
Multi-Agent Policy Transfer via
Task Relationship Modeling

Rongjun Qin1,3∗, Feng Chen1∗, Tonghan Wang2∗, Lei Yuan1,3,
Xiaoran Wu4, Yipeng Kang5,

Zongzhang Zhang1†, Chongjie Zhang5†, Yang Yu1,3

1 National Key Laboratory for Novel Software Technology, Nanjing University
2 Harvard University
3 Polixir Technologies

4 Department of Computer Science and Technology, Tsinghua University
5 IIIS, Tsinghua University

{qinrj, chenf}@lamda.nju.edu.cn, twang1@g.harvard.edu, yuanl@lamda.nju.edu.cn,
wuxr17@tsinghua.org.cn, fringsoo@gmail.com,

zzzhang@nju.edu.cn, chongjie@tsinghua.edu.cn, yuy@nju.edu.cn

Abstract

Team adaptation to new cooperative tasks is a hallmark of human intelligence,
which has yet to be fully realized in learning agents. Previous works on multi-agent
transfer learning accommodate teams of different sizes, but heavily rely on the
generalization ability of neural networks for adapting to unseen tasks. We posit that
the relationship among tasks provides the key information for policy adaptation.
To utilize such relationship for efficient transfer, we try to discover and exploit
the knowledge among tasks from different teams, propose to learn effect-based
task representations as a common latent space among tasks, and use it to build an
alternatively fixed training scheme. We demonstrate that the task representation
can capture the relationship among teams and generalize to unseen tasks. As a
result, the proposed method can help transfer learned cooperation knowledge to
new tasks after training on a few source tasks, and the learned transferred policies
can also help solve tasks that are hard to learn from scratch.

1 Introduction

Cooperation in human groups is characterized by resiliency to unexpected changes and purposeful
adaptation to new tasks [40]. This flexibility and transferability of cooperation is a hallmark of
human intelligence. Computationally, multi-agent reinforcement learning (MARL) [61] provides an
important means for machines to imitate human cooperation. Although recent MARL research has
made prominent progress in many aspects of cooperation, such as policy decentralization [27, 33, 43,
50, 5], communication [11, 21, 53, 14], and organization [20, 45, 46], how to realize the ability of
group knowledge transfer is still an open question.

Compared to single-agent knowledge reuse [65], a unique challenge faced by multi-agent transfer
learning is the varying size of agent groups. The number of agents and the length of observation inputs
in unseen tasks may differ from those in source tasks. To solve this problem, existing multi-agent
transfer learning approaches build population-invariant [26] and input-length-invariant [49] learning
structures using graph neural networks [1] and attention mechanisms like transformers [17, 64].

∗Equal Contribution
†Equal Correspondence

Deep RL Workshop on Neural Information Processing Systems 2022.

Pre-defined
representations 𝑧
for source tasks

Rep.
Explainer

Forward
Model 𝑓!

𝑠, 𝒐, 𝒂

Step 1: Task representation learning

Rep.
Explainer 𝑓!

Step 2: Policy learning

𝑠, 𝒐

𝑄"#"

TD loss

Training
Phase

Representations
for unseen tasks

Rep.
Explainer

Forward
Model 𝑓"

𝑠, 𝒐, 𝒂

Predictions of
𝑠$, 𝒐$, 𝑟

Prediction loss

Step 1: Task representation learning

Rep.
Explainer
𝑓! (fixed)

Population-
Invariant

Policy

Step 2: Policy execution

𝒐

𝒂

Environment

Transfer
Phase

Population-
Invariant

Policy

Predictions of
𝑠$, 𝒐$, 𝑟

Prediction loss

Figure 1: Transfer learning scheme of our method. The black arrows indicate the direction of data
flow and the red ones indicate the direction of gradient flow. The dashed arrows indicate the flow
between the hypernetwork and the generated network.

Although these methods handle varying populations and input lengths well, their knowledge transfer
to unseen tasks mainly depends on the inherent generalization ability of neural networks. The
relationship among tasks in MARL is not fully exploited for more efficient transfer.

Towards making up for this shortage, we study the discovery and utilization of common structures
in multi-agent tasks and propose Multi-Agent Transfer reinforcement learning via modeling TAsk
Relationship (MATTAR). In this learning framework, we capture the common structure of tasks by
modeling the similarity among transition and reward functions of different tasks. Specifically, we train
a forward model for all source tasks to predict the observation, state, and reward at the next timestep
given the current observation, state, and actions. The challenge is how to embody the similarity and
the difference among tasks in this forward model, we specifically introduce difference by giving each
source task a unique representation and model the similarity by generating the parameters of the
forward model via a shared hypernetwork, which we call the representation explainer.

To learn a well-formed representation space that encodes task relationship, an alternative-fixed
training method is proposed to learn the task representation and representation explainer. During
training, representations of source tasks are pre-defined and fixed as mutual orthogonal vectors,
and the representation explainer is learned by optimizing the forward model prediction loss on all
source tasks. When facing an unseen task, we fix the representation explainer and backpropagate
gradients through the fixed forward model to learn the representation of the new task by a few
samples. Furthermore, we design a population-invariant policy network conditioned on the learned
task representation. During policy training, the representations for all source tasks are fixed, and the
policy is updated to maximize the expected return over all source tasks. On an unseen task, we obtain
the transferred policy by simply inserting the new task representation into the learned policy network.

On the SMAC [34] and MPE [27] benchmarks, we empirically show that the learned knowledge from
source tasks can be transferred to a series of unseen tasks with great success rates. We also pinpoint
several other advantages brought by our method. First, fine-tuning the transferred policy on unseen
tasks achieves better performance than learning from scratch, indicating that the task representation
and pre-trained policy network provide a good initialization point. Second, training on multiple
source tasks gets better performance compared to training on them individually and other multi-task
learning methods, showing that MATTAR also provides a method for multi-agent multi-task learning.
Finally, although not designed for this goal, our structure enables comparable performance against
single-task learning algorithms when trained on single tasks.

2 Method

In this paper, we focus on knowledge transfer among fully cooperative multi-agent tasks that can
be modeled as a Dec-POMDP [28] consisting of a tuple G=⟨I, S,A, P,R,Ω, O, n, γ⟩, where I
is the finite set of n agents, s ∈ S is the true state of the environment, and γ ∈ [0, 1) is the
discount factor. At each timestep, each agent i receives an observation oi ∈ Ω drawn according
to the observation function O(s, i) and selects an action ai ∈ A. Individual actions form a joint
action a ∈ An, which leads to a next state s′ according to the transition function P (s′|s,a), and
a reward r = R(s,a) shared by all agents. Each agent has local action-observation history τi ∈
T ≡ (Ω × A)∗ × Ω. Agents learn to collectively maximize the global action-value function

2

Qtot(s,a) = Es0:∞,a0:∞ [
∑∞

t=0 γ
tR(st,at)|s0 = s,a0 = a] (a little notation abuse: the subscript

here for s and a indicates the timestep while the subscript for observation and action elsewhere in
this paper indicates the index of the agent).

Overall, our framework first trains on several source tasks {Si} and then transfers the learned
cooperative knowledge to unseen tasks {Tj}. As shown in Fig. 1, our learning framework achieves
this by designing modules for (1) task representation learning and (2) policy learning. In the following
sections, we first introduce how we design the representation learning module and its learning scheme
in different phases. Then, we describe the details of policy learning, including the population-invariant
structure for dealing with inputs and outputs of varying sizes.

2.1 Task representation learning

Our main idea in achieving knowledge transfer among multi-agent tasks is to capture and exploit both
the common structure and the unique characteristics of tasks by learning task representation. A task
distinguishes itself from other tasks by its transition and reward functions. Therefore, we incorporate
our task representation learning component into the learning of a forward model that predicts the
next state, local observations, and reward given the current state, local observations, and actions.

We associate each task i with a representation zi ∈ Rm and expect it to reflect the relationship of
the transition dynamics of tasks. For modeling task similarity, all source and unseen tasks share a
representation explainer, which takes as input the task representations and outputs the parameters of
the forward model. We then train the representation explainer on all source tasks. Concretely, for a
source task Si, parameters of the forward model are generated as ηi = fθ(zi), where θ denotes the
parameters of the representation explainer. The forward model contains three predictors: fs

ηi
, fo

ηi
,

and fr
ηi

. Given the current state s, agent j’s observation oj , and action aj , these predictors estimate
the next state s′, the next observation o′j , and the global reward r, respectively.

A possible method for training on source tasks is to backpropagate the forward model’s prediction
error to update both the representation explainer and task representations. However, in practice,
this scheme leads to representations with very small norms, making it difficult to get a meaningful
representation space. To solve this problem, we propose pre-determining the task representation for
each source task and learning the representation explainer by backpropagating the prediction error.
Such a method can help form an informative task representation space and build a mapping from task
representation space to the space of forwarding model parameters. In practice, we initialize source
task representations as mutually orthogonal vectors. Specifically, we first randomly generate vectors
in Rm for source tasks, and then use the Schimidt orthogonalization [4] on these vectors to obtain
source task representations. With the pre-defined task representations, the representation explainer is
optimized to minimize the following loss function:

J(θ) =
∑Nsrc

i=1 JSi
(θ),

where Nsrc is the number of source tasks, and

JSi
(θ) = ED

[∑
j

[
∥fs

ηi
(s, oj , aj)− s′∥2 + λ1∥fo

ηi
(s, oj , aj)− o′j∥2 + λ2(f

r
ηi
(s, oj , aj)− r)2

]]
is the per-task prediction loss. Here, D is the replay buffer, and λ1, λ2 are scaling factors.

