ImageNet subset. Due to the resource-intensive nature of the exper-
iments, we focused on four representative attack methods for the ImageNet subset. Note that for
ISS, we report the best accuracy among three compressions. The results, as presented in Table 3 and
Table 4, re-confirm the overall effectiveness of our purification framework.

Experiments on larger perturbations. In our supplementary experiments, we introduced poisoned
samples with larger perturbation bounds. The outcomes on CIFAR-10 are outlined in Table 5. It is
worth noting that our method exhibits a high degree of consistency, with almost no performance
degradation on EM, TAP, and SEP, and only a slight decrease on REM and LSP. However, it proves
to be a challenging scenario for the competing methods to effectively address.

4.4 ABLATION STUDY Table 6: Ablation study on the proposed two-stage purification
framework on several attacks. s1/s2 denote the first stage and the
second stage. ⊖ denotes the subtraction operation.

Attacks NTGA EM TAP REM SEP LSP AR OPS Mean

w/o s1 78.62 91.85 90.97 82.06 90.76 66.76 91.39 51.71 80.52
w/o ⊖ in s2 87.44 91.18 90.70 85.21 90.79 90.63 91.31 84.92 89.02

Ours 89.21 91.42 90.48 86.38 90.74 91.20 91.77 88.95 90.01

In this section, we conduct an
ablation study on our two-stage
purification framework. As
shown in Table 6, it becomes
evident that the subtraction pro-
cess in the first stage plays a
critical role in mitigating certain attacks, including NTGA, LSP, and OPS. This is particularly evi-
dent for LSP, which introduces smooth colorized blocks, and OPS, which perturbs a single pixel to
a maximum value, making them challenging to remove when subjected to a moderate KLD limit.

5 DISCUSSION

5.1 PARTIAL POISONING AND UNSUPERVISED POISONED DATA DETECTION

In practical scenarios, it is often the case that only a fraction of the training data can be contaminated
with poison. Therefore, in line with previous research, we evaluate these partial poisoning scenarios
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Table 7: Performance of detecting poisoned data or increas-
ing poisoned data with various poison ratios on CIFAR-10.

Task Detecting poisoned data Increasing poisoned data

Attacks Ratio Acc. Recall Precision F1-score Ratio Test Acc.

EM

0.2

0.918 1.0 0.709 0.830

0.01

0.1009
REM 0.561 1.0 0.312 0.476 0.2900
LSP 0.777 1.0 0.472 0.641 0.1558
OPS 0.724 0.993 0.420 0.590 0.2059

EM

0.4

0.939 1.0 0.869 0.930

0.02

0.1011
REM 0.785 1.0 0.651 0.789 0.2777
LSP 0.905 1.0 0.807 0.893 0.1633
OPS 0.842 0.991 0.719 0.833 0.2015

EM

0.6

0.961 1.0 0.938 0.968

0.04

0.1229
REM 0.909 0.999 0.868 0.930 0.2319
LSP 0.941 0.999 0.912 0.954 0.1405
OPS 0.910 0.993 0.874 0.930 0.1632

EM

0.8

0.982 1.0 0.978 0.989

0.08

0.1001
REM 0.958 0.998 0.951 0.975 0.2433
LSP 0.973 1.0 0.968 0.984 0.1763
OPS 0.932 0.997 0.924 0.959 0.1701

Table 8: Clean testing accuracy (%)
of models trained on the poisoned
CIFAR-10 dataset with different poi-
soning rate.

Attacks Counter 0.2 0.4 0.6 0.8

EM JPEG 85.03 85.31 85.40 85.31
Ours 93.50 93.03 93.02 92.26

TAP JPEG 85.12 85.60 84.92 85.34
Ours 90.55 90.78 90.93 91.10

REM JPEG 84.64 84.90 84.62 84.97
Ours 92.24 92.51 92.23 90.86

SEP JPEG 85.34 85.22 85.06 85.06
Ours 90.86 90.63 91.04 91.79

LSP JPEG 85.22 85.34 84.26 83.02
Ours 93.20 92.85 92.16 92.16

AR JPEG 85.31 85.29 85.33 84.87
Ours 92.77 91.83 91.41 91.70

OPS JPEG 85.12 84.89 84.43 83.01
Ours 93.15 93.29 92.13 92.16

by introducing poison to a specific portion of the training data and subsequently combining it with
the remaining clean data for training the target model. We do experiments on CIFAR-10 dataset.

