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Abstract

Deep joint source-channel coding (DeepJSCC) offers a promising approach to
improving transmission efficiency by jointly leveraging source semantics and
channel conditions. While prior work has focused on fidelity under varying channel
conditions, recent diffusion-based approaches improve perceptual quality at the
cost of high complexity and limited adaptability. In this work, we reveal that fidelity
and perceptual realism can be unified in an adaptive DeepJSCC scheme through
SNR-aware optimization, eliminating the need for separate models. Specifically, we
propose W2-DeepJSCC, a unified, channel-adaptive framework that dynamically
balances fidelity and perceptual realism based on channel conditions. It introduces
two key innovations: a saliency-guided perception—fidelity adapter (SG-PFA)
and wavelet Wasserstein distortion (WA-WD). SG-PFA enables a single model
to adapt across varying channel conditions, preserving semantic realism under
poor channel conditions while enhancing fidelity under good ones. WA-WD,
inspired by foveal and peripheral vision, provides fine-grained control in the
wavelet domain. As a plug-and-play module, W2-DeepJSCC integrates seamlessly
with existing DeepJSCC architectures. Experiments show that W2-DeepJSCC
significantly outperforms baselines in perceptual metrics while maintaining strong
fidelity at high SNRs. Prototype verification further highlights its advantages,
demonstrating that the proposed method delivers competitive fidelity and perception
with low complexity, making it a promising alternative for future deployments.
Additionally, a user study further confirms that WA-WD aligns more closely with
human perception than existing metrics.

1 Introduction

Advances in wireless communication and machine learning have driven emerging applications such
as streaming and edge intelligence, requiring efficient, low-latency transmission on resource-limited
devices. While Shannon’s separation theorem [25]] proves the optimality of independent source and
channel coding under ideal conditions, suboptimality of separation is well known under practical
constraints such as finite block lengths and dynamic channels. This motivates joint source-channel
coding (JSCC) as a promising alternative [12], though classical JSCC design remains challenging.
Recently, deep neural networks have been leveraged to learn a direct mapping from source data
to channel symbols, known as DeepJSCC [7 43, 135]. DeepJSCC has demonstrated versatility
across diverse data types and channel models [38} 130, 39} 26], positioning it as a key foundation for
next-generation semantic communication systems [11].
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Figure 1: Visual comparison between our W2—DeepJ SCC, ADJSCC, and the BPG-Capacity scheme
when SNR=0dB and R=1/24. W2-DeepJSCC achieves best perceptual realism, closely matching the
original image, while others lose significant texture detail. Many more results, including a prototype
validation, across SNRs and datasets are available in Appendix and the supplementary materials.

However, most existing DeepJSCC schemes are optimized for pixel-wise fidelity metrics, such as
peak signal-to-noise ratio (PSNR), which often fail to capture true perceptual quality, especially under
challenging channel scenarios where the textures and structures of the source degrade. In such cases,
these metrics can even lose relevance, making perceptual quality increasingly critical. Yet, evaluating
perceptual quality remains an open challenge, as widely studied in image compression [[20, [3] and
restoration [19,48]. Perceptual quality, also referred to as ‘realism’ in the literature [13]], refers to the
reconstructions that comes from the same distribution as natural images. In general, there is a more
general trade-off between the rate, distortion, and perception [6], which highlights that optimizing the
rate-distortion trade-off alone does not guarantee the preservation of natural image characteristics.

This has motivated perception-enhanced DeepJSCC designs, with recent work leveraging generative
models to better model natural image distributions. Early methods adopted generative-adversarial
networks (GANs) [20] for perceptual enhancement [32} 10} [45]], while more recent approaches utilize
diffusion models (DMs) [16] to significantly boosting realism [49, 34, 22, 1331 [8].
However, these methods are computationally expensive, typically tailored to low-SNR scenarios, and
often require separate models for fidelity and perception objectives, posing storage and scalability
challenges on edge devices. Meanwhile, diffusion-based DeepJSCC is also prone to hallucinations,
even with semantic guidance [49], and is difficult to integrate with existing model-driven frameworks.
These challenges highlight the need for a unified, low-complexity DeepJSCC approach that adapts to
channel conditions and user priorities of fidelity-perception while maintaining compatibility.

