
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ASYNCHRONOUS FACTORIZATION FOR
MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Value factorization is widely used to design high-quality, scalable multi-agent
reinforcement learning algorithms. However, current methods typically assume
agents execute synchronous, 1-step primitive actions, failing to capture the typi-
cal nature of multi-agent systems. In reality, agents are asynchronous and execute
macro-actions—extended actions of variable and unknown duration—making de-
cisions at different times. This paper proposes value factorization for asyn-
chronous agents. First, we formalize the requirements for consistency between
centralized and decentralized macro-action selection, proving they generalize the
primitive case. We then propose update schemes to enable factorization archi-
tectures to support macro-actions. We evaluate these asynchronous factorization
algorithms on standard macro-action benchmarks, showing they scale and perform
well on complex coordination tasks where their synchronous counterparts fail.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) algorithms typically assume that agents have syn-
chronous execution (Rashid et al., 2018; Yu et al., 2022; Wang et al., 2021)—each agent selects
a 1-step primitive action that starts and ends simultaneously at each execution step. However, this
assumption does not typically hold in real scenarios where agents select and complete actions with
varying durations at different times. These temporally extended behaviors are known as macro-
actions and generalize the primitive case, allowing asynchronous execution (Amato et al., 2019).
Macro-actions have several advantages over primitive ones as they (i) foster explainability by rep-
resenting complex multi-step real-world behavior (e.g., navigating to a waypoint, waiting for a hu-
man); (ii) benefit value-backup, improving the efficiency of value-based learning (Mcgovern et al.,
1999); and (iii) enable action selection to take place at a higher level, using existing controllers to
execute behaviors (e.g., a navigation stack) without learning end-to-end actions (e.g., control motor
torques). Nonetheless, limited attention has been devoted to this area of research (Jia et al., 2020;
Xiao et al., 2022; Liang et al., 2024), motivating the need for principled and scalable approaches.

Due to partial observability and communication constraints, MARL algorithms often learn policies
conditioned on local information while leveraging centralized training data to foster collaborative
behaviors (i.e., centralized training with decentralized execution (CTDE) (Tuyls & Weiss, 2012)).
In the synchronous case, value factorization has been successful at CTDE by using a mixer network
to factor a joint action value Qtot into per-agent utilities conditioned on local information (Rashid
et al., 2018; Wang et al., 2021). To achieve a sound factorization, these methods ensure consistency
between the local and the joint action selection (i.e., the actions selected from each are the same)—a
principle known as the individual global max (IGM) (Son et al., 2019). Agents can thus execute
in a decentralized manner by selecting actions according to the local utilities while learning in a
centralized fashion. Value factorization methods are some of the most scalable and high-performing
MARL methods, but extending them to the asynchronous case has yet to be investigated.

This paper introduces value factorization for asynchronous MARL with macro-actions. We
lay the theoretical foundations by formalizing Macro-IGM—the IGM principle for macro-
action-based value functions—and showing it generalizes the primitive case by represent-
ing a broader class of functions. On the practical side, we bridge the gap with primi-
tive action-based methods by introducing asynchronous value factorization (AVF) algorithms.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Agent Agent Agent

...

mixer

Terminated macro-action Ongoing macro-action

Agent

Figure 1: General factorization archi-
tecture for asynchronous agents.

Core to AVF is a macro-state buffer, which stores ex-
tra (state) information conditioned on macro-action selec-
tions. Our ablation study shows the importance of such a
mechanism, as algorithms trained without it fail to learn
good behaviors in simple setups. In contrast to the prim-
itive case, building algorithms on top of Macro-IGM al-
lows us to design different update schemes, as macro-
actions can continue or terminate at a certain step (Fig. 1).
We propose a centralized update that propagates gradi-
ent information back to all the agents, regardless of their
macro-action execution status. However, in complex set-
tings, we note only some agents might cooperate (i.e., terminating a “coordinated” macro-action at
the same time), while others might be involved in other operations. For this reason, we propose two
partially centralized updates by (i) detaching the gradient of agents with ongoing macro-actions but
considering their value when factoring the joint signal; or (ii) masking out (i.e., zeroing) the value
of agents with ongoing macro-actions. We expect these update strategies to be more or less effective
depending on the task to solve, which we analyze in Section 4 and in our experiments.

We evaluate AVF methods on increasingly complex benchmarks in the macro-action literature (Xiao
et al., 2020a;b; 2022). These problems have an increasing number of agents with strict cooperative
behaviors to learn, sub-tasks to complete, and severe partial observability. Each one comes with
a predefined set of macro-actions; this is the same as assuming primitive actions are given in a
primitive task. Our results show that primitive factorization and existing macro-action baselines fail
to cope with the complexity of these scenarios. Conversely, AVF methods successfully learn asyn-
chronous decentralized policies in most tasks, allowing us to achieve significantly higher payoffs and
learn good decentralized behaviors. To our knowledge, this is the first formalization of macro-action-
based IGM and factorization algorithms. Our theory and approaches show impressive performance
and lay the groundwork for future asynchronous value factorization methods.

2 PRELIMINARIES AND RELATED WORK

Primitive actions tasks are modeled as Decentralized Partially Observable Markov Decision Pro-
cesses (Dec-POMDPs) (Oliehoek & Amato, 2016) with a tuple ⟨N ,S,U , Ts, r,O, TO, γ⟩: N ,S are
finite sets of agents and states; U ≡ ⟨U i⟩i∈N and O ≡ ⟨Oi⟩i∈N are the finite sets of primitive joint
actions and observations; U i, Oi are the individual ones. At each step, every agent i picks an action,
forming the joint one u ≡ ⟨ui ∈ U i⟩i∈N . After performing u, the environment transitions from
a state s to a new s′, following a transition probability function Ts : S × U × S → [0, 1] (defined
as Ts(s,u, s

′) = Pr(s′|s,u)), and returning a joint reward r : S × U → R. Under partial ob-
servability, agents receive an observation o ≡ ⟨oi⟩i∈N ∈ O according to an observation probability
function TO : O × U × S → [0, 1] (defined as TO(o,u, s

′) = P (o|s′,u)). Each agent maintains
a policy πi(ui|hi), mapping local histories hi = (oi0, u

i
0, . . . , o

i
t) ∈ Hi to actions. In finite-horizon

Dec-POMDPs, the objective is to find a joint policy π(u|h) maximizing the expected discounted
return from a state: V π(s) = Eπ

[
Σz−1

t=0 γ
trt+1

]
, where γ ∈ [0, 1) is a discount factor, z is the

problem horizon, and h ∈H is the joint action-observation history.

2.1 VALUE FACTORIZATION

Value factorization methods learn a centralized Q-function that is factored over agent utilities and
rely on local histories for action selection. Due to their wide adoption in the literature, in the follow-
ing we describe VDN, QMIX, and QPLEX (Sunehag et al., 2018; Rashid et al., 2018; Wang et al.,
2021), primitive factorization methods we use to design the asynchronous algorithms in Section 4.

Additive (VDN) factors the joint action-value as a sum of per-agent utilities (Sunehag et al., 2018):
Q(h,u) =

∑|N |
i=1 Qi(h

i, ui) which can only represent a limited set of joint Q-functions.

Monotonic (QMIX) combines utilities by using a non-linear monotonic mixer that satisfies
∂Q(h,u)

∂Qi(hi,ui) ≥ 0,∀i ∈ N (Rashid et al., 2018). The mixer takes extra information as input to better
factor Q(h,u), using positive weights to enforce monotonicity. QMIX represents a wider range of
Q-functions than VDN but is still limited to the ones that can be factored into a non-linear mono-
tonic combination. These algorithms are effective CTDE methods as they satisfy the IGM principle

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(Son et al., 2019) (Eq. 1). This is particularly important for scalability as it enables tractable joint
action selection by deriving the joint greedy action from each agent’s local utility. Specifically, the
argmax over the joint value function is the same as when argmaxing over each local utility:

argmax
u∈U

Q(h,u) =
(
argmax
u1∈U1

Q1(h
1, u1), . . . , argmax

un∈Un
Qn(h

n, un)
)
,∀ h ∈ H. (1)

Advantage-based (QPLEX) uses a decomposition of Q-functions to form an equivalent advantage-
based IGM (Adv-IGM) that requires advantage values to be non-positive. Q-functions can be de-
composed as the sum of history value and advantage functions as Q(h,u) = V (h) + A(h,u) and
QPLEX decomposes learned local Qi(h

i, ui) into the following utilities:1

V (hi) = max
ui

Q(hi, ui) A(hi, ui) = Q(hi, ui)− V (hi) ∀i ∈ N . (2)

Such utilities pass into a transformation module to condition on extra information. Then, QPLEX
computes the joint Q-function as the above sum, using an attention module to enhance credit as-
signment (Yang et al., 2020). Crucially, QPLEX’s authors show the Adv-IGM can be satisfied by
decomposing utilities as Eq. 22 (which limits the range of advantage utilities to be ≤ 0).

