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ABSTRACT

Most Machine Learning (ML) models are “black box” models, but in critical
domains such as healthcare, energy, finance, military, or justice, they need to be
globally and exactly interpretable. Creating ML models convertible by design
into rule-based models is an attractive solution: they produce all the rules (global
nature of interpretability) that allow us to obtain exactly the output result (exact
nature of interpretability). Today, these rule-based models are mainly decision
trees, whose natural interpretability is outweighed by their poor performances
and scalability. In this paper, we offer a new three-step framework, TT-rules, that
extracts and optimizes exact rules from a recent family of Convolution Neural
Networks (CNNs) called Truth Table nets (TTnets). First, we show how to extract
rules R in Disjunction Normal Form (DNF) from TTnets, which we adapt and
enhance for tabular datasets. Secondly, we explain how the TT-rules framework
permits the optimization of two key interpretability factors, namely the number of
rules and their size, transforming the original set R into an optimized Ropt. Our
rule-based model is thus composed of Ropt with a final binary linear regression and
allows multi-label classification. In a third step, we improve the rules’ visualization
by converting them into Reduced Ordered Binary Decision Diagrams (ROBDD)
and enriching them by computing interesting associated probabilities. To evaluate
TT-rules’ performances, we applied it to two tabular healthcare datasets and two
fairness datasets. Our framework reaches competitive results compared to state-of-
the-art rule-based models in terms of accuracy, complexity, and statistical parity,
also giving exact and global interpretability. In addition, we show that practitioners
can use their domain knowledge to diagnose individual fairness of a given TT-rules
model by analyzing and further modifying the rules Ropt. As an example of the
compactness of our framework’s output, we draw all the rules in Ropt for one
model on the Adult dataset (only 15 conditions for an 84.6% accuracy).

1 INTRODUCTION

Lack of explainability and difficulty in integrating human knowledge are well-known concerns for
Deep Neural Networks (DNNs) and more generally for all ensemble ML models due to their large
complexity Zhang et al. (2021); He et al. (2020); Ribeiro et al. (2016; 2018); Molnar (2020); Fryer
et al. (2021). Therefore, the global and exact interpretability of these systems is the subject of intense
research efforts, especially for safety-critical applications Driscoll (2020); Regulation (2016); Osoba
& Welser IV (2017).

In practice, rule-based models Freitas (2014), like tree-based models Quinlan (1986; 1987); Bessiere
et al. (2009), can easily provide global explanations, i.e. independent of the input, and exact, i.e.
giving the same output as the model. However, despite their intrinsic interpretable nature, their
performances are lower than those of other less interpretable family models including DNN or
ensemble ML models such as Random Forest Breiman (2001).

Rule-based models produce predicates for the decision that are expressed in DNF. For example, in
the Adult Census dataset Dua & Graff (2017) one rule of the model for determining whether an
individual would be reaching yearly earnings exceeding 50K$/year might be:
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((Age > 34) ∧ Maried) ∨ (Male ∧ (Capital Loss < 1k/year)) ∨ ((Age < 34) ∧ Go to University)

Despite the large number of works published on DNN interpretability Zhang et al. (2021); He
et al. (2020), few can provide as strong interpretations as those from rule-based models. Rules are
particularly suited for tabular data that contain mixed-type features and exhibit complex high-order
feature interactions. The quality assessment of a model is usually based on three criteria: a) the
performance, b) the number of rules and c) the size of each of the rules Freitas (2014).

In Benamira et al. (2022), the authors present a new convolutional neural network that is, by design,
convertible into SAT formulas. This is achieved through first lowering the number of connections
from one Deep Convolutional Neural Network layer to another, and secondly by binarising the
input/output of the filters. Thus, they decrease the complexity of the CNNs’ filters and facilitate their
encoding into SAT formulas, while maintaining the model accuracy for image classification tasks.
This novel neural network was named Truth Table Deep Convolutional Neural Network (TTnet) as
it uses internally small lookup tables. For clarity’s sake, Figure 4 in Appendix A reproduces the
illustration of the architecture of the model and of its key component, the Learning Truth Table (LTT)
block. TTnet was introduced for formal verification applications on image datasets (MNIST and
CIFAR-10), and we propose here an application to rule-based models.

Our contributions. In this paper, we present TT-rules, a three-step framework that constitutes, to the
best of our knowledge, the first CNN rule-based model for multi-label classification. I) First, in order
to apply TTnet family Benamira et al. (2022), which originally uses two-Dimensional-Convolutional
Neural Network (2D-CNN), on a tabular dataset, we extend it to 1D-CNN. To overcome the natural
limitation of TTnet being decoupled, we introduce a new input redundancy strategy to increase the
accuracy performance. Then II), leveraging the technique proposed in the original TTnet paper,
we transform each of the filters into a truth table, followed by a conversion into a DNF equation.
Another contribution of our work is the addition of a final process to convert each DNF equation
into a set of rules R. Next, to enhance this transformation, we propose two optimizations to make
the post-processing interpretability readily amenable by experts. Indeed II -a) first we decrease the
size of each rule in R by incorporating the don’t care terms in truth tables thanks to human logic, an
operation not presented in the original paper Benamira et al. (2022). II -b) Secondly, we decrease the
number of rules in R by introducing the inter-rules correlations score and by analyzing them. These
two optimizations, only possible for TTnet, transform the set R into an optimized one Ropt. We
clearly quantify the trade-off between performance, the number of rules, and the rules’ size. At the
end of the second step, the rule-based model is created. For class prediction, one only needs to sum
all the rules in Ropt according to a binary linear regression. III) In a third step, we further enhance
the global and exact interpretability III -a) by first converting all rules equations to ROBDD for better
visualization. III -b) Then, we propose to compute valuable probabilities associated with each rule of
the set of rules Ropt. For instance, the probability to have a class C knowing that the rule r ∈ Ropt

is activated P(C | r is True) and others relevant properties.

