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Volatility is of central importance in �nance. Since the groundbreaking work of Markowitz

(1952) on modern portfolio theory, both academics and practitioners have focused on volatil-

ity as a key measure of risk. Academics have documented empirical facts about volatility and

proposed models to capture them. Practitioners track the volatility of investment strategies

and use market volatility as a gauge for investor sentiment. Volatility has been the topic of

countless academic studies and industry reports.

In calculating volatility, positive and negative deviations from the unconditional mean

are treated equally. When volatility is high, the investor is equally likely to experience a

large upside move as a large downside move. However, investors may not view upside and

downside moves as equally risky. Whereas a 10% sharp increase in the market may call for

celebration, a 10% steep fall will cause serious agony.

Unlike volatility, which computes standard deviation using all returns, downside volatil-

ity is the standard deviation of returns below a threshold. In contrast to the popularity

of volatility, downside volatility is a risk measure that has received less attention. Because

downside volatility and volatility do not always move in lockstep, tracking both gives the

risk manager additional information to make improved decisions. Monitoring volatility and

downside volatility allows the investor to di�erentiate between total risk and downside risk,

helping her make more informed investment decisions.

We measure downside volatility as the deviation from the unconditional average returns,

rather than from the conditional mean of only downside observations. Our construction

provides a simple decomposition: total variance is a weighted average of downside and upside

variances. The weights are proportional to the number of downside and upside observations.

Equity return distributions tend to be symmetric, so downside volatility and volatility

are generally highly correlated. For eight long-short factors and 49 long-only industry portfo-

lios, the unconditional correlation between downside volatility and volatility is around 90%.

Indeed, during economic downturns such as the Great Depression or the Great Financial

Crisis, downside volatility and volatility are both extremely high.

At their extremes, volatility and downside volatility can be quite di�erent. When both

downside volatility and volatility are elevated, their correlation is considerably lower. The tail

correlations between downside volatility and volatility during the historically most volatile 12

months range between -50% and 95%, with most values falling between 20% and 60%. Pooled

regressions show that a 1% change in volatility in the most volatile months is associated with

only 0.4% to 0.5% increase in downside volatility. Times of extreme volatility are precisely
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when monitoring both downside volatility and volatility become the most valuable, and when

these two measures markedly di�er.

Volatility is often used as an input in portfolio management. Moreira and Muir (2017)

show that volatility-managed portfolios produce large alphas and have higher Sharpe ratios

compared to the original portfolios. They scale well-known factors such as value or momen-

tum by the inverse of their conditional volatilities, and show that these portfolios expand

the investor's opportunity set.

We explore the behavior of downside volatility-managed portfolios, which scales return

series by their conditional downside volatilities, and �nd that they expand the investor's

opportunity set. Downside volatility-managed factors and industry portfolios compare fa-

vorably to their original counterparts. Regressions of downside volatility-managed factors

and industry portfolios against the original series result in economically large alphas and

low explanatory power. Scaling returns by their conditional downside volatility introduces

diversi�ed new return series that are not spanned by the original ones.

We compare downside volatility-managed portfolios to volatility-managed portfolios of

Moreira and Muir (2017), and �nd that our portfolios add value beyond those proposed by

Moreira and Muir (2017). In regressions of downside volatility-managed portfolios against

volatility-managed portfolios, six of the eight factors have economically large alphas. 39 of

the 49 industry portfolios have positive alphas, and 23 of the 49 have alphas exceeding 1%

per year.

We also compare downside volatility-managed portfolios and Moreira and Muir (2017)

volatility-managed portfolios in a mean-variance framework. While combining volatility-

managed portfolios with the original ones leads to higher Sharpe ratios for the ex post

tangency portfolio, adding downside volatility-managed further increases the Sharpe ratio.

The tangency portfolio formed using the original eight factors has a Sharpe ratio of 1.41.

Combining volatility-managed factors and the original eight, the new ex post tangency port-

folio has a Sharpe ratio of 1.84. When we add downside volatility-managed portfolios, the

Sharpe ratio increases to 2.04. The Shape ratio of the tangency portfolio formed using 49

industry portfolios is 1.28. Adding volatility-managed portfolios improves the Sharpe ratio

to 2.28. Adding downside volatility-managed portfolios to the mix raises the Sharpe ratio to

3.22. The Sharpe ratio improvements are statistically signi�cant, with p-values from Ledoit

and Wolf (2008) tests near zero. While the investor may not be able to fully realize these

Sharpe ratio gains, comparing ex post tangency portfolio characteristics illustrates how in-
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vestors may expand their opportunity set if they were to include downside volatility-managed

portfolios among their choices.