When examining the first stage as outlined in Algorithm 1, we observe that even the perturbations
learned for the clean samples can potentially serve as poison patterns. This could be caused by
the constrained representation capacity of the class-wise embedding. In essence, building upon this
discovery, we have the capability to create a new poisoned dataset denoted as P̂0, where each sample
is formed as x0+p̂0. Models trained on P̂0 tend to achieve high prediction accuracy on the poisoned
samples but perform notably worse on the clean ones. Consequently, we can employ this metric as a
means to detect the presence of poisoned data, and the detection performance is outlined in Table 7.
Notably, our detection method attains high accuracy, with an almost 100% recall rate. Subsequently,
to address the issue of partial poisoning in datasets, we can adopt a detection-purification approach.
The performances of models trained on the purified data are presented in Table 8.

5.2 INCREASING POISONED DATA

In this section, we investigate whether our proposed disentanglement approach can help increase the
amount of poisoned data when the attacker acquires additional clean data. We conduct experiments
on CIFAR-10 dataset by generating poisoned data, denoted as P(0), using a small ratio of the dataset,
while leaving the remaining T(1) untouched. Subsequently, after training the D-VAE on P(0), we
conduct inference on the clean data T(1). The addition of p̂(1) to the clean data in T(1) resulted in a
poisoned dataset P(1). By combining P(0) and P(1) to create P , we proceed to train a classifier. The
performance on the clean test set D are reported in Table 7. It is evident that training D-VAE with
just 1% poisoned data is adequate for generating additional poisoned samples.

6 CONCLUSION

In this paper, we initially demonstrate that a rate-constrained VAE shows its natural preference for
removing poison patterns by minimizing mutual information in the latent space. We further provide
a theoretical explanation for this behavior. Additionally, our investigations reveal that most perturba-
tive availability poison patterns have a lower class-conditional entropy, and can be disentangled by
a learnable class-wise embeddings and a decoding network. Building on these insights, we propose
a purification framework that offers a consistent defense against perturbative availability poisoning
attacks. Our extensive experiments show that, the remarkable performance of our method across
CIFAR-10, CIFAR-100, and a 100-class ImageNet-subset, with different poison types and varying
perturbation levels, i.e., only around 4% drop on ImageNet-subset compared to models trained on
clean data. We plan to extend our research to purify perturbative availability poisoning attacks that
target unsupervised learning scenarios in our future work.
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ETHICS STATEMENT

In summary, our paper presents a effective defense strategy against perturbative availability poi-
soning attacks, which aim to undermine the overall performance on validation and test datasets
by introducing imperceptible perturbations to training examples with accurate labels. Perturbative
availability poisoning attacks are viewed as a promising avenue for data protection, particularly to
thwart unauthorized use of data that may contain proprietary or sensitive information. However,
these protective methods pose challenges to data exploiters who may interpret them as potential
threats to a company’s commercial interests. Consequently, our method can be employed for both
positive usage, such as neutralizing malicious data within a training set, and negative purpose, in-
cluding thwarting attempts at preserving data privacy. Our proposed method not only serves as a
powerful defense mechanism but also holds the potential to be a benchmark for evaluating existing
attack methods. We believe that our paper contributes to raising awareness about the vulnerability
of current data protection techniques employing perturbative availability poisoning attacks. This,
in turn, should stimulate further research towards developing more reliable and trustworthy data
protection techniques.
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A PROOFS

In this section, we provide the proofs of our theoretical results in Section 3.3.

