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ABSTRACT

Federated learning in cross-device settings suffers when selected clients fail to
participate, producing biased global updates and slower convergence under par-
tial participation. We introduce Federated Digital Twin Weighting (FedDTW)—a
lightweight, server-side mechanism that maintains a digital twin of each client’s
model to impute missing updates. When a client is unavailable in a round, the
server forecasts that client’s current parameters from its historical weight trajec-
tory and uses the forecast in aggregation. We evaluate FedDTW under four realis-
tic participation patterns—Random Client Dropout, Variable Participation Rates,
Network Partitions, and Delayed Updates—across four time-series datasets (Bei-
jing Air Quality, LTE, Solar Power, METR-LA) and common forecasting back-
bones (CNN, RNN/GRU/LSTM, DALSTM-AE). FedDTW consistently tracks the
full-participation reference (FPR) more closely than FedAvg and yields up to
≈ 6.11–50.65% lower RMSE in representative settings. These results indicate
that simple, low-parameter weight-forecasting can make FL more resilient to un-
reliable connectivity without changing client-side training.

1 INTRODUCTION

Federated Learning (FL), first introduced in McMahan et al. (2017) and applied to various tasks, is
an emerging distributed optimization paradigm that enables collaborative training while preserving
data privacy by keeping clients’ data local. The central server aggregates the local model updates
from clients to create a global model, which is then distributed to participants for the next training
iteration. Typically, this aggregation is performed by computing a weighted average of the clients’
model parameters. However, not all clients can participate in every training round due to various
practical challenges, such as network instability, or hardware maintenance, etc. A common approach
to addressing this issue is client sampling, wherein only a subset of clients contributes to the global
model update at each round. While this reduces the impact of unavailable clients, it also introduces
limitations, including missing out on updates from clients with critical datasets and lengthening
the convergence time. In fact, numerous sampling strategies have been proposed to mitigate these
effects, acknowledging the reality that not all client models are received at every iteration.

Is it possible to ensure the inclusion of all local models in each training round, regardless of network
conditions? One practical approach is to keep server-side, continuously updated digital-twin repli-
cas of each client’s weights. When a physical device is unavailable, its twin can immediately stand
in, with weight forecasting sustaining training continuity despite unstable connectivity. A review
of current literature suggests this strategy has not yet been implemented at scale, revealing a gap
between the concept of virtual model duplication and empirical methods for handling intermittent
participation. Exploring how such an approach could impact model generalization raises several
questions: (1) What mechanisms would underpin the optimal coexistence of physical and virtual
clients in different FL settings? (2) How would forecasting and aggregating virtual weights affect
the learning process? This paper revisits the FL aggregation process under the physical and virtual
coexistence paradigm, focusing on forecasting model weights in unstable client participation envi-
ronments as illustrated in Figure 1 and examining the implications for generalization. The findings
provide intriguing insights that open new avenues for federated optimization research.
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Interestingly, in cross-device FL, clients’ local data is of-
ten non-independent and identically distributed (non-IID)
due to diverse computational resources Wang et al. (2020),
Abdelmoniem et al. (2022), causing client dropouts that
really create significant challenges. Obviously, privacy re-
strictions prevent data sharing, so dropouts often lead to
aggregated updates favoring active clients, diverging from
the training objective and reducing model effectiveness
Ribero et al. (2022), Wang et al. (2021). However, unlike
deliberate client sampling, where the server selects acces-
sible clients Yang et al. (2021), Li et al. (2019), Fraboni
et al. (2022), unexpected dropouts force reliance on sub-
mitted updates, so it results in biased global gradients. In
fact, some methods replace missing updates with stored
ones Gu et al. (2021), but these can be outdated as the
global model evolves.

Figure 1: Client dropout example.

Traditionally, FedAvg McMahan et al. (2017) is popularly selected among aggregate methods be-
cause of its simplicity and efficiency in performing model aggregation, but its accuracy may oscillate
when dealing with fluctuating and high client dropouts. Hence, we come up with a solution to an-
swer the mentioned intriguing question. In brief, our main contributions are summarized as follows:

• We first evaluate the convergence performance of the classical FedAvg algorithm with arbitrary
client dropouts on the four scenarios. Theoretical analysis indicates that client dropouts cause a
biased update in each training iteration.

• We propose a novel FL algorithm, named FedDTW1, which is flexible as it is able to work with
both IID and non-IID data in addressing the client dropout problems in such scenarios. The core
idea is integrating with digital twins to forecast the weights of models whose clients are missing
at a specific FL training round based on historical trends.

• We develop a mechanism to correctly extract and manipulate model’s weights of each client by
applying the simple, yet effective digital twin formulas to forecast missing weights.

• We systematically evaluate FedDTW under realistic client-dropout regimes (random dropout,
variable participation, network partitions, delayed updates) across multiple time-series bench-
marks and architectures, where it consistently outperforms FedAvg.