Downside volatility-managed portfolios expand the investment opportunity set, but up-

side volatility-managed portfolios do not. Upside volatility-managed portfolios do not con-

tain additional information beyond volatility-managed portfolios. In spanning tests, six of

the eight upside volatility-managed factors have negative alphas against volatility-managed

factors, and 43 of the 49 upside volatility-managed industry portfolios have negative alphas

against volatility-managed industry portfolios.

Our results are not driven by our de�nition of downside volatility. Markowitz (1959)

proposed using semi-standard deviation, calculated as the squared deviation from the con-

ditional mean of only negative returns, as a measure of downside risk. We �nd downside

volatility-managed portfolios using the Markowitz (1959) de�nition also add value to in-

vestors by expanding their investment opportunity set: volatility-managed portfolios do not

span downside volatility-managed portfolios using semi-standard deviation.

The distinction between upside and downside risk has been made at least since Markowitz

(1959), who recommends semi-variance as a replacement for variance as a measure of risk

on the grounds it is realistically superior. Among others, Hogan and Warren (1974), Bawa

and Lindenberg (1977), and Harlow and Rao (1989) expand this idea into equilibrium as-

set pricing frameworks. Compared to these papers, our work focuses more on the portfolio

management implication of downside volatility rather than a comprehensive asset pricing

framework.

The paper closest to our is Moreira and Muir (2017), who document that volatility-

managed factors can improve the investor's opportunity set when compared to the original

factors. The key di�erence between Moreira and Muir (2017) and our approach is the vari-

able used to determine portfolio exposure. Moreira and Muir (2017) use volatility, whereas

we argue that due to investors' asymmetric preferences for upside versus downside risk,

downside volatility could also be useful for portfolio management. The resulting portfolio

returns using downside volatility di�er from those using volatility and have attractive risk-

return properties. We �nd that downside volatility-managed portfolios can add value beyond

volatility-managed portfolios, because downside volatility and volatility are not always highly

correlated.

The paper is organized as follows. Section 1 introduces downside volatility and compares

it to volatility. In section 2, we scale portfolios by their conditional downside volatilities and
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measure them against the original portfolios and volatility-managed portfolios. Section 3

shows how downside volatility-managed portfolios can expand the investor's ex post e�cient

frontier. Section 4 shows that unlike downside volatility, upside volatility is not useful in

expanding the investment opportunity set. Section 5 concludes.

1 Downside Volatility

1.1 A Variance Decomposition

Variance of a return series can be calculated by the well-known formula:

σ̂2 =
1

N

N∑
i=1

(xi − x̄)2 (1)

Where N is the number of observations, xi are individual observations, and x̄ is the

unconditional average of all observations. N − 1 may be used in place of N for a bias

correction, but in large samples this distinction is minor.

Downside deviation is often calculated using returns smaller than some target level. We

take the average return to be the target level. De�ne downside and upside variance as the

following:

σ̂2
d =

1

Nd

N∑
i=1

(xi − x̄)2
1xi≤x̄, σ̂2

u =
1

Nu

N∑
i=1

(xi − x̄)2
1xi>x̄ (2)

Where Nd is the number of observations in which xi ≤ x̄, and Nu is the number of

observations in which xi > x̄. N = Nd + Nu. 1xi≤x̄ and 1xi>x̄ are indicator function for

observations less than (or equal to) and greater than the sample mean.

We can rewrite Equation (1) as the following:
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σ̂2 =
Nd

N
σ̂2
d +

Nu

N
σ̂2
u

Therefore, overall variance is a weighted sum of downside variance and upside variance.

Volatility, downside volatility, and upside volatility are obtained by taking square root of

variances.

1.2 Data

For our analysis, we use daily and monthly returns for Fama and French. (1992, 2015)

factors and characteristic-sorted portfolios from Ken French's website1. We obtain daily and

monthly returns on the Fama and French. (1992) factors, as well as short-term and long-term

reversals, from July 1926 through January 2018, and Fama and French. (2015) factors from

July 1963 to January 2018. We also use daily and monthly returns of 49 industry portfolios

from French's website.2

1.3 Downside Volatility vs. Volatility

We follow Moreira and Muir (2017) and construct monthly volatility and downside

volatility using daily returns. For each month from July 1926 to January 2018, we use

(1) and (2) to calculate the volatility measures. For comparison, we also compute upside

volatility using Equation (2). We calculate volatility measures for long-short factors including

market excess returns (RMRF), size (SMB), value (HML), momentum (MOM), pro�tability

(RMW), investments (CMA), short-term reversal (STRev), and long-term reversal (LTRev).

We also calculate volatilities for 49 industry portfolios.3

Exhibit 1, in the top panel, shows unconditional correlations between volatility and

downside volatility. In the bottom panel, we present tail correlations. For each return

series, we calculate tail correlations using the 12 months with the highest volatility. The tail

correlations illustrate how closely volatility and downside volatility comove during the most

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
2See Ken French's website for industry de�nitions.
3In robustness checks, we consider alternative horizons to compute volatility measures. Our results are

qualitatively unchanged if we use the previous two months, three months, six months, or 12 months to
calculate volatility.
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volatile times.