A.1 PROOF OF PROPOSITION 1

Consider the following binary classification problem with regards to the features extracted from the
data v = (vc,v

t
s) consisting of a predictive feature xc of a Gaussian mixture Gc and a non-predictive

feature vt
s which follows:

y
u·a·r∼ {0, 1}, vc ∼ N (µy

c ,Σc), v
t
s ∼ N (µt,Σt), vc ⊥⊥ vt

s, Pr(y = 0) = Pr(y = 1). (15)

Proposition 1 (restated) For the data v = (vc,v
t
s) following the distribution (15), the optimal

separating hyperplane using a Bayes classifier is formulated by:

wT
c (v

∗
c −

µ0
c + µ1

c

2
) = 0, where wc = Σ−1

c (µ0
c − µ1

c). (16)

Proof. Given v = (vc,v
t
s) following the distribution (15), the optimal decision rule is the maximum

a-posteriori probability rule for a Bayes classifier:

i∗(v) = argmax
i

Pr(y = i|v)

= argmax
i

[
Pr(y = i) Pr(v|y = i)

]
= argmax

i

[
ln Pr(v|y = i)

]
= argmax

i

[
ln Pr(vc|y = i) + lnPr(vt

s|y = i)
]

= argmax
i

[
ln Pr(vc|y = i)

]
= argmax

i

[
ln
[
(2π)−

D
2 |Σc|−

1
2 exp(−1

2
(vc − µi

c)
⊤Σ−1

c (vc − µi
c))

]]
= argmin

i

[
(vc − µi

c)
⊤Σ−1

c (vc − µi
c))

]
= argmin

i

[
v⊤
c Σ

−1
c vc − 2µi

c
⊤Σ−1

c vc + µi
c
⊤Σ−1

c µi
c

]
= argmax

i

[
µi

c
⊤Σ−1

c vc −
1

2
µi

c
⊤Σ−1

c µi
c

]

, (17)

where D is the dimensions. Thus, the hyperplane is formulated by:

µ0
c
⊤Σ−1

c vc −
1

2
µ0

c
⊤Σ−1

c µ0
c = µ1

c
⊤Σ−1

c vc −
1

2
µ1

c
⊤Σ−1

c µ1
c

⇐⇒ wT
c (v

∗
c −

µ0
c + µ1

c

2
) = 0, where wc = Σ−1

c (µ0
c − µ1

c).

(18)

A.2 PROOF OF THEOREM 1

We assume that a malicious attacker modifies vt
s to vs of the following distributions Gs to make it

predictive for training a Bayes classifier:

y
u·a·r∼ {0, 1}, vs ∼ N (µy

s ,Σs), vc ⊥⊥ vs. (19)

Theorem 1 (restated) Consider the training data for the Bayes classifier is modified from v =
(vc,v

t
s) in Eq. 15 to v = (vc,vs) in Eq. 19, the hyperplane is shifted with a distance given by

d =
∥wT

s (vs − µ0
s+µ1

s

2 )∥
2

∥wc∥2
, where wc = Σ−1

c (µ0
c − µ1

c), ws = Σ−1
s (µ0

s − µ1
s). (20)
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Proof. After modifying vt
s to vs, the learned separating hyperplane on the poisoned distributions Gp

= (Gc, Gs) turns to (following Proposition 1):

wT (

[
v∗
c −

µ0
c+µ1

c

2

vs − µ0
s+µ1

s

2

]
) = 0 ⇐⇒ wT

c (v
∗
c −

µ0
c + µ1

c

2
) = −wT

s (vs −
µ0

s + µ1
s

2
),

where w =

[
Σ−1

c 0
0 Σ−1

s

] [
µ0

c − µ1
c

µ0
s − µ1

s

]
=

[
wc

ws

]
, wc = Σ−1

c (µ0
c − µ1

c).

(21)

Thus, compared to the original hyperplane as stated in Eq. 16, the hyperplane on the poisoned
distribution is shifted with a distance d:

d =
∥wT

s (vs − µ0
s+µ1

s

2 )∥
2

∥wc∥2
(22)

When conducting evaluations on the testing data that follows the same distribution as the clean data
v = (vc,v

t
s), with the term vs in Eq. 22 replaced by vt

s, the shifted distance d is given by

d =
∥wT

s (v
t
s −

µ0
s+µ1

s

2 )∥
2

∥wc∥2
∝

∥ws∥2
∥wc∥2

. (23)

And it leads to a greater prediction error if ∥ws∥2 ≫ ∥wc∥2.