2 INTEGRATION OF DIGITAL TWINS WITH WEIGHT FORECASTING

For each client i, the server maintains a virtual replica that stores historical information about the
client’s model parameters. When a client cannot provide its model update due to network instability,
the server uses the digital twin to forecast the client’s current model parameters based on its histor-
ical data. This approach aims to mitigate the effects of network instability by providing estimated
updates, ensuring that the FL process continues smoothly even when some clients are offline. Let
θit be the local model parameters of clients i at time t. The digital twin stores historical parameters
{θi

t′
|t′ < t}. The server uses a forecasting function f to estimate the current parameters when they

are unavailable as θ̂it = f({θi
t′
|t′ < t}), where the estimated parameters θ̂it are used in place of the

missing θit during aggregation.

2.1 UNSTABLE NETWORK SIMULATION SCENARIOS

Federated clients may intermittently fail to participate in training iterations due to unpredictable
events, a phenomenon referred to as client dropout Wang et al. (2020), Abdelmoniem et al. (2022).
Consequently, only a portion of clients can complete local training and submit model updates in
each iteration, which substantially impairs convergence performance and slows down the training
process Imteaj et al. (2021). Figure 2 reflects the real-world client dropouts often happening in FL.

1The codes are available at https://anonymous.4open.science/r/feddtw-torch-836E
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(a) RCD (b) VCPR

(c) DU (d) NP

Figure 2: Illustration of the client availability in cross-device FL.

Algorithm 1 Random Client Dropout (RCD)
Initialize global model θ0
Initialize digital twins {θi0} for all clients i ∈ C
for t = 1 to T do

Randomly select participating clients St ⊆ C
foreach client i ∈ St do

Client i computes update θit
Server updates digital twin θit

end
foreach client i /∈ St do

Server forecasts θ̂it = f({θit′})
end
Aggregate updates:

θt = Aggregate
(
{θit | i ∈ St} ∪ {θ̂it | i /∈ St}

)
end

Algorithm 2 Variable Client Participation Rates
(VCPR)
Initialize global model θ0
Initialize digital twins {θi0} for all clients i ∈ C
for t = 1 to T do

Determine participation probability p(t)
Select participating clients St based on p(t)
foreach client i ∈ St do

Client i computes update θit
Server updates digital twin θit

end
foreach client i /∈ St do

Server forecasts θ̂it = f({θit′})
end
Aggregate updates from all clients to obtain θt

end

Algorithm 3 Network Partitions (NP)
Initialize global model θ0
Initialize digital twins {θi0} for all clients i ∈ network
partitions {C1, C2, . . . }
for t = 1 to T do

foreach connected partition Ck do
Clients i ∈ Ck send updates θit
Update digital twins θit

end
foreach disconnected partition Cl do

foreach client i ∈ Cl do
Forecast θ̂it = f({θit′})

end
end
Aggregate updates from all clients to obtain θt

end

Algorithm 4 Delayed Updates (DU)
Initialize global model θ0
Initialize digital twins {θi0} for all clients i ∈ C
Define delay schedule for clients
for t = 1 to T do

foreach client i do
if update θit is received at time t then

Update digital twin θit
end
else

Forecast θ̂it = f({θit′})
end

end
Aggregate updates from all clients to obtain θt

end

In the RCD scenario, clients randomly fail to send updates during certain training rounds. This
reflects exactly the real scenario where instances of unpredictable client unavailability, such as hard-
ware failures, temporary network disconnections, or environmental issues preventing updates from
clients from being captured. For this reason, the server uses its digital twins to forecast the missing
updates for lost clients. We formulate this client dropout case in Algorithm 1.
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The VCPR scenario reflects a dynamic and evolving participation pattern over time, which is also
very common in most of the FL setups. Suppose that we have client participation rates with m
percentage across training rounds, simulating situations where clients face fluctuating availability
due to workload variations, resource constraints, or operational priorities. For instance, with an IoT
platform, sensors in a monitoring network might take turn to be in active and idle states because of
energy-saving protocols or usage schedules. Algorithm 2 illustrates this circumstance.

NP is a setup to ensure the high scalability of a network or prevent physical or logical disruptions
such as localized network failures, scheduled maintenance, or natural disasters, it is often parti-
tioned. This results in the isolation of several clients in an FL system. For example, sensors in a
specific geographical location may become temporarily disconnected due to maintenance activities
or environmental factors. As a result, the server uses digital twins to forecast its updates for clients
in disconnected partitions. We formulate the scenario in Algorithm 3.

In the DU scenario, clients often experience delays in sending their updates due to network latency
or high traffic at a certain time. For instance, in remote areas or during peak usage periods, clients
may struggle to upload their updates to the server promptly. Until the delayed updates arrive, the
server uses digital twins to forecast the missing updates. This scenario is described in Algorithm 4.

2.2 WEIGHT FORECASTING

In the digital twin environment, where data is insufficient to train complex forecasting mod-
els due to dynamic labels, parameter-free or parameter-light models for time series forecasting
present suitable alternatives. These methods do not require extensive training data and can be
directly applied to forecast missing model weights in federated learning experiments. Before
introducing two parameter-free forecasting models, we define the following data representation.
Let P the total number of model parameters (weights) in
a model; T the total number of time steps (rounds) in the
federated learning process; θit ∈ RP the vector of model
weights for client i at time t; and θi,pt the p-th parameter of
client i at time t. We can represent the historical weights
of client i as a matrix Θi ∈ RT×P , where each column p
represents a time series {θi,pt }T for parameter p.

Θi =


θi,11 θi,21 · · · θi,P1

θi,12 θi,22 · · · θi,P2
...