2.2 LEARNING MACRO-ACTION-BASED POLICIES

Macro-Action Dec-POMDPs (MacDec-POMDPs) (Amato et al., 2019) extend Dec-POMDPs to
include durative actions (in addition to the primitive ones) with ⟨M, Ô, Tôi∈N ⟩: where M ≡
⟨M i⟩i∈N and Ô ≡ ⟨Ôi⟩i∈N are the set of joint macro-actions and macro-observations. Similar
to the primitive case, we define joint macro-action-macro-observation histories (or macro-histories)
ĥt ∈ Ĥ and local ones ĥi

t ∈ Ĥi. Macro-actions are based on the options framework (Sutton et al.,
1999); an agent i’s macro-action mi is defined as a tuple ⟨Imi , πmi , βmi⟩: Imi ⊂ Ĥi is the initiation
set; πmi(·|hi) is the low-level policy associated with the macro-action; and βmi : Hi → [0, 1] is the
termination condition.2 The different histories allow the agents to maintain the necessary informa-
tion locally to know how to execute and terminate mi. During decentralized execution, agents inde-
pendently select a macro-action that forms the joint one m = ⟨mi⟩i∈N , and maintain a high-level
policy πMi(mi|ĥi). At each step of mi’s low-level policy, agent i independently accumulates the
joint reward. Upon terminating its macro-action, an agent i receives a macro-observation ôi ∈ Ôi

according to a macro-observation probability function Tôi : Oi × M i × S → [0, 1], defined as
Tôi(ô

i,mi, s′) = Pr(ôi|mi, s′), and resets the reward accumulation for the next macro-action. The
aim is to find a joint high-level policy πM(m|ĥ) that maximizes the expected discounted return.

2.2.1 SYNCHRONOUS AND ASYNCHRONOUS MACRO-ACTION BASELINES.

Synchronous macro-action MARL. Early works in the field convert the asynchronous problem into
a synchronous one by padding macro-actions to be of equal length, and then solving the resultant
Dec-POMDP (Jia et al., 2020). Similarly, Liang et al. (2024) proposes to transform an asynchronous
update between temporally extended actions into a primitive 1-step update. Some hierarchical meth-
ods have considered learning both macro and primitive actions for cooperative multi-agent settings
Tang et al. (2018); Xu et al. (2023). However, as also noted by Tang et al. (2018) and Xiao et al.
(2022), they do not address asynchronicity, assuming agents perform macro-actions with the same
duration. Hence, these previous works can be viewed as an n-step synchronous MARL version of
the primitive case and are unrelated to the asynchronous factorization framework we propose.
Asynchronous macro-action MARL. Fully asynchronous centralized and decentralized methods
over given macro-actions have also been proposed, and are more closely related to our work (Xiao
et al., 2020a;b). In Cen-MADDRQN, a centralized agent maintains a joint macro-history ĥ, accu-
mulating a joint reward r(s,m, τ) = Σtm+τ−1

t=tm γt−tmrt, where tm is the starting time of m, and
tm + τ − 1 marks its termination when any agent finishes a macro-action. Hence, τ is the number
of time steps between any two macro-action terminations. A memory buffer D is used to store joint
transition tuples ⟨ô,m,m−, ô

′, r⟩. At each training iteration, the centralized agent samples a mini-
batch of sequential experiences from D and filters out the tuples where all the macro-actions are

1Hence, QPLEX does not learn Vi(h
i), Ai(h

i, ui) in the agents’ networks as in the original dueling archi-
tecture (Wang et al., 2016), which can improve performance and sample efficiency.

2While we consider a deterministic termination, our results can be trivially extended to a probabilistic one.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

still executing. Hence, it updates the centralized value function by minimizing the following loss:

E⟨ô,m,m−,ô′,r⟩∼D

[(
r + γτQ′

(
ĥ′, argmax

m′
Q(ĥ′,m′|m−)

)
−Q(ĥ,m)

)2
]
, (3)

where m− is the joint macro-action for agents whose actions will continue at the next step, Q′ is
a target action-value estimator (van Hasselt et al., 2016). The conditional prediction is crucial for
a correct estimation as only a few agents typically switch to a new macro-action at the next step.
In more detail, the cumulated joint reward is based on any macro-action termination, as often only
a few agents terminate their execution at a certain step. As such, estimating a Q-value without the
conditional operator would imply that all agents will switch to a new macro-action at the next step,
making the prediction less accurate and forcing agents to sample a new high-level behavior despite
not being done with the previous one (Xiao et al., 2020a). Dec-MADDRQN works similarly to
Cen-MADDRQN but learns each agent’s Q-function in a decentralized manner. Recently, Policy
Gradient (PG) (actor-critic) macro-action algorithms have been proposed (Xiao et al., 2022) but, as
shown in our experiments, PG methods can be less sample efficient than value-based ones.

3 MACRO-ACTION-BASED IGM

For the primitive and synchronous macro-action cases, the primitive IGM applies. Conversely, we
consider an asynchronous setup with macro-actions typically lasting for different, unknown lengths.
Hence, to achieve principled asynchronous factorization, we must ensure the consistency of greedy
macro-action selection in joint and local macro-action-value functions. The conditional Q-values
prediction is thus pivotal for correctly formalizing Mac-IGM for asynchronous agents. Broadly
speaking, for the joint case, we apply the argmax operator on agents sampling a new extended ac-
tion, while maintaining the same set of ongoing macro-actions. For the decentralized case, only the
agents with a terminated macro-action select a new one based on local information. Hence, we have
to enforce the macro-action selection consistency on a subset of the agents. This discrepancy, along
with conditional joint Q-values allows us to adapt existing factorization schemes to asynchronous
MARL and design different update schemes leveraging the asynchronous nature of the problem.

Definition 3.1 (Mac-IGM). Given a joint macro-history ĥ ∈ Ĥ , we define the set of macro-action
spaces M i where agent i’s macro-action mi has terminated under local macro-history ĥi ∈ ĥ as:

(Terminated macro-action spaces) M+ = {M i ∈M | βmi∼πMi (·|ĥi) = 1,∀i ∈ N}. (4)

And define the set of ongoing macro-actions under local macro-history ĥi ∈ ĥ as:

(Ongoing macro-actions) m− = {mi ∈M i | βmi∼πMi (·|ĥi) = 0, ∀i ∈ N}. (5)

Then, for a joint macro-action-value function Q : Ĥ×M 7→ R|M|, if per-agent macro-action-value
functions ⟨Qi : Ĥ

i ×M i 7→ R|Mi|⟩i∈N exist such that:

argmax
m∈M

Q(ĥ,m | m−) =

{
argmaxmi∈Mi Qi(ĥ

i,mi) if M i ∈ M+

mi
− otherwise

∀i ∈ N , (6)

then, we say ⟨Qi(ĥ
i,mi)⟩i∈N satisfies Mac-IGM for Q(ĥ,m |m−).

Definition 3.1 ensures the greedy action selection is the same for both the centralized and decentral-
ized action selection processes only for terminated macro-actions. We can consider a Dec-POMDP
to be a degenerate form of a MacDec-POMDP where the macro-actions are primitive actions that
terminate after one step. Additionally, primitive actions are included in the macro-action set of each
agent: U i ⊂M i, ∀i ∈ N (Amato et al., 2014). It follows that Mac-IGM represents a broader class
of functions over the primitive IGM. We provide formal proof of such a claim in Appendix A.
Proposition 3.2. Denoting with

F IGM =

{(
QIGM : H × U → R|U|,

〈
Qi,IGM : Hi × U i → R|Ui|

〉
i∈N

)
| Eq. 1 holds

}
(7)

FMac-IGM =

{(
QMac-IGM : Ĥ ×M → R|M|,

〈
Qi,Mac-IGM : Ĥi ×M i → R|Mi|

〉
i∈N

)
| Eq. 6 holds

}
(8)

the classes of functions satisfying IGM and Mac-IGM respectively, then:

F IGM ⊂ FMac-IGM. (9)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Moreover, to design the asynchronous QPLEX algorithm (i.e., AVF-QPLEX), we define the
MacAdv-IGM principle that transfers the IGM onto macro-action-based advantage functions.

Definition 3.3 (MacAdv-IGM). Given a joint macro-history ĥ ∈ Ĥ , M+ (Eq. 4) and m− (Eq.
5) for a joint macro-action-value function Q : Ĥ × M 7→ R|M| defined as Qi(h,m|m−) =

V (h) + Ai(h,m|m−), if per-agent macro-action-value functions ⟨Qi : Ĥ
i ×M i → R|Mi|⟩i∈N

defined as Qi(ĥ
i,mi) = Vi(ĥ

i) +Ai(ĥ
i,mi) exist such that:

argmax
m∈M

A(ĥ,m |m−) =

{
argmaxmi∈Mi Ai(ĥ

i,mi) if M i ∈ M+

mi ∈ mi
− otherwise

, ∀i ∈ N (10)

then, we say ⟨Qi(ĥ
i,mi)⟩i∈N satisfies MacAdv-IGM for Q(ĥ,m |m−).