To address these challenges, we propose W2-DeepJSCC, a novel unified and channel-adaptive
DeepJSCC framework. Two key challenges that we strive to address are: (1) how to explicitly control
the perception—fidelity trade-off across channel conditions? and (2) how to design a diagnostic
or human-aligned metric for adaptive DeepJSCC? At its core, W?-DeepJSCC employs a saliency-
guided perception—fidelity adapter (SG-PFA), which uses wavelet Wasserstein distortion (WA-WD)
metric to dynamically shift optimization between perceptual quality at low SNR and high-fidelity
reconstruction at high SNR. This plug-and-play module eliminates the need for multiple task-specific
models and integrates seamlessly into existing DeepJSCC architectures, enabling an all-in-one model
that delivers strong perceptual quality at significantly lower complexity than generative approaches.

Our main contributions are: (1) We propose W2-DeepJSCC, an all-in-one DeepJSCC framework that
unifies fidelity and perceptual realism via SNR-aware optimization. It introduces a saliency-guided
perception—fidelity adapter based on wavelet Wasserstein distortion, enabling dynamic control across
SNRs. As a plug-and-play module, it integrates with most existing DeepJSCC architectures, achieving
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Figure 2: Illustration of the proposed W2-DeepJSCC scheme, highlighting its key feature of per-
ception—fidelity control. W2-DeepJSCC enables fine-grained modulation of perceptual and fidelity
objectives in the wavelet domain across varying channel conditions, guided by both saliency and
SNR maps.

human-preferred perceptual quality at low SNR and high-fidelity at high SNR. (2) Numerical
experiments demonstrate that W2-DeepJSCC achieves strong perception—fidelity trade-offs across
all SNRs, significantly outperforming baselines in perception metrics, while maintaining reasonable
fidelity at high SNRs. These results align with the R-D-P theory. (3) Notably, the proposed wavelet
Wasserstein distortion serves as an independent perceptual metric and diagnostic indicator for
DeepJSCC, capturing both fidelity and realism under varying channels. User studies show it is more
aligned with human rating results.

2 Related work

2.1 Deep joint source-channel coding

The first DeepJSCC scheme for image transmission was proposed in [7], outperforming stan-
dard separation-based approaches. It was later extended to accommodate various channel
conditions[38, |42]], as well as a range of communication scenarios, including orthogonal frequency
division multiplexing (OFDM) [38}, 44]], multiple-input multiple-output (MIMO) [36], relay [3]], and
feedback channels [39]. Recently, diffusion models have gained increasing attention for enhancing
perceptual quality in DeepJSCC. Early efforts explored hybrid designs, such as conditioning DMs
on low-resolution images [21] or refining DeepJSCC outputs through post-processing [47]]. More
recent approaches incorporate semantic guidance [45} 49], channel denoising models [40], posterior
sampling [22, 41} 133]], and invertible networks [9} 8]. These works reflect a growing emphasis on
perceptual quality in transmission, even at the cost of significantly increased computation.

2.2 Wasserstein Distortion

Wasserstein distance [31], grounded in optimal transport theory, has proven effective for guiding
perceptual optimization [27,[14]]. Its practical use began with image retrieval in [24]], and later evolved
through models such as Wasserstein GANSs [[1] and Wasserstein Autoencoders [29]], which leveraged
it to enhance perceptual quality and balance reconstruction fidelity. More recently, inspired by the
structure of foveal and peripheral vision, Wasserstein distortion (WD) [23]] was introduced as a unified
metric that controls the fidelity—perception trade-off via spatial pooling. Building on this, [3]] showed
that optimizing lightweight codecs with WD can achieve perceptual quality comparable to generative
models, but with significantly lower decoding complexity. These findings highlight the potential to
unify perception and fidelity within a single model, achieving human-preferred visual quality with
reduced storage and computational complexity.



3 Methodology

3.1 W2-DeepJSCC architecture

The architecture of W?-DeepJSCC (see Fig. |§|f0r an illustration) includes four residual and four dual-
attention blocks in a comb structure, enabling feature modulation at multiple scales based on channel
conditions and saliency maps. Each residual module consists of 2D convolution/deconvolution, GDN
[2], and PReLU layers. The dual-attention block [38]] modulates the generated features using two
components: a channel-attention (CA) block, which adapts to channel conditions, and a spatial-
attention (SA) block, which jointly considers SNR and saliency-based spatial importance. In the
following section, we introduce the proposed Wavelet Wasserstein Distortion, which serves as the
training objective for W2-DeepJSCC under the SG-PFA mechanism.

