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Figure 1. Human-centered Evaluation for Emotional 3D Animation in VR. Participants interact with a virtual character using a VR
headset in a modular setup that supports various text-to-speech (TTS) and speech-driven 3D animation methods. The system generates 3D
facial and body animations from TTS speech segments, maps them onto a textured character via UV mapping, and renders them in real-time
using Blender (OpenXR). Participants’ positions are tracked via base stations, and a tablet is used for in-session feedback.

Abstract

Facial expressions and body gestures are vital for conveying001

emotion in social interaction. While generative models can002

produce speech-synchronized 3D animations, traditional 2D003

evaluations often miss user-perceived emotional quality. We004

present a VR-based user study (N = 48) evaluating three005

state-of-the-art speech-driven 3D animation models across006

two emotions—happiness (high arousal) and neutral (mid007

arousal)—using user-centric metrics: arousal realism, nat-008

uralness, enjoyment, diversity, and interaction quality. We009

also compare against real human expressions generated via010

a reconstruction-based method. Models explicitly encoding011

emotion achieved higher recognition rates than those driven012

solely by speech. Happy animations were rated significantly013

more realistic and natural than neutral ones, highlighting014

challenges in modeling subtle emotion. Generative models 015

underperformed compared to reconstructions in facial ex- 016

pression quality, and all received comparable ratings for 017

enjoyment and interaction quality. Users reliably recog- 018

nized gesture diversity across generative outputs, motivating 019

integration of perceptual feedback into animation models. 020

1. Introduction 021

Realistic VR interactions depend on generating expressive 022

verbal and non-verbal behaviors, such as gestures and fa- 023

cial expressions [19, 24, 35]. These cues are vital for con- 024

veying emotion [7, 34], yet challenging to synthesize con- 025

vincingly. Early systems used rule-based or motion-capture 026

approaches [3, 17], but recent generative models enable scal- 027
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Figure 2. Qualitative comparison of generative and real animations. Top: Sample frames from three generative models—EMAGE [26],
TalkSHOW [38], and AMUSE (body) + FaceFormer (face) [4, 12]. Bottom: Reconstruction-based baseline using video input. PIXIE [14]
and DECA [15] extract pose, expression, and texture, which are rendered per frame to create high-fidelity human-like animations.

able, speech-driven 3D animation [4, 6, 8, 38]. However,028

most evaluations rely on objective metrics [25, 40], overlook-029

ing user perception. Studies rarely assess full-body, emotion-030

ally rich animations in real-time VR dialogue [5, 9, 10].031

We address this gap via a VR-based user study032

(N = 48) comparing three speech-driven generative mod-033

els—AMUSE [4], TalkSHOW [38], and EMAGE [26]—and034

FaceFormer [12] for facial animation, and PIXIE [14] as a035

real-human baseline. Using SMPL-X avatars [28], we evalu-036

ate two arousal levels (happy, neutral) across five perceptual037

metrics: realism, naturalness, enjoyment, diversity, and in-038

teraction quality. Our contributions are: (1) A perceptual039

evaluation of emotional 3D animation in immersive, real-040

time VR dialogue; (2) Comparative user study of generative041

vs. real-human animation; (3) Analysis of strengths and042

limitations in current models for expressive interaction.043

2. Related Work044

Social Interaction in VR. Human communication relies045

on tightly coupled speech and gestures, which share sen-046

sorimotor representations [1, 18] and can complement or047

replace each other [22, 27]. Emotion modeling often 048

uses categorical (e.g., Ekman [11]) or dimensional (e.g., 049

arousal–valence [33]) frameworks. We adopt the dimension 050

framework and validate perception via an Ekman-style clas- 051

sifier. In VR, character animation has traditionally relied 052

on rule-based or teleoperated systems [3, 17], while emerg- 053

ing platforms (e.g., Synthesia, Replika) offer expressiveness 054

with limited user controllability. Previous work has explored 055

rendering, animation, and social cues [5, 21, 23, 31], al- 056

though often without real-time generative control. 057

Generative Animation Models. Recent models synthesize 058

speech-driven 3D facial and body animation [13, 20, 37], 059

with works using SMPL-X [28] meshes. Emotion-aware ani- 060

mation generation is evolving [4, 39], but few studies eval- 061

uate these in real-time VR. Our work combines emotional 062

TTS and generative animation in VR, enabling perceptual 063

evaluation of interaction quality. 064

3. Implementation Details 065

System Overview. We implement a modular VR pipeline in- 066

tegrating speech-driven 3D animation models with TTS and 067
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real-time rendering in Blender. Generated animations are068