Our definition of MacAdv-IGM also differs from the primitive advantage-based IGM (Section 2),
since it does require advantage values to be non-positive nor the decomposition of Eq. 22. Nonethe-
less, it remains an equivalent transformation over the Mac-IGM as shown below. We provide formal
proof of such a claim in Appendix A.
Proposition 3.4. The consistency requirement of MacAdv-IGM in Eq. 10 is equivalent to the Mac-
IGM one in Eq. 6. Hence, denoting with

FMacAdv-IGM =
{(

QMacAdv-IGM : Ĥ×M → R|M|, ⟨Qi,MacAdv-IGM : Ĥi×M i → R|Mi|⟩i∈N

)
| Eq 10 holds

}
(11)

the class of functions satisfying MacAdv-IGM, we can conclude that FMac-IGM ≡ FMacAdv-IGM.

Similarly to Proposition 3.2, we can also conclude that MacAdv-IGM represents a broader class of
functions over the primitive Adv-IGM, and summarize the relationship between the primitive and
macro-action classes of functions.Appendix A includes all the missing proofs and discussions.

Proposition 3.5. Denoting with F {Adv-IGM,MacAdv-IGM} the classes of functions satisfying Adv-IGM
and MacAdv-IGM, respectively, then:

F IGM ≡ F Adv-IGM ⊆ FMac-IGM ≡ FMacAdv-IGM. (12)

4 ASYNCHRONOUS VALUE FACTORIZATION

Algorithm 1 presents a general template for our asynchronous factorization approaches, where the
centralized network QΘ used during the training phase is composed of agents’ decentralized net-
works ⟨Qθi⟩i∈N , and the chosen mixer module Qϕ. The same holds for the target centralized
network typically used in value-based approaches (van Hasselt et al., 2016) (line 2). During decen-
tralized execution (lines 3-15), each agent i maintains an individual local macro-history ĥi to sample
its macro-action mi, and mi’s low-level policy starts its execution at step tmi and continues until
βmi(htmi+τ−1) = 1, marking its termination at step tmi +τ−1 (where τ is the length of the macro-
action). Meanwhile, we accumulate the joint reward signal r = Σtm+τ−1

t=tm γt−tmrt used to guide the
centralized training. Upon terminating its macro-action, agent i receives a new macro-observation
ô
′i, macro-state ŝ

′i, and updates its macro-history ĥ
′i = ⟨ĥi,mi, ô

′i⟩. Conversely, agents that are
still executing their macro-action do not receive new information. We discuss what a macro-state
is and its importance in the next section. For centralized training (lines 16-20), the agents use a
centralized memory buffer D to store a joint transition tuple. At each training iteration, we sample

Figure 2: Overview of AVF-based architectures. We summarize the factorization methods we inves-
tigate for AVF with purple (QPLEX), green (QMIX), and orange (VDN) boxes.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Template for Asynchronous Value Factorization Algorithms
1: Given: (i) Agents’ decentralized and target networks ⟨Qθi , Qθ′

i
⟩i∈N . (ii) Mixer and target

mixer networks Qϕ, Qϕ′ . (iii) Centralized memory buffer D. (iv) Initial macro observations
and macro-states ⟨ôi, ŝi⟩i∈N . (v) Target network update coefficient ω.

2: Define centralized QΘ := (⟨Qθi⟩i∈N , Qϕ) and target QΘ′ := (⟨Qθ′
i
⟩i∈N , Qϕ′) networks.

3: while training proceeds do
4: Upon any macro-action termination, reset cumulative reward r # Decentralized execution
5: for each agent i do
6: if mi is terminated then
7: Update local history ĥi with ô′i and get the macro-state ŝi from the environment
8: mi ∼ ϵ-greedy policy using Qθi (ĥ

i,mi) # Update info and pick a new macro-action
9: end if

10: end for
11: Execute (or continue executing) m = {mi}i∈N in the environment
12: Accumulate joint reward r
13: ô′ ← ⟨ô′i⟩i∈N ; ∀i, if mi does not end, ô′i ← ôi # Update upon macro-action termination
14: Store the joint transition into D # As Section 4.1
15: Sample and filter trajectories as in Section 4.1 # Centralized training
16: Compute per-agent utilities and factorize the joint values
17: Perform a gradient descent step on L(Θ) following Eq. 13 on the joint values
18: Update target weights Θ′ ← ωΘ′ + (1− ω)Θ
19: end while

a mini-batch of experiences from this buffer, filtering out the experiences where none of the macro-
actions have terminated (Xiao et al., 2020a). We then compute the individual utilities that are fed
into the (chosen) mixer, along with the joint macro-state. The mixing network employs the same
architecture as the primitive case and outputs the factored joint value driving the learning process.
In summary, AVF-based algorithms are trained end-to-end to minimize Eq. 13. After each training
step, we update the target weights in a weighted average fashion.

E⟨ô,ŝ,m,m−,ô′,ŝ′,r⟩∼D

[(
r + γτQΘ′

(
ĥ′, argmax

m′
QΘ

(
ĥ′, ŝ′,m′ | m−

))
−QΘ

(
ĥ, ŝ,m

))2
]

(13)

The overall architecture of AVF-based algorithms is depicted in Fig. 2. On the left, we provide
a high-level overview of the primitive value factorization mixers we enable to work in the asyn-
chronous framework (VDN, QMIX, and QPLEX), referring to the resultant algorithms as AVF-
{VDN, QMIX, QPLEX}-D0. Overall, these algorithms employ the conditional value functions
prediction both in their architecture and update rule, which guarantees to satisfy Mac-IGM and
MacAdv-IGM. As a representative example, Appendix B motivates the design of our AVF algo-
rithms by proving the full expressiveness of AVF-QPLEX for MacAdv-IGM.

Asynchronous updates. The asynchronous IGM principles also allow us to design different strate-
gies for factoring and updating the agents based on Eq. 13, as depicted in Fig. 3. While the naive
D0 performs a “centralized” update propagating gradient information to all the agents (left figure),
we propose two “partially centralized” strategies for the only agents with a terminated macro-action
by: (i) Masking (i.e., zeroing) the gradient of agents with ongoing macro-actions while considering
their value in the mixer, referring to the resultant algorithms with a “D1” suffix (center figure). (ii)
Masking the value of agents with ongoing macro-actions in the mixer, referring to the resultant al-
gorithms with a “D2” suffix (right figure).3 Intuitively, these partially centralized methods should be
beneficial in different tasks, depending on their specifications. For example, we expect D1 methods
to perform better when a problem has multiple local optima and requires a specific highly rewarded
joint behavior from all the agents (i.e., the higher magnitude of the joint value would incentives the
agents to learn such an optimal behavior). Conversely, D2 methods should offer benefits when a
problem comprises several sub-tasks, and only a subset of agents is required to cooperate to solve
the sub-tasks. The benchmark tasks employed in Section 5 allow us to investigate these intuitions.

3Depending on the factorization architecture, masking the value of ongoing agents can result in incorrect
value estimation for the agents being updated. Notably, unconstrained mixing architectures that use the joint
macro-action history as input are not affected by this issue.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Update schemes for AVF algorithms. (Left) Centralized (DO): Agents update despite the
status of their macro-action. (Center) Partially centralized (D1): Agents with an ongoing macro-
action feed their value into the mixer but do not update. (Right) Partially centralized (D2): Agents
with an ongoing macro-action do not feed their value into the mixer and do not update.

4.1 MACRO-STATE BUFFER

The explanatory buffer in Fig. 4 highlights the components affected by (any) macro-action ter-
mination with a dashed line at step t3. We train asynchronous agents on samples collected when
anyone terminates its macro-action (red boxes), as MacDec-POMDP agents get new data only when
their macro-action is done (we discuss a two-agents case, but our example applies to an arbitrary
number of agents). In more detail, consider step t3, where agent 1 terminates its macro-action m1

t0

that started at step t0. Upon termination, agent 1 receives a local next observation o1t4 according
to the real state of the environment, st4 (last column), terminating the joint reward accumulation.
The agent thus updates its local macro-history and samples a new macro-action m1

t4 . Both the new
macro-action and the reward accumulation start in the next step t4. Conversely, agent n does not
receive a new observation since its macro-action mn

t1 (started at step t1) has not terminated yet. The
state (blue columns) is commonly used as extra information by factorization methods to condition
the local utilities and/or the joint value and improve its estimation. In synchronous setups, this is
done by simply collecting the state as a features vector at each time step and using it as input for the
mixer at centralized training time. However, in the asynchronous case the utilities and joint value
are computed over local macro-histories dating back to previous steps and the literature has yet to
consider this temporal inconsistency. Using the previous example at step t3, we discuss the problem
arising from using the environment state and propose two asynchronous alternatives.