We fix the source task representations and learn the representation explainer during the training phase.
In the current implementation, the training data here is collected with the uniform random policy; the
data is the same for task representation learning in the transfer phase. We find it simple and effective
in the experiment, while more efficient approaches may be adopted here. When it comes to the
transfer phase, we aim to find a good task representation that can reflect the similarity of the new task
to source tasks. To achieve this goal, we fix the trained representation explainer and learn the task
representation by minimizing the prediction loss of the forward model on the new task. Specifically,
we randomly initialize a task representation z, keep θ fixed, and get the forward model parameterized
by η = fθ(z). Then the task representation z is updated by backpropagating the prediction loss for
transition and reward functions through the fixed fη .

To keep the new task representation in the well-formed space of source task representations, we learn
the new task representation as a linear combination of source task representations:

z =
∑Nsrc

i=1 µizi s.t. µi ≥ 0,
∑Nsrc

i=1 µi = 1.

3

𝑄!"!(𝝉, 𝒂)

Population-Invariant
Mixing

𝑠

×

(a) Population-Invariant Mixing (b) Overall Framework (c) Input-Length-Invariant Q-Network (d) Attention

𝑴𝑳𝑷𝒒 𝑴𝑳𝑷𝑲 𝑴𝑳𝑷𝑽

Scaled Dot
Product

Softmax

Dot Product

× Concatenate𝑜! ⋯

Attention

𝑜!"#$, 𝑜!%&# 𝑜!%'(")

𝑜& 𝑜'⋯

Self-Attention

× ⋯

×Population-
Invariant

Mixing Layers

| ⋅ |

Input-Length-Invariant
Q-Network

…

…

Task Rep.

MLP

… …𝑄* 𝑄!

𝑄!"!

𝑠"#$

𝑠"#'+',

𝑜!"#$

𝑜!
%&#

𝑜!%'(")

ℎ-'.'"

…

MLP

MLP

Task Rep.

𝑄' ℎ

𝐕

𝐊𝑞

Figure 2: Population-invariant network structure for policy learning.

In this way, what we are learning is the weight vector µ. To make the learning more stable, we
additionally optimize an entropy regularization term H(µ). The final loss function for learning z is:

JT (µ)=λH(µ)+ED

[∑
j

[
∥fs

η (s, oj , aj)−s′∥2+λ1∥fo
η (s, oj , aj)−o′j∥2+λ2(f

r
η (s, oj , aj)−r)2

]]
.

The detailed architectures for task representation learning are described in App. E.

2.2 Task policy learning

After the task representation is learned by modeling the transition and reward functions, it will be
used to learn and transfer the policy on the source and unseen tasks.

A difficulty faced by multi-agent transfer learning is that the dimensions of inputs and outputs vary
across tasks. We use a population-invariant network (PIN, Fig. 2) to solve this problem. The idea is
not novel, and our contribution here is a light-weight structure that achieves comparable or better
performance to other complex PIN modules [19]. The single task experiments in App. G demonstrate
its advantage as the performance gains mainly come from our PIN design. Our PIN uses the value
decomposition framework and consists of two main components: an individual Q-network shared by
the agents, and a monotonic mixing network [33] that learns the global Q-value as a combination of
local Q-values.

For the individual Q-network, like in previous work [19], we decompose the observation oi into parts
relating to the environment oenvi , agent i itself oown

i , and other entities ootheri = {ootherj ̸=i

i }. We
adopt attention mechanism to get a fixed-dimensional embedding h:

q = MLPq([o
env
i , oown

i]), K = MLPK([oother1i , . . . , o
otherj
i , . . .]),

V = MLPV ([o
other1
i , . . . , o

otherj
i , . . .]), h = softmax(qKT/

√
dk)V,

where [·, ·] is the vector concatenation operation, dk is the dimension of the query vector, and bold
symbols are matrices. Embedding h is then fed into the subsequent network together with the task
representation z for estimating action values. For the mixing network, we decompose the state s
into parts relating to different entities sentity and the environment senv. We apply a similar self-
attention module to integrate information from these parts of the state and obtain a fixed-dimensional
embedding vector hstate. hstate, the task representation z, and sentity are used to generate the
parameters of the mixing network. In some multi-agent tasks, the number of actions also varies in
different tasks. We use a mechanism similar to other popular population-invariant networks [48, 17]
to deal with this issue, which is discussed in detail in App. F.

During the whole process of policy learning, we fix the task representation z. Compared to policy
learning, which typically lasts for 2M timesteps, the training of task representation costs few samples.
In practice, we collect 50K samples for learning task representations and the representation explainer.
When transferring to new tasks, we use the individual Q-network and the representation explainer
trained on source tasks. We learn the task representation for 50K timesteps and insert it into the
individual Q-network. Agents execute in a decentralized manner according to this Q-network.

4

Table 1: Transfer performance (mean win rates with variance) on the first series of SMAC maps.
Source Tasks Unseen Tasks

2s3z 3s5z 3s5z_3s6z 1s8z 1s9z 2s8z 2s9z 7s3z

MATTAR 1.00±0.00 0.99±0.01 0.48±0.13 0.79±0.09 0.60±0.12 0.93±0.09 0.84 ±0.04 0.16±0.12
w/o task rep. 0.99±0.01 0.96±0.02 0.20±0.08 0.12±0.13 0.07±0.12 0.47±0.18 0.25±0.20 0.15±0.19
0 task rep. 0.23±0.12 0.08±0.05 0.00±0.00 0.02±0.03 0.00±0.00 0.01±0.01 0.02±0.02 0.00±0.00
UPDeT-b 0.94±0.04 0.86±0.13 0.09±0.08 0.16±0.11 0.11±0.10 0.29±0.22 0.15±0.13 0.02±0.04
UPDeT-m 0.60±0.11 0.47±0.15 0.03±0.03 0.08±0.06 0.04±0.04 0.14±0.12 0.06±0.05 0.01±0.01

REFIL 0.75±0.09 0.43±0.13 0.01±0.01 0.08±0.04 0.03±0.01 0.08±0.05 0.05±0.04 0.06±0.04

Table 2: Transfer performance (mean win rates with variance) on the second series of SMAC maps.
Source Tasks Unseen Tasks

MMM MMM2 MMM4 MMM0 MMM1 MMM3 MMM5 MMM6

MATTAR 1.00±0.00 0.92±0.20 0.93±0.12 0.98±0.02 0.97±0.04 0.86±0.10 0.47±0.15 0.09±0.02
w/o task rep. 0.94±0.05 0.23±0.39 0.33±0.25 0.81±0.15 0.37±0.36 0.07±0.05 0.22±0.30 0.09±0.17
0 task rep. 0.61±0.07 0.07±0.06 0.21±0.22 0.28±0.19 0.11±0.13 0.08±0.10 0.08±0.12 0.02±0.04
UPDeT-b 1.00±0.00 0.78±0.04 0.41±0.14 0.73±0.21 0.84±0.07 0.57±0.15 0.00±0.00 0.00±0.00
UPDeT-m 0.48±0.03 0.15±0.19 0.20±0.07 0.30±0.16 0.27±0.13 0.28±0.08 0.00±0.00 0.00±0.00

REFIL 0.97±0.01 0.04±0.02 0.06±0.03 0.93±0.02 0.38±0.06 0.12±0.04 0.00±0.00 0.00±0.00

Table 3: Transfer performance (mean win rates with variance) on the third series of SMAC maps.
Source Tasks Unseen Tasks

5m 5m_6m 8m_9m 10m_11m 3m 4m 4m_5m 6m

MATTAR 1.00±0.00 0.72±0.05 0.83±0.05 0.81±0.09 0.94±0.27 0.97±0.02 0.04±0.05 1.00±0.00
w/o task rep. 0.97±0.01 0.01±0.02 0.01±0.01 0.01±0.03 0.86±0.03 0.88±0.04 0.00±0.00 0.95±0.03
0 task rep. 0.78±0.39 0.16±0.12 0.30±0.24 0.40±0.28 0.00±0.00 0.21±0.15 0.01±0.01 0.67±0.47
UPDeT-b 1.00±0.00 0.93±0.05 0.81±0.19 0.94±0.04 0.81±0.08 0.95±0.06 0.29±0.17 1.00±0.00
UPDeT-m 0.77±0.09 0.32±0.03 0.35±0.05 0.43±0.02 0.36±0.04 0.57±0.03 0.10±0.06 0.91±0.09