3.2 Wavelet Wasserstein distortion.

Wavelet Wasserstein Distortion (WA-WD) compares features using a spatially varying o-map in
the wavelet domain. Images and reconstructions are passed through a VGG backbone and Haar
wavelet transform to produce multiscale features f " and , where the superscript with color
denote the ground truth and reconstructions, respectively. For each band, WA-WD computes the
local 2-Wasserstein distance over patches centered at (x, y) with kernel size o (z, y), modulated by
saliency and channel conditions with SG-PFA (which will be detailed later in Section [3.3)). To reduce
WD computational cost, we follow [3]] to discretize o into powers of two and estimate the WD. For
each feature f;, the reference WD, d;,,, is computed between reconstruction and ground truth via
local means p;,, and standard deviations v;,, (element-wise) over each pooling scale «, as follows:

dia =\ (35, = L)+ (i — ). 1)

The spatial o-map is downsampled into o, to match « for a linearly interpolated weight computation:
Wiq = Max (O, 1 —|logy 0in — a|). The final WA-WD is estimated via aggregation across different
feature scales and bands as:

WA-WD = > > (wh @ dy), )
be{LL,LH,HL,HH} 1,j

where b € {LL, LH, HL, HH} denotes the wavelet sub-band (Please refer to Fig. [2|and Appendix
[C.2|for details). With loss in Eqn. [2] and SG-PFA guidance, W2-DeepJSCC enables fine-grained
wavelet-domain control of perceptual and fidelity objectives under varying channels.

3.3 Saliency-Guided Perception-Fidelity Adapter

Inspired by [23]], we propose a saliency-guided percep-
tion—fidelity adapter for DeepJSCC. SG-PFA dynami- Sigma map when SNR-0 d3
cally adjusts the wavelet-WD based on channel condi- =
tions: prioritizing perceptual quality at low SNRs while
preserving fine details at high SNRs for fidelity. As
illustrated in Fig. 3] this trade-off is controlled by assign-
ing different o maps to the wavelet-WD loss based on
varying SNRs and the corresponding saliency maps.

Realism

Specifically, we obtain saliency predictions from EML-
Net [17], with scores s € [0, 1]. These scores are then
converted into a spatial likelihood p using: p = pmin +
(1 = pmin) - %, where pnin, = 0.5 serves as a lower
bound, and S denotes the spatial mean of the saliency
scores. This formulation ensures p is always positive and
spatially averaged to one. Finally, the saliency-derived igma map when SNA-20dB

spatial likelihhod p is mapped to the sigma field o (x, y): Figure 3: Tllustration of SG-PFA

Sigma map when SNR=10 dB
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Figure 4: Performance of W2—DeepJ SCC across various SNRs on the Kodak dataset (R = 1/24).
Arrows in the titles indicate whether lower () or higher (1) values are preferred.
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Figure 5: Normalized perceptual scores across SNRs from the user study. Human scores are inverted
so that lower is better across all metrics. W2-DeepJSCC significantly outperforms all baselines
in perceptual quality. The proposed WA-WD metric shows strong alignment with human ratings,
suggesting its effectiveness as a perceptual indicator across various SNRs.

where i denotes the channel SNR, and x(1) is an SNR-adaptive scaling function defined as:

(& — SNRyin)
SNRax — SNRpyin

H(p,) = Omax — ( ) : (Jmax - Umin)~ @

Here, SNR i, and SNR,,x define the SNR range, while o, and oyyax specify the bounds for sigma
field. These parameters should be selected based on image resolution and perception requirements.

4 Experimental results

We evaluate W2-DeepJSCC on the Kodak [18], comparing
it with its counter-pair ADJSCC [42] [38] and a traditional

PN ~® BPG-Capacity
. . . N
separation-based scheme (BPG-Capacity) To quantify L= _ | e,

the results, we evaluate them using various metrics. For per- SN T IS
ceptual evaluation, we use FID [13]], learned perceptual image 2
patch similarity (LPIPS)[50], multi-scale structural similarity

(MS-SSIM), and a human-rated ELO score [28]]. For fidelity,

- SNR=0dB

we report PSNR. Additional experiments and visualizations are 2 - SNR=5 dB

- SNR=10 dB
- SNR=15dB
- SNR=20dB

provided in the Appendix and supplementary materials.
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MSE (4)