Synchronous case (real state). The environment transitions to a new state at every step, regardless
of macro-action terminations. Using this state is problematic in an asynchronous setup. For example,
consider a mixer taking as input individuals’ utilities and the environment’s state s to estimate the
joint value used to update agents. By applying the implicit function theorem (Krantz & Parks, 2002),
the joint value can be viewed as a function of individuals’ utilities, which let us discuss the temporal
inconsistency problem by computing the joint value using the data at step t3:

Q
(
ĥt3 , st3 ,mt3 |m−t3

)
= Q

(
st3 , Q1(ĥ

1
t0 ,m

1
t0), Qn(ĥ

n
t1 ,m

n
t1)

)
= Q

(
Q1(ĥ

1
t0 , st3 ,m

1
t0), Qn(ĥ

n
t1 , st3 ,m

n
t1)

)
,

where ĥt3 = ⟨ĥ1
t0 , ĥ

n
t1⟩, mt3 = ⟨m1

t0 ,m
n
t1⟩, m−t3 = ⟨mn

t1⟩. Individual utilities are implicitly
transformed using st3 , but local histories and macro-actions come from st0 , st1 . Hence, both agents
wrongly condition on st3 . This temporal inconsistency typically leads to high variance and low
performance. As a solution, we introduce the notion of a macro-state.

Asynchronous case (macro-state). Each agent i collects the state of the environment at the time of
selecting its macro-action mi

t (i.e., its macro-state ŝit). The agent thus stores a transition to the next

Figure 4: AVF buffer; green macro-actions continue at the next step; red ones end. We consider
different ways to employ extra state information (blue columns).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

state when terminating mi
t, similarly to how macro-observations are collected. We identified two

ways to input the macro-state in the mixer; we can use: (i) the macro-state of the agent whose macro-
action has terminated, or (ii) a joint macro-state comprising the macro-state of all the agents at that
step. The former guarantees all the individual utilities with a terminated macro-action transform
using the correct (macro-)state. Considering the example at step t3, the first solution leads to:

Q
(
ĥt3 , ŝ

1
t0 ,mt3 |m−t3

)
= Q

(
ŝ1t0 , Q1(ĥ

1
t0 ,m

1
t0), Qn(ĥ

n
t1 ,m

n
t1)

)
= Q

(
Q1(ĥ

1
t0 , ŝ

1
t0 ,m

1
t0), Qn(ĥ

n
t1 , ŝ

1
t0 ,m

n
t1)

)
.

However, agent n has an ongoing macro-action and transforms its local utility based on temporal
inconsistent state information. We propose using the joint macro-state (i.e., ⟨ŝ1t0 , ŝ

n
t1), ⟩ as input for

the mixer to address this issue. We expect the mixer to exploit the only information relevant to each
individual, in order to improve the joint estimation. We add an “MS” suffix to AVF algorithms using
the joint macro-state. Appendix C discusses the limitations and broader impact of AVF algorithms.

5 EMPIRICAL EVALUATION

We aim to answer the following questions: (i) Can AVF methods learn decentralized policies for
complex cooperative tasks? How do different update schemes perform? (ii) Do AVF algorithms im-
prove performance over their primitive versions and existing asynchronous macro-action baselines
(Dec-MADDRQN, Cen-MADDRQN, Mac-IAICC (Xiao et al., 2020a; 2022)) and a synchronous one
(HAVEN (Xu et al., 2023)) (iii) Are the claims on temporal inconsistency (i.e., the relevance of the
macro-state) supported by empirical evidence? All the algorithms are run over 20 seeds, and data are
collected on Xeon E5-2650 CPU nodes with 64GB of RAM, using the hyper-parameters discussed
in Appendix D. Appendix E also discusses the environmental impact of our experiments.

We use standard benchmark environments in the macro-action literature (Appendix F): (i) BoxPush-
ing (BP). The goal is to move the big box to the goal. An agent can push the small box, but the big
one requires both agents to push it simultaneously. Agents only observe the state of the cell in front
of them, making high-dimensional grids hard. We consider BP-{10, 30}, where the number indi-
cates the size of the grid. (ii) Warehouse Tool Delivery (WTD). A continuous space with multiple
workers assembling an item. Four phases are required to complete the item, and one requires a tool.
The manipulator searches for the right tool and handles it to the mobile robots, which have to deliver
it to the worker. Agents must learn the correct tools for each phase, observing the workstation’s
state only when close to it. We consider four variants. WTD-S: one working human and two mobile
robots. WTD-D: two working humans with one faster work phase and two mobile robots. WTD-T:
three working humans with different speeds and three mobile robots. WTD-F: four working humans
that work at a fixed speed and three mobile robots. (iii) Capture Target (CT). A group of agents has
to capture a randomly moving target simultaneously. When successful, agents get a reward of 1.
Agents observe their position and the correct target’s location with probability 0.3. We significantly
increased the complexity of the original CT by considering 10 agents and 1 target.

5.1 AVF EXPERIMENTS

Tab. 1 reports the average return and standard error at convergence—our experiments consider a
total of 15 AVF algorithms over 7 environments, which does not allow us to visualize the complete
training curves for the over 2000 training runs (included in Appendix G, along with more visually
friendly bar plots). We remind D0 is the naive centralized update, D1 masks the gradient for agents
with an ongoing macro-action (but not their value in the mixer), and D2 masks their values with a
0. Algorithms employing the macro-state of terminated agents (or no extra information) are AVF-
{VDN, QMIX, QPLEX}-{D0, D1, D2}, and the ones using the joint macro-state are AVF-{QMIX,
QPLEX}-{D0, D1, D2}-MS. Notably, each environment has different characteristics influencing the
performance of our update schemes. For example, BP has two agents with very limited observations,
and the optimal behavior involves a specific joint action (i.e., both agents have to push the big
box simultaneously), but there are other positively rewarded sub-optimal behaviors (e.g., push the
individual boxes). In OSD, only a subset of agents are required to cooperate at a certain step (e.g.,
the manipulator can only deliver one object at a time, to one mobile robot), while others are either
waiting or delivering items to (non-learning) humans. Finally, CT has the highest number of agents
that have to reach a flickering target at the same time, and no sub-optimal are positively rewarded.
As such, we expect different update schemes to have widely different performance across the tasks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Average return and standard error at convergence for all our algorithm variations–tasks
have different characteristics affecting the performance of the different update schemes.

BP-10 BP-30 WTD-S WTD-F CT

AVF-VDN-D0 298.8 ± 0.3 271.4 ± 0.5 262.0 ± 4.5 1049.1 ± 21.2 0.00 ± 0.09
AVF-VDN-D1 298.8 ± 0.2 298.8 ± 0.3 256.8 ± 3.1 -243.5 ± 47.6 0.61 ± 0.05
AVF-VDN-D2 298.8 ± 0.3 298.8 ± 0.3 253.4 ± 4.2 843.2 ± 29.9 0.64 ± 0.06
AVF-QMIX-D0 38.9 ± 4.1 32.9 ± 7.1 261.6 ± 2.7 909.4 ± 26.4 0.64 ± 0.05
AVF-QMIX-D1 131.0 ± 2.2 39.3 ± 7.8 -130.0 ± 17.5 -213.3 ± 24.1 0.70 ± 0.05
AVF-QMIX-D2 89.8 ± 4.7 70.3 ± 6.5 -213.2 ± 38.2 909.7 ± 25.8 0.68 ± 0.07
AVF-QMIX-D0-MS 298.8 ± 0.2 160.7 ± 3.4 256.8 ± 5.1 919.6 ± 19.1 0.00 ± 0.01
AVF-QMIX-D1-MS 298.8 ± 0.3 298.8 ± 0.5 47.2 ± 51.1 34.1 ± 51.6 0.73 ± 0.03
AVF-QMIX-D2-MS 28.9 ± 6.9 102.1 ± 3.9 248.8 ± 6.6 966.8 ± 21.5 0.54 ± 0.02

AVF-QPLEX-D0 187.9 ± 29.6 33.45 ± 9.8 243.8 ± 6.1 510.3 ± 17.6 0.10 ± 0.06
AVF-QPLEX-D1 32.7 ± 23.3 21.1 ± 9.1 -148.0 ± 14.7 -240.3 ± 23.4 0.73 ± 0.04
AVF-QPLEX-D2 -10.0 ± 5.1 -0.36 ± 3.4 246.3 ± 5.7 870.7 ± 24.6 0.61 ± 0.04
AVF-QPLEX-D0-MS 298.8 ± 0.1 235.9 ± 9.9 256.8 ± 3.7 553.6 ± 58.9 0.03 ± 0.03
AVF-QPLEX-D1-MS 298.8 ± 0.1 298.8 ± 0.4 69.6 ± 54.0 -42.8 ± 50.5 0.76 ± 0.04
AVF-QPLEX-D2-MS 43.7 ± 42.6 -10.0 ± 3.1 -68.0 ± 74.4 918.5 ± 17.8 0.39 ± 0.02