REFIL 0.73±0.03 0.00±0.00 0.01±0.01 0.03±0.02 0.68±0.06 0.74±0.02 0.00±0.00 0.71±0.02

Unseen Tasks

6m_7m 7m 7m_8m 8m 9m 9m_10m 10m 10m_12m

MATTAR 0.74±0.15 1.00±0.00 0.83±0.04 1.00±0.00 1.00±0.00 0.84±0.09 1.00±0.00 0.07±0.01
w/o task rep. 0.03±0.02 0.94±0.03 0.08±0.10 0.93±0.04 0.86±0.05 0.04±0.02 0.52±0.22 0.00±0.00
0 task rep. 0.31±0.22 0.67±0.47 0.49±0.35 0.67±0.47 0.66±0.46 0.32±0.24 0.65±0.46 0.00±0.00
UPDeT-b 0.78±0.05 0.99±0.01 0.73±0.11 0.99±0.02 0.99±0.01 0.80±0.16 0.99±0.01 0.07±0.04
UPDeT-m 0.35±0.10 0.92±0.03 0.38±0.05 0.83±0.05 0.66±0.11 0.33±0.09 0.17±0.08 0.03±0.02

REFIL 0.01±0.00 0.66±0.03 0.01±0.01 0.63±0.05 0.55±0.05 0.01±0.00 0.46±0.02 0.00±0.00

3 Experiments

In this section, we design experiments to evaluate the following properties of the proposed method:
(1) Generalizability to unseen tasks. Our learning framework can extract knowledge from multiple
source tasks and transfer the cooperation knowledge to unseen tasks, and task representations play an
indispensable role in transfer (Sec. 3.1). (2) A good initialization for policy fine-tuning. Fine-tuning
the transferred policy can succeed in super hard tasks, which can not be solved when learning
from scratch (Sec. 3.2). (3) Benefits of multi-task training. Our multi-task learning paradigm helps
the model better leverage knowledge of different source tasks to boost the learning performance
compared to training on source tasks individually (Sec. 3.3). (4) Performance advantages on single
tasks. Although we did not design our framework for single-task learning, our network performs
better against the underlying algorithm (App. G).

We evaluate MATTAR on the SMAC [34] and MPE [27] benchmarks. To better fit the multi-task
training setting, we extend the original SMAC maps and sort out three task series, which involve
various numbers of Marines, Stalkers/Zealots, and Marines/Maneuvers/Medivacs, respectively. For
the MPE tasks, we test on a discrete version of Spread and Gather, with different numbers of agents
trying to cover all or one landmarks. The detailed environmental settings are described in App. B.
To ensure fair evaluation, we carry out all the experiments with five random seeds, and the results
are shown with a 95% confidence interval in all figures. For a more comprehensive description of
experimental details, please refer to App. D.

5

Table 4: Evaluation on MPE: Transfer performance (mean success rates with variance) on Spread
with different numbers of agents.

Source Tasks Unseen Tasks

2 4 7 9 3 5 6 8

MATTAR 1.00±0.00 0.97±0.03 0.17±0.16 0.12±0.05 0.98±0.01 0.75±0.12 0.19±0.10 0.09±0.09
w/o task rep. 1.00±0.00 0.55±0.30 0.02±0.01 0.00±0.00 0.83±0.13 0.30±0.13 0.03±0.04 0.00±0.00
0 task rep. 0.98±0.01 0.96±0.03 0.13±0.18 0.09±0.04 0.94±0.07 0.70±0.17 0.09±0.09 0.09±0.07
UPDeT-b 0.73±0.23 0.09±0.00 0.02±0.02 0.00±0.00 0.41±0.16 0.05±0.02 0.00±0.00 0.02±0.02
UPDeT-m 0.39±0.12 0.06±0.00 0.00±0.00 0.00±0.00 0.18±0.08 0.02±0.01 0.00±0.00 0.01±0.01

REFIL 1.00±0.00 0.93±0.04 0.07±0.04 0.01±0.01 0.96±0.03 0.73±0.06 0.06±0.05 0.05±0.00

Table 5: Evaluation on MPE: Transfer performance (mean success rates with variance) on Gather
with different numbers of agents.

Source Tasks Unseen Tasks

2 4 7 9 3 5 10 15

MATTAR 1.00±0.00 1.00±0.00 0.82±0.11 0.84±0.17 1.00±0.00 1.00±0.00 0.63±0.12 0.55±0.22
w/o task rep. 1.00±0.00 1.00±0.00 0.88±0.09 0.84±0.17 1.00±0.00 0.99±0.01 0.62±0.13 0.53±0.18
0 task rep. 1.00±0.00 1.00±0.00 0.73±0.26 0.75±0.18 1.00±0.00 0.99±0.01 0.54±0.26 0.50±0.29
UPDeT-b 0.66±0.34 0.38±0.38 0.25±0.12 0.09±0.09 0.61±0.36 0.36±0.27 0.03±0.03 0.06±0.06
UPDeT-m 0.32±0.16 0.15±0.15 0.07±0.02 0.04±0.04 0.20±0.10 0.11±0.07 0.01±0.01 0.02±0.02

REFIL 1.00±0.00 1.00±0.00 0.99±0.02 0.99±0.01 1.00±1.00 1.00±0.00 0.73±0.14 0.51±0.14

3.1 Generalizability to unseen tasks

As the major desiderata of our method, we expect that MATTAR has better transfer performance
on unseen tasks. We note that there are few related works applicable to tasks of varying sizes, and
we compare our method against the state-of-the-art multi-agent transfer method UPDeT [17] and
REFIL [19]. UPDeT transfers knowledge from a single source task. For a fair comparison, we
transfer from each source task to every unseen task and calculate the best (UPDeT-b) and mean
(UPDeT-m) performance on each unseen task. For the test phase, we conduct transfer experiments on
both source tasks and unseen tasks. Results on the SMAC benchmark are shown in Tab. 1∼3, and
those on the MPE are shown in Tab. 4 and 5.

We find that MATTAR shows superior transfer performance on unseen tasks, significantly outper-
forming UPDeT-b and REFIL, especially in complex settings requiring sophisticated coordination
like the MMM series. MATTAR is effective even for unseen tasks that are very different from source
tasks. For example, the MATTAR policy learned on 2s3z, 3s5z, and 3s5z_vs_3s6z can win 79%
of games on 1s8z. On MPE tasks, MATTAR also shows good generalization performance on unseen
tasks with different numbers of agents and overall outperforms the baselines and ablations. For
example, On Spread tasks, MATTAR exhibits significant advantage over UPDeT on all unseen tasks
and outperforms REFIL with a margin of 13% on the unseen task with 6 agents.

To explain the performance of our method, we first check the learned representations on unseen tasks
and then carry out ablation studies.

What representations are learned for unseen tasks? When encountering an unseen task, we first
learn its representation as a linear combination of the representations for source tasks. Specifically,
we directly update the coefficients of this linear combination by backpropagating the prediction error
of the forward model. For a deeper understanding of how our method transfers the learned knowledge,
here we investigate the learned coefficients of the linear combination.

In Tab. 6, we show the coefficients of two unseen tasks for each series of maps. We observe that the
largest coefficient typically corresponds to the source task that is the most similar to the unseen task.
For example, 5m is the closest source task to the unseen task 4m, and the coefficient of 5m is 61%.
There are also some exceptions. For example, for the unseen task 10m_vs_12m, the coefficients of
two source tasks, 5m and 10m_vs_11m, are equal, and they together take up 86% of all the coefficients.
While 10m_vs_11m is very similar to 10m_vs_12m as the team composition is similar, the policy for
solving 5m is different from that for 10m_vs_12m, we find that agents first form some groups to set
up an attack curve quickly in 10m_vs_12m. Therefore, on a local battlefield, there are around five

6

Table 6: Our method models task relationship and exploits it for knowledge transfer. Task
representations of unseen tasks are learned as a linear combination of source tasks’ representations,
whose coefficients are shown in this table. These weights reveal the encoded task relationship.

Source Unseen Tasks

4m 10m_12m

5m 0.61 0.43
5m_6m 0.13 0.07
8m_9m 0.14 0.08

10m_11m 0.12 0.43

Source Unseen Tasks

3s4z 3s5z_3s7z

2s3z 0.21 0.18
3s5z 0.59 0.21

3s5z_3s6z 0.21 0.61

Source Unseen Tasks

MMM0 MMM6

MMM 0.44 0.30
MMM2 0.15 0.14
MMM4 0.40 0.56

0.0M 0.4M 0.8M 1.2M 1.6M 2.0M
Timesteps

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(a) 10m_vs_12m

0.0M 0.4M 0.8M 1.2M 1.6M 2.0M
Timesteps

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(b) MMM6

0.0M 0.4M 0.8M 1.2M 1.6M 2.0M
Timesteps

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
% MATTAR fine-tuning

Learn from scratch (w/ repr.)
Learn from scratch (w/o repr.)
QMIX
QPLEX

(c) 3s5z_vs_3s7z

Figure 3: On unseen tasks: task representations provide a good initialization. Fine-tuning the policy
can learn cooperation policies effectively than learning from scratch.

allies fighting against a similar number of enemies. In this case, the policy learned from 5m can be
used locally to promote coordination in 10m_vs_12m.

