
Explicit Inductive Inference using Large Language Models

Anonymous ACL submission

Abstract

Large Language Models (LLMs) are reported001
to hold undesirable attestation bias on infer-002
ence tasks: when asked to predict if a premise003
P entails a hypothesis H , instead of consid-004
ering H’s conditional truthfulness entailed by005
P , LLMs tend to use the out-of-context truth006
label of H as a fragile proxy. In this paper,007
we propose a pipeline that exploits this bias to008
do explicit inductive inference. Our pipeline009
uses an LLM to transform a premise into a set010
of attested alternatives, and then aggregate an-011
swers of the derived new entailment inquiries012
to support the original inference prediction. On013
a directional predicate entailment benchmark,014
we demonstrate that by applying this simple015
pipeline, we can improve the overall perfor-016
mance of LLMs on inference and substantially017
alleviate the impact of their attestation bias.1018

1 Introduction019

Large Language Models (LLMs) are claimed to020

possess implicit inductive reasoning ability through021

pre-training: from the massive examples they mem-022

orized, they draw inference rules and encode them023

latently so that they can apply these rules to do024

reasoning at test time.025

However, recently McKenna et al. (2023a) has026

pointed out that LLMs are severely affected by an027

attestation bias when performing inference tasks.028

Given the question of whether premise P entails029

hypothesis H with few-shot examples, an LLM’s030

prediction is deeply bound to the hypothesis’ out-031

of-context truthfulness, instead of its conditional032

truthfulness entailed by the premise. When the033

hypothesis H is attested in an LLM’s world knowl-034

edge (the LLM believes H to be true), the LLM is035

likely to predict the entailment to be true, regardless036

of the premise. As a result, LLMs suffer a signifi-037

cant performance drop when the entailment labels038

disagree with the attestation label of hypothesis H .039

1Our codes and data will be released upon publication.

Figure 1: An example of the explicit inductive infer-
ence pipeline. While direct entailment inquiry gets a
wrong answer, it can be corrected by reasoning on more
alternative examples.

Although this is a severe problem limiting LLMs’ 040

performance on non-attested inferences, we argue 041

that with careful design, this bias can instead be 042

exploited to improve LLM performance on infer- 043

ence tasks. We notice a statistically true conclusion: 044

Given an entailment inquiry P |= H , the attesta- 045

tion bias is harmful only when the premise P is not 046

attested. If we control P to always be attested, then 047

P |= H will naturally share the same truth label 048

with H on a distributional basis, which dissolves 049

the negative effects of LLMs’ attestation bias. 050

Applying this idea, we propose a simple yet ef- 051

fective Explicit Inductive Inference pipeline with 052

LLMs. As illustrated in Figure 1, the core idea is 053

to transform a premise into a set of attested alterna- 054

tives by replacing the arguments, and to aggregate 055

the LLM’s predictions on these derived inquiries to 056

support answering the original question. 057

We test our pipeline with two LLMs on 058

Levy/Holt (Levy and Dagan, 2016; Holt, 2019), a 059

difficult directional predicate inference dataset, and 060

further analyze the influence of our pipeline against 061

the models’ attestation bias. The results show that 062

our pipeline can improve not only LLM’s overall 063

performance on predicate inference, but also their 064
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robustness against the attestation bias.065