A.3 PROOF OF THEOREM 2

Consider a variable v = (v1, . . . , vd) following a mixture of two Gaussian distributions G:

y
u·a·r∼ {0, 1}, v ∼ N (µy,Σ), xi ⊥⊥ xj , Pr(y = 0) = Pr(y = 1),

vi ∼ N (µy
i , σi), pvi

(v) =
N (v;µ0

i , σi) +N (v;µ1
i , σi)

2
.

(24)

Each dimensional feature vi is also modeled as a Gaussian mixture. To start, we normalize each
feature through a linear operation to achieve a distribution with zero mean and unit variance. Firstly,
we calculate the mean and standard deviation of vi:

µ̂i = Evi

[
vi
]
=

µ0
i + µ1

i

2
, Var[vi] = Evi

[
(vi)

2
]
− Evi

[
vi
]2

= σ2
i + (

µ0
i − µ1

i

2
)2. (25)

Thus, the linear operation and the modified density function can be expressed as follows:

zi =
vi − µ̂i√

(σi)
2
+ (δi)

2
, pzi(v) =

p0(v) + p1(v)

2
, p0(v) = N (v;−δ̂i, σ̂i), p1(v) = N (v; δ̂i, σ̂i)

where µ̂i =
µ0
i + µ1

i

2
, δi = |µ

0
i − µ1

i

2
|, δ̂i = δi/

√
(σi)

2
+ (δi)

2
, σ̂i = σi/

√
(σi)

2
+ (δi)

2
.

(26)

Theorem 2 (restated) Denote r = δi
σi

> 0, the Kullback–Leibler divergence between pzi(v) and a
standard normal distribution N (v; 0, 1) is tightly bounded by

1

2
ln (1 + r2)− ln 2 ≤ DKL(pzi(v)∥N (v; 0, 1)) ≤ 1

2
ln (1 + r2). (27)

and observes the following property

↑ ri =⇒ ↑ S(ri) = DKL(pzi(v)∥N (v; 0, 1)). (28)

Proof. We estimate the Kullback–Leibler divergence between pzi(v) and N (v; 0, 1):

DKL(pzi(v)∥N (v; 0, 1)) =

∫ ∞

−∞
pzi(v) ln

pzi(v)

N (v; 0, 1)
dv

= −H(pzi(v)) +H((pzi(v),N (v; 0, 1)))

= −H(pzi(v)) +
1

2
(1 + ln 2π),

(29)
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As the funcion N (v; 0, 1))) is given by

N (v; 0, 1))) =
1√
2π

e−
v2

2 , (30)

then the term H((pzi(v),N (v; 0, 1))) can be formulated as

H((pzi(v),N (v; 0, 1))) =

∫ ∞

−∞
pzi(v) ln

1

N (v; 0, 1)
dv

=

∫ ∞

−∞
pzi(v)

[1
2
ln 2π +

1

2
v2
]
dv

=
1

2
ln 2π

∫ ∞

−∞
pzi(v)dv +

1

2

∫ ∞

−∞
v2pzi(v)dv

=
1

2
ln 2π +

1

2

∫ ∞

−∞
v2

p0(v) + p1(v)

2
dv

=
1

2
ln 2π +

1

4

[
Ev∼p0(v)[v

2] + Ev∼p1(v)[v
2]
]

=
1

2
ln 2π +

1

4

[
Ep0(v)[v]

2 + V arp0(v)[v] + Ep1(v)[v]
2 + V arp1(v)[v]

]
=

1

2
ln 2π +

1

2
(31)

As the entropy H(p) is concave in the probability mass function p, a lower bound of H(pzi) is given
by:

H(pzi(v)) = H(
p0(v) + p1(v)

2
)

≥ 1

2
H(p0(v)) +

1

2
H(p1(v))

=
1

2
H(N (v;− r√

1 + r2
,

1√
1 + r2

) +
1

2
H(N (v;

r√
1 + r2

,
1√

1 + r2
)

=
1

2

[1
2
(1 + ln(2π(

1√
1 + r2

)2)) +
1

2
(1 + ln(2π(

1√
1 + r2

)2))
]

=
1

2
(1 + ln 2π)− 1

2
ln (1 + r2).