Overall performance. Among centrally updated methods (D0), AVF-VDN-D0 has the highest over-
all performance but fails to cope with the complex CT task. Both AVF-{QMIX, QPLEX}-D0 fail to
learn the joint behavior required by the BP domain, but AVF-QMIX-D0 is superior to AVF-QPLEX-
D0 in all the other tasks. These results are interesting since, in the primitive case, the overall ranking
between VDN, QMIX, and QPLEX is usually the opposite. We motivate this difference as macro-
actions drastically simplify the horizon (i.e., number of actions) required to solve problems, and the
less complex architectures are more suitable to learn quicker from shorter horizons.
Comparing different updates. Considering the partially centralized schemes (D1, D2), we note
different trends. In BP, AVF-{VDN, QMIX}-{D1, D2} obtain higher performance than their D0
counterparts, but the same does not hold for the AVF-QPLEX versions. In WTD tasks, the gradient
masking of ongoing agents (D1) is detrimental to performance since only a subset of agents are
“actively” cooperating. In contrast, masking the values of ongoing agents (D2) has comparable
performance for AVF-VDN, while appearing to be slightly beneficial for AVF-QMIX in the most
complex variations of the task. Similarly, AVF-QPLEX-D2 has higher performance than the other
update schemes. Finally, both the partially centralized schemes (D1, D2) significantly outperform
the centralized ones (D0) in the CT task for all these AVF algorithms.4

Joint macro-state. Using the macro-state of the terminated agents (as analyzed so far) possibly
lead to temporal inconsistency. Here, we analyze how using the joint macro-state in the mixer (i.e.,
MS methods) impacts performance. When comparing the same algorithm and update scheme, the
joint macro-state leads to a significant overall performance improvement. On top of that, we note in
some specific settings (AVF-{QMIX, QPLEX}-{D0, D1}-MS in BP, AVF-QMIX-D0-MS in WTD-
{S, D} tasks), MS algorithms achieve high performance, while their macro-state version fail.
Takeaways. Overall, methods using the joint macro-state (MS) have higher performance than others
under any update scheme, supporting our claims on the importance of temporal consistency. More-
over, each update scheme leads to better performance in specific tasks, suggesting they are all viable
but distinct solutions to tackle the challenges of asynchronous MARL.

5.2 ADDITIONAL COMPARISONS AND ABLATION STUDY

Macro-action. We compare our methods with Dec-MADDRQN Cen-MADDRQN, Mac-IAICC,
and HAVEN using their original implementations. Tab. 2 shows the results achieved by these
baselines in the most complex tasks. We note AVF algorithms achieve the best performance in all
the domains, confirming the benefits of asynchronous MARL over fixed-length macro-actions.

4D2 masking does not present significant performance drawbacks despite the potential incorrect estimation
caused by the value masking.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Average return a nd standard error at convergence for previous asynchronous MARL base-
lines and a hierarchical macro-action-based approach (HAVEN).

Mac-IAICC Dec-MADDRQN Cen-MADDRQN HAVEN

BP-30 39.1 ± 26.9 62.3 ± 31.3 270.5 ± 4.1 188.2 ± 8.5
WTD-F 900.8 ± 23.3 -295.6 ± 39.6 405.4 ± 20.4 410.9 ± 24.1
CT 0.29 ± 0.06 0.05 ± 0.05 0.35 ± 0.02 0.34 ± 0.05

Table 3: Average return and standard error at convergence for primitive factorization VDN, QMIX,
and QPLEX in the primitive version of the tasks.

VDN QMIX QPLEX

BP-10 -4.1 ± 10.5 -2.0 ± 9.3 -13.4 ± 2.6
WTD-S -32.5 ± 4.5 -44.3 ± 6.2 -61.0 ± 5.3
CT 0.04 ± 0.01 0.09 ± 0.03 0.20 ± 0.04

Primitive action. Tab. 3 reports the performance of the primitive VDN, QMIX, and QPLEX in
primitive BP-10, WTD-S, CT (described in Appendix F). Overall, the 1-step algorithms struggle to
cope with the complexity of these tasks, since they require a high degree of cooperation, and are
characterized by significant partial observability.

Figure 5: Results for AVF algorithms (“AVF”
is omitted for simplicity) using the environ-
ment (S), against the joint macro-state (MS).

State ablation and Mac-IGM relevance. Figure
5 shows the issues of using the environment state
and the significance of Mac-IGM in representative
tasks BP-10 and WTD-S. To investigate the effect of
using the environment state, we replaced the joint
macro-state (MS) with the raw environment state
(last column of Fig. 4), referring to these variants as
{QMIX, QPLEX}-D0-S. These variations yielded
significantly lower returns, whereas MS-based meth-
ods effectively solved the tasks. This result sup-
ports our hypothesis that temporally uncorrelated
data hinders the learning of high-performing, joint
asynchronous policies. To evaluate the role of Mac-
IGM, we removed conditional Q-value prediction
from the AVF algorithms, causing agents to select
a new macro-action whenever any macro-action ter-
minated. These variations are referred to as the un-
conditioned {QMIX, QPLEX}-D0-UC. Consistent
with previous findings (Xiao et al., 2020a), uncondi-
tioned functions introduced high variability in value
estimations, ultimately preventing agents from solv-
ing even the easiest BP and WTD tasks. These ex-
periments emphasize the importance of our AVF al-
gorithm design, which incorporates conditional op-
erators and leverages the macro-state effectively.

6 CONCLUSION

This paper introduces value factorization for asynchronous MARL to design scalable macro-action
algorithms. To this end, we proposed the IGM principle for macro-actions, ensuring consistency
between centralized and decentralized greedy action selection. In addition, we showed the proposed
Mac-IGM and MacAdv-IGM paradigms generalize the primitive ones and represent a wider class
of functions. We also introduced AVF algorithms that leverage asynchronous decision-making and
value factorization, under multiple update schemes. Our approach relies on a joint macro-state
to maintain temporal consistency in local agents’ state information, allowing the use of existing
factorization architectures. Crucially, the proposed AVF framework can be applied with arbitrary
mixing strategies. Overall, our methods successfully learn asynchronous decentralized policies for
challenging tasks where primitive factorization and previous macro-action methods perform poorly.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Christopher Amato, George D. Konidaris, and Leslie P. Kaelbling. Planning with macro-actions in
decentralized pomdps. In AAMAS, 2014.

Christopher Amato, George D. Konidaris, Leslie P. Kaelbling, and Jonathan P. How. Modeling and
planning with macro-actions in decentralized pomdps. Journal of Artificial Intelligence Research
(JAIR), 64:817–859, 2019.

Balázs Csanád Csáji. Approximation with artificial neural networks. In MSc Thesis, Eötvös Loránd
University (ELTE), Budapest, Hungary, 2001.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In International Conference on Learning Representa-
tions, 2019.

Hangtian Jia, Yujing Hu, Yingfeng Chen, Chunxu Ren, Tangjie Lv, Changjie Fan, and Chongjie
Zhang. Fever basketball: A complex, flexible, and asynchronized sports game environment for
multi-agent reinforcement learning. In arXiv, 2020.

S.G. Krantz and H.R. Parks. The Implicit Function Theorem: History, Theory, and Applications.
Modern Birkhäuser classics. Birkhäuser, 2002. ISBN 9780817642853.

Yongheng Liang, Hejun Wu, Haitao Wang, and Hao Cai. Asynchronous credit assignment frame-
work for multi-agent reinforcement learning. In arXiv, 2024.

Amy Mcgovern, Richard Sutton, and Andrew Fagg. Roles of macro-actions in accelerating rein-
forcement learning. In Proceedings of the Grace Hopper Celebration of Women in Computing,
02 1999.

Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs.
Springer, 2016.

Tabish Rashid, Mikayel Samvelyan, Christian Schroder de Witt, Gregory Farquhar, Jakob N. Foer-
ster, and Shimon Whiteson. QMIX: monotonic value function factorisation for deep multi-agent
reinforcement learning. In ICML, 2018.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted QMIX: expanding
monotonic value function factorisation. In NeuriPS, 2020.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Hostallero, and Yung Yi. QTRAN: learning to
factorize with transformation for cooperative multi-agent reinforcement learning. In ICML, 2019.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Flores Zam-
baldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore
Graepel. Value-decomposition networks for cooperative multi-agent learning. In AAMAS, 2018.

Richard Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 112:181–211, 1999.