To summarize our contribution, we propose an066

easy-to-use inference pipeline that 1) improves067

LLMs’ performance on predicate inference, 2) sub-068

stantially alleviates negative effects of the LLMs’069

attestation bias, and 3) uses LLMs’ own generation070

capability without requiring external knowledge.071

2 Related Work072

LLMs accumulate a bias towards factual knowl-073

edge by encoding massive facts during pre-training074

(Roberts et al., 2020; Carlini et al., 2022; Yan et al.,075

2022). Recently, McKenna et al. (2023a) pointed076

out that LLMs suffer from an attestation bias on077

inference tasks as a result. Note that the effect of078

attestation bias is similar to that of the hypothesis-079

only baseline (Poliak et al., 2018), but while the080

former is a bias from pre-training, the latter origi-081

nates from dataset artifacts in supervised learning.082

In other tasks, previous work has mitigated the083

bias towards attestation by introducing counterfac-084

tual examples (Wang et al., 2022b; Zhou et al.,085

2023; Wang et al., 2023) or replacing argument086

entities with their type labels (Zhou et al., 2024).087

In this paper, we go one step further to show that in088

an inference task, we should instead encourage the089

models to generate factual alternative examples.090

The idea of aggregating multiple versions of091

LLMs’ outputs has been explored in prior work.092

Wang et al. (2022a) encourage LLMs to generate093

multiple reasoning paths for one question, while094

Zhou et al. (2022) embody one question with mul-095

tiple prompts. In contrast, our method creates se-096

mantically different alternative questions, which097

serve as extra evidence for an original inquiry.098

3 Explicit Inductive Inference099

3.1 Task and Definition100

The task of this work is to determine the entailment101

relation between two binary predicates where both102

predicates are contextualized with the same pair of103

entities. The input will be in the form of two triples104

(s, p, o)− (s, h, o) where s is the subject entity, o105

is the object entity, p is the premise predicate, and106

h is the hypothesis predicate. There are also cases107

in the form of (s, p, o) − (o, h, s) where the two108

entities are swapped in position like the example in109

Figure 1. Without loss of generality, we describe110

our method with inputs in the former format.111

The goal is to predict whether the premise triple112

entails the hypothesis triple, namely the truth label113

of (s, p, o) |= (s, h, o). To use an LLM to predict 114

entailments, each input triple pair will be wrapped 115

into a prompt. We mark them as Q[(s, p, o) |= 116

(s, h, o)] and call them entailment inquiries. 117

3.2 Exploit the Attestation Bias 118

As stated in Section 1, the attestation bias of LLMs 119

can be less detrimental if the premise P is attested 120

in an entailment inquiry, because the truth label of 121

P |= H would likely be the same as the attestation 122

label of H . Besides this, two more insights are 123

guiding our pipeline design: 124

1) The label of a predicate entailment inquiry 125

does not change when the argument entities are 126

replaced, as long as the substitution entities keep 127

the same semantic type labels. 128

2) Factual ̸= Attested. Factual knowledge from 129

external sources may not be confirmed by LLMs 130

for being longtail, absent in pre-training data, or 131

conflicted with out-of-date records. Facts gener- 132

ated by LLMs, on the other hand, are highly likely 133

to be recognizable by themselves. Even halluci- 134

nated generations are acceptable since they are still 135

attested if not factual. 136

Based on these understandings, we propose 137

the Explicit InDuctive Inference (EIDI) pipeline. 138

Given an entailment inquiry P |= H , our EIDI 139

pipeline first transforms P into a set of different 140

attested premises P ′s by replacing the arguments 141

of P . Then the corresponding set of H ′s is derived, 142

so that we now have a list of alternative inquiries 143

P ′ |= H ′. Finally, we explicitly do an inductive 144

inference on these new inquiries by drawing a con- 145

cluded entailment prediction from an LLM’s an- 146

swers to these alternative inquiries. 147

It is worth mentioning that given P is true, logi- 148

cally, H is always true if P |= H but not vice versa. 149

We can only statistically conjecture P |= H if we 150

observe a high probability of H being true (pre- 151

dicted by the LLM according to the bias). There- 152

fore, we encourage the transformation module to 153

generate a variety of different alternative premise 154

triples, so that a more reliable conclusion can be 155

drawn when we aggregate the predictions. 156

3.3 Explicit Inductive Inference Pipeline 157

Typing While the label of (medicine X, kills, dis- 158

ease Y) |= (medicine X, is a cure of, disease Y) is 159

True, one can not therefore deduce that (Person X, 160

kills, animal Y) |= (Person X, is a cure of, Animal 161

Y). To prevent these errors incited by the ambiguity 162

of predicates, for each premise triple (s, p, o), we 163
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query the LLM to obtain the entity type label of the164