...
. . .

...
θi,1T θi,2T · · · θi,PT

 (1)

2.2.1 MOVING AVERAGE FORECASTING (MAF)

The MAF method forecasts the next value in a time series as the average of the most recent n
observed values. The MAF method assumes that the future values of the time series are represented
by the mean of the most recent past observations. This simple yet effective approach is suitable for
forecasting missing model weights in FL setups where minimal computational overhead is desired,
especially when the time series lacks clear trends or seasonal patterns. For each parameter p of
client i, the forecasted weight at time t is given by Equation 2, where n is the window size or
average number of past observations. A larger n results in smoother forecasts but may lag behind
trends. A smaller n makes the forecast more responsive to recent changes but may be more volatile.
θi,pt−k is the observed weight at time t− k for parameter p.

Note that n = 2 in our experiments. Besides, t ≥ n+1 ensures enough
past observations to calculate the moving average. If t < n+1, adjust
n accordingly to use the available data for the average.

θ̂i,pt =
1

n

n∑
k=1

θi,pt−k (2)

2.2.2 WEIGHTED SMOOTHING FORECASTING (WSF)

WSF is a recursive forecasting technique where each forecast is a weighted average of the previous
observations. The method effectively captures short-term trends, making it suitable for scenarios
where recent data points are more relevant than older ones, such as in dynamic environments or FL
settings with evolving client models.

For each parameter p of client i, the forecasted
weight at time t is given in Equation 3:

θ̂i,pt = αθi,pt−1 + (1− α)θi,pt−2 +∆θ (3)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where α ∈ (0, 1) is the smoothing factor, which controls the rate at which the influence of past
observations decreases. A higher α (closer to 1) places more weight on recent observations, making
the forecast more responsive. A lower α (closer to 0) gives more weight to past observations,
resulting in smoother forecasts. ∆θ = θi,pt−1 − θi,pt−2 is an assumption of linear change of weights at
a constant rate.

3 METHODOLOGY

3.1 FL TIME SERIES FORECASTING FORMULATION

Let’s consider the problem regarding individual training in FL, where each client holds observations
and performs its local training. Let Ωt = {ωt,1, · · · , ωt,n} be the measurements at timestep t, with
n being the number of variate. For a given t, we can look back on a slice of past observations
T ∈ [t − T + 1, t] and Ω′

t = {Ωt−T+1, · · · ,Ωt}. In time series forecasting, the main objective is
to predict the next measurements based on the past observations (prior lag points) Ω′

t. By utilizing
the entire measurements of univariate or multivariate datasets, we can build a model that is capable
of generalizing unseen future data. In a FL system, it consists of a central server and N participants
(denoted by the set N = {1, . . . , N}), developing a forecasting model designed to generalize to
their future observations. These nodes (considered individual learning) collaboratively train a model
w ∈ RM with M trainable parameters to minimize the loss over data samples of all clients.

The iterative process persists until the global model effectively
generalizes across the observations of all N participants with
the global training objective expressed in Equation 4.

min
w∈RM

f(w) =
1

N

N∑
i=1

fi(w) (4)

3.2 TIME SERIES FORECASTING MODEL SELECTION

We leverage FL to train five popular models, including Convolutional Neural Network (CNN), Gated
Recurrent Unit (GRU), Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and
Dual Attention LSTM Autoencoder (DALSTM-AE) for our time series forecasting experiments.
The selection is not for their novelty but because their parameterization is transparent and decom-
posable. This makes it practical to break down layer- and weight-level trajectories, enabling our
server-side digital-twin to forecast missing client updates directly in weight space and to demon-
strate FedDTW’s mechanism clearly and reproducibly across diverse temporal models. The detailed
architectures of these models are thoroughly described in the Appendix A.1 section.

3.3 CLIENT DROPOUT SIMULATION MATRIX

We propose a technique that models client presence and absence across n training iterations using
a binary matrix with m clients (columns) and n rounds (rows), where 1 indicates participation and
0 denotes dropout. This probably enables two key metrics: (i) the percentage of clients absent per
round (proportion of zeros in a row), and (ii) the percentage of rounds a client is absent (proportion
of zeros in a column). By varying the distribution of 1s and 0s, we simulate diverse participation sce-
narios in FL with m clients over n rounds. For the NP setup, we consider a FL system with m total
clients grouped into k clusters, each with a fixed number of clients, where only intra-cluster clients
contribute to local model updates and aggregation per round. For DU, we introduce a timestamp-
based mechanism over a range of periods. For each round t (row index), we compute t mod k with
k ∈ [1..9]. If a client’s update falls within the predefined delay range, the server will discard it, even
if the client reconnects later, treating a marked present 1 entry as absent 0 for aggregation.

We formulate the client dropout settings with the binary ma-
trix M, illustrated in Equation 5, where xci

r = 1 indicates the
participation at iteration time r-th of client i-th, and 0 rep-
resents an empty update value. Through the matrix, we can
reproducibly control the degree of client dropouts as well as
find its appropriate smoothing factor α.

M =


xc1
1 xc2

1 ... xcm
1

0 xc2
2 ... 0

... ... ... ...