Exhibit 1: Correlations and Tail Correlations between Volatility and Downside
Volatility.
We compute correlations between volatility and downside volatility for eight factors and 49
industry portfolios. We also report tail correlations, calculated using the 12 most volatile
months of each return series.

Across eight factors and 49 industry portfolios, we �nd that volatility and downside

volatility tend to move together. The average unconditional correlation between the two

measures is 93%. On average, downside volatility tends to be high when volatility is high.

In the most volatile months, volatility and downside volatility do not necessarily move

together. For market excess returns, the unconditional correlation between volatility and

downside volatility is 94%. During the most volatile 12 months, the conditional correlation

is only 55%. Although volatility and downside volatility tend to comove on average, they

may be meaningfully di�erent during the most volatile episodes. The average tail correlation

across factors and industry portfolios is only 58%.
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Tail correlations are di�cult to estimate due to limited data. We compute tail correla-

tions using 12 months in our attempt to capture the tail, at the cost of increased sampling

variation. To alleviate this problem, we consider pooling tail measurements across all return

series to understand the average relationship between volatility and downside volatility in

the tails. For each return series, we collect volatility measures from its most volatile 12

months. We then combine all measures across 8 factors and 49 industry portfolios.

Exhibit 2 presents a scatterplot of downside volatility against volatility in the most

volatile months for all portfolios. The line of best �t for the pooled sample shows a regression

coe�cient of 0.48 and an R-squared of 57%. If volatility and downside volatility were closely

related, we would expect a coe�cient near 1.0, and a line of best �t to be close to the dashed

45-degree line. Instead, the data show if the volatility in the most volatile months is 1%

higher, the downside volatility measured in the same month is likely to be only 0.48% higher;

the majority of points on the graph lie below the 45-degree line.

To understand the relationship between volatility and downside volatility in Exhibit 2

more formally, we run pooled regressions of downside volatility on volatility, during the most

volatile months:

σid,t = pσit + Fixed E�ects + ηid,t (3)

Where σid,t and σ
i
t are the downside volatility and volatility of portfolio i in month t. p

is the sensitivity of downside volatility to volatility. p = 1 implies volatility and downside

volatility perfectly comove in the most volatile months. We include �xed e�ects to capture

any latent di�erences in downside volatility across time or portfolios not due to di�erences

in volatility. We cluster standard errors by time to allow for arbitrary correlations across

portfolios at each point in time.

Exhibit 3 includes the pooled regression results. Column (1) shows a pooled time-series

cross-sectional regression of downside volatility on volatility. We get a coe�cient of 0.48

with a standard error of 0.05; we can reject p = 1 at conventional con�dence levels or 5%

or 1%. The estimate for p does not change much to the inclusion of portfolio �xed e�ects

(Column (2)), time �xed e�ects (Column (3)), or both (Column (4)). In each speci�cation,

the estimate is between 0.4 and 0.5 and the null hypothesis that p = 1 is rejected.
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Exhibit 2: Scatterplot of Volatility and Downside Volatility in the Tails.
We select volatility and downside volatility measures from the most volatile 12 months of
each return series. We then pool these measures across 8 factors and 49 industry portfolios to
create the scatterplot. Monthly volatility measures are annualized by multiplying by square
root of 12. The solid line is the line of best �t. A 45-degree dashed line is shown.

Above evidence indicates volatility and downside volatility are not the same measure of

risk. One criticism of downside volatility is that return distributions tend to be symmetric,

so downside volatility does not provide additional information but uses fewer data points in

estimation. Our �ndings show that volatility does not subsume the information in downside

volatility. Tracking both quantities may provide a better understanding of the risk pro�le of

a strategy.
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Left-Hand Variable = σid,t

(1) (2) (3) (4)

p 0.48 0.50 0.46 0.41
[0.05] [0.06] [0.04] [0.08]

Nobs 684 684 684 684
Portfolio FE N Y N Y
Time FE N N Y Y

R2 0.57 0.61 0.58 0.62

Exhibit 3: Panel Regressions of Downside Volatility on Volatility.
We select downside volatility and volatility in the most volatile 12 months for each portfolio,
and run pooled regressions: σid,t = pσit + Fixed E�ects + ηid,t. Standard errors clustered by
time are shown in square brackets.