subject and object ts and to. Here we do not prede-165

fine a vocabulary for possible type labels since the166

purpose is only to disambiguate.167

Transformation With these assigned type la-168

bels we query the LLM to generate alternative169

arguments for the premise predicate. From one170

typed premise triple (s, ts, p, o, to), we encour-171

age the LLM to generate a list of new attested172

triples (s1, p, o1), ..., (sn, p, on) where the substi-173

tution entities keep the original types, i.e. any174

si still has type ts and any oi still has type to.175

These n new premise triples will then be expanded176

to n new entailment inqueries Q[(s1, p, o1) |=177

(s1, h, o1)], ..., Q[(sn, p, on) |= (sn, h, on)].178

Prediction At this point, we input each derived179

entailment inquiry Q[(si, p, oi) |= (si, h, oi)] to180

the LLM to get their response and corresponding181

probability score. Then we take the average score182

of these n different scores as our explicit inductive183

score for the original entailment inquiry.184

4 Experimental Setup185

4.1 Datasets186

We test our pipeline on the Levy/Holt dataset187

(Levy and Dagan, 2016; Holt, 2019), a predicate188

entailment dataset where each entry consists of189

two triples in the form of (s, p, o) − (s, h, o) or190

(s, p, o) − (o, h, s), and a following label shows191

whether the premise triple entails the hypothesis192

triple. We use the directional portion of this dataset193

following prior work (McKenna et al., 2023b; Chen194

et al., 2022; Li et al., 2022), as it is a challenging195

test focused on the understanding of entailment196

beyond bi-directional similarity.197

Following McKenna et al. (2023a), we further198

analyze how the LLMs’ attestation bias is digested199

in our method. We split the Levy/Holt dataset ac-200

cording to whether the label of P |= H agrees201

with the attestation label (obtained by querying202

the LLM) of H for each entry. For the 1784 en-203

tries in the full directional test set, this yields an204

attestation-consistent subset of 956 entries and an205

attestation-adversarial subset of 828 entries.2 We206

report results on both the directional test set and its207

two subsets in Section 5.208

2The substantial size of the attestation-adversarial subset
demonstrates the detrimental effect of attestation bias in real
datasets.

4.2 LLMs 209

We test our method with two LLMs, GPT-3.5 and 210

Llama3. GPT-3.5 (OpenAI, 2023) is a set of pow- 211

erful closed-source commercial LLMs. We choose 212

the GPT-3.5-Turbo version for its widespread use 213

in the research community. Llama3 (Meta, 2024) 214

is a SOTA open-source LLM, where we choose 215

the largest Llama3-70B-instruct version for its op- 216

timized capacity. Throughout our experiments, we 217

use greedy decoding for reproducible results. 218

Our pilot studies on the development set indi- 219

cate that adding few-shot examples in the predic- 220

tion module may add extra bias to the model, and 221

therefore introduce unnecessary considerations on 222

finding proper examples under each setting. Hence 223

we choose zero-shot prompts for the prediction 224

module and one-shot prompts for the transforma- 225

tion module where the only example is the original 226

premise. Discussion on prompt selection and a list 227

of all prompts we use are included in Appendix A. 228

4.3 Baselines and Metric 229

We compare EIDI against two baselines. We con- 230

struct MCQentity baseline by directly wrapping the 231

original premise and hypothesis with the Multipe- 232

Choice Question prompt used in our prediction 233

module, and passing it to the LLM to get an en- 234

tailment prediction. MCQtype baseline is set up 235

in the same way where the only difference is that 236

we first replace the arguments of the predicates by 237

their entity types. To keep ourselves aligned with 238

previous work, we use the 48 FIGER types (Ling 239

and Weld, 2012) as in McKenna et al. (2023a) for 240

this measure, instead of the LLM-generated types 241

in Section 3.3. 242

We draw the precision-recall curve for EIDI and 243

each baseline by inspecting the final output token 244

probability of the model’s response. As a result 245

of the multiple-choice prompt design, returned an- 246

swers always start with a choice mark where A is 247

for entailment and B is for non-entailment. For 248

baseline methods, we score that one token’s prob- 249

ability. For our EIDI pipeline, we calculate the 250

average score of the k output tokens’ probabilities. 251

Following Li et al. (2022); McKenna et al. 252

(2023a), we calculate the normalized area-under- 253

curve (AUCnorm) as an indicator of the model’s 254

performance. This measure describes how much 255

better a model is over a degenerate baseline return- 256

ing positive answers to every data entry. 257
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Model

Pipeline GPT-3.5 Llama3

MCQentity 23.85 36.66
MCQtype 25.88 35.13
EIDIall 35.52 50.89

EIDI1 31.16 41.85
EIDI2 32.10 46.75
EIDI5 33.41 49.61

Table 1: Overall normalized Area-Under-the-Curve (%)
of our EIDI pipeline and the two baselines on the full
Levy/Holt directional test set. EIDIi inspects only i
alternative inquiries, and EIDIall considers all examples
obtained in the transformation step.