Hongyao Tang, Jianye Hao, Tangjie Lv, Yingfeng Chen, Zongzhang Zhang, Hangtian Jia, Chunxu
Ren, Yan Zheng, Changjie Fan, and Li Wang. Hierarchical deep multiagent reinforcement learn-
ing. In arXiv, 2018.

Karl Tuyls and Gerhard Weiss. Multiagent learning: Basics, challenges, and prospects. AI Magazine,
33:41–52, 2012.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In AAAI, 2016.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. QPLEX: duplex dueling
multi-agent q-learning. In ICLR, 2021.

Ziyu Wang, Matteo Hessel Tom Schaul, Marc Lanctot Hado van Hasselt, and Nando de Freitas.
Dueling network architectures for deep reinforcement learning. In ICML, 2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuchen Xiao, Joshua Hoffman, and Christopher Amato. Macro-action-based deep multi-agent rein-
forcement learning. In CoRL, 2020a.

Yuchen Xiao, Joshua Hoffman, Tian Xia, and Christopher Amato. Learning multi-robot decentral-
ized macro-action-based policies via a centralized q-net. In ICRA, 2020b.

Yuchen Xiao, Weihao Tan, and Christopher Amato. Asynchronous actor-critic for multi-agent re-
inforcement learning. In Advances in Neural Information Processing Systems, volume 35, pp.
4385–4400, 2022.

Zhiwei Xu, Yunpeng Bai, Bin Zhang, Dapeng Li, and Guoliang Fan. HAVEN: hierarchical cooper-
ative multi-agent reinforcement learning with dual coordination mechanism. In AAAI, 2023.

Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, and Hongyao
Tang. Qatten: A general framework for cooperative multiagent reinforcement learning. In arXiv,
2020.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre M. Bayen, and Yi Wu. The surprising
effectiveness of MAPPO in cooperative, multi-agent games. In NeurIPS, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDICES

A REPRESENTATIONAL COMPLEXITY OF MAC-IGM AND MACADV-IGM

As discussed by VDN and QMIX (Sunehag et al., 2018; Rashid et al., 2018), common value factor-
ization approaches cannot guarantee representing their respective classes of true value functions in
a Dec-POMDP. The same limitation holds in MacDec-POMDPs; agents’ observations do not repre-
sent the full state in partially observable settings. Similarly, per-agent value function ordering can
(potentially) be wrong in a macro-action context. Formally, given an agent i at a time step t it could
happen that:

Qi(ĥ
i,mi) > Qi(ĥ

i,m′i) when Q(s, (m−i,mi)) < Q
(
s, (m−i,m′i)

)
where m−a is the joint action of all the agents excluding i. However, there are several ways to
alleviate such an issue. First, it is possible to condition per-agent action values (or state and ad-
vantage values) with state information during offline training as in QMIX (Rashid et al., 2018),
QPLEX (Wang et al., 2021). Moreover, if can not assume that (ĥ,m) (i.e., the joint macro-history
and action) is sufficient to fully model Q(s,m) (which is a common assumption in prior factoriza-
tion approaches), we can potentially store additional history-related information in recurrent layers
(Sunehag et al., 2018).

A.1 REPRESENTATIONAL EXPRESSIVENESS OF AVF ALGORITHMS

The proposed AVF framework does not change the architectural design of the chosen factorization
method. Hence, the algorithms investigated in Section 5, namely AVF-{VDN, QMIX, QPLEX},
maintain the same considerations of the original factorization methods in terms of representational
expressiveness.

In particular, AVF-VDN can factorize arbitrary joint macro-action value functions that can be addi-
tively decomposed into individual utilities. AVF-QMIX extends the family of factorizable functions
to non-linear monotonic combinations. Finally, AVF-QPLEX does not involve architectural con-
straints and is capable of achieving the entire class of functions satisfying the underlying IGM.

A.1.1 OMITTED PROOFS IN SECTION 3

Proposition 3.2. Denoting with

F IGM =

{(
QIGM : H × U → R|U|,

〈
QIGM

i : Hi × U i → R|Ui|
〉
i∈N

)
| Eq. 1 holds

}
(14)

FMac-IGM =

{(
QMac-IGM : Ĥ ×M → R|M|,

〈
QMac-IGM

i : Ĥi ×M i → R|Mi|
〉
i∈N

)
| Eq. 6 holds

}
(15)

the class of functions satisfying IGM and Mac-IGM respectively, then:
F IGM ⊂ FMac-IGM (16)

Proof. MacDec-POMDPs extends Dec-POMDPs by replacing the primitive actions available to
each agent with option-based macro-actions. However, as shown in (Amato et al., 2019), the macro-
action set contains primitive actions to guarantee the same globally optimal policy:

U i ⊂M i, ∀i ∈ N (17)

Meaning that ∀i ∈ N , |Mi| > |Ui|, which implies |M| > |U|. It also follows that O ⊆ Ô as
a MacDec-POMDP is, in the limit where only primitive actions are selected, equivalent to a Dec-
POMDP. For these reasons, we can conclude that |Ĥ ×M| > |H×U| (i.e., the domain over which
primitive action-value functions are defined is smaller than the domain over which macro-action-
value functions are defined). Hence, F IGM ⊂ FMac-IGM.

Proposition 3.4. The consistency requirement of MacAdv-IGM in Eq. 10 is equivalent to the Mac-
IGM one in Eq. 6. Hence, denoting with

FMacAdv-IGM =
{(

QMacAdv-IGM : Ĥ×M → R|M|, ⟨QMacAdv-IGM
i : Ĥi×M i → R|Mi|⟩i∈N

)
| Eq 10 holds

}
(18)

the class of functions satisfying MacAdv-IGM, we can conclude that FMac-IGM ≡ FMacAdv-IGM.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Proof. Given a joint macro-history ĥ ∈ Ĥ on which ⟨Qi(ĥ
i,mi)⟩i∈N satisfies Mac-IGM for

Q(ĥ,m | m−), we show Eq. 10 represents the same consistency constraint as Eq. 6. By ap-
plying the dueling decomposition from (Wang et al., 2016), we know Q(ĥ,m | m−) = V (ĥ) +

A(ĥ,m |m−), and Qi(ĥ
i,mi) = V (ĥi) + Ai(ĥ

i,mi), ∀i ∈ N . Hence, the state-value functions
defined over macro-histories do not influence the action selection process. For the joint value, we
can thus conclude that:

argmax
m∈M

Q(ĥ,m |m−) = argmax
m∈M

V (ĥ) +A(ĥ,m |m−) = argmax
m∈M

A(ĥ,m |m−) (19)

Similarly, for the individual values:

∀i ∈N ,

{
argmaxmi∈Mi Qi(ĥ

i,mi) if M i ∈M+

mi
− otherwise

=

{
argmaxmi∈Mi V (ĥi) +Ai(ĥ

i,mi) if M i ∈M+

mi
− otherwise

=

{
argmaxmi∈Mi Ai(ĥ

i,mi) if M i ∈M+

mi
− otherwise

(20)

Broadly speaking, we know the history values act as a constant for both the joint and local estimation
and do not influence the argmax operator. By combining Eq. 19, 20, we conclude the equivalence
between Eq. 6, 10.

Proposition 3.5. Denoting with F {Adv-IGM,MacAdv-IGM} the classes of functions satisfying Adv-IGM
and MacAdv-IGM, respectively, then:

F IGM ≡ F Adv-IGM ⊂ FMac-IGM ≡ FMacAdv-IGM. (21)

Proof. The result naturally follows from Proposition 3.2, 3.5, and the result of (Wang et al., 2021)
that showed the equivalence between the class of functions represented by the primitive IGM and
Adv-IGM. In more detail, from the latter we know F IGM ≡ FAdv-IGM. Moreover, Proposition 3.2
showed us that F IGM ⊂ FMac-IGM, from which follows that FAdv-IGM ⊂ FMac-IGM. In addition,
Proposition 3.5 showed us that FMac-IGM ≡ FMacAdv-IGM. Combining these results, we conclude the
relationship in Eq. 21.

B EXPRESSIVENESS OF AVF-QPLEX-D0

In this section, we show how the design of AVF algorithms allows the underlying factorization ar-
chitecture to maintain the same class of expressiveness as their primitive counterparts (e.g., additive
functions, monotonic functions), but with respect to Mac-IGM. Let us prove the full expressiveness
AVF-QPLEX-D0 over Mac-IGM as an explanatory example, extending the full expressiveness of
QPLEX over IGM of the primitive case.
Proposition 3.5. Given the universal function approximation of neural networks, the function class
that AVF-QPLEX-D0 can realize is equivalent to what is induced by Mac-IGM.

Proof. The proof extends the synchronous, primitive action proof of Wang et al. (2021). The main
difference is related to the conditional action-value functions learned by AVF-QPLEX-D0, which
allows it to maintain action selection consistency and correct updates over asynchronous macro-
action-based agents.