(32)

The upper bound of H(pzi) is given by:

H(pzi) = −
∫ ∞

−∞
pzi(v) ln pzi(v)dv

= −
∫ ∞

−∞

po(v) + p1(v)

2
ln

po(v) + p1(v)

2
dv

= −1

2

[ ∫ ∞

−∞
po(v)[ln

po(v)

2
+ ln(1 +

p1(v)

p0(v)
)]dv +

∫ ∞

−∞
p1(v)[ln

p1(v)

2
+ ln(1 +

p0(v)

p1(v)
)]dv

]
≤ −1

2

[ ∫ ∞

−∞
po(v) ln

po(v)

2
dv +

∫ ∞

−∞
p1(v) ln

p1(v)

2
dv

]
=

1

2

[
H(p0) +H(p1) + 2 ln 2

]
=

1

2
(1 + ln 2π)− 1

2
ln (1 + r2) + ln 2.

(33)

Thus, the Kullback–Leibler divergence is bounded by :

1

2
ln (1 + r2)− ln 2 ≤ DKL(pzi(v)∥N (v; 0, 1)) ≤ 1

2
ln (1 + r2). (34)
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Since the lower and upper bounds differ by a constant term, and the lower bound increases signifi-
cantly as r rises, the Kullback–Leibler divergence is asymptotically tightly bounded by:

DKL(pzi(v)∥N (v; 0, 1)) = Θ(ln(1 + r2)) (35)

A.4 PROOF OF PROPOSITION 2

Proposition 2 (restated) The conditional entropy of a Gaussian mixture vs of Gs in Eq. 19 is given
by

H(vs|yi) =
D

2
(1 + ln(2π)) +

1

2
ln |Σs|, (36)

where D is the dimensions of the features. If each feature vds is independent, then

H(vs|yi) =
D

2
(1 + ln(2π)) +

D∑
d=1

lnσd
s . (37)

Proof. For the variable follows a Gaussian distribution:

v ∼ ND(µ,Σ), (38)

The derivation of its entropy is given by

H(v) = −
∫

p(v) ln p(v)dv

= −E
[
lnND(µ,Σ)

]
= −E

[
ln
[
(2π)−

D
2 |Σ|− 1

2 exp(−1

2
(v − µ)⊤Σ−1(v − µ))

]]
=

D

2
ln(2π) +

1

2
ln |Σ|+ 1

2
E
[
(v − µ)⊤Σ−1(v − µ))

]
∗
=

D

2
(1 + ln(2π)) +

1

2
ln |Σ|

(39)

Step ∗ is a little trickier. It relies on several properties of the trace operator:

E
[
(v − µ)⊤Σ−1(v − µ))

]
= E

[
tr
[
(v − µ)⊤Σ−1(v − µ))

]]
= E

[
tr
[
Σ−1(v − µ)(v − µ)⊤

]]
= tr

[
Σ−1E

[
(v − µ)(v − µ)⊤

]]
= tr

[
Σ−1Σ

]
= tr(ID)

=
D

2

(40)

B DETAILED IMPLEMENTATION

B.1 KLD LOSS

For the implementation of KLD loss in Eq. 3 and Eq. 14, we follows the widely-used version from
Kingma & Welling (2014). The detailed loss formulation is given

KLD(z,N (0, I)) = −1

2

J∑
j=1

(1 + log(σj)
2 − (µj)

2 − (σj)
2),

where z = µ+ σ ⊙ ϵ, and ϵ ∼ N (0, I).

(41)
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B.2 D-VAE

In the implementation of D-VAE, the encoder comprises 7 convolutional layers with Batch Nor-
malization, while the decoder for both branches consists of 4 convolutional layers with Instance
Normalization. To predict the mean µ and standard deviation σ, we employ one convolutional layer
with a kernel size of 1 for each variable.

During the training of D-VAE, we configure the number of training epochs to be 60 for CIFAR-10
and CIFAR-100. However, for ImageNet, which involves significant computational demands, we
limit the training epochs to 20. It’s important to note that we do not use any transformations on
the training data when training D-VAEs. For D-VAE training on poisoned CIFAR-10/100, we use a
KLD limit of 1.0 in the first stage and 3.0 in the second stage, with only a single ×0.5 downsampling
to preserve image quality. For ImageNet, which has higher-resolution images, we employ more
substantial downsampling (×0.125) in the first stage and set a KLD limit of 1.5, while the second
stage remains the same as with CIFAR. When comparing the poisoned input and the reconstructed
output, these hyperparameters yield PSNRs of around 28 for CIFAR and 30 for ImageNet.