5 Results and Discussion258

5.1 Overall performance259

Table 1 shows the performance of each model on260

the directional Levy/Holt test set. With both LLMs,261

our EIDIall pipeline gains a significant improve-262

ment over the two baseline methods.263

The typical value of the size of total generated264

examples n is 10 for the EIDIall setting. It can be265

observed that the performance of EIDIi steadily266

increases along with i, confirming our hypothesis267

that with attested P ′s, the more cases of alternative268

P ′ |= H ′ generated, the more reliable our pipeline269

is. The complete results of all EIDIi settings are270

shown in Appendix B.271

An interesting observation lies between the per-272

formance of the EIDI1 setting and the baselines,273

which shows that replacing the original inquiry274

with even one self-generated example can improve275

the LLMs’ predicate inference performance. The276

difference between EIDI1 and MCQtype baseline277

also highlights the importance of instantiating at-278

tested triples. Since the effect of the attestation279

bias is already excluded from the results of the280

MCQtype, this proves that the EIDI pipeline is tak-281

ing advantage of further exploiting the bias.282

5.2 Against the bias283

Table 2 compares the performance of each method284

on attestation-consistent (cons.) and attestation-285

adversarial (adv.) subsets. Measured by the dif-286

ference of AUCnorm between the two subsets, our287

pipeline reduces the effect of LLMs’ attestation288

bias by over 20% from the MCQtype baseline, and289

over 35% from the MCQentity baseline in average.290

With both LLMs, we observe an AUCnorm of291

near 0% in the two baseline settings, demonstrating292

Model Pipeline cons. adv. diff.

GPT-3.5 MCQentity 82.04 0.00 -82.04
MCQtype 69.40 0.48 -68.92
EIDIall 56.14 9.97 -46.17
EIDI1 53.73 8.95 -44.78

Llama3 MCQentity 81.08 0.01 -81.07
MCQtype 70.25 2.41 -67.84
EIDIall 69.59 23.83 -45.76
EIDI1 63.98 15.66 -48.32

Table 2: AUCnorm (%) on the attestation-bias-split
datasets. The diff. column marks the difference be-
tween results on the attestation-consistent (cons.) and
attestation-adversarial (adv.) subsets.

the extreme inability of the LLMs to capture the 293

essential entailment signal against the attestation 294

bias in a zero-shot setting. 295

Interesting results appear again under the EIDI1 296

setting. On GPT-3.5-turbo, it slightly outperforms 297

the EIDIall setting. But this only happens because 298

EIDIall setting is doing better on the attestation- 299

consistent subset, which implies that EIDIall set- 300

ting is still the choice for best performance, while 301

EIDI1 is also a strong candidate for scenarios with 302

limited compute. 303

These results suggest that our pipeline can be 304

used to improve LLMs’ general inference perfor- 305

mance, and especially in attestation-adversarial sce- 306

narios, e.g. If lions are fed on hay, then lions eat 307

hay. As a replacement to LLM’s direct inference 308

prediction, EIDI pipeline can be easily plugged into 309

frameworks with LLMs to do various downstream 310

tasks like question answering and KG completion. 311

6 Conclusions 312

We propose an explicit inductive pipeline exploit- 313

ing the attestation bias of LLMs to do more robust 314

predicate inference. With experiments on the di- 315

rectional Levy/Holt dataset and its attestation-bias- 316

split subsets, we have shown that our baseline gains 317

a significant improvement over LLM’s primary in- 318

ference performance, and substantially reduces the 319

performance loss caused by LLMs’ attestation bias. 320

Without external knowledge, EIDI use LLMs’ 321

own generation to exploit their attestation bias. Our 322

results suggest that although biases of LLMs are 323

usually undesirable obstacles, in some scenarios 324

they may be tapped for good with careful design. 325

We advocate for similar ideas to be applied to other 326

tasks to improve LLM performance in future work. 327
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Limitations328