We conclude that, in MATTAR, task representation learning captures the similarity of task dynamics
and thereby discovers opportunities of policy reuse. These representations help unseen tasks effec-
tively leverage the knowledge from the most similar source tasks or reuse the knowledge from a
mixing of source tasks.

Ablations. To further investigate the role of task representations in our method, we design two
ablations. (1) 0 task rep. uses the trained MATTAR models but feed a zero-valued task represen-
tation into the policy network when transferring. (2) w/o task rep. denotes completely remove
components related to task representation, including the forward model, the representation learning
process, and the task representation in the policy network. Train and transfer the population-invariant
policy. This ablation can reveal the generalization ability of the policy network itself.

Results are shown in Tab. 1∼3. We can see that these ablations bring about a large drop in the
performance of MATTAR on nearly all unseen tasks. For example, after trained on 2s3z, 3s5z,
and 3s5z_vs_3s6z, MATTAR achieves a win rate of 0.79 on 1s8z, while w/o task rep. obtains
a win rate of 0.12 and 0 task rep. does not win any games. We can thus conclude that task
representations play an indispensable role in policy transfer.

3.2 A good initialization for policy fine-tuning

When evaluating the performance of MATTAR on unseen tasks, we only train the task representations
and reuse other parts of the policy. In this section, we investigate the performance of MATTAR after
fine-tuning the policy. Specifically, on an unseen task, we first fix the representation explainer and
train the task representation z for 50K timesteps. Then we fix the learned task representation and fine-
tune the policy for 2M timesteps. We compare against learning from scratch in Fig. 3. Learning from
scratch means the policy is randomly initialized and trained for 2M timesteps. We consider two ver-
sions for learning from scratch. The first version (Learn from scratch w/o repr.) totally removes
task representations from the policy, while the second version (Learn from scratch w/ repr.)
inserts the same task representation z as in the fine-tuning experiments.

7

0.0M 0.4M 0.8M 1.2M 1.6M 2.0M
Timesteps

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(a) 5m_vs_6m

0.0M 0.4M 0.8M 1.2M 1.6M 2.0M
Timesteps

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
% Learn on multiple tasks (Ours)

Learn on single task (Ours)
Learn on multiple tasks (REFIL)
Learn on single task (REFIL)

(b) 3s5z_vs_3s6z

0.0M 0.4M 0.8M 1.2M 1.6M 2.0M
Timesteps

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(c) MMM2

Figure 4: On source tasks: MATTAR provides a framework for multi-agent multi-task learning.
Training on multiple tasks helps improve performance than learning on a single task.

We observe that the task representation and the reused policy provide a good initialization. For
example, on 10m_vs_12m, after fine-tuning for 2M timesteps, MATTAR fine-tuning converges to a
win rate of around 0.86, while both versions of learning from scratch can only achieve a win rate of
about 0.4. Furthermore, empirically only MATTAR fine-tuning achieves non-zero winning rates on
3s5z_vs_3s7z, a task harder than the super hard map 3s5z_vs_3s6z.

3.3 Benefits of multi-task learning

MATTAR adopts a scheme where multiple sources are learned simultaneously. Our aim is to leverage
knowledge from more tasks and to be able to generalize the learned knowledge to a larger set of
unseen tasks. Empirically, we find that this multi-task training setting helps not only unseen tasks but
also the source tasks themselves.

In Fig. 4, we present the performance of MATTAR on source tasks when training with multiple and a
single source task. The experiments are carried out on three tasks from three different series. We
can see that training on multiple tasks significantly boosts learning performance. For example, on
3s5z_vs_3s6z, after 2M training samples, MATTAR with multiple tasks converges to the win rate of
around 0.6, while training solely on this task can only achieve a win rate of about 0.05. Furthermore,
we can also observe that MATTAR significantly outperforms the state-of-the-art deep multi-agent
multi-task method (REFIL [19]). These results reveal that MATTAR also provides a good learning
framework for multi-agent multi-task learning. It can leverage experience on other tasks to improve
performance on a similar task.

4 Related Work

Multi-task learning with metadata [56, 63] approaches have been explored to exploit richer context
information in the form of learned task embeddings, with a focus on task relation discovery. [36] use
context information in high-level, under-specified, and unstructured natural language for multi-task
learning. Compared to the settings studied in this paper, multi-agent problems pose additional
challenges. Transition dynamics and reward functions in multi-agent tasks are influenced by the
interaction among all agents so the relation between tasks has to be conditioned on the interaction
pattern of multiple agents. Different from previous contextual multi-task RL methods, we include
agent interaction modeling in the task representation learning module to deal with this problem.
Nevertheless, we think incorporating natural language as prior high-level metadata of tasks can further
improve the performance of our method in further work.

Related to our work, context-based meta-RL also reuses experience from multiple tasks and
infers how to solve a new task from collected small amounts of experience [66]. For example,
PEARL [32] performs online task inference by probabilistic filtering of latent task variables. Other
meta-RL methods exploit the dynamics of recurrent networks for implicit task inference and fast
adaptation [42, 10]. These methods tend to form dynamic variables or embeddings, while the context
information is utilized to obtain fixed task representations in our approach. Besides, although their
ability of task adaptation has been proved, context-based meta-RL has not been extended to multi-
agent cases and cannot deal with varying numbers of actions and different lengths of observation
inputs. For future work, it is important to discuss whether the inspiration of context-based meta-RL
can further improve the performance of our multi-agent multi-task learning framework.

8

Learning task or skill embeddings for multi-task transfer reinforcement learning has also been
extensively explored. When testing, [15] learn a new skill embedding by interpolating learned skill
embeddings on source tasks by approximate variational inference. [2] also focus on learning skill
embeddings but is conditioned on optimal Q-functions for different skills. [6] adopt a hierarchical
framework and learns a high-level policy to control a low-level skill latent space. Similar to ours, [6]
learn the low-level skill space by encoding experience trajectories and decoding states and actions.
Another work that is similar to ours is [60], which conditions the policy on latent representations
learned by dynamics and reward module. [24] learn task embeddings, fixes the policy, and updates
the encoder at the test time. Compared to these methods, our task representation learning method
differs by (1) it is specially designed for multi-agent settings and considers varying input sizes and
intra-agent interaction; and (2) to the best of our knowledge, the alternatively fixed learning scheme is
proposed for the first time. More contents include multi-task reinforcement learning, multi-agent
transfer learning, multi-agent representation learning, and modular RL are shown in App. A.

5 Conclusion

In this paper, we study cooperative multi-agent transfer reinforcement learning by learning task
representations that model and exploit task relationship. Previous work on multi-agent transfer
learning mainly deals with the varying population and input lengths, relying on the generalization
ability of neural networks for cooperation knowledge transfer, ignoring the task relationship among
tasks. Our method improves the transfer performance by learning task representations that capture the
difference and similarities among tasks. When facing a new task, our approach only needs to obtain a
new representation before transferring the learned knowledge. Taking advantage of task relationship
mining, our proposed method MATTAR achieves the best transfer performance and other bonuses
compared with multiple baselines. An important direction in the future is the transfer among tasks
from different task distributions, and whether a linear combination of source tasks’ representations
can fully represent unseen tasks is also a valuable topic.

6 Acknowledgements

This work is supported by the National Key Research and Development Program of China
(2020AAA0107200), the National Science Foundation of China (61876119, 61921006), and the
Natural Science Foundation of Jiangsu (BK20221442).

References
[1] Akshat Agarwal, Sumit Kumar, Katia Sycara, and Michael Lewis. Learning transferable

cooperative behavior in multi-agent teams. In International Conference on Autonomous Agents
and MultiAgent Systems, pages 1741–1743, 2020.

[2] Isac Arnekvist, Danica Kragic, and Johannes A. Stork. VPE: variational policy embedding
for transfer reinforcement learning. In International Conference on Robotics and Automation,
pages 36–42, 2019.

[3] Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel
Mankowitz, Augustin Zidek, and Remi Munos. Transfer in deep reinforcement learning using
successor features and generalised policy improvement. In International Conference on Machine
Learning, pages 501–510, 2018.

[4] Åke Björck. Numerics of gram-schmidt orthogonalization. Linear Algebra and Its Applications,
197:297–316, 1994.

[5] Jiahan Cao, Lei Yuan, Jianhao Wang, Shaowei Zhang, Chongjie Zhang, Yang Yu, and De-Chuan
Zhan. Linda: Multi-agent local information decomposition for awareness of teammates. arXiv
preprint arXiv:2109.12508, 2021.

[6] John D. Co-Reyes, Yuxuan Liu, Abhishek Gupta, Benjamin Eysenbach, Pieter Abbeel, and
Sergey Levine. Self-consistent trajectory autoencoder: Hierarchical reinforcement learning with
trajectory embeddings. In International Conference on Machine Learning, pages 1008–1017,
2018.

9

[7] Bruno Castro da Silva, George Dimitri Konidaris, and Andrew G. Barto. Learning parameterized
skills. In International Conference on Machine Learning, pages 1443–1450, 2012.