C DETAILED IMPLEMENTATION OF THE ATTACK METHODS AND COMPETING
DEFENSES

As previous papers may have used varying code to generate perturbations and implemented defenses
based on different codebases, we have re-implemented the majority of the attack and defensive
methods by referencing their original code resources. In cases where the original paper did not
provide code, we will specify the sources we used for implementation.

C.1 PERTURBATIVE AVAILABILITY POISONING ATTACK METHODS

NTGA. For the implementation of NTGA poisoning attacks, we directly download the read-to-use
poisoned dataset from the official source of NTGA (Yuan & Wu, 2021).

EM, TAP, and REM. For the implementation of EM (Huang et al., 2021), TAP (Fowl et al., 2021),
and REM (Fu et al., 2022) poisoning attacks, we follow the official code of REM (Fu et al., 2022).

SEP. For the implementation of SEP (Chen et al., 2023) poisoning attacks, we follow the official
code of SEP (Chen et al., 2023).

LSP. For the implementation of LSP (Yu et al., 2022) poisoning attacks, we follow the official code
of LSP (Yu et al., 2022). Particularly, we set the patch size of the colorized blocks to 8 for both
CIFAR-10, CIFAR-100, ImageNet-subset.

AR. For the implementation of AR poisoning attacks, we directly download the read-to-use poisoned
dataset from the official source of AR (Sandoval-Segura et al., 2022).

OPS. For the implementation of OPS. (Wu et al., 2023) poisoning attacks, we follow the official
code of OPS. (Wu et al., 2023).

C.2 COMPETING DEFENSES

Image shortcut squeezing (ISS). For the implementation of ISS (Liu et al., 2023), which consists of
bit depth reduction (depth decreased to 2), grayscale (using the official implementation by torchvi-
sion.transforms), JPEG compression (quality set to 10), we follow the official code of ISS (Liu et al.,
2023). Although most of the reported results align closely with the original paper’s findings, we ob-
served that EM and REM poisoning attacks generated using the codebase of REM (Fu et al., 2022)
display a notable robustness to Grayscale, which differs somewhat from the results reported in the
original paper.The unreported results for the performance of each compression on the CIFAR-100
and ImageNet datasets are presented in Table D.

Adversarial training (AT). For the implementation of adversarial training, we follow the official
code of pgd-AT (Madry et al., 2018) with the adversarial perturbation subject to ℓ∞ bound, and set
ϵ = 8

255 , iterations T = 10, and step size α = 1.6
255 .
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(a) EM (Huang et al., 2021)

(b) REM (Fu et al., 2022)

(c) LSP (Yu et al., 2022)

Figure 3: Test accuracy (%) for each training epoch when using adversarial augmentation (Qin et al.,
2023b)

AVATAR. In our implementation of AVATAR, which employs a diffusion model trained on the
clean CIFAR-10 dataset to purify poisoned samples, we utilized the codebase from a benchmarking
paper (Qin et al., 2023a). This choice was made since AVATAR (Dolatabadi et al., 2023) does not
offer official implementations.

Adversarial augmentations (AA). In our implementation of AA, we utilized the codebase from
the original paper (Qin et al., 2023b). AA comprises two stages. In the first stage, loss-maximizing
augmentations are employed for training, with a default number of repeated samples set to K =
5. In the second stage, a lighter augmentation process is applied, with K = 1. In all experiments
conducted on CIFAR-10, CIFAR-100, and the 100-class ImageNet subset, we strictly adhere to the
same hyperparameters as detailed in the original paper. Nevertheless, we observed that this training-
time method can partially restore the test accuracy if we report the highest accuracy achieved among
all training epochs. However, it’s worth noting that the model may still exhibit a tendency to overfit
to the shortcut provided by the poisoned samples. Consequently, this can lead to a substantial drop
in test accuracy during the second stage, which employs lighter augmentations. The test accuracy
for each training epoch is depicted in Figure 3. Additionally, we have included the best accuracy
for AA in Table D. It’s notable that our results from the last epoch surpass the performance of AA,
showcasing the superiority.