2 Downside Volatility-Managed Portfolios

Monitoring volatility and downside volatility gives the investor metrics to measure port-

folio risk. Are these quantities useful in portfolio management? To answer this question, we

explore changing portfolio exposure based on conditional downside volatility. We construct

downside volatility-managed portfolios as follows:

fdt+1 =
γ

σ̂2
d,t

ft+1 (4)

fdt+1, the downside volatility-managed portfolio at time t + 1, is given as the original

portfolio ft+1 scaled by last month's downside variance. The constant γ is set such that fdt+1

has the same unconditional standard deviation as ft+1. Our construction follows Moreira

and Muir (2017), who propose volatility-managed portfolios:

fMM
t+1 =

c

σ̂2
t

ft+1 (5)

Where c is chosen such that fMM
t+1 and ft+1 have the same unconditional standard devia-

tion. The only di�erence between volatility-managed portfolio fMM
t+1 and downside volatility-
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managed portfolio fdt+1 is whether conditional volatility or downside volatility is used to

control strategy exposure.

We use spanning tests to study whether downside volatility-managed portfolios improve

the investor's opportunity set. We run time-series regressions of downside volatility-managed

factor returns on the original factors.

fdt+1 = α + βft+1 + εdt+1 (6)

In this regression, α = 0 indicates downside volatility-managed factors are spanned

by the original factors. That is, managing factor exposure using downside volatility cannot

improve the investor's risk-return tradeo�. A positive α suggests that the downside volatility-

managed factor cannot be spanned by the original factor, and adds additional value for the

investor: the investor can obtain superior risk-adjusted returns if she were to invest in some

combination of ft+1 and f
d
t+1 rather than 100% in ft+1.

β in the regression measures the comovement between downside volatility-managed fac-

tors and the original factors. β = 1 implies that the downside volatility-managed factor

moves one-for-one with the original factor, whereas a positive β less than one means the

downside volatility-managed factor moves in the same direction as the original factor, but

these moves are smaller.

Exhibit 4 presents the regression results. We observe positive intercepts for six of

the eight factors. The exceptions are CMA and STRev, which have negative intercepts

that are economically and statistically small. Four of the eight intercepts are economically

and statistically large, ranging between 3.6% to 8.3% per year. β, the slope coe�cient in

the regression, is smaller than one for all factors, indicating downside volatility-managed

factors do not comove one-for-one with the original factors. Furthermore, R2 is small for

all regressions. These results indicate that downside volatility-managed factors do not share

much common comovement with the original factors. Instead, they provide diversifying

returns not spanned by the original long-short factors.4

Moreira and Muir (2017) show that volatility-managed factors are not spanned by the

original factors. They consider some of the same factors we consider, including RMRF ,

4The intercepts are economically and statistically large even if we include Fama and French (1992, 2015)
factors. Results are available upon request.
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Left-Hand Variable

RMRF d SMBd HMLd MOMd RMW d CMAd STRevd LTRevd

α 6.0% 1.6% 4.2% 8.3% 3.6% -0.8% -1.5% 0.9%
(3.5) (1.5) (3.8) (5.0) (3.8) (-0.8) (-1.2) (0.7)

RMRF 0.47
(17.5)

SMB 0.40
(14.4)

HML 0.51
(19.4)

MOM 0.26
(8.9)

RMW 0.45
(13.0)

CMA 0.19
(4.9)

STRev 0.07
(2.3)

LTRev 0.41
(14.3)

R2 0.22 0.16 0.26 0.07 0.21 0.04 0.00 0.16

Exhibit 4: Univariate regressions of downside volatility-managed portfolios on the
original factors.
We regress downside volatility-managed factors onto the original factors: fdt+1 = α+βft+1 +
εdt+1 Each column is a separate regression. The data are monthly and the sample period is
1926 to 2018 for RMRF , SMB, HML, MOM , and STRev; 1931 to 2018 for for LTRev;
1963 to 2018 for RMW and CMA.
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SMB, HML, MOM , RMW , and CMA. One may wonder if our results in Exhibit 4 are

a product of the results in Moreira and Muir (2017) and the fact that downside volatility is

generally highly correlated with volatility.

To understand the di�erence between our �ndings and those in Moreira and Muir

(2017), we run time-series regressions of downside volatility-managed portfolios on volatility-

managed portfolios:

fdt+1 = a+ bfMM
t+1 + ηdt+1 (7)

Where fMM
t+1 is the volatility-managed portfolio of Moreira and Muir (2017). Similar to

the interpretation of Equation (6), a positive a suggests that the downside volatility-managed

portfolio cannot be spanned by the volatility-managed portfolio.

Exhibit 5 shows the results for Equation (7). Four of the eight factors have statistically

large intercepts a ranging from 1.9% to 2.7% per year. Six intercepts are positive, and the

two negative ones - CMA and STRev - are statistically small. Regression slope, b, is always

less than one. R2 is typically higher than those in Exhibit 4, since volatility and downside

volatility are positively correlated so portfolios based on them are also positively correlated.

We also investigate downside volatility-managed industry portfolios using spanning tests

in Equation (6) and Equation (7). For both regressions, we subtract o� the one-month

Treasury bill returns from both the independent and dependent variables, so the regression

intercept has the interpretation of risk premium not captured by the right-hand variable.