To illustrate the interpretable value of our framework, we apply it to two critical fields: healthcare
(Cancer and Diabetes datasets) and fairness (Adult and Compas datasets). We demonstrate that
our framework reaches competitive results when compared to state-of-the-art rule-based models in
terms of accuracy, complexity, and group-fairness measured with statistical parity while giving exact
and global explanations. In addition, applying our approach to the field of individual-fairness, we
establish that human knowledge-based post-processing allows us to improve the model through a
clear understanding of the learned rules and a compact decision-making mechanism. We show that
given a sensitive feature and a rule set Ropt, “ghost proxies rules” can be manually identified and
targeted. They are rules that are difficult to discover in models (hence ghost) and that contain features
that are proxies of the sensitive attribute (hence proxies). We precisely illustrate the above statement
by developing a concrete TT-rules model use-case study on the Adult dataset, given in Figure 2.
In addition, we managed to generate 5 extremely compact rules of small sizes (15 conditions in
total) while retaining a good accuracy of 84.6% on Adult dataset (for comparison other rule-set-
models Dash et al. (2018); Cohen & Singer (1999); Angelino et al. (2017) provide 82.3% accuracy
for 4 conditions or 84.9% for 230 conditions on the same dataset). The global TT-rules framework is
depicted in Figure 1.

Outline. Sections 2 describe related works. Section 3 presents our three-step TT-rules framework.
Section 4 details the TT-rules experiments on healthcare and fairness datasets. Finally, we present
TT-rules limitations and conclude in Section 5.
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Figure 1: TT-rules general framework. Top process represents the steps I to III-a). In the bottom
process, the Male attribute has been removed from for Graph Rule 1 by the human practitioner
to create Graph Rule 1’. Graph Rule R’+1 has also been added by the practitioner to improve
performance. Probabilities considered during step III-b) can be computed on each R and Ropt sets.

2 RELATED WORK

Rule-based models. Along decision trees Quinlan (1986; 1987); Bessiere et al. (2009), rules lists
Rivest (1987); Angelino et al. (2017); Dash et al. (2018) or bayesian networks Friedman et al. (1997);
Freitas (2014), rules sets Lakkaraju et al. (2016); Cohen (1995); Cohen & Singer (1999); Quinlan
(2014); Wei et al. (2019) are part of the rule-based models family. In rules sets, each rule encodes
a different class and all have the same weight. Therefore, our work may be classified in the rules
sets field. Interestingly, in Lakkaraju et al. (2016), the authors show that rules sets are ultimately
more interpretable than rules lists as they are easier to infer. Yet, to the best of our knowledge, none
of the previous rules sets models managed to propose rules for more complex tasks than tabular
datasets classification, like image datasets classification, for example Yang et al. (2021); Wang et al.
(2021). Moreover, most of them handle only binary classification. We choose to continue the work
of Benamira et al. (2022) as the authors proposed a novel CNN architecture that is encodable by
construction into DNF formulas Biere et al. (2009), that can scale to image datasets (MNIST and
CIFAR10) and can be extended to multi-label classification.

Fairness study. The recognition of dataset biases highlights the limits of learning generalization
Tommasi et al. (2017); Torralba & Efros (2011). As everyday life decision-making increasingly relies
on data-driven ML systems, the need for fairness-guaranteed algorithms arose in the regulative arena
Commission (2021). Fairness can be enforced on different levels: on the individual level, i.e. giving
similar treatment to similar individuals when only the sensitive attribute changed McNamara et al.
(2019); Dwork et al. (2012), and on a group level, i.e. not discriminating against a subgroup such
as a specific gender or ethnicity Dwork et al. (2012); Hardt et al. (2016); Balunovic et al. (2021);
Zafar et al. (2019). Fairness can be forced at different phases of the ML process: directly on the
dataset Kamiran & Calders (2012), as a training constraint Du et al. (2021); Kamishima et al. (2012)
or as post-processing Hardt et al. (2016); Pleiss et al. (2017). We refer to Mehrabi et al. (2021) for an
extensive study of related works on the topic. In this paper, we focus on individual and group fairness
at the post-processing level, exploiting the global and exact interpretability property of our model.

3 TT-RULES FRAMEWORK

In this section, we detail our three-step TT-rules framework: I) the model innovations induced by the
new nature of the application, i.e. tabular dataset classification (Section 3.1); II) the generation of the
set of rules R and its optimized version Ropt (Sections 3.2.1 and 3.2.2) as well as a formal definition
of our rule-based model (Section 3.2.3); III) the ROBDD rule format and the Rules Distribution
Table computation to enhance the rule interpretability (Sections 3.3.1 and 3.3.2).
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3.1 STEP 1: MODEL TRAINING

From 2D-CNN to 1D-CNN. TTnet was originally designed for image classification applications.
However, global and exact interpretability is easier on tabular datasets. Hence, we are adjusting some
of the elements of the original TTnet model as follows. First, we need to convert the 2D-LTT blocks
into 1D-LTT blocks. To achieve this, the normalized input of size (B,F ), with B =“Batch” and
F = “Number of Features” is converted into (B, 1, F ): which corresponds to a time series with 1
feature and F time steps. Then, we need to change the 2D-CNN autoencoder of the LTT block into a
1D-CNN autoencoder. The rest of the model remains unchanged. Notably, the final layer is a sparse
binary classification: it has double advantage of reducing the number of rules and considering that all
rules have the same weight.

Permutation strategy: improvement of the accuracy. The TTnet decoupled nature is at the same
time its strength and its weakness. It means that one feature of V , the final vector before the final
binary linear regression, can only see a subpart of all the inputs - whereas in MLP one feature of V
can see all the inputs. To overcome this natural drawback of TTnet, we present a straightforward and
efficient strategy that randomly tries multiple pairs of features. More precisely, the updated dataset
Df is composed of the original dataset D, concatenated will P permutated versions of its features:
Df = D||Perm1(D)|| . . . ||PermP (D), where || denotes the concatenation operation and Permi

are randomly chosen permutations on F elements. We demonstrate in Table 3 in Appendix B that
this method improves the TTnet accuracy.

3.2 STEP 2: CONVERSION FROM TTNET TO TT-RULES

3.2.1 FROM TRUTH TABLE TO SET OF RULES

General. Once the TTnet is trained, we need to extract the exact rules set R. To do so, we first need
to generate the truth table for the LTT blocks. As detailed previously in Benamira et al. (2022), we
generate all the inputs possible, pass them as LTT block input, and then we save its output: resulting
in the truth table. Then, we convert the truth table to general DNF form with the Quine-McCluskey
algorithm Quine (1952). Finally, we introduce a method to convert the general DNF form into rules.
We simply divide the input into patches and we replace the DNF literal with the corresponding
feature name: the number of rules for one filter corresponds to the number of patches. We repeat the
operation for all LTT blocks to get R. An example is given below.