D VISUAL RESULTS

In this section, we present visual results of the purification process on the ImageNet-subset. As
depicted in Figure 4, the purification carried out during stage 1 is effective in removing a significant
portion of poison patterns, particularly for LSP poisoning attacks. The remaining poisoning attacks
are subsequently eliminated in stage 2, resulting in completely poison-free data.
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Table 9: Test acc. (%) of models trained on
CIFAR-10 poisoning attacks.

Norm Attacks w/o AA Ours

Clean 94.57 92.66 93.29

ℓ∞ = 8

NTGA 11.10 86.35 89.21
EM 12.26 76.00 91.42
TAP 25.44 71.56 90.48
REM 22.43 78.77 86.38
SEP 6.63 71.95 90.74

ℓ2 = 1.0
LSP 13.14 89.97 91.20
AR 12.50 67.61 91.77

ℓ0 = 1 OPS 22.03 72.54 88.95

Table 10: Test acc. (%) of models trained on CIFAR-
100 poisoning attacks.

Attacks w/o AA BDR Gray JPEG Ours

Clean 77.61 70.22 63.52 71.59 57.85 70.72

EM 12.30 66.84 61.91 48.83 58.08 68.79
TAP 13.44 49.36 55.09 9.69 57.33 65.54
REM 16.80 60.74 57.51 55.99 58.13 68.52
SEP 4.66 37.73 31.95 4.47 57.76 64.02
LSP 2.91 68.22 22.13 44.18 53.06 67.73
AR 2.71 44.32 29.68 23.09 56.60 63.73
OPS 12.56 40.20 11.56 19.33 54.45 65.10

Table 11: Test acc. (%) of models trained on ImageNet subset poisoning attacks.
Attacks w/o AA BDR Gray JPEG Ours

Clean 80.52 73.66 75.84 76.92 72.90 76.78

EM 1.08 46.30 2.78 14.02 72.44 74.80
TAP 12.56 72.10 45.74 33.66 73.24 76.56
REM 2.54 62.30 57.51 55.99 58.13 72.56
LSP 2.50 71.72 22.13 44.18 53.06 76.06
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Figure 4: Visual results of images before/after purification. Results of stage 2 denote the final
purified results. The image is from ImageNet-subset, and the residuals to the clean images are
normalized by two ways.
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Figure 5: Comparison between VAEs and AEs: PSNR Vs. Test Acc. Specifically, we include EM,
REM, and LSP as attack methods here.

E COMPARISON WITH NON-VARIATIONAL AUTO-ENCODERS

In this section, we conduct experiments on purification using non-variational auto-encoders (AEs)
with an information bottleneck. To achieve non-variational auto-encoders with different bottleneck
levels, we modify the width of the features within the auto-encoder architecture. This results in mod-
els with varying parameter numbers. Then, we proceed to train the AE on the poisoned CIFAR-10
dataset, and test on the clean test dataset with classifiers trained on the purified dataset. As depicted
in Figure 5, when considering the similar level of reconstruction quality measured by PSNR, VAEs
exhibit a greater capacity to remove poison patterns in both the REM and LSP poisoning attacks.
However, for EM poisoning attacks, the outcomes are comparable. These observations align with
the theoretical analysis presented in Section 3.3.
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Table 12: Computation requirement of the proposed methods.

Component
Train D-VAE

for twice
Perform inference on the
poisoned data three times

Train a
classifier Total Time

Our method 23 minutes less than 2 minutes 16 minutes 41 minutes
Adversarial Training N.A. N.A. 229 minutes 229 minutes

Table 13: Results using JPEG with various quality settings. The experiments are on CIFAR-10
dataset.