[8] Marc Peter Deisenroth, Peter Englert, Jan Peters, and Dieter Fox. Multi-task policy search for
robotics. In International Conference on Robotics and Automation, pages 3876–3881, 2014.

[9] Yunshu Du, Wojciech M. Czarnecki, Siddhant M. Jayakumar, Razvan Pascanu, and Bal-
aji Lakshminarayanan. Adapting auxiliary losses using gradient similarity. arXiv preprint
arXiv:1812.02224, 2018.

[10] Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2:
Fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779,
2016.

[11] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement learning. In Advances in Neural Information
Processing Systems, pages 2137–2145, 2016.

[12] Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash Kumar, and Sergey Levine. Divide-and-
conquer reinforcement learning. In International Conference on Learning Representations,
2018.

[13] Aditya Grover, Maruan Al-Shedivat, Jayesh K. Gupta, Yuri Burda, and Harrison Edwards.
Learning policy representations in multiagent systems. In International Conference on Machine
Learning, pages 1797–1806, 2018.

[14] Cong Guan, Feng Chen, Lei Yuan, Chenghe Wang, Hao Yin, Zongzhang Zhang, and Yang Yu.
Efficient multi-agent communication via self-supervised information aggregation. In Advances
in Neural Information Processing Systems, 2022.

[15] Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin A. Riedmiller.
Learning an embedding space for transferable robot skills. In International Conference on
Learning Representations, 2018.

[16] Yann-Michaël De Hauwere, Peter Vrancx, and Ann Nowé. Learning multi-agent state space
representations. In International Conference on Autonomous Agents and MultiAgent Systems,
pages 715–722, 2010.

[17] Siyi Hu, Fengda Zhu, Xiaojun Chang, and Xiaodan Liang. UPDeT: Universal multi-agent
reinforcement learning via policy decoupling with transformers. In International Conference on
Learning Representations, 2021.

[18] Wenlong Huang, Igor Mordatch, and Deepak Pathak. One policy to control them all: Shared
modular policies for agent-agnostic control. In International Conference on Machine Learning,
pages 4455–4464, 2020.

[19] Shariq Iqbal, Christian A Schroeder De Witt, Bei Peng, Wendelin Böhmer, Shimon Whiteson,
and Fei Sha. Randomized entity-wise factorization for multi-agent reinforcement learning. In
International Conference on Machine Learning, pages 4596–4606, 2021.

[20] Jiechuan Jiang, Chen Dun, Tiejun Huang, and Zongqing Lu. Graph convolutional reinforcement
learning. In International Conference on Learning Representations, 2019.

[21] Jiechuan Jiang and Zongqing Lu. Learning attentional communication for multi-agent coopera-
tion. In Advances in Neural Information Processing Systems, pages 7254–7264, 2018.

[22] Jens Kober, Andreas Wilhelm, Erhan Öztop, and Jan Peters. Reinforcement learning to adjust
parametrized motor primitives to new situations. Autonomous Robots, 33(4):361–379, 2012.

[23] Vitaly Kurin, Maximilian Igl, Tim Rocktäschel, Wendelin Boehmer, and Shimon Whiteson. My
body is a cage: The role of morphology in graph-based incompatible control. In International
Conference on Learning Representations, 2021.

10

[24] Lin Lan, Zhenguo Li, Xiaohong Guan, and Pinghui Wang. Meta reinforcement learning with
task embedding and shared policy. In International Joint Conference on Artificial Intelligence,
pages 2794–2800, 2019.

[25] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. Journal of Machine Learning Research, 17:1334–1773, 2016.

[26] Qian Long, Zihan Zhou, Abhinav Gupta, Fei Fang, Yi Wu, and Xiaolong Wang. Evolution-
ary population curriculum for scaling multi-agent reinforcement learning. In International
Conference on Learning Representations, 2019.

[27] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. In Advances in Neural
Information Processing Systems, pages 6379–6390, 2017.

[28] Frans A Oliehoek and Christopher Amato. A Concise Introduction to Decentralized POMDPs.
Springer, 2016.

[29] Shayegan Omidshafiei, Dong-Ki Kim, Miao Liu, Gerald Tesauro, Matthew Riemer, Christopher
Amato, Murray Campbell, and Jonathan P. How. Learning to teach in cooperative multiagent
reinforcement learning. In AAAI Conference on Artificial Intelligence, pages 6128–6136, 2019.

[30] Deepak Pathak, Christopher Lu, Trevor Darrell, Phillip Isola, and Alexei A. Efros. Learning to
control self-assembling morphologies: A study of generalization via modularity. In Advances
in Neural Information Processing Systems, pages 2292–2302, 2019.

[31] Janith C Petangoda, Sergio Pascual-Diaz, Vincent Adam, Peter Vrancx, and Jordi Grau-Moya.
Disentangled skill embeddings for reinforcement learning. arXiv preprint arXiv:1906.09223,
2019.

[32] Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient
off-policy meta-reinforcement learning via probabilistic context variables. In International
Conference on Machine Learning, pages 5331–5340, 2019.

[33] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. QMIX: Monotonic value function factorisation for deep multi-agent
reinforcement learning. In International Conference on Machine Learning, pages 4292–4301,
2018.

[34] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon White-
son. The StarCraft multi-agent challenge. In International Conference on Autonomous Agents
and MultiAgent Systems, pages 2186–2188, 2019.

[35] Felipe Leno da Silva and Anna Helena Reali Costa. Transfer learning for multiagent reinforce-
ment learning systems. Synthesis Lectures on Artificial Intelligence and Machine Learning,
15(3):1–129, 2021.

[36] Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-
based representations. In International Conference on Machine Learning, pages 9767–9779,
2021.

[37] Yanchao Sun, Ruijie Zheng, Xiyao Wang, Andrew E Cohen, and Furong Huang. Transfer RL
across observation feature spaces via model-based regularization. In International Conference
on Learning Representations, 2022.

[38] Mihai Suteu and Yike Guo. Regularizing deep multi-task networks using orthogonal gradients.
arXiv preprint arXiv:1912.06844, 2019.

[39] Yunzhe Tao, Sahika Genc, Jonathan Chung, Tao Sun, and Sunil Mallya. Repaint: Knowledge
transfer in deep reinforcement learning. In International Conference on Machine Learning,
pages 10141–10152, 2021.

[40] Dean Tjosvold. Cooperation theory and organizations. Human relations, 37(9):743–767, 1984.

11

[41] Samir Wadhwania, Dong-Ki Kim, Shayegan Omidshafiei, and Jonathan P. How. Policy distil-
lation and value matching in multiagent reinforcement learning. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 8193–8200, 2019.

[42] Jane X Wang, Zeb Kurth-Nelson, Hubert Soyer, Joel Z Leibo, Dhruva Tirumala, Rémi Munos,
Charles Blundell, Dharshan Kumaran, and Matt M Botvinick. Learning to reinforcement learn.
In CogSci, 2017.

[43] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. QPLEX: Duplex dueling
multi-agent Q-learning. In International Conference on Learning Representations, 2021.

[44] Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning structured policy
with graph neural networks. In International Conference on Learning Representations, 2018.

[45] Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. ROMA: Multi-agent rein-
forcement learning with emergent roles. In International Conference on Machine Learning,
pages 9876–9886, 2020.

[46] Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and Chongjie Zhang.
RODE: Learning roles to decompose multi-agent tasks. In International Conference on Learning
Representations, 2021.

[47] Tonghan Wang, Jianhao Wang, Chongyi Zheng, and Chongjie Zhang. Learning nearly decom-
posable value functions with communication minimization. In International Conference on
Learning Representations, 2020.

[48] Weixun Wang, Tianpei Yang Yong Liu, Jianye Hao, Xiaotian Hao, Yujing Hu, Yingfeng Chen,
Changjie Fan, and Yang Gao. Action semantics network: Considering the effects of actions in
multiagent systems. In International Conference on Learning Representations, 2020.

[49] Weixun Wang, Tianpei Yang, Yong Liu, Jianye Hao, Xiaotian Hao, Yujing Hu, Yingfeng Chen,
Changjie Fan, and Yang Gao. From few to more: Large-scale dynamic multiagent curriculum
learning. In AAAI Conference on Artificial Intelligence, pages 7293–7300, 2020.

[50] Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. DOP: Off-
policy multi-agent decomposed policy gradients. In International Conference on Learning
Representations, 2021.

[51] Annie Xie, Dylan P. Losey, Ryan Tolsma, Chelsea Finn, and Dorsa Sadigh. Learning latent
representations to influence multi-agent interaction. In Conference on Robot Learning, pages
575–588, 2020.

[52] Zhiyuan Xu, Kun Wu, Zhengping Che, Jian Tang, and Jieping Ye. Knowledge transfer in multi-
task deep reinforcement learning for continuous control. In Advances in Neural Information
Processing Systems, pages 15146–15155, 2020.

[53] Di Xue, Lei Yuan, Zongzhang Zhang, and Yang Yu. Efficient multi-agent communication
via shapley message value. In International Joint Conference on Artificial Intelligence, pages
578–584, 2022.