0 xc2
n ... xcm

n

 (5)
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3.4 FEDERATED TRAINING AND AGGREGATION DESIGN

We follow the traditional FL training process where model aggregation is a critical phase and extend
a flexible framework for general time-series forecasting introduced by Perifanis et al. (2023). Algo-
rithm 5 shows the details of the FedAvg and FedDTW aggregate methods when dealing with weight
updates under the FPR and dropout scenarios. In addition, the metrics used to assess the local and
global model’s performance are presented in the Appendix A.3 section.

Algorithm 5 Implementation of FedDTW and FedAvg with missing updates

Require: Local datasets Di, client dropout matrix M , number of clients N , number of federated rounds T ,
number of local epochs E, learning rate η, smoothing factor α = 0.8

Ensure: Final global model parameters vector wT

1: Initialize w0

2: for t = 0, 1, ..., T − 1 do
3: Sample a set of parties St

4: n←
∑

i∈S |D
i|

5: for all i ∈ S in parallel do
6: Send the global model wt to client Ci

7: ∆wt
i , ri ← LocalTraining(i, wt)

8: end for
9: ∆W ←

∑
i∈S

|Di|
n

∆wt
i

10: ∆ewt ←
∑

i∈S̄
|Di|
n

, S̄ = {i : Mt,i = 0} /*excluded dropout clients*/
11: For FedAvg (under FPR): wt+1 ← wt − η∆W

12: For FedAvg (under dropout): wt+1 ← wt − η∆W −∆ewt

13: For FedDTW (under dropout): wt+1 ← wt − η∆W −∆ewt + θ̂i,pt (defined WSF in Formula 3)
14: end for
15: return wT

16: Client executes:
For every algorithm: L(w; b) =

∑
(x,y)∈b l(w;x, y)

4 EXPERIMENTAL SETUP

4.1 DATASET DIVERSITY SELECTION

We conducted experiments on the four diverse datasets, each representing non-IID real-world time-
series data with distinct temporal and structural properties. The first dataset Perifanis et al. (2023)
comprises real multivariate LTE Physical Downlink Control Channel (LTE) measurements collected
from three base stations in Barcelona, Spain. This dataset includes eleven features aggregated into
two-minute intervals. Similarly, the Beijing Multi-Site Air Quality dataset Chen (2017) provides
hourly measurements of air pollutants from 12 nationally controlled monitoring sites. Regarding
univariate analysis, we utilized the Solar Power dataset Ilyas et al. (2020), which records power
output (in Watts) from 21 solar plants across Aarhus, Denmark, at 5-minute intervals (except be-
tween 22:00 and 05:00 daily), reflecting the intermittent nature of renewable energy production.
The METR-LA dataset Li et al. (2017), which captures traffic speed data from 50 extracted loop
detectors (from total 207 detectors) on Los Angeles County highways, aggregated into 5-minute
intervals over four months. These datasets are preprocessed through several primary steps which are
thoroughly presented in the Appendix A.4 section.

4.2 CLIENT DROPOUT MATRIX CONFIGURATION

We populate the matrix in Equation 5 with varying distributions of 1s and 0s, ranging from 10% to
50% overall absence rates in both training iterations and client participation for RCD with uniform
random absences, VCPR with skewed or NP intra-cluster dropouts to ensure consistent evaluation
of heterogeneity effects across subgroups, along with the DU principle. Basically, higher absence
rates generally degrade performance due to incomplete aggregations, but in this paper, we emphasize
results at a 50% missing update threshold in the experiment report to accentuate the distinctions.
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4.3 FL MODEL TRAINING AND SMOOTHING FACTOR SELECTION

The FL model training settings are thoroughly presented in the Appendix A.2 section. Besides, it is
worth noting that as depicted in Equation 3 and Algorithm 5, we select two previous weights with
the smoothing factor α = 0.8 to perform the evaluation for all the experiment scenarios. The reason
behind this decision is simply that the most recent updates always preserve the accurate information
and distribution trend to carry out the weight forecasting effectively, eliminating staleness. The
prediction task involves forecasting the next five measurements using a historical window of T = 10,
under varying temporal resolutions, and the number of client participation diversity of the datasets.

4.4 RESULTS

The performance of FedDTW, compared with FedAvg, as detailed in Table 1, reveals substantial en-
hancements in predictive accuracy across diverse multivariate datasets and models under the preva-
lent FL scenarios. Quantitatively, FedDTW demonstrates equal or superior performance to FedAvg
in terms of RMSE and MAE across all setups. For instance, in the Beijing Air dataset, FedDTW
achieves up to a 6.11% improvement (up arrow) in RMSE and 5.56% in MAE. Similarly, in the
LTE dataset, FedDTW improves more than 4.55% in RMSE and 8.33% in MAE. Obviously, these
improvements demonstrate the simple yet effective digital twin formulas in combination with the ap-
propriate smoothing factor selection, where the most recent updates preserve the accurate informa-
tion and distribution trend for the virtual weight replicas, ensuring the continuity of FL forecasting.