We report the intercepts of Equation (6) and their t-statistics in Exhibit 6.

As the case for factor portfolios, downside volatility-managed industry portfolios are not

spanned by the original industry portfolios. 48 of 49 portfolios have positive intercepts and

only one has a small negative intercept. 36 industry portfolios have annualized intercepts of

over 3%, economically large out-performance relative to the original portfolios after adjust

for their exposures. 29 of the 49 intercepts are statistically signi�cant.

Exhibit 7 shows spanning test results for downside volatility-managed industry portfolio

on volatility-managed industry portfolios. 19 downside volatility-managed portfolios have

annualized intercepts of 2% or larger, marking considerable improvements relative to the

volatility-managed portfolios. 10 of the 49 regressions have negative intercepts, indicating
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Left-Hand Variable

RMRF d SMBd HMLd MOMd RMW d CMAd STRevd LTRevd

a 1.6% 2.0% 2.7% 1.6% 1.9% -0.8% -1.2% 1.9%
(1.4) (2.2) (4.1) (1.1) (2.7) (-0.9) (-0.9) (2.1)

RMRFMM 0.81
(45.2)

SMBMM 0.62
(25.9)

HMLMM 0.85
(53.9)

MOMMM 0.55
(21.6)

RMWMM 0.74
(28.5)

CMAMM 0.27
(7.1)

STRevMM 0.04
(1.4)

LTRevMM 0.73
(34.9)

R2 0.65 0.38 0.73 0.30 0.55 0.07 0.00 0.54

Exhibit 5: Univariate regressions of downside volatility-managed portfolios on
volatility-managed factors.
We regress downside volatility-managed factors onto volatility-managed factors of Moreira
and Muir (2017): fdt+1 = a + bfMM

t+1 + ηdt+1 Each column is a separate regression. The data
are monthly and the sample period is 1926 to 2018 for RMRF , SMB, HML, MOM , and
STRev; 1931 to 2018 for for LTRev; 1963 to 2018 for RMW and CMA.
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Exhibit 6: Comparison of Downside Volatility-Managed Industry Portfolios and
Original Industry Portfolios.
We regress excess returns of downside volatility-managed industry portfolios onto the excess
returns of the original industry portfolios: fdt+1 = α + βft+1 + εdt+1. Annualized intercepts
and t-statistics are shown. The data are monthly and available from 1926 to 2018.

that volatility-managed portfolios span the downside volatility-managed portfolios for those

industries. Seven positive intercepts are statistically signi�cant, whereas none of the nega-

tive intercepts is statistically signi�cant. Viewed as a whole, downside volatility-managed

industry portfolios expand the investment opportunity set compared to volatility-managed

portfolios, although there is variation across industries.

The results in this section were produced using the de�nition of downside volatility

from Section 1.1. We examine how the results change using an alternative de�nition of

downside volatility, calculated as the deviation from the conditional mean of only negative

returns (Markowitz, 1959). Our results hold under this alternative de�nition. In regressions

of downside volatility-managed portfolios on volatility-managed portfolios, four of the eight
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Exhibit 7: Comparison of Downside Volatility-Managed Industry Portfolios and
Volatility Managed Portfolios of Moreira and Muir (2017).
We regress excess returns of downside volatility-managed industry portfolios onto the excess
returns of volatility-managed industry portfolios of Moreira and Muir (2017): fdt+1 = a +
bfMM
t+1 + ηdt+1 The data are monthly and available from 1926 to 2018.

factors have large and positive intercepts. None of the intercepts is statistically negative.

For industry portfolios, 14 have annualized intercepts greater than 2%, whereas there is no

large negative intercepts.

3 Expanding the Ex Post E�cient Frontier

The previous section documents that downside volatility-managed portfolios can expand

the investor's opportunity set when compared to the original portfolios or volatility-managed

portfolios. The comparisons were all in a univariate setting, between two individual return

series. In practice, the investor may invest in more than one factor or more than one industry
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portfolio, so it is important to understand the overall change to her investment opportunity

set. We investigate the extent to which downside volatility-managed portfolios expand the

investor's ex post e�cient frontier.

Given a set of excess returns µ and variance-covariance matrix Σ, the Sharpe ratio

is given as w′µ
w′Σw

where w is a vector of portfolio weights summing up to one. The ex

post tangency portfolio, the portfolio with the highest in-sample Sharpe ratio, captures the

investment opportunity set for market participants. Its weights are given by the following

expression:

wTang =
Σ−1µ

1Σ−1µ
(8)

Where 1 is a conforming vector of ones. Using the ex post tangency portfolio weights, it

is easy to show that the ex post tangency portfolio has the following Sharpe ratio (Campbell

et al., 1997):

SRTang =
√
µ′Σ−1µ (9)

We use the above expression to evaluate the expansion of the ex post mean-variance e�-

cient frontier. For each factor or industry portfolio, we estimate Σ and µ using the full sample.