First, let us define the utilities deriving from the transformation and mixer modules of AVF-QPLEX-
D0. For clarity, we recall these components implement the same operations as the original QPLEX
(shown in Fig. 6), but in the asynchronous macro-actions context.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 6: Primitive actions-based QPLEX architecture (image credit: Wang et al. (2021)). (a) Mix-
ing network; (b) QPLEX architecture; (c) Individual utility and transformation networks.

At any step t, consider the set of terminated macro-action spaces Mt,+ and the ongoing macro
actions mt,− defined as in Def. 3.1. For each agent i, AVF-QPLEX-D0 first decomposes its utility
Qi(ĥ

i
t,m

i
t|mi

t−1) as follows:

Vi(ĥ
i
t) =

{
maxmi Qi(ĥ

i
t,m

i) if M i ∈M+,t

Qi(ĥ
i
t,m

i
t−1) otherwise

,

A
(
iĥ

i
t,m

i
t|mi

t−1) = Qi(ĥ
i
t,m

i
t|mi

t−1)− Vi(ĥ
i
t).

(22)

The transformation module then outputs the following transformed utilities:

V T
i (ĥt) = wi(ĥt)Vi(ĥ

i
t) + bi(ĥt),

AT
i (ĥt,m

i
t|mi

t−1) = wi(ĥt)Ai(ĥ
i
t,m

i
t|mi

t−1),
(23)

and the mixer module combines all the agents’ utilities into the following joint utilities:

V MIX(ĥt) =
∑
i∈N

V T
i (ĥt),

AMIX(ĥt,mt|mt,−) =
∑
i∈N

λi(ĥt,mt|mt,−)A
T
i (ĥt,m

i
t|mi

t−1),
(24)

to finally output the joint value Q(ĥt,mt|mt,−) defined as:

QMIX(ĥt,mt|mt,−) = V MIX(ĥt) +AMIX(ĥt,mt|mt,−). (25)

We can now prove the full expressiveness of AVF-QPLEX-D0 over Mac-IGM. Assume AVF-
QPLEX-D0’s network size is sufficient to satisfy the universal function approximation theo-
rem (Csáji, 2001). Denote the joint QMIX, AMIX, V MIX, transformed QT

i , A
T
i , V

T
i , and individual

Qi, Ai, Vi macro-action, macro-observation, advantage macro-history-based value functions and
utilities learned by AVF-QPLEX-D0, respectively. Moreover, Let the class of action-value func-
tions that the algorithms can represent be QMIX defined as:

QMIX =
{(

QMIX, ⟨Qi⟩i∈N
)
|Eqs.22, 23, 24, 25are satisfied

}
, (26)

and let QMac-IGM be the class of macro-action-value functions represented by Mac-IGM (Eq. 15).

Firstly, we note the multiplicative weights in both the transformation and mixer modules are all pos-
itive to satisfy action selection consistency. Secondly, we proveQMIX = QMac-IGM by demonstrating
the inclusion in the two directions QMac-IGM ⊆ QMIX and QMac-IGM ⊇ QMIX.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

1. QMac-IGM ⊆ QMIX: For any
(
QMac-IGM, ⟨QMac-IGM

i ⟩i∈N
)
∈ QMac-IGM we construct QMIX =

QMac-IGM and ⟨Qi⟩i∈N = ⟨QMac-IGM
i ⟩i∈N , deriving Ai, Vi, A

MIX, V MIX by Eqs. 22, 24 and
constructing the transformed values connecting joint and individual ones as:

QT
i (ĥt,mt|mt,−) =

QMIX(ĥt,mt|mt,−)

|N |
,

V T
i (ĥt) = max

m′
QT

i (ĥt,m
′|mt,−), AT

i (ĥt,mt|mt,−) = QT
i (ĥt,mt|mt,−)− V T

i (ĥt).

According to the fact that ∀m∗ ∈M∗(ĥ),m ∈M \M∗(ĥ), i ∈ N :

AMIX(ĥ,m∗|m−) = Ai(ĥ
i,mi,∗|mi

−) = 0,

AMIX(ĥ,m|m−) < 0, Ai(ĥ
i,mi|mi

−) < 0,

whereM∗(ĥ) = {m|m ∈M, QMIX(ĥ,m|m−) = V MIX(ĥ)}, and by setting:

wi(ĥ) = 1, bi(ĥ) = V T
i (ĥ)− Vi(ĥi),

λi(ĥt,mt|mt,−) =

{
AT

i (ĥt,mt|mt,−)

Ai(ĥi
t,m

i
t|mi

t,−)
if Ai(ĥ

i
t,m

i
t|mi

t,−) < 0,

1 otherwise.

we conclude that
(
QMIX, ⟨Qi⟩i∈N

)
∈ QMac-IGM, meaning that QMac-IGM ⊆ QMIX.

2. QMac-IGM ⊇ QMIX: For any
(
QMIX, ⟨Qi⟩i∈N

)
∈ QMIX, following the above fact regarding

non-positive advantage functions/utilities, ∀ĥ ∈ Ĥ, i ∈ N , let:

AMIX∗

i (ĥi) = {mi|mi ∈Mi, Ai(ĥ
i,mi|mi

−) = 0}.

Combining the positivity of the weights ⟨wi, λi⟩i∈N with Eqs. 22, 23, 24, 25, we can
derive ∀ĥ ∈ Ĥ,mi,∗ ∈ AMIX∗

i (ĥi),mi ∈M \AMIX∗

i (ĥi), i ∈ N :

Ai(ĥ
i,mi,∗|mi

−) = 0 and Ai(ĥ
i,mi|mi

−) < 0

AT
i (ĥ,m

i,∗|mi
−) = wi(ĥ)Ai(ĥ

i,mi,∗|mi
−) = 0 and

AT
i (ĥ,m

i|mi
−) = wi(ĥ)Ai(ĥ

i,mi|mi
−) < 0

AMIX(ĥ,m∗|m−) = λi(ĥ,m
∗|m−)A

T
i (ĥ,m

i,∗|mi
−) = 0 and

AMIX(ĥ,m|m−) = λi(ĥ,m|m−)A
T
i (ĥ,m

i|mi
−) < 0.

Following the proof of (Wang et al., 2021), we can thus construct QMIX = QMac-IGM, ⟨Qi⟩i∈N =
⟨QMac-IGM

i ⟩i∈N , meaning that
(
QMac-IGM, ⟨QMac-IGM

i ⟩i∈N
)
∈ QMIX, and QMIX ⊆ QMac-IGM.

Under the assumption that AVF-QPLEX-D0’s neural networks provide universal function approx-
imation, the joint macro-action-value function class that AVF-QPLEX-D0 can represent is thus
equivalent to what is induced by Mac-IGM.

C LIMITATIONS AND BROADER IMPACT

Limitations. We identify three limitations in our work. First, most factorization approaches cannot
guarantee to fully represent their respective classes of value functions in a Dec-POMDP (Sunehag
et al., 2018; Rashid et al., 2018; 2020); the same limitation holds in AVF-based algorithms that
maintain the same representation expressiveness of the original methods. Second, AVF methods
employing the joint macro-state could have scalability issues when considering many agents. While
such a problem does not arise in our experiments with up to 10 agents, it is possible to train an
encoder to reduce the dimensionality of the joint macro-state. Third, MacDec-POMDPs assume

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

that macro-actions are known and fixed. This is the same as assuming primitive actions are given
in a primitive MARL domain. Moreover, asynchronous settings are common in the real world but
have been rarely studied in the MARL literature. For this reason, principled methods are needed for
the MacDec-POMDP case before extending them to learn macro-actions (e.g., by employing skill
discovery approaches (Eysenbach et al., 2019)).

Broader impact. Regarding the broader impact of our work, we do believe macro-actions have the
potential to scale MARL into the real world. Temporally extended actions enable decision-making at
a higher level and naturally represent complex real-world behavior (e.g., lifting an object). that can
exploit existing robust controllers or be defined by a (human) expert, making them more explainable
than other sequences of primitive actions. By extending MARL algorithms to the macro-action case,
realistic multi-agent coordination problems can be solved that are orders of magnitude larger than
problems solved by previous primitive MARL algorithms.

D HYPER-PARAMETERS

Regarding the considered baselines, we employed the original authors’ implementations and param-
eters (Sunehag et al., 2018; Rashid et al., 2018; Wang et al., 2021; Xiao et al., 2020a; 2022). Table
4 lists all the hyper-parameters considered in our initial grid search for tuning the algorithms em-
ployed in Section 5. We separate algorithm-specific parameters (e.g., for the mixer of AVF-QMIX,
AVF-QPLEX) with a horizontal line at the end of the table. We tested different joint reward schemes
for macro-actions (e.g., only considering the max/min values and time horizon among the agents,
averaging them). Still, the original joint scheme in Section 2.2 resulted in the best performance.