Example 1. Consider the following 6-feature binary input: [Age > 34, Male, Go to University,
Married, Born in US, Born in France]. In this example the permutation strategy is not used. We
consider a 1D-CNN layer with one filter, a kernel size of 4, a stride of size 2, and no padding. The
1D-CNN weights are: W1 = [10 -1 3 -5]. We want to highlight here that for simplicity’s sake, we
consider filters and not LTT blocks. We define the following DNF literals F = [x0 x1 x2 x3].
As the inputs and output are binary and as the number of entries of the CNN is 4 (kernel size = 4),
we have 24 = 16 possible entries: [0 0 0 0], [0 0 0 1], · · · , [1 1 1 1]. For each input, we
calculate the corresponding output resulting from the convolution of W1 with the 16 possible literal
entries: [0, -5, 3, -2, -1, -5, 3, -2, 10, 5, 13, 8, 9, 4, 12, 7]. After binarization with the Heaviside
step function (i.e. Bin(x) = 1

2 + sgn(x)
2 ), we have ybinary = [0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1,

1]. We then apply the Quine-McCluskey algorithm Quine (1952) which gives after simplification
SATDNF

1 = (x2 ∧ x3) ∨ x0. This procedure provides us the general form of the filter but not the
rules. To get the rules, we need to consider the padding and the stride of the LTT block. In our case,
with a stride at 2 and no padding, we get 2 patches: Age> 34, Male, Go to University, Married] and
[Go to University, Married, Born in the US, Born in France]. After replacement of the literal by the
corresponding feature, we get 2 rules: RuleDNF

1 = (Go to University ∧ Married) ∨ (Age > 34) and
RuleDNF

2 = (Born in the US ∧ Born in France)∨ Go to University. Because of the decoupled nature
of TTnet, in such configuration the feature “Born in France” will never be combined as it is with
the feature “Age> 34” and the permutation strategy was proposed to overcome this limitation. We
also underline the logic redundancy in RuleDNF

2 for the place of birth: if someone is born in the US,
he/she is necessarily not born in France. The next subsection solves this issue.
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3.2.2 OPTIMIZATIONS

The optimizations presented in this section are uniquely applicable for the TTnet model as both
require that a CNN filter is expressed as a truth table.

Don’t care terms (DCT ) injection: reducing the rule’s size. We propose to inject don’t care
terms (DCT ) into the truth table. They represent the fact that for a particular input, the LTT block
output value can be equivalently 0 or 1 and the overall performance of the DNN will not be affected.
The Quine-McCluskey algorithm will then assign the optimal value to the DCT to reduce the DNF
equations. Here the injection of DCT is achieved through human common sense and reasoning and
the above Example 1 nicely illustrates this: no one can be born in France and the US at the same
time. Therefore, this implies that the literals x2 and x3 must not be at 1 at the same time, uniquely
for the second rule. Then, the DNF equation changes: we inject the DCT inside the truth table
as ybinary = [0, 0, 1, DCT, 0, 0, 1, DCT, 1, 1, 1, DCT, 1, 1, 1, DCT]. We thus get the new rule:
RuleDNF

2,reduced = Born in the US ∨ Go to University. This drastically decreases the rules’ size while
maintaining the accuracy unchanged, see Table 3 in Appendix B for more detailed results.

Truth Table Correlation metric: reducing the number of rules. To reduce the number of rules
obtained with TT-rules, we introduce a new metric called Truth Table Correlation (TTC). This metric
is based on the idea that two different LTT blocks may learn similar rules as they are all completely
decoupled from each other. Thus, to prevent rules redundancy, we introduce a correlation measure
between two LTT block rules. It is defined as follows:

TTC(y1, y2) =

{
HW (y1,y2)
|y1| − 1 if abs(HW (y1,y2)

|y1| − 1) > HW (y1,y2)
|y1|

HW (y1,y2)
|y1| otherwise.

where y1 and y2 are the outputs of the LTT blocks, y2 is the negation of y2, |y1| represents the number
of elements in y1, HW is the Hamming distance function (the Hamming distance between two
equal-length strings of symbols is the number of positions at which the corresponding symbols are
not equal). TTC metric varies from -1 to 1. For TTC = −1, the LTT blocks are exactly opposite
while they are the same if TTC = 1. We systematically filter redundant rules above the threshold
correlation of ±0.9. If the correlation is positive, we delete one of the two filters and give the same
value to the second filter. If the correlation is negative, we delete one of the two filters and give the
opposite value to the second filter.

3.2.3 RULE-BASE MODEL

At this step, we can define the optimized rules set Ropt, generated from R by applying both strategies
of DCT injection and filtering rules with high Truth Table Correlation. The rules in Ropt are
eventually summed up according to the final binary linear regression. As the final binary linear
regression is very sparse (more than 90%), it means that most rules do not take part in the prediction
class: we will only keep the ones that are summed up. Let’s consider a binary classification and
the optimized set of rules Ropt. It can be divided into Ropt,+ the set of rules that are used for class
1 in the final binary linear regression, and Ropt,− the set of rules that are used for class 0. Then,
considering an input I , and the set of rules Ropt = Ropt,+ ∪ Ropt,− the rule-based model can be
defined as follows:

Classifier(I, Ropt) =
{

1 if
∑

r+∈Ropt,+
1{r+(I) is True} −

∑
r−∈Ropt,−

1{r−(I) is True} > 0

0 otherwise.

with “r(I) is True” meaning that the input I fulfilled the rule r. In Example 1, it can be that
I is born in the US to fulfill the rule RuleDNF

2,reduced. This model can be extended to multi-label
classification, like all final linear classification matrices.

3.3 STEP 3: ENHANCING THE INTERPRETABILITY

3.3.1 ROBDD RULE FORMAT

At this step, a rule is in DNF format. However, we prefer to have the rules in a decision tree format.
Therefore, we transform our DNF into its equivalent ROBDD graph. A Binary Decision Diagram
(BDD) is a directed acyclic graph used to represent a Boolean function. They were originally
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introduced by Lee (1959); Akers (1978). In Bryant (1986), Randal Bryant introduced the Reduced
Ordered BDD (ROBDD), which is a canonical form given an identical ordering of input variables,
equivalent Boolean functions will always reduce to the same ROBDD. This is a desirable property for
determining formal equivalence and very useful for visualizing rules. We perform the transformation
with PyEda library Aqajari et al. (2021). Graphs, given in Figure 2, are small and easy to understand.