Table 1: Averaged RMSE and MAE of the global model on the multivariate datasets

Model CNN LSTM GRU DALSTM-AE
Dataset Method Setup RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Beijing Air

FPR

RCD 0.122 0.101 0.122 0.101 0.123 0.102 0.122 0.101
VCPR 0.122 0.101 0.122 0.101 0.123 0.102 0.122 0.101

DU 0.122 0.101 0.122 0.101 0.123 0.102 0.122 0.101
NP 0.122 0.101 0.122 0.101 0.123 0.102 0.122 0.101

FedDTW

RCD 0.123↑ 0.102↑ 0.123↑ 0.102↑ 0.123↑ 0.102↑ 0.123↑ 0.102↑
VCPR 0.128↑ 0.105↑ 0.123↑ 0.101↑ 0.123↑ 0.101↑ 0.123↑ 0.101↑

DU 0.124↑ 0.102↑ 0.123↑ 0.101↑ 0.123↑ 0.102↑ 0.123↑ 0.101↑
NP 0.123↑ 0.102↑ 0.123↑ 0.101↑ 0.123↑ 0.101↑ 0.123↑ 0.101↑

FedAvg

RCD 0.124 0.103 0.124 0.102 0.124 0.103 0.124 0.102
VCPR 0.132 0.108 0.131 0.107 0.131 0.107 0.131 0.107

DU 0.132 0.108 0.131 0.107 0.131 0.107 0.131 0.107
NP 0.126 0.104 0.126 0.103 0.126 0.103 0.126 0.103

LTE

FPR
RCD 0.023 0.011 0.021 0.011 0.022 0.011 0.023 0.012

VCPR 0.023 0.011 0.021 0.011 0.022 0.011 0.023 0.012
DU 0.023 0.011 0.021 0.011 0.022 0.011 0.023 0.012

FedDTW
RCD 0.023↕ 0.011↑ 0.021↑ 0.011↕ 0.022↕ 0.011↕ 0.025 0.013↕

VCPR 0.023↕ 0.012↕ 0.022↕ 0.011↕ 0.022↕ 0.011↑ 0.025↕ 0.013↕
DU 0.022↑ 0.011↑ 0.021↑ 0.011↕ 0.022↕ 0.011↑ 0.025↕ 0.013↕

FedAvg
RCD 0.023 0.012 0.022 0.011 0.022 0.011 0.024 0.013

VCPR 0.023 0.012 0.022 0.011 0.022 0.012 0.025 0.013
DU 0.023 0.012 0.022 0.011 0.022 0.012 0.025 0.013

Similarly, with the univariate Solar Power and METR-LA datasets, the average RMSE and MAE
values are reported in Table 2 where FedDTW also consistently outperforms FedAvg. FedDTW
achieves RMSE and MAE reductions of up to 50.65% and 46.58%, respectively, with the Solar
Power dataset, while the improvement is up to 37.69% in both RMSE and MAE with the METR-LA.
It is worth noting that we replace DALSTM-AE with RNN model for univariate datasets because of
aligning model complexity with data characteristics to provide a balanced comparison. The details
of extensive experiments for the univariate datasets are presented in the Appendix A.5 section.

The NRMSE trends illustrated in Figures 3-6 provide deeper insights into FedDTW’s performance
dynamics over 100 rounds, with blue lines (FedDTW) consistently positioned below red lines (Fe-
dAvg) across all models and scenarios. This consistent superiority is particularly pronounced in
scenarios with higher client interdependencies and communication challenges, where the gap be-
tween FedDTW and FedAvg widens. This trend suggests that as the number of clients increases or
the complexity of dependencies grows, our solution’s ideal performance becomes more apparent,
likely due to its ability to adapt to heterogeneous data distributions and communication disruptions.

In terms of convergence behavior, FedDTW exhibits superior stability and efficiency compared to
FedAvg, a result of its innovative use of historical trending data to forecast missing weights. By
predicting missing weight updates, FedDTW approximates the performance of the FPR scenario,
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leading to faster convergence and reduced error accumulation over training rounds. Moreover, the
integration of lightweight digital twin formulas for this forecasting process minimizes computational
overhead, ensuring that FedDTW imposes no significant burden on the FL training pipeline. Note
that, we decided not to visualize some first epochs since their significant improvement makes the
subsequent discrepancy between FedAvg and FedDTW unclear, as illustrated in the Appendix A.6
section at Figures 7-10 with complete epoch visualization.

(a) RCD (b) VCPR

(c) DU (d) NP

Figure 3: Global NRMSE across scenarios and models on Beijing Air dataset.

(a) RCD

(b) VCPR

(c) DU

Figure 4: Global NRMSE across scenarios and models on LTE dataset.
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5 RELATED WORK

FedAvg McMahan et al. (2017) is a widely adopted FL algorithm due to its simplicity, communi-
cation efficiency, and strong performance under IID conditions, serving as a baseline in early FL
applications Kairouz et al. (2021). However, its performance degrades significantly under non-IID
data and partial client participation Zhao et al. (2018), yet it remained prevalent due to the lack of
robust alternatives initially. While frameworks such as Flower Beutel et al. (2020) support basic
parameter aggregation and fault-tolerant strategies like FedAvg to mitigate dropout effects, they still
lack advanced weight extraction and manipulation for forecasting updates from unavailable clients.