Defenses
/Attacks

JPEG (quality 10)
PSNR 22

JPEG (quality 30)
PSNR 25

JPEG (quality 50)
PSNR 27

JPEG (quality 70)
PSNR 28

Ours
PSNR 28

NTGA 78.97 66.83 64.28 60.19 89.21
EM 85.61 70.48 54.22 42.23 91.42
TAP 84.99 84.82 77.98 57.45 90.48
REM 84.40 77.73 71.19 63.39 86.38
SEP 84.97 87.57 82.25 59.09 90.74
LSP 79.91 42.11 33.99 29.19 91.20
AR 84.97 89.17 86.11 80.01 91.77
OPS 77.33 79.01 68.68 59.81 88.96
Mean 78.89 74.71 67.33 56.42 90.02

F COMPUTATION AND COMPARISON WITH JPEG COMPRESSION

In this section, we present the computation requirement and the compassion with JPEG compression.
The Table 12 below presents the training time for D-VAE, the inference time for the poisoned dataset,
and the time to train a classifier using the purified dataset. For comparison, we include the training-
time defense Adversarial Training. It’s important to note that the times are recorded using CIFAR-
10 as the dataset, PyTorch as the platform, and a single Nvidia RTX 3090 as the GPU. As can see
from the results, the total purification time is approximately one and a half times longer than training
a classifier, which is acceptable. Compared to adversarial training, our methods are about 5 times
faster. Additionally, our method achieves an average performance around 90%, which is 15% higher
than the performance achieved by adversarial training.

We also note a limitation in the JPEG compression approach used in ISS (Liu et al., 2023)—specif-
ically, they set the JPEG quality to 10 to purify poisoned samples, resulting in significant image
degradation. In the Table 13, we present results using JPEG with various quality settings. Notably,
our proposed methods consistently outperform JPEG compression when applied at a similar level of
image corruption. Therefore, in the presence of larger perturbation bounds, JPEG may exhibit sub-
optimal performance. Moreover, our method excels in eliminating the majority of poison patterns
in the first stage, rendering it more robust to larger perturbation bounds. Table 5 5 of the main pa-
per illustrates that when confronted with LSP attacks with larger bounds, our method demonstrates
significantly smaller performance degradation compared to JPEG (with quality 10), e.g., 86.13 Vs.
41.41 in terms of test accuracy.
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(a) ℓ∞ = 8
255 (b) ℓ2 = 1.0

(c) ℓ0 = 1 (d) ℓ∞ = 16
255 or ℓ2 = 2.0

Figure 6: Results using D-VAEs: Test Acc. Vs. KLD Loss is assessed on the poisoned CIFAR-10.

G MORE EXPERIMENTS ON TRAINING D-VAE ON ATTACK METHODS WITH
VARIOUS UPPER BOUNDS ON THE KLD LOSS

Some concerns regarding whether a sizable component of the perturbation will end up being learned
into x̂̂x̂x may arise in certain cases, such as when the upper bound on the KLD loss is not set low.
Nevertheless, when the KLD loss is set to a low value, the presence of poison patterns in the re-
constructed x̂̂x̂x is shown to be minimal. This observation is supported by both empirical experiments
in Section 3.2 and theoretical explanations provided in Section 3.3. These outcomes are primarily
attributed to the fact that the reconstruction of x̂̂x̂x depends on the information encoded in the la-
tent representation zzz, i.e., x̂̂x̂x is directly generated from zzz using a decoder. The theoretical insights
discussed in Section 3.3 highlight that Theorem 1 indicates that perturbations which create strong
attacks tend to have a larger inter-class distance and a smaller intra-class variance. Additionally,
Theorem 2 and Remark 1 indicate that poison patterns possessing these characteristics are more
likely to be eliminated when aligning the features with a normal Gaussian distribution (as done by
the VAE).

To further validate these observations, we now include additional experiments in Appendix G by
training D-VAE on all attack methods with various upper bounds for the KLD loss. Additionally,
we have performed experiments on attacks with larger perturbations. Notably, we have added results
on the clean dataset for comparison. As depicted in Figure 6, when the upper bound on the KLD
loss is set below 1.0, the curves of the results on the poisoned dataset align closely with the results
on the clean dataset. Furthermore, as the upper bound decreases, the removal of poison patterns in
the reconstructed x̂̂x̂x increases. While it is evident that larger perturbations may be better retained in
x̂̂x̂x, it is a cat-and-mouse game between defense and attack. Additionally, larger perturbations tend to
be more noticeable. These findings affirm that the observations hold for all existing attack methods,
and setting a low upper bound (e.g., 1.0, as in the main experiments) on the KLD loss significantly
ensures that x̂̂x̂x contains few poison patterns.
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