Figure 2: Adult dataset case study: our rule-based model with Ropt. Added conditions are represented
in rectangles. The original model reaches 83.6% accuracy. By modifying existing rules and incor-
porating the Human Added Rule we reach 84.6% accuracy. On the same test set, Random Forest
reaches 85.1% accuracy and Decision Tree 84.4% with depth 10. Table 1 gives related probabilities.
Rules 1 to 5 are numbered from left to right. Rule 2 was negatively correlated with another rule, and
as described in Section 3.2.2, the other is deleted and the -1 weight is related to a non activation of
the Rule 2. This shows that we can to add human knowledge to a CNN-based model. Additional
results can be found in Appendix C.

3.3.2 RULES PROBABILITY COMPUTATION

Motivations. At this stage, there are still two main limits to interpretability for experts. First,
in the case where the set Ropt is large, the ranking rules problem emerges. Practitioners need
to know which rules have more impact than others. Besides, if a user only knows if one rule
is activated, then the model does not give the user any information on how close he is getting
the prediction class 0 for example. More specifically, in Example 1, if the rule RuleDNF

2,reduced =
Born in the US ∨ Go to University is fulfilled for an individual, it only gives us the information that
one of the rules goes in the direction of “win more than 50K$/per year”. We would prefer to know
what is the probability that the class prediction is 1, without computing the other rules, and also how
often this rule is true.

Offline Computation of the Rules Distribution Table (RDT). Once the optimal ensemble Ropt =
Ropt,+ ∪Ropt,− of relevant rules is determined, we compute the Rules Distribution Table RDT: for
all rules r ∈ Ropt, we compute and store P(Class| r is True) = P(C| r is True) and
P(r is True). Algorithm 1 in Appendix D describes our construction method. The inputs of the
algorithm are the training dataset and Ropt. The output RDT is constructed as follows: first, we
compute the number of samples with the label at 1 in the dataset: it gives n1 and we note N as the
total number of samples in the dataset. Secondly, for each rule r ∈ Ropt,+, we count p1, the number
of samples such that the class is 1, and such that the input fulfilled the rule. We do the same for p0
and the class 0. Then, we compute the probability:

P(C=1| r is True) =
P(C=1)P(r is True|C=1)

P(r is True|C=1)P(C=1) + P(r is True|C=0)P(C=0)
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Table 1: RDT probabilities associated to the final rules in Figure 2, the Adult dataset case study.
Class = 1 for Rule 1 and Rule 2 and Class = 0 otherwise. P(Class| r is True) is
contracted to P(C|r).

P(C|r) P(r) P(C|r, Male) P(r, Male) P(C|r, Female) P(r, Female)

Rule 1 0.489 0.297 0.575 0.214 0.266 0.083
Rule 2 0.435 0.456 0.435 0.406 0.441 0.049
Rule 3 0.959 0.022 0.950 0.019 1 0.005
Rule 4 0.833 0.855 0.759 0.569 0.759 0.370
Rule 5 0.920 0.394 0.892 0.257 0.972 0.138

with P(C=1) = 1−P(C=0) = n1/N , P(r is True|C = 1) = p1/n1, P(r is True|C = 0) =
p0/(n− n1). We also compute P(C=1| r is True and A) with A the sensitive attribute. An
example is given in Table 1.

4 EXPERIMENTAL RESULTS

In this section, we validate quantitatively the above detailed TT-rules model enhancements. We
successively present results on four datasets (Section 4.2), a focus on fairness with a benchmark
comparison on two datasets (Section 4.3), and a full exploration of one TT-rules Ropt rules on Adult
dataset (Section 4.4).

4.1 EXPERIMENTAL SET-UP

Evaluation measures and training conditions. We use accuracy and statistical parity (defined in
Appendix E) as scores to evaluate our model’s performances. We also compute the number of rules
and define the complexity as the total number of conditions for all rules. A condition refers to an
elementary OR/AND condition on individual variables in a rule. Finally, Avg cond./rule is the average
number of conditions per rule. All the TTnet training features are detailed in Appendix F. We seeded
the experiments and they can be found online on https://github.com/anonymousiclr959/TTrules-main.

Datasets and sensitive attributes. We used two healthcare datasets: Cancer1 and Diabetes 130
US-Hospitals2 datasets from the UCI Machine Learning Repository Dua & Graff (2017). We also
used two fairness datasets: Adult3 from the UCI Machine Learning Repository Dua & Graff (2017)
and Compas 4 introduced by the ProPublica Angwin et al. (2016). We use Sex for Adult and Race for
Compas as the sensitive attributes. Details on datasets are given in Appendix F.3.

4.2 COMPARISON BETWEEN MOST ACCURATE MODEL AND SMALLEST MODEL

In Table 2 we are comparing all datasets in the most accurate model and the least complex model
between all the configuration of Table 3 in Appendix B. Going from most accurate to simplest, the
complexity metric shows substantially lower values with a 38, 2, 31, and 204 factor decrease for
the Adult, Compas, Cancer, and Diabetes datasets respectively. The % accuracy is slightly lower
−1.4%, 0%,−1.4%,−0.7% for Adult, Compas, Cancer, and Diabetes respectively.

The results of the ablation study experiments looking at the TT-rules performances on Adult, Compas,
Cancer, and Diabetes are presented in Table 3 in Appendix B. We examine the influence of the
permutation strategy and rules optimization on our model’s behavior.

4.3 FOCUS ON FAIRNESS

Using the Adult and Compas datasets, we have compared our TT-rules model to a series of rule-
based models CG Dash et al. (2018), LR Wei et al. (2019), RIPPER Cohen & Singer (1999), and
Corels Angelino et al. (2017) as well as two rule-based models optimized for fairness C-LR Zafar et al.

1https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
2https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008
3https://archive.ics.uci.edu/ml/datasets/Adult
4https://github.com/propublica/compas-analysis/raw/master/compas-scores-two-years.csv
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Table 2: Comparison between most accurate model and smallest model in TT-rules ablation study.
Smallest model refers to the least complex model. All results are computed for 5 models with 5
different k-fold for learning. ∆ refers to the difference between the Best and the Smallest model for
all metrics.

Dataset Adult Compas Cancer Diabetes

Model Best Smallest ∆ Best Smallest ∆ Best Smallest ∆ Best Smallest ∆

Accuracy (%) 84.6 83.2 1.4 66.4 66.4 0.0 97.1 95.7 1.4 57.4 56.7 0.7
Nbr. rules 137 6 131 13 13 0 371 49 322 1059 33 1026
Complexity 909 24 885 343 155 188 6401 205 6196 21644 106 21538
Avg. cond./rule 6 3 3 27 10 16 17 4 12 20 3 17

(2019) and FairCorels Aı̈vodji et al. (2019). Results are presented Figure 3 as graphics. Baselines
training details are presented in Appendix G.