General performance. As shown in Fig. Ié—_tl W2-DeepJSCC
dominates all other baselines in terms of all perceptual quality Figure 6: P-D trade-off.
indices across all SNRs, despite lower PSNR and MS-SSIM

at low SNRs. Notably, it achieves drastically improved FID and LPIPS results as SNR decreases,
remarkably outperforming other methods at 10 dB, even with its results at 5 dB. As SNR increases,

’Diffusion- and ViT-based baselines are omitted due to their high complexity; similar gains are expected, as
our unified framework can be integrated into them directly.
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Figure 7: Visual comparisons at SNR = 0 dB and R =1/24, where our method demonstrates clear
advantages across the entire image. Additional examples are available in Appendix

the PSNR gap narrows, showing that W2-DeepJSCC shifts towards improving the fidelity. Fig. |§|
shows the detailed perception-distortion trade-off analysis, where we can observe that its pixel-wise
fidelity improves steeply and catches up with the baselines, while others saturate. FID remains strong
but improves more slowly. In contrast, ADJSCC quickly converges in fidelity, but perceptual gains
saturate more slowly.

User study. Since metrics alone cannot fully capture perceptual quality, we conducted a user
study using the CLIC rating protocol [3| [20] (details in Appendix [B). As shown in Fig.[5] wavelet
Wasserstein distortion (WA-WD) aligns better with human ratings than other metrics. Notably, WD
indicator predicts correctly that ADJSCC and BPG are perceived similarly around 10 dB, consistent
with user preferences, whereas FID and LPIPS often fail or even contradict subjective judgments.

Visualizations. As shown in Fig. Iﬂ W2-DeepJSCC shows clear perceptual advantages over all
baselines, preserving finer texture details (e.g., brick, grass, hair). Interestingly, minor differences in
repetitive non-salient regions can be observed, with minimal impact on overall visual quality. More
examples can be seen in Appendix D]

Prototype verification. While we already show significant improvement by W2-DeepJSCC on
several metrics, to further validate our method in reality, we also conduct a prototype verification,
where more pronounced advantages can be observed. More implementation details are provided in
our Appendix [E]

5 Conclusion

This paper proposed W2-DeepJSCC, a unified, channel-adaptive DeepJSCC framework that explic-
itly balances fidelity and perceptual realism through a saliency-guided adapter based on wavelet



Wasserstein distortion. By leveraging SNR-aware optimization, our method shifts between preserving
perceptual semantics at low SNRs and restoring fine-grained details at high SNRs, all within a
single, low-complexity model. The proposed wavelet Wasserstein distortion serves both as a tunable
optimization objective and a perceptually aligned indicator of adaptation and perception. Extensive
experiments demonstrate that W2-DeepJSCC significantly outperforms baseline methods in human
preference and perceptual metrics. Our findings highlight the importance of unified realism—fidelity
control in future semantic communication systems, and we hope this work marks a step toward
perceptually aware, adaptive, and efficient end-to-end communication design.

Limitations and future work. While this paper introduces a novel wavelet-based Wasserstein
distortion metric to unify realism and fidelity in channel-adaptive DeepJSCC, the overall design
remains somewhat ad hoc and could greatly benefit from future advances in perceptual quality
assessment. One promising direction is to replace the current VGG-based backbone with more
powerful feature extractors to further enhance performance. Another is to integrate the proposed
distortion or adaptation scheme into the diffusion-based sampling process, which holds potential for
achieving stronger perceptual quality under stringent bandwidth constraints.
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A Broader impacts

This work presents a technical contribution in joint source and channel coding with no immediate
societal impact. Nonetheless, potential downstream effects may arise depending on the applications:

A.1 Positive impacts

* Efficiency: Its high realism at low complexity supports energy-efficient, scalable deployment
in bandwidth-constrained settings like IoT and mobile devices, significantly reducing the
energy footprint of edge devices in the future.

» Semantic-aware content delivery: Saliency-based coding schemes can benefit adaptive
streaming and semantic-level rendering with high realism in AR/VR.

A.2 Potential negative impacts

However, W2-DeepJSCC may also be misused to selectively manipulate image content, or potentially
leak information from training data. To mitigate such risks, we encourage future work to incorporate
safeguards such as explainable DeepJSCC transmission mechanisms. All datasets used in our study
are publicly available, and we release our models and code solely to support transparency and
reproducibility.