[54] Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with
soft modularization. In Advances in Neural Information Processing Systems, 2020.

[55] Tianpei Yang, Weixun Wang, Hongyao Tang, Jianye Hao, Zhaopeng Meng, Hangyu Mao, Dong
Li, Wulong Liu, Yingfeng Chen, Yujing Hu, Changjie Fan, and Chengwei Zhang. An efficient
transfer learning framework for multiagent reinforcement learning. In Advances in Neural
Information Processing Systems, pages 17037–17048, 2021.

[56] Qiang You, Ou Wu, Guan Luo, and Weiming Hu. Metadata-based clustered multi-task learning
for thread mining in web communities. In Machine Learning and Data Mining in Pattern
Recognition, pages 421–434, 2016.

[57] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea
Finn. Gradient surgery for multi-task learning. In Advances in Neural Information Processing
Systems, pages 5824–5836, 2020.

12

[58] Lei Yuan, Chenghe Wang, Jianhao Wang, Fuxiang Zhang, Feng Chen, Cong Guan, Zongzhang
Zhang, Chongjie Zhang, and Yang Yu. Multi-agent concentrative coordination with decentral-
ized task representation. In International Joint Conference on Artificial Intelligence, pages
599–605, 2022.

[59] Lei Yuan, Jianhao Wang, Fuxiang Zhang, Chenghe Wang, Zongzhang Zhang, Yang Yu, and
Chongjie Zhang. Multi-agent incentive communication via decentralized teammate modeling.
In AAAI Conference on Artificial Intelligence, pages 9466–9474, 2022.

[60] Amy Zhang, Harsh Satija, and Joelle Pineau. Decoupling dynamics and reward for transfer
learning. In International Conference on Learning Representations, 2018.

[61] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A
selective overview of theories and algorithms. Handbook of Reinforcement Learning and
Control, pages 321–384, 2021.

[62] Shenao Zhang, Li Shen, and Lei Han. Learning meta representations for agents in multi-agent
reinforcement learning. arXiv preprint arXiv:2108.12988, 2021.

[63] Zimu Zheng, Yuqi Wang, Quanyu Dai, Huadi Zheng, and Dan Wang. Metadata-driven task
relation discovery for multi-task learning. In International Joint Conference on Artificial
Intelligence, pages 4426–4432, 2019.

[64] Tianze Zhou, Fubiao Zhang, Kun Shao, Kai Li, Wenhan Huang, Jun Luo, Weixun Wang,
Yaodong Yang, Hangyu Mao, Bin Wang, Dong Li, Wulong Liu, and Jianye Hao. Coop-
erative multi-agent transfer learning with level-adaptive credit assignment. arXiv preprint
arXiv:2106.00517, 2021.

[65] Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. Transfer learning in deep reinforcement learning:
A survey. arXiv preprint arXiv:2009.07888, 2020.

[66] Luisa M. Zintgraf, Sebastian Schulze, Cong Lu, Leo Feng, Maximilian Igl, Kyriacos Shiarlis,
Yarin Gal, Katja Hofmann, and Shimon Whiteson. VariBAD: Variational Bayes-adaptive deep
RL via meta-learning. Journal of Machine Learning Research, 22(289):1–39, 2021.

13

Appendix

A More Related Work

Transfer learning Transfer learning holds the promise of improving the sample efficiency of
reinforcement learning [65], which learns knowledge from source tasks to accelerate the learning
efficiency in the unseen task. Previous work uses successor features, decouples the transition dynamics
and reward function, and learns faster in simulated navigation and robotic arm settings [3]. DSE [31]
models the transfer process as variational inference and further learns a latent space to transfer skills
across different dynamics. [37] apply a model-based regularizer to learn task-level transfer across
various observation spaces. Related to our work, REPAINT [39] combines task representations with
on-policy learning and uses an advantage-based experience selection approach to transfer useful
samples. Our method differs from these works by (1) its mechanism for alternately updating the
task representation and the representation explainer and (2) its mechanism for handling different
input/output sizes.

The basic idea behind multi-agent transfer learning [35] is to reuse knowledge from other tasks or
other learning agents, corresponding to intra-agent transfer and inter-agent transfer, respectively. It is
expected that the knowledge reuse can accelerate coordination compared to learning from scratch.
The inter-agent transfer paradigm aims at reusing knowledge from other agents with different sensors
or (possibly) internal representations via communication. DVM [41] treats the multi-agent problem
as a multi-task problem to combine knowledge from multiple tasks and then distills the knowledge by
a value matching mechanism. LeCTR [29] learns to teach in a multi-agent environment and learns to
advise others in a peer-to-peer manner. MAPTF [55] takes a further step by proposing an option-based
policy transfer for multi-agent cooperation, and it significantly boosts the performance of existing
methods in both discrete and continuous state spaces. On the other hand, intra-agent transfer refers to
reusing knowledge from previous tasks, focusing on transferring knowledge across multi-agent tasks.
The varying populations and input lengths impede the transfer among agents, with which the graph
neural networks and the transformer play promising roles. DyMA-CL [49] designs various transfer
mechanisms across curricula to accelerate the learning process based on a dynamic agent-number
network. EPC [26] proposes a curriculum learning paradigm via an evolutionary approach to scale
up the population number of agents. UPDeT [17] and PIT [64] make use of the generalization ability
of the transformer to accomplish the multi-agent cooperation and transfer between tasks. Although
these methods can accelerate the learning efficiency of MARL algorithms, they do not exploit task
similarity for better transfer performance. By contrast, our method explicitly models task relationship
by learning a hidden space in which tasks with similar dynamics have similar representations.

Multi-task reinforcement learning is another relevant research topic that enables an RL agent to
leverage experience from multiple tasks to improve sample efficiency and avoid learning from scratch
on every single task. Various approaches have been proposed to achieve multi-task learning, such
as distilling separate tasks’ knowledge into a shared policy [25, 12, 52], conditioning policies on
tasks [8], mapping tasks to parameters of a policy [7, 22, 54], and solving the problem of negative
interference [9, 38, 57] meaning that gradients of different tasks may conflict.

Multi-agent representation learning Learning effective representation in MARL is receiving
significant attention for its effectiveness in solving many important problems. CQ-Learning [16]
learns to adapt the state representation for multi-agent systems to coordinate with other agents. [13]
learn useful policy representations to model agent’s behavior in a multi-agent system. LILI [51]
learns latent representations to capture the relationship between ego-agent’s behavior and the other
agent’s future strategy. RODE [46] uses an action encoder to learn action representations and applies
clustering methods to decompose the joint action space into restricted role action spaces to reduce the
policy search space of multi-agent cooperation. MAR [62] learns meta representation for multi-agent
generalization. MACC [58] uses local information to anticipate the task embedding for decentralized
decision-making. NDQ [47] and MAIC [59] capture the relationships between agents by maximizing
the mutual information, then achieve efficient multi-agent communication. and Our approach differs
from these works by learning representations for tasks and using a representation explainer for
efficient policy transfer.

Another line of research on single-agent multi-task learning that has the potential to be effective in
multi-agent settings is modular RL. Modular RL decentralizes the control of multi-joint robots by

14

learning policies for each actuator and thus holds the promise to deal with input and output with
varying lengths. Each joint has its controlling policy, and they coordinate with each other via various
message passing schemes. To do so, [44] and [30] represent the robot’s morphology as a graph
and use GNNs as policy and message passing networks. [18] use both bottom-up and top-down
message passing schemes through the links between joints for coordinating. All of these GNN-like
works show the benefits of modular policies over a monolithic policy in tasks tackling different
morphologies. However, recently, [23] validated a hypothesis that any benefit GNNs can extract
from morphological structures is outweighed by the difficulty of message passing across multiple
hops. They further propose a transformer-based method, AMORPHEUS, that utilizes self-attention
mechanisms as a message passing approach. Although modular RL can deal with varying action
numbers of different tasks and can implicitly model the interaction between agents through GNN,
Transformer, or message passing, it still cannot cope with varying observation lengths and does
not incorporate task-level context information compared to our method. In summary, our work
distinguishes itself from previous multi-task work by (1) its flexibility of handling varying lengths
of observation and varying numbers of actions; (2) its utilization of agent-interaction modeling in
capturing task relation; and (3) its alternatively fixed task representation learning scheme.

B Details about the Benchmarks

(a) SMAC: 2s3z (b) SMAC: MMM2 (c) MPE: Spread (d) MPE: Gather

Figure 5: Snapshots of the experimental environments used in this paper.

SMAC (Fig. 5(a)∼(b)) StarCraft II Micromanagement Benchmark [34] contains combat scenarios
of StarCraft II unit micromanagement tasks and is a popular benchmark for multi-agent reinforcement
learning. We consider a partially observable setting, where an agent can only see a circular area
around it with a radius equal to its sight range, which is default to 9. We train ally units with
MATTAR to fight against enemy units controlled by the built-in AI. At the beginning of each episode,
allies and enemies spawn in pre-defined regions on the map. Every agent takes actions from a discrete
action space including no-op, move[direction], attack[enemyid], and stop. Under the control
of these actions, agents can move and attack on a continuous map. Agents will get a shared reward
equal to the total damage dealt to enemy units at each timestep. Killing each enemy unit and winning
the combat (killing all the enemies) will bring additional bonuses of 10 and 200, respectively. We
consider three series of SMAC tasks, each including various maps. The detailed descriptions are
shown in Tab. 7∼9.