Figure 3: Graphical comparison of our TT-rules model to a series of rule-based models using the
Adults or Compas fairness datasets. Triangles points with standard deviations represent our model
with red R, blue Ropt. Square points are rule-based models (CG, LR, RIPPER, and Corels) and
circle points are rule-based models optimized for fairness (C-LR and FairCorels). The first row
are graph series based on the Adult dataset and the second row represents the Compas dataset. We
charted Accuracy (%) vs Statistical parity, (Graph (A), top right positions for best performances),
Accuracy (%) vs Complexity (Graph (B), top left positions for best performances), Statistical parity
vs Complexity (Graph (C), and top left positions for best performances). All results are computed for
5 models with 5 different k-fold for learning.
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Comparison with state-of-the-art. Rule-set-based models CG Dash et al. (2018), RIPPER Cohen
& Singer (1999), and Corels Angelino et al. (2017) have approximately the same complexity as
TT-rules and the same performances for both datasets. Only LR Wei et al. (2019), which is not a
rule-set-based model, shows better performance with less complexity than our work. On the other
hand, our model offers stronger group fairness than all these rule-based models as measured by
statistical parity. When comparing the rule-based models optimized for fairness Faircorels Aı̈vodji
et al. (2019) and C-LR Zafar et al. (2019), we observed a fairer behavior than ours, though they are
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less accurate and more complex on both datasets. All in all, our method based on CNN is equivalent
to other rule-based methods while offering the advantageous capability to scale to harder tasks like
image classification.

4.4 CASE STUDY: ADULT DATATSET

Figure 2 presents the rules in Ropt in ROBBD graph format for one model on Adult dataset and
Table 1 presents the corresponding probabilities. We demonstrate the possibility to incorporate
post-processing human knowledge through the ability of changing existing rules. We compare our
model with Random Forest and decision tree. Complementary results are given in Appendix C.

General: inspecting the rules. We reach 83.6% accuracy with only 4 rules, a complexity of
8 and a statistical parity at 0.824. There are two positive rules which encode for Class=1
and two negative rules. There is a strong feature selection: rules used only 8 features among
the original 100. With the associated probabilities in Table 1, we can distinguish three “types”
of rules. First, r1, r2 are rules that are activated approximately one third to half of the time
( P(r1 is True) = 0.30 and P(r2 is True) = 0.46) and have a mild impact on the
class (P(Class=1|r1 is True) = 0.49 and P(Class=1|r2 is True) = 0.44). Then,
the rule r3 is activated very rarely (P(r3 is True) = 0.02) but is strongly discriminating
(P(Class=0|r3 is True) = 0.96). Finally, the rule r4 is often fulfilled and has a strong effect
(P(r4 is True) = 0.83, P(Class=0|r4 is True) = 0.86). Incidentally, this rules-clustering
is a starting point for rule ranking, which is the object of future work. With the human improvements
of the rules, the accuracy went further up to 84.6%(+1%), and the statistical parity to 0.838(+0.014).

Discussion on individual and group fairness with “Gender” as sensitive feature. This model
could appear at first glance as individual gender-fair: in fact, the feature “Gender” does not ap-
pear in the decision-making process in any rules. The same stand for highly correlated features
such as the “Wife” attribute of the feature “Mariage-status”. On the one hand, regarding indi-
vidual fairness on the sensitive feature “Gender”, the model appears fair. On the other hand,
regarding group-fairness, the statistical parity score of 0.838 is not maximal. Yet, the probabil-
ities in Table 1 give more information on the reasons why. In fact, rule r1 advantages Men over
Women (P(Class=1|r1is True,Male) = 0.58 > P(Class=1|r1is True,Female) =
0.27. And the negative rules are equally discriminating towards Men and Women (for example,
P(Class=0|r4is True,Male) = 0.76 = P(Class=1|r4is True,Female)). Because rule
r1 does not appear to be unrealistic nowadays regarding gender, the latter points may underline a
possible bias in the dataset.

Discussion on individual fairness with “Race” as sensitive feature: ghost proxies rules. In con-
trary to the previous paragraph, it is very clear that the model is not individually fair for “Race” sensi-
tive feature. In fact, the first rule that stands out in our model is the BornInMexico∨BornInNicaragua
rule. In a black box model, this rule would have gone unnoticed. Especially if the sensitive feature is
“Race”, a feature highly correlated to the place of birth. We named them ghost proxies rules as they
are usually invisible in a complex model and these rules contain proxies: features that are proxies of
the sensitive attribute. These ghost proxy rules, which are highly correlated to a sensitive feature are
difficult to find and extremely important to target. In this context, the global and exact interpretability
provided by our framework is essential to manage those rules, as well as the little number of rules
and the little number of conditions per rule. The detection of “ghost proxy rules” has an application
on model portability from one country to another for example: in this case, we clearly understand
that this model will need to be changed if we use it in Mexico.

5 LIMITATIONS & CONCLUSION

Limitations. Our method is mostly focused on post-processing, and the only pre-processing
amelioration is based on randomness. Moreover, there is no possibility to force some features in some
rules, explaining the features in the rules, or ranking the rules. We let these issues for future work.

Conclusion. In this work, we proposed an optimized new CNN-based framework for global and
exact interpretability with application to healthcare and fairness tabular datasets. We think that
TT-rules is a relevant tool for CNN explainability.
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A TTNET GENERAL 2D-CNN ARCHITECTURE

We present in Figure 4 the general architecture of a 2D-CNN TTnet.

The TTnet architecture Benamira et al. (2022) is composed of LTT blocks. One LTT block can
be seen as one filter of a CNN and has its own SAT expression. A LTT block is composed of two
layers of grouped 2D-CNN with an expanding factor of 8. It can be envisioned as an expanding
auto-encoder, with only 1 channel input. The intermediate values are real and the input/output values
are binary. Finally, the preprocessing TTnet block is composed of a batch normalization layer and a
step function. The TTnet classification layer is a binary linear layer. We refer to the original article
for more details.
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Figure 4: (a) General architecture of the TTnet model with a one-channel input. Layer 0 is a pre-
processing layer that allows image binarization. Then follow two layers of Learning Truth Table
(LTT) blocks: three blocks in the first layer, six in the second. It should be noted that the LTT block
of layer 2 does not take as input all the filters of layer 1, as it is usually the case: it only takes the
filter of their groups. Finally, the last linear layer performs the classification. (b) Architecture of
Learning Truth Table (LTT) block. A LTT block is composed of two layers of grouped 2D-CNN with
an expanding factor of 8. It can be seen as an expanding auto-encoder. The intermediate values are
real and the input/output values are binary.