B Baseline implementation

We train all DeepJSCC schemes on the ImageNet dataset using randomly cropped 256 x 256 patches.
Channel SNRs are uniformly sampled from 0 dB to 20 dB, with a batch size of 16 and a learning rate
of 1e~* (following the original papers of baselines).

For baselines, W2-DeepJSCC is compared against separation-based baselines, including BPG-
Capacity [38]], as well as its counterpart, ADJSCC [42]]. We note that the BPG-Capacity scheme
represents a loose upper bound for separation-based methods, as it assumes a capacity-achieving
channel code, and BPG [4] itself is a competitive standard for image compression. Note that we
do not include diffusion- or ViT-based methods as baselines, since they incur significantly higher
complexity. Our approach is designed as a unified framework that can be integrated into such schemes
to provide further enhancements.

For human rating, we set up a two-alternative forced-choice (2AFC) Ehser study following [3]] on the
full Kodak dataset [18]. As shown in Fig. [§] for each individual rating (among five), two images are
available to the rater: On one side of the screen, a random 512 x 512 pixel crop of the original. On
the other, the corresponding crop of two reconstructed images, between which the rater can flip by
pressing a key. The rater is asked to select the reconstruction that looks more similar to the original.

C W?2-DeepJSCC implementation

C.1 Detailed W?-DeepJSCC architecture

The detailed architecture of W2-DeepJSCC is illustrated in Fig. @ The architecture of W2-DeepJSCC
includes four residual and four dual-attention blocks in a comb structure, enabling feature modulation

3We compute Elo scores using the open source implementation of the CLIC rating model https://github/
com/google-research/googleresearch/tree/master/elo_rater_model.
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Image 1/24 - Comparisons: 0

Toggle A/B (Space) New Random Crop (R)

Figure 8: Example screenshots of the rating interface. The user is asked to select their preferred
transmission result on the left, based on the comparison with the result on the right.

at multiple scales based on channel conditions and saliency maps. Each residual module consists of
2D convolution/deconvolution, GDN [2]], and PReLU layers. The dual-attention block [38]] modulates
the generated features using two components: a channel-attention (CA) block, which adapts to
channel conditions, and a spatial-attention (SA) block, which jointly considers SNR and saliency-
based spatial importance. In the following section, we introduce the proposed Wavelet Wasserstein
Distortion, which serves as the training objective for W2-DeepJSCC under the SG-PFA mechanism.
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Figure 9: Illustration of the W2-DeepJSCC architecture, where residual blocks and dual-attention
modules are integrated. Each dual-attention block combines channel-aware and saliency-guided
spatial modulation to adaptively modulate features based on both SNR and semantic importance.

C.2 Wavelet-WD computation

For each band, WA-WD computes a local 2-Wasserstein distance over patches centered at (x,y)
with size o(z,y), derived from channel and saliency maps to adapt spatial sensitivity. As o — 0,
it reduces to pointwise distance (foveal vision), while a larger o captures peripheral, texture-level
deviations. In WA-WD, a larger o makes the metric more permissive to texture resampling—allowing
replacement with statistically similar textures.

For DeepJSCC, we assign a smaller ¢ in salient regions likely to be directly observed, and a larger
o elsewhere. Under low SNR, the overall ¢ range is enlarged, guiding the codec to allocate more
resources to preserve important salient content while still maintaining perceptual quality for others.
For high SNR, the overall ¢ is reduced, guiding a more fidelity-preferred optimization. In the wavelet
domain, such a design becomes more fine-grained by explicitly separating feature bands, allowing
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more precise control over low- and high-frequency components under different channel conditions.
To reduce the computational cost of spatially varying pooling, we follow [3] and discretize o into
powers of two for efficient approximation. Specifically, for each feature f;, the WD is computed as:

d'[u = \/( - )2 + (’/m Vza)27 (5)

where and v;;, denote the first moment and the standard deviation (element-wise) of each feature
map, for the i- th feature and equivalent pooling size a.

For robust performance, d is computed through & downsampling processes, yielding multi-resolution
distances d; . Meanwhile, o is downsampled accordingly, giving o; . The interpolation estimation
weight is then defined as:

Wi,a = maX(O, 1- |1Og2 Oiac — O‘Dv (6)

which equals 1 when ¢ matches the reference resolution, and linearly fades to O for nearby resolutions.