MPE (Fig. 5(c)∼(d)) Multi-Agent Particle Environment [27] is a multi-agent particle world
containing several navigation and communication tasks. In our experiments, we consider a discrete
version of MPE and use two tasks, Spread and Gather, to evaluate our method. In both tasks, there
are n_agent agents on a field with size [field_size, field_size] tasked to reach landmarks.
The agents can observe objects around it within a distance of sight_range. When a landmark is
within a reach_range× reach_range sub-field around an agent, we say the agent has reached the
landmark. In Spread, we require each agent to reach a landmark that is not occupied by any other
agents, while in Gather, the agents share a common landmark. In both of these tasks, only when
all agents reach the landmark, a collective reward of 1 is given. For both Spread and Gather, we
test several tasks with different numbers of agents. The detailed settings of these tasks are listed in
Tab. 10 and 11.

15

Table 7: Settings of tasks in the MMM series. The bolded names indicate the source tasks.

Map Name Ally Units Enemy Units Type Difficulty

MMM0
1 Medivac,
2 Marauders,
5 Marines

1 Medivac,
2 Marauders,
5 Marines

Asymmetric & Heterogeneous Easy

MMM
1 Medivac,
2 Marauders,
7 Marines

1 Medivac,
2 Marauders,
7 Marines

Asymmetric & Heterogeneous Easy

MMM1
1 Medivac,
1 Marauders,
7 Marines

1 Medivac,
2 Marauders,
7 Marines

Asymmetric & Heterogeneous Hard

MMM2
1 Medivac,
2 Marauders,
7 Marines

1 Medivac,
3 Marauders,
8 Marines

Asymmetric & Heterogeneous Super Hard

MMM3
1 Medivac,
2 Marauders,
8 Marines

1 Medivac,
3 Marauders,
9 Marines

Asymmetric & Heterogeneous Super Hard

MMM4
1 Medivac,
3 Marauders,
8 Marines

1 Medivac,
4 Marauders,
9 Marines

Asymmetric & Heterogeneous Super Hard

MMM5
1 Medivac,
3 Marauders,
8 Marines

1 Medivac,
4 Marauders,
10 Marines

Asymmetric & Heterogeneous Super Hard

MMM6
1 Medivac,
3 Marauders,
8 Marines

1 Medivac,
4 Marauders,
11 Marines

Asymmetric & Heterogeneous Super Hard

Table 8: Settings of tasks in the SZ series. The bolded names indicate the source tasks.

Map Name Ally Units Enemy Units Type Difficulty

1s8z 1 Stalkers,
8 Zealots

1 Stalkers,
8 Zealots Symmetric & Heterogeneous Easy

1s9z 1 Stalkers,
9 Zealots

1 Stalkers,
9 Zealots Symmetric & Heterogeneous Easy

2s3z 2 Stalkers,
3 Zealots

2 Stalkers,
3 Zealots Symmetric & Heterogeneous Easy

2s8z 2 Stalkers,
8 Zealots

2 Stalkers,
8 Zealots Symmetric & Heterogeneous Easy

2s9z 2 Stalkers,
9 Zealots

2 Stalkers,
9 Zealots Symmetric & Heterogeneous Easy

3s5z 3 Stalkers,
5 Zealots

3 Stalkers,
5 Zealots Symmetric & Heterogeneous Easy

3s5z_vs_3s6z 3 Stalkers,
5 Zealots

3 Stalkers,
6 Zealots Symmetric & Heterogeneous Super Hard

7s3z 7 Stalkers,
3 Zealots

7 Stalkers,
3 Zealots Symmetric & Heterogeneous Easy

C Network Architecture and Hyperparameters

Our implementation of MATTAR is based on PyMARL 3 with StarCraft 2.4.6.2.69232 and uses its
default hyperparameter settings. We apply the default ϵ-greedy action selection algorithm to every
algorithm, as ϵ decays from 1 to 0.05 in 50K timesteps. We also adopt typical Q-learning training
tricks like the target network and double Q-learning. MATTAR has hyperparameters λ1, λ2, and λ
as the scaling factors of the observation prediction loss, the reward prediction loss, and the entropy
regularization term, respectively. We set them to 1, 10, and 0.1 across all experiments. For other
hyper-parameters, we use the default settings of QMIX presented in the PyMARL framework. For

3We use PyMARL with SC2.4.6.2.6923. Performance is not always comparable among versions.

16

Table 9: Settings of tasks in the M series. The bolded names indicate the source tasks.

Map Name Ally Units Enemy Units Type Difficulty
3m 3 Marines 5 Marines Symmetric & Homogeneous Easy
4m 4 Marines 5 Marines Symmetric & Homogeneous Easy

4m_vs_5m 4 Marines 5 Marines Asymmetric & Homogeneous Hard
5m 5 Marines 5 Marines Symmetric & Homogeneous Easy

5m_vs_6m 5 Marines 6 Marines Asymmetric & Homogeneous Hard
6m 6 Marines 6 Marines Symmetric & Homogeneous Easy

6m_vs_7m 6 Marines 7 Marines Asymmetric & Homogeneous Hard
7m 7 Marines 7 Marines Symmetric & Homogeneous Easy

7m_vs_8m 7 Marines 8 Marines Asymmetric & Homogeneous Hard
8m 8 Marines 8 Marines Symmetric & Homogeneous Easy

8m_vs_9m 8 Marines 9 Marines Asymmetric & Homogeneous Easy
9m 9 Marines 9 Marines Symmetric & Homogeneous Easy

9m_vs_10m 9 Marines 10 Marines Asymmetric & Homogeneous Easy
10m 10 Marines 10 Marines Symmetric & Homogeneous Easy

10m_vs_11m 10 Marines 11 Marines Asymmetric & Homogeneous Easy
10m_vs_12m 10 Marines 12 Marines Asymmetric & Homogeneous Super Hard

Table 10: Settings of the Spread tasks. The bolded identities indicate the source tasks.

Task Identity # of Agents # of Landmarks Field Size Sight Range Reach Range

2 2 2 6 5 2
3 3 3 8 7 2
4 4 4 10 9 2
5 5 5 10 9 2
6 6 6 15 14 2
7 7 7 15 14 2
8 8 8 15 14 2
9 9 9 15 15 2

RODE [46], ASN [48], QPLEX [43], QMIX [33], and UPDeT [17], we use the codes provided by
the authors with the default hyperparameters settings. We describe our network structure in Tab. 12.
This network architecture is used for all experiments in the paper.

D Experimental Details

Our experiments were performed on 2 NVIDIA GTX 2080 Ti GPUs. For all the performance curves
in our paper, we pause training every 10K timesteps and evaluate for 32 episodes with decentralized
greedy action selection. We present the percentage of episodes in which the agents defeat all enemies
within the time limit. We now provide details about each part of our experiments.

Generalization to unseen tasks For baselines and ablations, we carried out experiments with 5
different random seeds. In each experiment, we evaluate the trained model for 32 episodes on each
unseen task. The results recorded in Tab. 1∼3 are the mean and variance of these 5 random seeds.

Fine-tuning For the performance of fine-tuning MATTAR, we trained 2 source models with different
random seeds for each unseen map and used 2 random seeds for each source model for fine-tuning.
For learning from scratch, we carried out experiments with 4 different random seeds for each map.

Multi-task learning We carried out experiments with 5 different random seeds for both multi-task
learning and learning on a single task. For the experiments of multi-task learning on three tasks
shown in the paper, the training sets are {5m, 5m_vs_6m, 8m_vs_9m, 10m_vs_11m}, {2s3z, 3s5z,
3s5z_vs_3s6z}, and {MMM, MMM2, MMM4}, respectively.

Single-task learning For this experiment, we tested each baseline and ablation algorithm with 5
random seeds.

17

Table 11: Settings of the Gather tasks. The bolded identities indicate the source tasks.

Task Identity # of Agents # of Landmarks Field Size Sight Range Reach Range

2 2 1 6 5 2
3 3 1 8 7 2
4 4 1 10 9 2
5 5 1 10 9 2
7 7 1 15 14 2
9 9 1 15 15 2

10 10 1 20 19 2
15 15 1 20 19 2

Table 12: Hyperparameters about the network structure in our experiments.

name value

The hidden dimension for mixing network 32
The number of layers for the hypernet in mixing network 2

The hidden dimension for the hypernet 64
The length of the encoding vector of agent ID 4

The dimension of task representations 32
The output dimension of the encoder in the forward model 32

The output dimension of the attention module 64
The hidden dimension for the query and key in attention module 8

Population-
invariant

embedding layer

Encoder
Module

Decoder
Module

𝑠 𝑜! 𝑎!𝑠 𝑜! 𝑎!