mapped onto a textured SMPL-X [28] avatar and streamed to069

participants using an HTC Vive Pro 2 via Blender’s OpenXR070

interface.071

Generative Models. We evaluate three state-of-the-art072

models: EMAGE [26], TalkSHOW [38], and AMUSE [4].073

AMUSE is combined with FaceFormer [12] to enable full-074

body animation. All models generate 3D facial and body075

motion from speech. EMAGE uses a rhythm-aware TCN076

and VQ-VAE, TalkSHOW applies Wav2Vec features with a077

split architecture (VQ-VAE for body, transformer for face),078

while AMUSE uses a ViT-based feature encoder and condi-079

tional diffusion model for emotion-aware gesture generation.080

FaceFormer provides frame-level facial expressions via au-081

toregressive transformers.082

Animation Integration. Model outputs (pose and expres-083

sion parameters) are retargeted to a SMPL-X avatar with084

consistent shape and texture across methods. FaceFormer085

outputs are converted from FLAME topology to SMPL-X086

expression parameters via optimization and then aligned087

frame-wise with body gestures. For all methods, dialogue088

responses are templated, converted to speech using PlayHT089

TTS [29], and used as driving audio input.090

Real Human Baseline. We compare generative animations091

against a reconstruction-based method using real human092

video input. We employ PIXIE [14] for body and facial093

parameter estimation and DECA [16] for high-fidelity facial094

displacement. Sequences are rendered using per-frame UV-095

mapped textures and lighting, exported via PyTorch3D [30],096

and animated in Blender using geometry nodes (Fig. 2).097

Rendering Setup. All animations are rendered with con-098

sistent camera, lighting, and background using Blender 3.4.099

The SMPL-X add-on handles mesh import, rigging, and real-100

time playback. Audio were sampled at 16 kHz, and models101

were run with default hyperparameters.102

4. Human-centered Evaluation103

4.1. Research Questions104

We examine six research questions comparing happy and105

neutral animations: (RQ1) Which method yields the high-106

est perceived realism during interaction? (RQ2) Which107

model produces the most natural facial expressions and body108

gestures? (RQ3) Do methods affect perceived enjoyment? 109

(RQ4) Do they differ in interaction quality? (RQ5) Can users 110

perceive motion diversity when shown two neutral anima- 111

tions of the same utterance? (RQ6) Can participants correctly 112

identify the intended arousal level of a given animation? 113

4.2. User Study 114

Participants and Setup. We recruited 48 participants (28M, 115

20F; age 19–48, M = 26.7, SD = 5.3) via university chan- 116

nels. Most (70.8%) had played video games in the past year, 117

and their prior VR experience ranged from below average 118

(6.3%) to very good (22.9%). All gave informed consent 119

and received gift cards. The study was approved by the 120

local ethics board. Participants wore an HTC Vive Pro 2 121

headset (2448×2448 per eye, 90Hz), tracked via SteamVR 122

base stations. The VR environment was rendered in Blender 123

3.4 with OpenXR, running on a workstation (i9-13900K, 124

64GB RAM, RTX A6000). Animations were pre-generated 125

to ensure synchronized playback during interaction. 126

Design and Procedure. We employed a within-subject 127

design with two factors: method (EMAGE, TalkSHOW, 128

AMUSE+FaceFormer, PIXIE+DECA) and scenario (Happy, 129

Neutral, Diversity), totaling 12 conditions per participant. 130

HEA and NEA involved short conversations reflecting high 131

or mid arousal; DV showed two agents performing the same 132

utterance with varied gestures. Prompts/responses were 133

scripted and counterbalanced using a Latin Square. Partici- 134

pants read a prompt, wore the headset to view the animation, 135

then removed it to complete a brief survey. This was re- 136

peated for all 12 trials, with additional pre- and post-study 137

questionnaires on demographics and overall experience. 138

Measures. A 21-item questionnaire assessed realism, fa- 139

cial/body naturalness, interaction quality, emotion recogni- 140

tion, diversity, and social presence using Likert scales (5- 141

point, 3-point for arousal, binary for diversity). Items were 142

adapted from prior VR and animation studies [2, 17, 32]. 143

Analysis. Due to non-normality, we used Aligned Rank 144

Transform (ART) ANOVA [36], with Bonferroni corrections 145

for pairwise comparisons. 146

5. Results 147

Perceived Realism, Naturalness, and Enjoyment. Ani- 148

mations expressing happy emotion were rated significantly 149
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Figure 3. Summary of Likert ratings. Ratings for Animation Realism, Naturalness (face/body), Enjoyment, and Interaction Quality.
EMAGE, TalkSHOW, PIXIE+DECA, and AMUSE+FaceFormer are denoted as M1–M4; ‘High’ and ‘Low’ indicate happy and neutral.