The final WA-WD is estimated via an aggregation across different features and scales ([23, 3], Fig. [2|
and Appendix [C.2]for more details) as:

WA-WD = > > (wh; o dl) (7

be{LL,LH,HL,HH} %,j

More details can be seen in [3, [23]].

D Additional experiments and visualizations

This section provides more visulizations across Kodak and CLIC2020 dataset, as shown in Figs. [10]

[T1] and[12]

E Prototype verification

To further verify the effectiveness of our method, we conducted a prototype validation using a
software-defined radio (SDR) setup. The transmitter executes the encoder on an NVIDIA Jetson
Xavier NX, paired with a USRP-2922 for radio-frequency transmission. The receiver is a personal
computer equipped with a LimeSDR Mini 2.0, running GNU Radio 3.10. All model inference
is performed directly on the Jetson device. Experiments were conducted in an indoor corridor
with a distance of 5 meters between transmitter and receiver, significantly longer than the 172
meters typically used in prior DeepJSCC prototype experiments, introducing realistic multipath and
shadowing effects. Both devices used omnidirectional antennas positioned at equal height. To adjust
the signal-to-noise ratio (SNR), only the transmitter gain was varied (from 17 dB to 25 dB), while
receiver-side gain remained constant. This approach ensures changes in SNR result solely from the
transmitted signal strength. Visualized results are provided in Figs.
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BPG-Capacity

W2-Deep]JSCC

Figure 10: Visual performance at SNR = 0dB for Kodak dataset. W2DJSCC shows great performance
on water texture and text preservation. Note that for reversed text the perceptual quality lowers
compared to normal ones.
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BPG-Capacity

W2-DeepJSCC

Figure 11: Visual performance (image horizontally cropped) at SNR = 0dB for CLIC 2020 dataset.
The textures of walls and structures of buildings are largely preserved with W2DJSCC. Details in the
low contrast region are particularly perceptually visible.
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W2-Deep]SCC

Figure 12: Visual performance at SNR = 10dB for Kodak dataset. We can see that for relatively high
SNR there is still visible difference for perceptually sensitive objects such as human face.
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(f) ADISCC (Ps = 25dB, i = 11dB) (g) W2-DeepJSCC (P; = 25dB, ji = 11dB)

Figure 13: Prototype verification under different transmitter power for Kodak dataset, where the band-
width ratio is 1/12. W2-DeepJSCC enables more fine-grained and robust transmission, preserving
detailed textures such as curtains, wall patterns, and even grass on the ground.
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o ... = 2 SRR 5, -
(f) ADJSCC (Ps = 25dB, i = 11dB) (2) Wz-DeepJSCC (Ps = 25dB, i = 11dB)

Figure 14: Prototype verification under different transmitter power for Kodak dataset, where the
bandwidth ratio is 1/12. W2-DeepJSCC offers a clear advantage, such as textures on trees and even
interior details beneath the river surface that are lost in baseline reconstructions.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction are consistent with the core
contributions and scope of our paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a section for limitations and future work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We study a learning-based neural codec without relying on formal assumptions
or theoretical proofs. The conclusions of the paper are based on extensive numerical
experiments, which are consistently supported throughout the paper.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes],

Justification: We provide parameters and architecture necessary for this paper. A more
complete version of the codebase, including detailed documentation and usage instructions,
will be released publicly after the longer version of this paper is accessible.

Guidelines:

» The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide parameters and architecture necessary for this paper. A more
complete version of the codebase, including detailed documentation and usage instructions,
will be released publicly after the longer version of this paper is accessible.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide all details in the appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Not applicable to our setting, where a deterministic coding scheme is used.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Appendix provides all the platform details.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide this in our appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: Our work does not involve models or datasets considered high risk for misuse.
The models and datasets used are standard compression dataset and do not pose notable
security, privacy, or misuse concerns.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in this work, including datasets, pretrained models, and code
libraries, are properly cited in the paper. Their licenses and terms of use are respected.

Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Not applicable to our work.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: Our work includes a small-scale human preference study assessing the percep-
tual quality of compression and transmission results. All participants were adult volunteers
from our research group, who provided informed consent and were not monetarily compen-
sated. The full instructions and example screenshots of the rating interface are provided in
the Appendix.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve risk for participants, and therefore does not require
IRB approval or equivalent ethical review.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No large language models (LLMs) are used as part of the core methodology or
experimental design in this research. Any LLM usage, if any, was limited to minor writing
support and did not influence the scientific content or originality of the work.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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