  

B COMPLEMENTARY RESULTS ABLATION STUDY

We present additional results for the ablation study in Table 3.

Permutation strategy influence. Except for Compas, the algorithm is valuable for P ≥ 5. Indeed,
the accuracy increases by 1.2%, 0.7%, 0.4% for the datasets Adult, Cancer, and Diabetes respectively
when using the permutation strategy. On the other hand, it drastically amplifies the complexity, with
a 10 to 40-fold increase, depending on the dataset. We also note that the permutation strategy has
barely any impact on the average number of conditions per rule. This is expected as this metric is
heavily depending on the kernel size of TTnet.

Rules optimizations influence. Complexity decreases drastically from R to Ropt: between ×1.4
and ×2.8 for Adult, between ×1.9 and ×2.3 for Compas, between ×1.8 and ×5.3 for Cancer and
between ×1.4 and ×5.4 for Diabetes. On the other hand, except for Compas, the optimizations
lead to a slight decrease in measured accuracy, the largest observed decreases being −0.5%, −0.7%,
and −0.9% for the datasets Adult, Cancer, and Diabetes respectively. In addition, we can observe
that the size of each rule decreases: this is mainly due to the DCT injection. Quine-McCluskey
algorithm Quine (1952) outputs smaller rules with DCT usage. Finally, in the case P = 10, many
rules are filtered, even with the high threshold ±0.9. These optimizations are only possible for
TT-rules.

C COMPLEMENTARY RESULTS ON ADULT DATASET USE-CASE

Changing existing rules & adding a new rule. We present in Table 5 the results of all the
modifications depicted in Figure 2. We first change the existing rules by, on the one hand, optimizing
numerical values of existing conditions and on the other hand adding complementary conditions. We
optimized on the training dataset the numerical values in the “Years of Education” condition, and we
fixed it to 12. Then, we added the conditions “Is a School Prof” in Rule 2. In fact, it seems to be an
important feature as we find it in almost all other TT-rules configurations. We also added “Born In
Peru” in Rule 3 as we simply add the countries of South and Latin America (other such countries
did not change performances so we did not include them). The accuracy went up to 83.66% and
83.61% respectively and the statistical parity to 0.823 and 0.824 respectively. These changes are
done on the train, altogether leading to test the accuracy of 84.0% (+0.4%) and a statistical parity
of 0.826 (+0.02). Surprisingly, age and job type do not influence the prediction. We also noticed
that the “Statistical Weight” feature is used in most of the models. Therefore, we decided to add the
following rule displayed in Figure 2 : (Age < 28)∨Farmer∨HandlerCleaner∨Machinist∨((Age >
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Table 3: Ablation study results for TT-rules on the four datasets. All results are computed for
5 models with 5 different k-fold for learning. No permutation column refers to normal dataset.
Complexity is defined as the total number of conditions for all rules.

Dataset Permutations No Permutation P = 5 P = 10
Rule Set used R Ropt R Ropt R Ropt

Adult

Accuracy (%) 83.4 ± 0.6 83.2 ± 0.5 84.6 ± 0.3 84.2 ± 0.3 84.4 ± 0.5 83.9 ± 0.3
F1-score (%) 61.1 ± 1.3 61.1 ± 1.4 65.9 ± 1.4 66.1 ± 1.6 66.9 ± 0.6 64.0 ± 5.7
Number of rules 7.0 ± 2.2 6.0 ± 2.2 137.0 ± 6.8 130.0 ± 9.8 310.0 ± 27.8 260.0 ± 23.0
Complexity 47.0 ± 15.6 24.0 ± 8.5 909.0 ± 212.2 673.0 ± 144.5 2156.0 ± 374.5 1404.0 ± 181.7
Avgerage conditions/rule 5.6 ± 1.2 3.3 ± 1.5 6.7 ± 1.4 5.1 ± 0.9 7.8 ± 0.9 5.8 ± 0.4
Statistical Parity 99.0 ± 0.6 82.4 ± 1.1 85.1 ± 7.1 96.3 ± 2.9 93.8 ± 2.5 nan ± nan
Odds Equalized 0.0 ± 0.0 0.0 ± 0.0 -0.1 ± 0.0 -0.1 ± 0.1 -0.1 ± 0.0 -0.1 ± 0.1
Extraction time (s.) 7 ± 2 8 ± 1 9 ± 1 10 ± 2 17 ± 2 17 ± 4
Train Time (s.) 53 ± 2 56 ± 3 58 ± 1

Compas

Accuracy (%) 66.4 ± 1.3 66.4 ± 1.3 65.5 ± 1.2 65.5 ± 1.2 66.1 ± 1.6 66.1 ± 1.6
F1-score (%) 72.2 ± 1.7 72.2 ± 1.7 71.3 ± 0.7 71.3 ± 0.7 70.8 ± 2.1 70.8 ± 2.1
Number of rules 13.0 ± 1.8 13.0 ± 1.8 219.0 ± 9.9 219.0 ± 9.9 511.0 ± 9.5 511.0 ± 9.5
Complexity 343.0 ± 41.0 155.0 ± 21.8 6118.0 ± 812.3 2670.0 ± 468.4 15541.0 ± 1276.7 7974.0 ± 918.0
Avgerage conditions/rule 27.1 ± 3.2 10.3 ± 1.3 27.9 ± 2.4 12.2 ± 1.6 30.4 ± 2.4 15.6 ± 1.8
Statistical Parity 81.4 ± 3.0 81.4 ± 3.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Odds Equalized 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.1 0.0 ± 0.1 0.1 ± 0.1 0.1 ± 0.1
Extraction time (s.) 7 ± 1 7 ± 1 12 ± 1 12 ± 1 22 ± 1 21 ± 1
Train Time 117 ± 7 118 ± 3 117 ± 8