Mimic Sun et al. (2023) mitigates dropouts by aligning local updates with central updates through
correction values but lacks weight forecasting, focusing on mimicking centralized behavior with-
out predicting absent clients’ contributions. The challenge of client heterogeneity and intermittent
availability has been studied from various perspectives Zhang et al. (2022). Ribero et al. Ribero
et al. (2022) introduced F3AST, an algorithm adapting to client availability patterns, achieving up to
186% accuracy improvements over FedAvg on CIFAR100. Yan et al. Yan et al. (2024b) proposed
FedLaAvg, leveraging gradients from all clients for stable training across convex and non-convex
settings. Besides, Jhunjhunwala et al. Jhunjhunwala et al. (2022) addressed participation variance
with FedVARP, which stores recent client updates as proxies for non-participating clients. Their
theoretical analysis shows FedVARP eliminates error due to partial participation without additional
computation costs. Similarly, Wang and Ji Wang & Ji (2022) developed a unified analysis frame-
work demonstrating that under specific conditions, FL algorithms with arbitrary participation can
achieve convergence rates matching idealized scenarios. For client unavailability, Jiang et al. Jiang
et al. (2024) introduced FedAR with local update approximation and rectification, improving test
accuracy by up to 75% compared to baselines. Moreover, Rodio and Neglia Rodio & Neglia (2024)
proposed FedStale, leveraging stale updates through staleness-aware weighting mechanisms. The
impact of biased client selection was examined by Cho et al. Cho et al. (2022), showing it can shift
convergence points to favor frequently selected clients. In the same vain, Mitra et al. Mitra et al.
(2021) developed FedLin, achieving linear convergence despite heterogeneity through gradient cor-
rection and client-specific learning rates. While these approaches address different aspects of het-
erogeneity, they mainly focus on client selection or retroactive utilization of existing updates rather
than predictive modeling of client behavior, lack predictive capabilities for future model states.

Digital twins’ application in FL systems remains largely unexplored. Yan et al. Yan et al. (2024a) de-
veloped a V2V-enhanced algorithm considering energy constraints and mobility patterns, improving
classification accuracy by 3.18% on CIFAR-10. Chahoud et al. Chahoud et al. (2023) introduced an
on-demand client deployment framework using containerization for dynamic environments, while
Liu et al. Liu et al. (2022) explored client selection in 5G/B5G networks. Weight forecasting in
FL contexts remains relatively unexplored. FedVARP and FedAR implicitly use simple prediction
by reusing recent updates, but do not model temporal evolution of weights. Momentum-based tech-
niques typically focus on accelerating convergence rather than directly addressing unavailability.

FedDTW bridges these research areas by leveraging digital twin technology with weight forecasting
for continuous client participation. While FedVARP, FedAR, and FedStale utilize previous updates,
they lack predictive capabilities for future model states. It actively anticipates client model evolu-
tion, enabling accurate virtual representations even during extended periods of unavailability. This
predictive approach represents a novel direction in FL with significant implications for system re-
silience in real-world deployments.

6 CONCLUSION AND FUTURE WORK

We presented FedDTW, a novel solution designed to address client dropout problems, leading to
missing weight updates in FL through the integration of digital twin-based weight forecasting mech-
anisms, a capability not currently addressed by existing frameworks or libraries. FedDTW con-
sistently outperforms FedAvg, achieving results near the FPR scenarios. Its ability to maintain
high-quality global models despite intermittent updates and dynamic participation underscores its
reliability, making it a vital solution for applications in various areas. Future work will explore its
adaptability to additional areas and envision extending its capabilities within standard FL platforms.
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REPRODUCIBILITY STATEMENT

The data and analysis code used to generate the results presented in this paper are available at this
repository: https://anonymous.4open.science/r/feddtw-torch-836E under an open-source license.
The experiment was performed using Python (version 3.10) with common and machine learning
libraries on an Ubuntu Linux operating system. The complete computational environment and de-
tailed instructions for reproducing the analysis are provided in the repository’s README file.
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A APPENDIX

In this section, we provide supplementary data, figures, and detailed analyses that complement the
findings outlined in the manuscript. To be more precise, this part offers in-depth insights into the
model architectures, evaluation metrics, data preprocessing techniques, FL training parameters, ex-
perimental reports, as well as performance outcomes across the univariate datasets.

A.1 MODELS AND LEARNING SETTING

We performed comprehensive experiments on the provided datasets to assess the efficacy of deep
learning models within the designed FL framework. The following are the architectural details:

RNN: A standard Recurrent Neural Network with a single layer of 128 units, followed by a MLP
with one hidden layer of 128 units.

LSTM: An enhanced version of RNN, designed to mitigate exploding gradient issues and handle
extended sequential data Lara-Benı́tez et al. (2021). It includes a 128-unit LSTM layer, with its
output connected to a MLP featuring one 128-unit hidden layer.

GRU: Similar to LSTM, this model addresses exploding gradients in RNNs but with a reduced
parameter set for computational efficiency. It comprises a 128-unit GRU layer, followed by a MLP
with a single 128-unit layer.

CNN: This network processes raw data directly using convolutional layers. The chosen CNN accepts
a three-dimensional input matrix of size (1, T,#variables) and applies four 2D convolutional layers
with filter sizes {16, 16, 32, 32}. The output is passed through a 2D average pooling layer and then
to a fully-connected layer with 128 units.