more realistic and natural than neutral ones (p < 0.001150

and p = 0.01, respectively), with no overall method ef-151

fect for realism or body gestures. For facial expressions,152

PIXIE+DECA outperformed EMAGE (p = 0.01), espe-153

cially in neutral conditions. EMAGE received lower facial154

ratings for neutral, while TalkSHOW performed better in155

the happy condition. Enjoyment ratings showed no signifi-156

cant differences across methods or arousal levels and were157

generally neutral.158

Interaction Quality and Emotional Recognition. Talk-159

SHOW was rated highest in interaction quality, significantly160

outperforming AMUSE+FaceFormer (p = 0.027), with no161

other significant method or emotion effects. Emotion recog-162

nition accuracy was higher for neutral (79%) than for happy163

(61%). AMUSE+FaceFormer had the highest high-arousal164

recognition, while PIXIE+DECA led for neutral, suggesting165

real human reconstructions better convey subtle emotions,166

while emotion-aware generative models better support high-167

arousal expression.168

Motion Diversity and Overall Impressions.169

AMUSE+FaceFormer showed the highest perceived170

diversity (96%), with EMAGE lowest (71%). TalkSHOW171

and PIXIE+DECA fell in between (79%), aligning172

with computed joint-space diversity metrics (2-norm:173

AMUSE+FaceFormer 2.94, EMAGE 2.53, TalkSHOW174

2.08). PIXIE+DECA showed no diversity due to its175

deterministic reconstruction. Post-study ratings indicated176

PIXIE+DECA was most favored for realism and facial177

quality, while AMUSE+FaceFormer maintained balanced178

impressions. EMAGE and TalkSHOW were perceived as179

lower in social closeness, highlighting the advantage of180

reconstruction-based methods in conveying subtle emotion 181

and presence. All user ratings are summarized in Fig. 3. 182

6. Discussion and Conclusion 183

Our study reveals that perceived animation quality varies 184

significantly with emotional arousal. High-arousal (happy) 185

animations were rated as more realistic and natural than 186

neutral ones, with AMUSE+FaceFormer and PIXIE+DECA 187

leading in emotion recognition accuracy. PIXIE+DECA pro- 188

duced the most natural facial expressions—particularly for 189

subtle emotions—but its reliance on real video input and long 190

inference time (412s for 10s generation) limits scalability. 191

AMUSE+FaceFormer achieved strong arousal recognition 192

and high diversity, balancing expressiveness with a moderate 193

runtime (8.5s). TalkSHOW (20.3s), though lower in emo- 194

tional expressiveness, ranked highest in interaction quality. 195

EMAGE (0.8s), while the fastest, was the least diverse. Par- 196

ticipants identified neutral arousal more accurately overall, 197

with mid-arousal gestures proving easier to interpret across 198

models. 199

Across methods, animation diversity was best perceived 200

in AMUSE+FaceFormer (96%) and lowest in EMAGE 201

(71%), aligning with quantitative diversity scores. All gener- 202

ative models showed potential for creating believable agents, 203

though enjoyment and interaction quality remained limited 204

compared to human-based animation. These findings high- 205

light the importance of combining perceptual user studies 206

with technical evaluation to guide the development of expres- 207

sive, emotionally intelligent virtual characters for immersive 208

social interaction. 209
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Troje, and Marc-André Carbonneau. Zeroeggs: Zero-shot 288

example-based gesture generation from speech. Computer 289

Graphics Forum, 42(1):206–216, 2023. 1 290

[20] Shiry Ginosar, Amir Bar, Gefen Kohavi, Caroline Chan, An- 291

drew Owens, and Jitendra Malik. Learning individual styles 292

of conversational gesture. In Proceedings of the IEEE Con- 293

ference on Computer Vision and Pattern Recognition, pages 294

3497–3506, 2019. 2 295

[21] Rosanna E. Guadagno, Jim Blascovich, Jeremy N. Bailenson, 296

and Cade Andrew McCall. Virtual humans and persuasion: 297

The effects of agency and behavioral realism. Media Psychol- 298

ogy, 10:1 – 22, 2007. 2 299

[22] Thomas C Gunter and Patric Bach. Communicating hands: 300

5



ICCV
#17

ICCV
#17

ICCV 2025 Submission #17. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Erps elicited by meaningful symbolic hand postures. Neuro-301

science letters, 372(1-2):52–56, 2004. 2302

[23] Elena Kokkinara and Rachel Mcdonnell. Animation realism303

affects perceived character appeal of a self-virtual face. Pro-304

ceedings of the 8th ACM SIGGRAPH Conference on Motion305

in Games, 2015. 2306

[24] Catherine Oh Kruzic, David Kruzic, Fernanda Herrera, and307

Jeremy N. Bailenson. Facial expressions contribute more308

than body movements to conversational outcomes in avatar-309

mediated virtual environments. Scientific Reports, 10, 2020.310

1311

[25] Ruilong Li, Shan Yang, David A. Ross, and Angjoo312

Kanazawa. Ai choreographer: Music conditioned 3d dance313

generation with aist++, 2021. 2314

[26] Haiyang Liu, Zihao Zhu, Giorgio Becherini, Yichen Peng,315

Mingyang Su, You Zhou, Xuefei Zhe, Naoya Iwamoto, Bo316

Zheng, and Michael J. Black. Emage: Towards unified holis-317

tic co-speech gesture generation via expressive masked audio318

gesture modeling. In Proceedings of the IEEE/CVF Confer-319

ence on Computer Vision and Pattern Recognition (CVPR),320

pages 1144–1154, 2024. 2, 3321
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