We compare the Sharpe ratio of the ex post tangency portfolio formed in three di�erent ways:

1) the original set of portfolios, 2) the original portfolios and volatility-managed portfolios,

and 3) the original portfolios, volatility-managed portfolios, and downside volatility-managed

portfolios. We present our �ndings in Exhibit 8.

Consider the Fama and French. (1992) factors RMRF , SMB, and HML. The ex post

tangency portfolio [1] formed using these three factors has a Sharpe ratio of 0.52. These fac-

tors, plus their volatility-managed counterparts, form a tangency portfolio [2] with a Sharpe

ratio of 0.71. Including downside volatility-managed factors, the Sharpe ratio of the tan-

gency portfolio [3] rises to 0.87. We formally test for equal Sharpe ratios using the approach

of Ledoit and Wolf (2008), which accounts for both heteroscedasticity and heavy tails. We

can reject the null of equal Sharpe ratios for the tangency portfolio formed excluding down-

side volatility-managed portfolios [2] and including downside volatility-managed portfolios
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[3], indicating that downside volatility-managed portfolios signi�cantly improves the Sharpe

ratio of the tangency portfolio. We can also reject equal Sharpe ratios for excluding and

including volatility-managed portfolios ([1] and [2]).

Downside volatility-managed portfolios expand the investment opportunity set formed

by both the original and volatility-managed portfolios. The improvements in Sharpe ratio

are statistically signi�cant. This pattern holds for di�erent combinations of factors, such as

the Carhart (1997) four factors, reversals, the Fama and French. (2015) �ve factors, and all

eight factors.

Portfolio weights in Equation (8) are not constrained to be positive, so the Sharpe ratios

in Exhibit 8 could be implied by negative weights on the constituent factor portfolios. This

raises the question of implementation costs associated with short position on the underlying

factors. Because volatility-managed factors and downside volatility-managed factors are

simply scaled versions of the original factors, they have the same underlying stocks, just with

potentially di�erent positions. A portfolio which combines the original factors, volatility-

managed factors, and downside volatility-managed factors should not be more di�cult to

trade than the original factors, as the positions on the underlying stocks can be netted. It is

possible that after netting the positions, some stocks with long positions in the original factor

portfolios receive short positions, and vice versa. Presumably, investors who have enough

resources to trade the original long-short factors can construct the new portfolio without

much increased slippage.

Sharpe ratio improvements in Exhibit 8 do not necessarily come from short positions in

the underlying factor portfolios. The implied short positions are typically modest, smaller

than -20% in magnitude, with the exception of SMB and HML's volatility-managed versions

in the tangency portfolio of FF3F (-31% and -37%). To understand the e�ect of short

factor positions on Sharpe ratios, we convert the negative positions in Equation (8) to zero

and normalize the remaining weights to sum to one. The resulting portfolios including

downside volatility-managed factors still show large improvement in Sharpe ratios compared

to portfolios excluding these factors. We could also solve a formal portfolio optimization

problem maximizing the Sharpe ratio with a non-negative constraint on portfolio weights.

The results are similar to simply converting negative weights in Equation (8) to zero because

there are only a few small negative positions implied by Equation (8). In fact, downside

volatility-managed portfolios provide such strong diversi�cation that equal-weight portfolios
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FF3F FF3F FF5F FF5F FF3F FF5F FF5F
+Mom +Mom +Revs +Revs +Mom+Revs

[1] f 0.52 0.98 1.11 1.28 0.90 1.19 1.41
[2] f and fMM 0.71 1.27 1.38 1.71 1.03 1.46 1.84

[3] f , fMM , and fd 0.87 1.38 1.61 1.91 1.26 1.71 2.08
LW Test for [1] and [2] 0.01 0.00 0.00 0.00 0.02 0.00 0.00
LW Test for [2] and [3] 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Exhibit 8: Sharpe Ratio of Ex Post Tangency Portfolios.
We compare ex post tangency portfolios formed using the original portfolios, volatility-
managed portfolios of Moreira and Muir (2017), and downside volatility-managed portfolios.
SRTang =

√
µ′Σ−1µ where Σ is the variance-covariance matrix and µ is a vector of mean

returns. FF3F consists of RMRF , SMB, and HML; FF5F consists of RMRF , SMB,
HML, CMA, and RMW ; Revs contains STRev and LTRev. We use the Ledoit and Wolf
(2008) approach to test the equality of Sharpe ratios between pairs of portfolios; the null
hypothesis is equal Sharpe ratios. P-values are shown in the bottom two rows.

of the original, volatility-managed, and downside volatility-managed factors have higher

Sharpe ratios compared to equal-weight portfolios using the original and volatility-managed

factors.