Generated
Layer

Predictions of 𝑠", 𝑜!", 𝑟hidden state

Task Rep.

Hyper-
network

(a) Network architecture for the forward model

×

ℎ

Non-interaction
layer Interaction layer

𝑜!"#$#%! 𝑜!"#$#%"

⋯

𝑄"#"$%"&'()*&%#" 𝑄%"&'()*&%#"

⋯

Task Rep.

(b) Q-network for interaction actions

Figure 6: The architecture of our forward model and the Q-network for interaction actions. In (b),
oentityi denotes the observation component corresponding to the influence of the i-th interactive
action, Q⃗non−interaction denotes the Q-values of non-interactive actions, and Q⃗interaction denotes the
Q-values of interactive actions.

E Forward Model for Task Representation Learning

In our method, we utilize dynamics modelling to learn task representations which can capture the
similarity between different tasks. We use a hypernetwork as the representation explainer to generate
the parameters of the forward model. In practical implementation, the forward model consists two
components, an encoder and a decoder (Fig. 6(a)).

For the encoder network, we first use the population-invariant embedding layer to get a fixed-
dimensional embedding vector and feed it into a fully-connected layer whose parameters are generated
by the representation explainer. The output hidden variables are fed into the decoder to predict the
next state, the next observation, and the global reward. The encoder module and the representation
explainer are shared among tasks and are fixed when learning representations for unseen tasks.

18

0.0M 0.4M 0.8M 1.2M 1.6M 2.0M
Timesteps

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
% MATTAR

QMIX
QPLEX
RODE
ASN
UPDeT
REFIL

(a) MMM2

0.0M 0.4M 0.8M 1.2M 1.6M 2.0M
Timesteps

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(b) 5m_vs_6m

0.0M 0.4M 0.8M 1.2M 1.6M 2.0M
Timesteps

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(c) 3s5z

Figure 7: A bonus: when learning from scratch on single tasks, MATTAR architecture exhibits good
performance. For performance on more SMAC benchmark, please refer to Fig. 8.

0.0M 0.4M 0.8M 1.2M 1.6M 2.0M
Timesteps

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(a) 2s3z

0.0M 0.4M 0.8M 1.2M 1.6M 2.0M
Timesteps

0

20

40

60

80

100
M

ed
ia

n
Te

st
 W

in
 R

at
e

%

(b) 3s_vs_5z

0.0M 0.4M 0.8M 1.2M 1.6M 2.0M
Timesteps

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(c) 3s5z_vs_3s6z

0.0M 0.4M 0.8M 1.2M 1.6M 2.0M
Timesteps

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(d) corridor

0.0M 0.4M 0.8M 1.2M 1.6M 2.0M
Timesteps

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(e) 10m_vs_11m

0.0M 0.4M 0.8M 1.2M 1.6M 2.0M
Timesteps

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(f) 6h_vs_8z

0.0M 0.4M 0.8M 1.2M 1.6M 2.0M
Timesteps

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(g) 2c_vs_64zg

0.0M 0.4M 0.8M 1.2M 1.6M 2.0M
Timesteps

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(h) 2s_vs_1sc

MATTAR
QMIX
QPLEX
RODE
ASN

Figure 8: More results for the performance of MATTAR on the SMAC benchmark when learning
from scratch on single tasks.

The decoder module is task-specific, and we allow the decoder to be optimized together with task
representations when adapting to unseen tasks.

For the population-invariant embedding layer in the encoder module, like in the policy, we decom-
pose the input state and observation into several entity-specific components, pass them through an
embedding layer, and do a pooling operation for output vectors. We also deal with the case of the
varying number of actions in the input by incorporating actions into to observation oi. We concatenate
non-interaction actions with agent i’s own observation component oown

i and interaction actions with
the observation components corresponding to each entity. We also note that other population-invariant
structures can also be applied to our approach.

19

F Varying Numbers of Actions

In some multi-agent environments, there are interaction actions that have semantics relating to other
opponents in the environment. In this case, the action dimension is related to the number of opponents,
preventing flexible transfer to unseen tasks. To deal with this problem, we adopt the structure shown
in Fig. 6(b) for the estimation of Q-values for these interaction actions. In this structure, Q-values
for interaction and non-interaction actions are estimated separately. For non-interaction actions, we
use a fully-connected network whose input is the concatenation of observation encoding h and task
representation z. For an interaction action, we use a network that takes as input the concatenation of
h, task representation z, and the observation component relating to the corresponding opponent.

G Bonus: performance on single-task training

Although not designed for this goal, we find that MATTAR can outperform state-of-the-art MARL
algorithms when trained on some single tasks. Specifically, we remove the task representation module
and train MATTAR from scratch. We compare our method with two state-of-the-art value-based
MARL baselines (QMIX [33] and QPLEX [43]), a role-based learning algorithm (RODE) [46], and
one underlying algorithm of MATTAR which considers the Q-values of interaction actions separately
(ASN) [48]. For the representative tasks of the three series in the main text (MMM2, 5m_vs_6m and
3s5z), we additionally compare with two methods with similar attentional mechanisms (UPDeT [17]
and REFIL [19]).

Fig. 7 shows the learning curves of different methods. We find that our population-invariant network
structure achieves comparable performance in all tasks. It is worth noting that this structure even
significantly outperforms all other algorithms on the super hard map MMM2. In Fig. 8, we show the
comparison on more SMAC maps, on which MATTAR also has comparable performance. Given that
our underlying algorithm is QMIX, this is an inspiring result. We hypothesize that our self-attention
scheme increases the representational capacity by learning to attend to appropriate entities in the
environment.

H Testing of one alternative for source task definition

(a) 2s3z (b) 3s5z (c) 3s5z_vs_3s6z

Apply a normalization layer on top of joint learned vectors with the representation explainer

Figure 9: Testing of one alternative for source task definition. In this experiment, we apply a
normalization layer on top of the joint learned vectors with the representation explainer, and use it as
the task representations for source tasks.

One possible method for determining the source task representations is to joint learn representation
explainer and task representations together. However, this practice often brings representations with
very small norms. A remedy for this problem is to additionally apply a normalization layer on top
of the jointly learned vectors. We conduct experiments to validate this approach, and the results of
learning performance on source tasks for the SZ series are shown in Fig. 9. It is interesting that the
learning curves on source tasks begin to drop after about 1M samples for all these three tasks. These
results show that it is hard to get a meaningful representation space when learning together with the
representation explainer. We hypothesize the reason behind the phenomenon is that there are limited
signals that can guarantee information about task relationship is encoded in the representation space.

20

I Discussions when tasks under great differences

Our approach shows great advantages over ablations and baselines in the experimental results
reported in the main text. To further explore the ability of our approach, we additionally conduct two
experiments, and the results are reported in Tab. 13.

Table 13: Two additional experiments where the unseen tasks are quite different.
Source Tasks Unseen Tasks

1s2z 1s3z 2s3z 3s5z 3s5z_3s6z 4s7z 4s7z_4s8z

MATTAR 0.94±0.04 0.97±0.03 0.91±0.07 0.68±0.12 0.01±0.01 0.39±0.19 0.00±0.00

MMM MMM2 MMM4 1s8z 2s3z 3s5z 7s3z

MATTAR 0.99±0.01 0.85±0.01 0.89±0.03 0.00±0.00 0.00±0.00 0.00±0.00 0.05±0.07

In the first experiment, we design source tasks and target tasks with a huge gap in terms of the number
of agents. Specifically, We train MATTAR on three source tasks: 1s2z, 1s3z, and 2s3z, each of
which contains a small number of agents and has a difficulty level of “easy”, and we test it on tasks
with more agents and higher difficulty level. As we can see, the transfer performance drops when the
number of agents has a huge increase, and the win rate is 0 on 4s7z_4s8z.

In the second experiment, we train MATTAR on three tasks from the MMM series and test it on some
tasks of the SZ series. We can see that when the source tasks are not diverse enough to cover unseen
tasks, the transfer performance is close to 0.

From the results, we can see that the transfer performance faces a relatively large drop when our
approach transfers from tasks with few agents to those with more agents, and a failure will appear
when testing on those hard tasks as the decision skills required in these tasks cannot be acquired by
training on those easy tasks. Besides, when we try to transfer across different series of tasks, our
approach struggles even when testing on the 2s3z task, which is a quite easy task. This phenomenon
indicates that policy transfer across quite different tasks is still a quite hard problem that is worth
exploring, and our approach may struggle when the target task can not be well covered by the source
tasks. How to overcome this challenge and achieve more general policy transfer in multi-agent
reinforcement learning remains an open problem.

21

	Introduction
	Method
	Task representation learning
	Task policy learning

	Experiments
	Generalizability to unseen tasks
	A good initialization for policy fine-tuning
	Benefits of multi-task learning

	Related Work
	Conclusion
	Acknowledgements
	More Related Work
	Details about the Benchmarks
	Network Architecture and Hyperparameters
	Experimental Details
	Forward Model for Task Representation Learning
	Varying Numbers of Actions
	Bonus: performance on single-task training
	Testing of one alternative for source task definition
	Discussions when tasks under great differences