DALSTM-AE: This model integrates LSTM and autoencoder (AE) networks into an encoder-decoder
LSTM architecture that captures the long-term temporal features. Dual attention module is intro-
duced to enhance the decoder’s ability to capture different dynamic features of variables, which
can effectively solve the information loss problem induced by overly complex and long sequences.
DALSTM-AE includes a 64-unit LSTM layer and 64-unit encoder and decoder hidden layers.

A.2 MODEL TRAINING AND OPTIMIZATION

We employed the Adam optimizer Kinga et al. (2015) with a learning rate of 0.001, utilizing ReLU
as the activation function across layers. Training was optimized using Mean Squared Error (MSE)
with a batch size of 128. Besides, we conducted 100 rounds with 5 local epochs per participant with
the subsequent data preprocessing tasks and no client sampling was performed. The experiments
were executed on a workstation equipped with CPU Intel Xeon Gold 5117, 2048GB of memory and
an NVIDIA A40 48GB GPU, using Python 3.10. For each experiment, we report averaged results
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and stability metrics, including RMSE, MAE, NRMSE, training and validation losses, obtained by
retraining the models from scratch with different random seeds.

A.3 EVALUATION SCENARIOS AND METRICS

We conduct experiments on each dataset with the real-world challenging scenarios: RCD, VCPR,
NP and DU to assess the robustness of the FedAvg and FedDTW across diverse FL conditions. We
assess model performance using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),
and Normalized RMSE (NRMSE) as described below:

MAE =
1

n

n∑
i=1

|ŷi − yi|, RMSE =

√∑n
i=1(ŷi − yi)2

n
, NRMSE =

1

ȳ

√∑n
i=1(ŷi − yi)2

n
(6)

In the specified metrics, n is the number of observed values, yi is the real measurement at i− th and
ŷi is its corresponding prediction.

A.4 DATA PREPROCESSING

We conduct experiments on four datasets in which the Beijing Multi-Site Air Quality Chen (2017)
and the real LTE Physical Downlink Control Channel (LTE) Perifanis et al. (2023) are multivari-
ate datasets while the public traffic network METR-LA Li et al. (2017) and the Solar Power Ilyas
et al. (2020) datasets are univariate. Our preprocessing pipeline comprises five primary steps:

Non-IID data introducing. In fact, these datasets are typically balanced among clients, so we in-
tentionally introduced non-IID data for each client by utilizing the methodology Maat et al. (2017)
for generating synthetic time series. The reason of this synthetic data introduction is because of the
performance degradation of FedAvg on such data. Although the authors in McMahan et al. (2017)
claim that FedAvg can handle non-IID data to to a certain degree, numerous studies Zhao et al.
(2018) indicate that accuracy in FL typically declines with non-IID or heterogeneous data. In gen-
eral, this performance drop is largely due to weight divergence in local models caused by non-IID
data. Specifically, local models with identical initial parameters diverge due to varying local data
distributions. In FL, the gap between the shared global model, formed by averaging local models,
and the ideal model (trained on IID data) widens over time, slowing convergence and degrading
learning performance. Particularly, in the context where problematic clients cannot update their
weights timely, the weakness of FedAvg can be significantly worse.

Data cleansing. This preprocessing step addresses missing or corrupted data and manages outliers.
We employ a straightforward approach by replacing missing values with zeros and applying flooring
and capping techniques to handle outliers. Zero transformation is preferred over removal to maintain
data continuity. Additionally, imputing missing values with a constant may not accurately represent
time-series data, while estimating them can be computationally and energetically costly.

Data split. The data are divided into three subsets for model training, evaluation and testing. Specif-
ically, the data are split into 60% for training, 20% for validation and 20% for testing.

Data scaling. Min-Max normalization is used to eliminate the influence of value ranges.

Time-series representation. After applying the above steps, the data are represented as time-series
using a sliding window of T . Note that we use ten previous values (lag) to predict the next data.

A.5 PERFORMANCE ON UNIVARIATE DATASETS

Table 2 provides a comprehensive performance comparison across univariate time series datasets un-
der diverse FL setups with RMSE and MAE evaluation for recurrent and convolutional models. The
proposed FedDTW framework consistently outperforms the conventional FedAvg approach, achiev-
ing RMSE and MAE reductions of up to 50.65% and 46.58%, respectively, with the Solar Power
dataset, and up to 37.69% in both RMSE and MAE with the METR-LA dataset. Undoubtedly,
this can be again attributable to its innovative incorporation of lightweight digital twin mechanisms
that capture historical weight trends of individual clients to forecast missing weights. By aligning
sequence alignments and approximating absent clients’ impacts, FedDTW preserves the accuracy
of the global model, relatively comparable with the FPR, while its computational efficiency ensures
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scalability with minimal overhead. This approach is particularly critical in scenarios with succes-
sive missing updates such as VCPR, NP and DU, where FedAvg’s oversight could trigger cascading
performance degradation, thus highlighting FedDTW’s efficacy in resource-constrained, large-scale
systems.