Sharpe ratio improvements Exhibit 8 are not driven by increased tail risk. Goetzmann

et al. (2007) argue that portfolio managers can manipulate their performance by adjusting tail

risk characteristics of the portfolio to optimize the Sharpe ratio. We investigate the tangency

portfolios formed using volatility-managed and downside volatility-managed factors, and we

�nd that their tail risks do not appear to be higher compared to the tangency portfolios

using the original factors. Tail risk measures including minimum daily return, 1% Value at

Risk (VaR), and maximum drawdown for tangency portfolios including downside volatility-

managed portfolios [3] in Exhibit 8 are actually smaller than those for the original portfolios,

[1]. Therefore, our results are unlikely to be driven by increased tail risk.

We compare the ex post mean-variance frontiers of di�erent factor combinations in

Exhibit 9. We solve the portfolio problem of Markowitz (1952): for di�erent levels of portfolio

expected returns, minimize the standard deviation for the portfolio. The mean-variance

frontier is formed as a combination of many of these individual data points. The solid line

traces out the mean-variance frontier associated with the eight factor portfolios. We include

the eight volatility-managed factors to construct the frontier shown in a dashed line. We

then add the eight downside volatility-managed factors to construct the dash-dotted frontier.
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Exhibit 9: Expansion of the Ex Post Mean-Variance Frontier For Factors.
We construct the ex post mean-variance frontier of eight long-short factor portfolios (solid
line): market excess returns, size, value, momentum, pro�tability, investment, short-term
reversal, and long-term reversal. The dashed line traces out the ex post mean-variance
frontier of the eight original factors and their volatility-managed counterparts. The dash-
dotted line is the ex post mean-variance frontier of the above 16 portfolios plus the eight
downside volatility-managed factors.

In a graph of expected returns against standard deviation, each point represents the risk-

return characteristics of a speci�c return stream. For an asset A, the area to the northeast

has both lower volatility and higher expected returns. An asset B that lies in this area has a

more attractive risk-return tradeo� than asset A. If the investor gains access to asset B, her

investment opportunity is improved. Adding volatility-managed factors to the eight original

factors improves the investor's opportunity set, as the dashed mean-variance frontier is to

the northeast of the solid one. Adding downside volatility-managed factors further expands

the investment opportunity set, since the dash-dotted frontier is to the northeast of both the

dashed and solid ones.
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Exhibit 10 shows the ex post mean-variance e�cient frontiers for di�erent industry

portfolio combinations. The frontier shown in solid line is associated with the original 49

portfolios; the dashed one is constructed by including volatility-managed industry portfolios,

and the dash-dotted frontier by further including downside volatility-managed portfolios.

Similar to our �ndings for factors, while volatility-managed portfolios expand the investment

opportunity set compared to the original 49 portfolios, downside volatility-managed industry

portfolios provide further expansion to lower-volatility, higher-return regions.

Downside volatility-managed portfolios expand the investor's opportunity set compared

to the original portfolios and volatility-managed portfolios of Moreira and Muir (2017).

Adding downside volatility-managed portfolios result in tangency portfolios with higher

Sharpe ratios. Our �ndings in this section corroborate our earlier results that downside

volatility-managed portfolios cannot be spanned by the original portfolios or volatility-

managed portfolios. In both univariate and multivariate settings, downside volatility-managed

portfolios provide value to the investor by expanding her investment opportunity set.
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Exhibit 10: Expansion of the Ex Post Mean-Variance Frontier for 49 Industry
Portfolios.
We compare the ex post mean-variance frontier of 49 industry portfolios (solid line), 49
industry portfolios plus volatility-managed industry portfolios (dashed line), and the above
98 portfolios plus 49 downside volatility-managed portfolios (dash-dotted line).

4 Upside Volatility versus Downside Volatility

One potential criticism of our �ndings is that they may be mechanical. We have simply

found a measure imperfectly correlated to volatility, so naturally managing portfolio exposure

using this measure produces returns that are not perfectly correlated with volatility-managed

portfolios. Including imperfectly correlated returns can mechanically improve the risk-return

tradeo� of a set of portfolios.

To address this concern, we investigate using upside volatility to managed portfolio ex-

posure. Upside volatility is also not perfectly correlated with volatility. If we simply included

imperfectly correlated returns to expand the investment opportunity set, upside volatility-
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managed portfolios should behave similarly to downside volatility-managed portfolios.

Upside volatility-managed portfolios are constructed in the same way as downside

volatility-managed portfolios:

fut+1 =
ξ

σ̂2
u,t

ft+1 (10)

Where σ̂u is our estimate of upside volatility and ξ is chosen such that the unconditional

volatilities of fut+1 and ft+1 are the same.