In this paper, we demonstrated the performance329

of our pipeline by comparing it to two baselines.330

Although we intend to exclude prompt engineering331

factors from our analysis, it has been widely ac-332

cepted that including few-shot examples and other333

prompting techniques can guide LLMs to output334

better answers. Therefore there could be further335

studies on evaluating the effects of using different336

prompts in the EIDI pipeline.337

Generating alternative inquiries and respectively338

doing inferences on them can be computationally339

expensive compared to only one determination in340

baseline settings. As a result, downstream applica-341

tions may find a trade-off between computational342

efficiency and better inference performance.343

We also tested our pipeline against the frequency344

bias that McKenna et al. (2023a) pointed out, and345

the results show that the EIDI pipeline amplifies346

this bias compared to the baselines due to its choice347

of popular entities. We argue that this reaffirms the348

challenge in achieving Pareto improvements on349

LLM robustness against biases, and leave those350

results and discussions to Appendix C.351
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A Prompts Selection459

Here we list all the prompts that we use in our460

experiments.461

Typing The purpose of this module is only to dis-462

ambiguate the predicates, therefore no vocabulary463

of allowed type labels is predefined.464

Type the entities in the following triples:465

Hitler | was born in | Poland -> a person |466

was born in | a country467

Hogs | eats | Corn -> an animal | eats | a468

food469

Aspirin | may reduce the risk of | Cancer470

-> a medicine | may reduce the risk of | a471

disease472

{s} | {p} | {o} ->473

Transformation Although we use the word474

’fact’, the generated triples are always attested475

rather than factual.476

Write {n + 1} facts in the form of " {ts}477

| {p} | {to}."478

- {s} | {p} | {o}.479

-480

Prediction This is also used for the two base-481

lines.482

Question:If {s} {p} {o}, then {s} {h}483

{o}. Is that true or false?484

Choices:485

A) True486

B) False487

Answer:488

For prediction module, when an instruction is489

required, we use the following one:490

Only return one mark A, B or C to an-491

swer the question.492

B Results on all EIDIi Settings493

Table 3 shows the performance of all EIDIi set-494

tings. Best performences are reached when all495

transformed alternative inquiries are considered.496

Model

Pipeline GPT-3.5 Llama3

MCQentity 23.85 36.66
MCQtype 25.88 35.13

EIDI1 31.16 41.85
EIDI2 32.10 46.75
EIDI3 31.47 47.52
EIDI4 32.05 48.60
EIDI5 33.54 49.61
EIDI6 33.41 50.42
EIDI7 34.68 50.13
EIDI8 34.76 50.36
EIDI9 35.28 50.39
EIDI10 35.52 50.01
EIDI11 - 50.52
EIDI12 - 50.89

Table 3: AUCnorm (%) of all EIDIi settings.

C Frequency Bias 497

We also tested our pipeline on the frequency bias 498

using the same dataset split measure as that for 499

attestation bias. The dataset that we use is from 500

McKenna et al. (2023a)’s work, where we have 501

972 entries of frequency-consistent input and 220 502

entries of frequency-adversarial input. 503

Compared to baselines, the EIDI pipeline intro- 504

duces extra frequency bias. This is expected since 505

our transformation module is not designed to alter 506

the relative frequency of the predicates, and may 507

have amplified the frequency bias by taking popular 508

alternative entities generated by the LLMs. This re- 509

sult reaffirms the challenging nature of directional 510

inference and the difficulty in improving robustness 511

against multiple biases at once. 512

Model Pipeline cons. adv. diff.

GPT-3.5 MCQentity 20.58 29.38 +8.80
MCQtype 24.49 32.93 +8.44
EIDIall 40.66 20.83 -19.83
EIDI1 33.94 18.83 -15.11

Llama3 MCQentity 33.30 47.87 +14.57
MCQtype 31.47 47.19 +15.72
EIDIall 51.97 42.27 -9.70
EIDI1 39.78 35.32 -4.46

Table 4: Normalized area-under-curve(%) on the
frequency-bias-split datasets.
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D Computational Cost513

Our experiments on Llama3-70B-Instruct are ap-514

plied on two A6000 GPUs. For 1784 entries and515

10 alternative inquiries for each entry, the typing516

module takes about 3 GPU hour, the transforma-517

tion module takes about 100 GPU hours, and the518

prediction module takes about 6 GPU hours.519
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