Table 2: Averaged RMSE and MAE of the global model on the univariate datasets

Model CNN LSTM GRU RNN
Dataset Method Setup RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Solar Power

FPR

RCD 0.036 0.036 0.034 0.034 0.034 0.033 0.034 0.034
VCPR 0.036 0.036 0.034 0.034 0.034 0.033 0.034 0.034

DU 0.036 0.036 0.034 0.034 0.034 0.033 0.034 0.034
NP 0.036 0.036 0.034 0.034 0.034 0.033 0.034 0.034

FedDTW

RCD 0.041 0.041 0.040 0.039 0.040 0.040 0.040 0.040
VCPR 0.041↑ 0.041↑ 0.045↑ 0.044↑ 0.047↑ 0.047↑ 0.045↑ 0.045↑

DU 0.042↑ 0.041↑ 0.038↑ 0.038↑ 0.040↑ 0.040↑ 0.040↑ 0.039↑
NP 0.038↑ 0.038↑ 0.043↑ 0.043↑ 0.046↑ 0.046↑ 0.046↑ 0.046↑

FedAvg

RCD 0.038 0.038 0.036 0.036 0.035 0.035 0.036 0.036
VCPR 0.072 0.072 0.070 0.070 0.069 0.069 0.073 0.073

DU 0.072 0.072 0.070 0.070 0.069 0.069 0.073 0.073
NP 0.077 0.077 0.075 0.074 0.073 0.073 0.080 0.080

METR-LA

FPR

RCD 0.089 0.089 0.085 0.085 0.081 0.080 0.084 0.084
VCPR 0.089 0.089 0.085 0.085 0.081 0.080 0.084 0.084

DU 0.089 0.089 0.085 0.085 0.081 0.080 0.084 0.084
NP 0.089 0.089 0.085 0.085 0.081 0.080 0.084 0.084

FedDTW

RCD 0.092 0.092 0.087↕ 0.087 0.082↕ 0.082↕ 0.086↕ 0.086↕
VCPR 0.083↑ 0.083↑ 0.087↑ 0.087↑ 0.082↑ 0.082↑ 0.085↑ 0.085↑

DU 0.091↑ 0.091↑ 0.084↑ 0.084↑ 0.081↑ 0.081↑ 0.084↑ 0.084↑
NP 0.081↑ 0.081↑ 0.088↑ 0.088↑ 0.083↑ 0.083↑ 0.084↑ 0.084↑

FedAvg

RCD 0.091 0.091 0.087 0.086 0.082 0.082 0.086 0.086
VCPR 0.122 0.122 0.115 0.115 0.107 0.107 0.113 0.113

DU 0.122 0.122 0.115 0.115 0.107 0.107 0.113 0.113
NP 0.130 0.130 0.120 0.120 0.114 0.114 0.119 0.119

(a) RCD (b) VCPR

(c) DU (d) NP

Figure 5: Global NRMSE across scenarios and models on Solar Power dataset.

A.6 TRAINING LOSS OVERVIEW ACROSS MODELS AND DATASETS

The comparative analysis of global test loss across 100 FL training iterations, as depicted in Fig-
ures 7-10, provides a comprehensive insight about the loss during the model training. For the LTE
dataset, which comprises only three clients, the performance advantage of FedDTW over FedAvg is
less visually pronounced due to the limited client diversity and scale. Nevertheless, FedDTW consis-
tently exhibits lower test loss values compared to FedAvg across all models and scenarios, with the

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(a) RCD (b) VCPR

(c) DU (d) NP

Figure 6: Global NRMSE across scenarios and models on METR-LA dataset

(a) RCD

(b) VCPR

(c) DU

Figure 7: Global test loss across models on LTE dataset.

difference becoming more apparent during rounds with missing client updates. This suggests that
even with a small number of clients, FedDTW’s ability to mitigate the impact of missing updates
provides a marginal but consistent improvement over FedAvg, which tends to overlook these gaps,
potentially leading to suboptimal global model updates. In contrast, the remaining datasets having
12, 21, and 50 clients respectively, amplifies the superiority of FedDTW over FedAvg, particularly
under scenarios with more complex update patterns.
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(a) RCD (b) VCPR

(c) DU (d) NP

Figure 8: Global test loss across scenarios and models on Beijing Weather dataset.

(a) RCD (b) VCPR

(c) DU (d) NP

Figure 9: Global test loss across models on Solar Power dataset

Indeed, in the RCD scenario, where client updates are randomly missing, the test loss curves for
FedDTW and FedAvg show a relatively modest separation, reflecting the intermittent nature of
dropouts that does not consistently disrupt the training process across multiple rounds. However,
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in the VCPR, NP, and DU scenarios, where missing updates occur across successive rounds, the per-
formance gap widens significantly. Obviously, in the these setups, the test loss of FedAvg exhibits
pronounced spikes and instability, indicative of its failure to adapt to prolonged absences of client
contributions, whereas FedDTW maintains a smoother and lower loss trajectory.

Note that due to the constraint of only three clients in the LTE dataset, its perfect condition supports
us in evaluating the behavior and performance of our approach on a limited FL client participation
system. Therefore, we do not necessarily experiment and provide the assessment report for this
dataset under the NP client dropout scenario.

(a) RCD (b) VCPR

(c) DU (d) NP

Figure 10: Global test loss across models on METR-LA dataset.

In conclusion, these results underscore FedDTW’s potential as a superior alternative to FedAvg,
particularly in environments with unreliable client participation or communication, and suggest av-
enues for future research into optimizing digital twin forecasting for even greater resilience across
varying client dynamics.
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