We compare upside volatility-managed portfolios to volatility-managed portfolios fMM

using the following regression:

fut+1 = a+ bfMM
t+1 + ηdt+1 (11)

Exhibit 11 presents the results of Equation (11). Six of the eight regressions have

negative intercepts, several of which are economically and statistically large. None of the

intercepts is large and positive. These results stand in sharp contracts to those in Exhibit

5, in which most of the intercepts were large and positive. Exhibit 11 shows that upside

volatility-managed factors are spanned by volatility-managed factors; the investor is better

o� investing only in volatility-managed factors rather than diversifying to upside volatility-

managed factors.

Exhibit 12 shows regression intercepts and t-statistics of Equation (11) for industry

portfolios. Only six of the 49 intercepts are positive. 12 intercepts are reliably negative

at the 5% level. Like the case for factors, volatility-managed industry portfolios also span

upside volatility-managed portfolios.

Our �nding that downside volatility can be used to improve the risk-return tradeo�

available to the investor is not simply a mechanical result. Although upside volatility is cor-

related to volatility in much the same way as downside volatility, upside volatility-managed

portfolios do not improve the investor's opportunity set. Volatility-managed portfolios con-

tain all information available in upside volatility-managed portfolios, and subsume the latter
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Left-Hand Variable

RMRF u SMBu HMLu MOMu RMW u CMAu STRevu LTRevu

au 0.0% -1.9% -2.8% 0.9% -0.7% -0.9% -0.6% -2.5%
(0.0) (-1.8) (-3.9) (1.0) (-1.3) (-2.0) (-1.0) (-3.7)

RMRFMM 0.90
(70.0)

SMBMM 0.41
(15.0)

HMLMM 0.82
(48.3)

MOMMM 0.86
(56.5)

RMWMM 0.85
(41.1)

CMAMM 0.88
(47.6)

STRevMM 0.90
(67.1)

LTRevMM 0.85
(51.6)

R2 0.82 0.17 0.68 0.75 0.72 0.78 0.80 0.72

Exhibit 11: Univariate regressions of upside volatility-managed portfolios onMoreira
and Muir (2017) factors.
We regress upside volatility-managed factors onto volatility-managed factors of Moreira and
Muir (2017): fut+1 = au + buf

MM
t+1 + ηut+1 Each column is a separate regression. The data

are monthly and the sample period is 1926 to 2018 for RMRF , SMB, HML, MOM , and
STRev; 1931 to 2018 for for LTRev; 1963 to 2018 for RMW and CMA.
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Exhibit 12: Comparison of Upside Volatility-Managed Industry Portfolios and
Volatility Managed Portfolios of Moreira and Muir (2017).
We regress excess returns of upside volatility-managed industry portfolios onto the excess
returns of volatility-managed industry portfolios of Moreira and Muir (2017): fut+1 = au +
buf

MM
t+1 + ηut+1 The data are monthly and available from 1926 to 2018.

set in spanning tests.
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5 Conclusion

In this paper, we argue that downside volatility is an important risk measure which can

provide the investor with additional value not captured by volatility. Although downside

volatility and volatility are highly correlated on average, during the most volatile times

historically, the two measures behave di�erently. Whereas the unconditional correlation

between downside volatility and volatility is around 90%, conditional correlation during the

12 most volatile months is around 55%. Pooled regression results show that in the tails, a

1% increase in volatility is associated with only a 0.4-0.5% increase in downside volatility.

High volatility indicates increased uncertainty in the marketplace, which is precisely the time

when tracking both downside volatility and volatility would have been the most bene�cial.

We explore the behavior of downside volatility-managed portfolios for long-short factors

and industry portfolios. We reduce exposure when downside volatility is high and increase

exposure when downside volatility is low. Downside volatility-managed portfolios are not

spanned by the original portfolios, or by volatility-managed portfolios of Moreira and Muir

(2017). We also investigate the merit of downside volatility-managed portfolios in a mean-

variance setting. Adding downside volatility-managed portfolios increase the Sharpe ratio

of the tangency portfolio and expands the mean-variance frontier towards more desirable

regions. Whereas downside volatility proves to be useful in portfolio management, upside

volatility does not help the investor in the same setting.

While we motivate our investigation with asymmetric investor preference for upside and

downside volatility, our empirical �ndings may be consistent with alternative channels. Pos-

sible explanations could be risk-based, perhaps rooted in institutional frictions, or behavioral,

potentially involving investor sentiment. We acknowledge asymmetric investor preference is

a mere motivation and certainly not the only possible explanation consistent with our results.

We have focused only on the U.S. equity market. One interesting research direction

would be to expand our analysis to include a broad set of countries. How does downside

volatility di�er from volatility in international markets? Is downside volatility useful for port-

folio management? Another interesting path would be to look across asset classes, including

bonds, currencies, and commodities. If the results hold across countries and asset classes,

downside volatility may have a common, systematic component. Understanding this com-

mon factor brings us closer to building superior investment strategies and risk management

systems.
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