Cancer

Accuracy (%) 96.4 ± 1.0 95.7 ± 0.9 95.7 ± 0.9 95.7 ± 0.7 97.1 ± 0.6 97.1 ± 0.7
F1-score (%) 94.9 ± 1.6 94.3 ± 1.6 94.6 ± 1.4 93.8 ± 1.0 96.0 ± 1.0 96.0 ± 1.2
Number of rules 60.0 ± 3.6 49.0 ± 6.8 288.0 ± 8.7 231.0 ± 21.5 615.0 ± 22.0 371.0 ± 61.8
Complexity 1098.0 ± 239.5 205.0 ± 33.7 5222.0 ± 167.4 2924.0 ± 328.5 10467.0 ± 1902.1 4665.0 ± 1027.4
Avgerage conditions/rule 19.4 ± 2.8 4.2 ± 0.3 17.6 ± 0.6 13.3 ± 0.8 17.2 ± 2.5 12.1 ± 1.1
Extraction time (s.) 9 ± 1 9 ± 1 18 ± 1 18 ± 1 31 ± 5 30 ± 5
Train Time (s.) 19 ± 1 20 ± 2 20 ± 2

Diabetes

Accuracy (%) 56.7 ± 0.2 56.7 ± 0.2 57.0 ± 0.5 57.0 ± 0.5 57.4 ± 0.8 56.5 ± 0.9
F1-score (%) 56.7 ± 0.2 56.7 ± 0.2 57.0 ± 0.5 57.0 ± 0.5 57.4 ± 0.8 56.5 ± 0.9
Number of rules 35.0 ± 5.9 33.0 ± 5.2 406.0 ± 15.7 406.0 ± 15.7 1059.0 ± 45.5 1043.0 ± 46.2
Complexity 568.0 ± 131.9 106.0 ± 27.6 7834.0 ± 1143.0 5561.0 ± 761.1 21644.0 ± 2802.2 15475.0 ± 2224.5
Avgerage conditions/rule 16.2 ± 1.3 3.6 ± 0.4 19.4 ± 2.5 13.8 ± 1.7 20.8 ± 2.8 14.3 ± 1.7
Extraction time (s.) 19 ± 3 18 ± 2 35 ± 6 34 ± 5 68 ± 4 67 ± 5
Train Time (s.) 110 ± 4 126 ± 8 149 ± 4

60)∧ (StatisticalWeight < 300k)). The accuracy went further up to 84.6%(+1%), and the statistical
parity to 0.838 + (+0.01) . This illustrates the possibility to add human knowledge to a CNN-based
model.

Metrics affected by rule changes. In Table 5, we present the metrics affected by the different rule
changes: the accuracy and statistical parity increases with each changes. The number of conditions
increases also because of the small added rule, but remains fairly low.

Effect of the new rule on Statistical Parity. When looking at the probabilities in Table 1, we may
not understand why the Statistical Parity increases when Rule 5 is added. Therefore, we computed
the Statistical Parity for the following scenarios: once without Rule 3, once without Rule 4, and
once without Rule 5. The results are available in Table 4. We can observe that all of those rules
have a positive impact on this metric, as the metric decreases when one of the rules is removed.
Moreover, with ∆ = |P(C|r,Male) ∗ P(r,Male)− P(C|r,Female) ∗ P(r,Female)| increasing,
the Statistical Parity increase. If ∆ is small, then the events (r,Male) and (r,Female) are likely
to describe similar subgroups. If ∆ is high, then the two subgroups are likely to differ.

Table 4: Statistical Parity of the model presented in Figure 2 without the rules 3, 4 or 5. As
a remainder, the Statistical Parity of the model with all those rules is 83.83%. We denote ∆ =
|P(C|r,Male) ∗ P(r,Male)− P(C|r,Female) ∗ P(r,Female)|. The smaller is ∆, the smaller
is the impact of the Rule on the Statistical Parity.

Model Without Rule 3 Rule 4 Rule 5
Statistical Parity % 83.69 64.81 82.49

∆ 0.0140 0.1511 0.093

Other Model for Adult. Regarding this specific model in Figure 2, the rules are fully interpretable.
Yet, depending on the features learnt by TTnet, it would be sometimes not fully interpretable: indeed,
the feature Statistical Weight is a feature regarding the sampling weight of each group in the Adult
census, see Figure 5. This feature does not give a clear indication about an individual. Moreover,
some clear unfair rules regarding the Race attribute were deducted by the algorithm such as the
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Table 5: Metrics of the initial model in Figure 2 for all different rules changes, the added rule, and
those changes altogether. All those changes improve the accuracy and the statistical parity except for
the Rule 3 which only increases the accuracy.

No
Changes

Rule 2
Changed

Rule 3
Changed

Rule 4
Changed

One Rule
Added

All
Changes

Accuracy % 83.60 84.01 83.66 83.61 84.17 84.61
Complexity 8 8 9 9 13 15
Stat. parity % 82.35 82.68 82.30 82.68 83.85 83.83

Figure 5: An other example of a learned model on the Adult dataset. With this model, we reach an
accuracy of 82.28% but with much more conditions than the initial one presented in Figure 2 which
reached an accuracy of 83.6%. They have 29 conditions and 8 conditions respectively.

Born in Columbia/Dominican Republic/Ecuador features. These features are not directly the Race
attributes, but are correlated to the Race of the individual. Here, it would translate to a ghost rule
describing a Latin American. This model even learnt the Black and Asian attribute with an accuracy
of 82.28%. By removing these two conditions, we got an accuracy of 82.43%. These rules are clearly
affected by inter-attributes correlation. As such, the original dataset and the features used have to be
carefully analysed to ensure a fair algorithm.
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D RULES DISTRIBUTION TABLE ALGORITHM

We give in Algorithm 1 the process used to construct the Rules Distribution Table from a dataset, .

Algorithm 1 Build RDT function used to construct the Rules Distribution Table (RDT) from a
dataset D and a set of relevant rules R+.

1: function BUILD RDT(D,R+)
2: RDT = {}
3: n = |D|
4: n1 = card( (I,L) ∈ D| L = 1) ▷ Number of samples with label 1 in the dataset.
5: P (Class=1) = P (C=1) = n1/n
6: P (Class=0) = P (C=0) = 1− P (C=1)
7: for all r in R+ do
8: p1, p0 = 0, 0
9: for all (I, L) in D do

10: if L = 1 and r(I) is True then ▷ r(I) is True: the input I satisfies the rule r
11: p1+ = 1
12: end if
13: if L = 0 and r(I) is True then
14: p0+ = 1
15: end if
16: end for
17: P (r is True|C = 1) = p1/n1

18: P (r is True|C = 0) = p0/(n− n1)
19: P (r is True) = P (r is True|C=1)P (C=1) + P (r is True|C=0)P (C=0)

20: P (C=1|r is True) = P (C=1)P (r is True|C=1)
P (r is True|C=1)P (C=1)+P (r is True|C=0)P (C=0)

21: RDT[r] = [P (C=1|r is True), P (r is True)]
22: end for
23: return RDT
24: end function

E FAIRNESS CRITERIA

We consider a dataset sample X ∈ Rd with d ∈ N as the sample size, with a sensitive attribute
a ∈ {0, 1}, labels Y ∈ {0, 1} and a classifier h : Rd 7→ {0, 1}, X 7→ h(X) = Ŷ . We denote
Ŷa←i = h(Xa←i) the prediction of sample X , with the sensitive attribute forced to i ∈ {0, 1}. One
fairness metric is considered here: the Statistical Parity metric for quantifying group fairness. The
Statistical Parity metric is defined in Dwork et al. (2012) as 1−|P(Ŷ = 1|a = 0)−P(Ŷ = 1|a = 1)|.
The closer to 1 the metric is, the more likely the classifier will have the same performance on the two
sensitive groups of people. Maximizing group fairness metrics does not guarantee that, for a given
model, each individual has the same model prediction whatever the value of its sensitive feature: this
is individual fairness. Individual fairness is hard to quantify as there can always exist features that are
proxies of the sensitive attribute Kusner et al. (2017), which is hard to quantify. In this paper, we
propose to quantify group-fairness and, as we can compute all the rules, we propose to manually
investigate the individual fairness on a concrete use-case model on Adult dataset. Automatic detection
of individual unfairness rules is out of the scope of this paper.

F ON REPRODUCTIBILITY

F.1 MODEL ARCHITECTURE AND TRAINING CONDITIONS - GENERAL

Experimental environment. The project was implemented with Python and the library PyTorch
Paszke et al. (2019). Our workstation is constituted of a GPU Nvidia GeForce GTX 970 with 4043
MiB memory and four Intel core i5-4460 processors clocked at 3.20 GHz.
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Training method. We built our training method on top of Jia & Rinard (2020) project and we refer
to their notations for this section. We trained the networks using the Adam optimizer Kingma &
Ba (2014) for 10 epochs with a minibatch size of 128. The mean and variance statistics of batch
normalization layers are recomputed on the whole training set after training finishes.

Weights initialization. Weights for the final connected layers are initialized from a Gaussian
distribution with standard deviation 0.01 and the mask weights in BinMask are enforced to be positive
by taking the absolute value during initialization.

Other hyperparameters. We apply a weight decay of 1e − 7 on the binarized mask weight of
BinMask.

Architecture. Each dataset has the same input layers and output layer, with of course the size
adapted to the dataset for the output layer. The first layer is a Batch Normalization layer with an
ϵ of 10−5 and a momemtum of 0.1. It is followed by the LTT block, which will be detailled for
each dataset. Finally, the binary linear regression is computed, with input and output features sizes
detailled below.

F.2 MODEL ARCHITECTURE AND TRAINING CONDITIONS - DATASET SPECIFIC

Adult. We trained the Adult dataset in 10 epochs. The first layer is the Batch Normalization layer as
described above. It is followed by a LTT block. The first convolution has 10 filters. The convolution
is done with a stride of 5, a kernel size of 5 and no padding. It is followed by a Batch Normalization
layer with the same parameters as the input one. The following convolution has 10 filters and a kernel
size and a stride of 1. A last Batch Normalization finishes with the same parameter as above the LTT
Block. The final linear regression takes 200 features as input and 2 as outputs. The learning rate is
0.005.

Compas. We trained the Compas dataset in 60 epochs. The first layer is the Batch Normalization
layer as described above. It is followed by a LTT block. The first convolution has 20 filters
(amplification of 20). The convolution is done with a stride of 1, a kernel size of 6 and no padding. It
is followed by a Batch Normalization layer with the same parameters as the input one. The following
convolution has 5 filters and a kernel size and a stride of 1. A last Batch Normalization finishes with
the same parameter as above the LTT Block. The final linear regression takes 60 features as input and
2 as outputs. The learning rate is 0.0005. Only the best model in terms of testing accuracy was kept.

Cancer. We trained the Cancer dataset in 10 epochs. The first layer is the Batch Normalization layer
as described above. It is followed by a LTT block. The first convolution has 10 filters (amplification
of 10). The convolution is done with a stride of 1, a kernel size of 6 and no padding. It is followed by
a Batch Normalization layer with the same parameters as the input one. The following convolution
has 10 filters and a kernel size and a stride of 1. A last Batch Normalization finishes with the same
parameter as above the LTT Block. The final linear regression takes 80 features as input and 2 as
outputs. The learning rate is 0.005.

Diabetes. We trained the Diabetes dataset in 10 epochs. The first layer is the Batch Normalization
layer as described above. It is followed by a LTT block. The first convolution has 10 filters
(amplification of 10). The convolution is done with a stride of 1, a kernel size of 6 and no padding. It
is followed by a Batch Normalization layer with the same parameters as the input one. The following
convolution has 10 filters and a kernel size and a stride of 1. A last Batch Normalization finishes with
the same parameter as above the LTT Block. The final linear regression takes 295 features as input
and 3 as outputs. The learning rate is 0.0005.

F.3 DATASET DETAILS

All datasets have been split 5 times in a 80-20 train-test split for k-fold testing.

Adult. The Adult dataset contains 48,842 individuals with 18 binary features and a label indicating
whether the income is greater than 50K$ USD or not.
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Compas. The Compas dataset consists of 6,172 individuals with 10 binary features and a label that
takes a value of 1 if the individual does not re-offend and 0 otherwise.

Cancer. Cancer dataset contains 569 data points with 30 numerical features. The goal is to predict
if a tumor is cancerous or not. We encoded each integer value into a one-hot vector, resulting in a
total of 81 binary features.

Diabetes. Regarding the Diabetes dataset, it contains 100000 data points of patients with 50 features,
both categorical and numerical. We kept 43 features, 5 numerical and the other are categorical which
resulted in 291 binary features and 5 numerical features. We will predict one of the three labels for
hospital readmission.

G BASELINES IMPLEMENTATIONS DETAILS

Rule-based models. We used the implementations proposed in Arya et al. (2019). We implement a
cross-validation to find the corresponding relevant hyper-parameters. We also evaluate the baselines
on the same 5-fold datasets.

Rule-based models optimized for fairness. We used the results proposed in Aı̈vodji et al. (2019).
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