Table 4: Hyper-parameters candidate for initial grid search tuning.
Learning rate 5e-4, 2.5e-4, 2.5e-5
γ 0.9, 0.95, 0.99
ASVB (full episodes) size 1000, 2500, 5000
Batch size 32, 64, 128
Sampling trajectory size 10, 25, 50
Polyak averaging ω 0.995, 0.9998
N° hidden layers 2, 3
Hidden layers size 64, 128

Mix embed. size 32, 64
Hypernet embed. size 32, 64
N° hypernet layers 2
N° Advantage hypernet layers 2
Advantage hypernet embed. size 32, 64

Table 5 lists the hyper-parameters considered in our experiments. When a parameter differs from the
algorithm variations and environments, we indicate the values with a separator. Shared parameters
between all the algorithms are indicated once.

E ENVIRONMENTAL IMPACT

Despite each training run being “relatively” computationally inexpensive due to the use of CPUs,
the experiments of our evaluation led to cumulative environmental impacts due to computations that
run on computer clusters for an extended time. Nonetheless, it is crucial to foster sample efficiency
(i.e., reducing the training time for the agents, hence the computational resources used to train them)
to reduce the environmental footprint of such learning systems. In this direction, our work considers
designing macro-action methods that significantly improve the sample efficiency of the learning
algorithms (i.e., the number of simulation steps required to learn a policy), as shown by previous
research on the topic (Xiao et al., 2020a;b).

Our experiments were conducted using a private infrastructure with a carbon efficiency of ≈
0.275 kgCO2eq

kWh , requiring a cumulative ≈360 hours of computation. Total emissions are estimated

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Hyper-parameters used in our experiments (considering all the algorithm variations).
AVF-VDN AVF-QMIX AVF-QPLEX

Learning rate 5e-4 — 2.5e-4 5e-4 — 2.5e-4 — 2.5e-5 5e-5 — 2.5e-4 — 2.5e-5
γ 0.9
ASCB size 2500
Batch size 32 — 64
Sampling traj. size 10 — 25
ω 0.995
N° hidden layers 2
Hidden layers size 64
Mix embed. size - 32 32
Hypernet embed. size - 32 -
N° hypernet. layers - 2 -
N° Adv. hypernet layers - - 2
Adv. hypernet embed. size - - 32

to be≈ 10.39kgCO2eq using the Machine Learning Impact calculator, and we purchased offsets for
this amount through Treedom.

F DOMAIN DESCRIPTION

F.1 BOX PUSHING (BP)

In this collaborative task, two agents have to work together to push a big box to a goal area at the
top of a grid world to obtain a higher credit than pushing the small box on each own. The small box
is movable with a single agent, while the big one requires two agents to push it simultaneously.

The state space consists of each agent’s position and orientation, as well as the location of each box.
Agents have a set of primitive actions, including moving forward, turning left or right, and staying
in place. The available macro-actions are Go-to-Small-Box(i) and Go-to-Big-Box that navigates the
agent to a predefined waypoint (red) under the corresponding box and terminates with a pose facing
it; and a Push macro-action that makes the agent move forward and terminate when the robot hits
the world boundary or the big box. Each agent observation is very limited in both the primitive and
macro level, which is the state of the front cell: empty, teammate, boundary, small box, or big box.

The team receives a terminal reward of +300 for pushing the big box to the goal area or +20 for
pushing one small box to the goal area. If any agent hits the world’s boundary or pushes the big box
on its own, a penalty of −10 is issued. An episode terminates when any box is moved to the goal
area or reaches the maximum horizon, 100 time steps. In our work, we consider the variant of this
task in terms of the grid world size as shown in Fig. 9.

The original work of Xiao et al. (2020a) also released a primitive action version of the BP task. In
the primitive action version, each agent has four actions: move forward, turn left, turn right, and
stay. The small box moves forward one grid cell when any robot faces it and executes the move
move forward action.

F.2 WAREHOUSE TOOL DELIVERY (WTD)

Warehouse Tool Delivery scenarios vary in the number of agents, humans, and the speed at which
they work. In each scenario, the humans assemble an item with four work phases. Each phase
requires several primitive time steps and a specific tool. We assume that the human already holds
the tool for the first phase, and the rest must be found and delivered in a particular order by a team of
robots to finish the subsequent work phases. The objective of the robot team is to assist the humans
in completing their tasks as quickly as possible by finding and delivering the correct tools in the
proper order and timely fashion without making the humans wait.

18

https://mlco2.github.io/impact#compute
https://www.treedom.net

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The environmental space is continuous, and the global state includes 1) each mobile robot’s 2D
position; 2) the execution status of the manipulator robot’s macro-action in terms of the rest of
primitive time steps to terminate; 3) the work phase of each human with its completed percentage;
and 4) each tool’s position.

Mobile robots have three navigation macro-actions: 1) Go-W(i) moves the robot to the correspond-
ing workshop and locates at the red spot in the end; 2) Go-TR leads the robot to the red waypoint in
the middle of the tool room; 3) Get-Tool navigates the robot the pre-allocated waypoint beside the
manipulator and wait there, which will not terminate until either receiving a tool or waiting there for
10 time steps. Mobile robots move at a fixed velocity and are only allowed to receive tools from the
manipulator rather than the human. There are three applicable macro-actions for the manipulator
robot: 1) Search-Tool(i) takes 6 time steps to find a particular tool and place it in a staging area
when there are less than two tools there; otherwise, it freezes the robot for the same amount of time.;
2) Pass-to-M(i) takes 4 time steps to pick up the first found tool from the staging area and pass it to
a mobile robot; 3) Wait-M consumes 1 time step to wait for a mobile robot.

Each mobile robot is always aware of its location and the type of tool carried by itself. Meanwhile,
it is also allowed to observe the number of tools in the staging area or a human’s current work phase
when it is at the tool room or the corresponding workshop, respectively. The macro-observation of
the manipulator robot is limited to the type of tools present in the staging area and the identity of the
mobile robot waiting at the adjacent waypoints.

Rewards for this domain are structured such that the team earns a reward of +100 when they deliver
a correct tool to a human on time. However, if the delivery is delayed, an additional penalty of −20
is imposed. Moreover, the team incurs a penalty of −10 if the manipulator robot attempts to pass a
tool to a mobile robot that is not adjacent, and a penalty of −1 happens every time step.

We consider four variations of WTD shown in Fig. 8: a) WTD-S, involves one human and two
mobile robots; b) WTD-D, involves two humans and two mobile robots; c) WTD-T, involves three
humans and two mobile robots. d) WTD-F, involves four humans and three mobile robots. The
human working speeds under different scenarios are listed in Table 6

Table 6: The number of time steps each human takes on each working phase in scenarios.

Scenarios WTD-S WTD-D WTD-T WTD-F

Human-0 [20, 20, 20, 20] [27, 20, 20, 20] [38, 38, 38, 38] [40, 40, 40, 40]
Human-1 N/A [27, 20, 20, 20] [38, 38, 38, 38] [40, 40, 40, 40]
Human-2 N/A N/A [27, 27, 27, 27] [40, 40, 40, 40]
Human-3 N/A N/A N/A [40, 40, 40, 40]

Each episode stops when all humans have obtained the correct tools for all work phases or when the
maximum time steps (150) are reached.

Figure 7: Overview of the considered box pushing task variations.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

4

(d) WTD-F
Figure 8: Overview of the considered warehouse tool delivery task variations.

F.3 CAPTURE TARGET (CT)

In this domain, there are 10 agents represented by blue circles, assigned with the task of capturing
a randomly moving target indicated by a red cross (as shown in Fig. ??). Each agent’s macro-
observation captures the same information as its primitive one, including the agent’s position (being
always observable) and the target’s position (being partially observable with a flickering probability
of 0.3). The applicable primitive-actions include moving up, down, left, right, and stay. The macro-
action set consists of Move-to-T, directs the agent to move towards the target with an updated target
position according to the latest primitive observation, and Stay lasts a single time step. The horizon
of this task is 60 time steps, and a terminal reward of +1 is given only when all agents capture the
target simultaneously by being in the same cell.

Figure 9: Overview of the considered capture target task.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

G MISSING PLOTS FROM SECTION 5

For a clearer visualization of the results in Table 1, Figure 10 shows the normalized average return
at convergence for all our algorithm variations and environments.

Figure 10: Normalized average return for all our algorithm variations. Tasks have different charac-
teristics affecting the performance of the different update schemes.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

In the following, we report all the training curves for the proposed algorithms, omitting the “AVF”
prefix for simplicity.

Figure 11: Avg. return over training for AVF-VDN-{D0, D1, D2} using the macro-state.

Figure 12: Avg. return over training for AVF-QMIX-{D0, D1, D2} using the macro-state.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

BP-10 BP-30 WTD-S

WTD-FWTD-T

CT

WTD-D

-200
-400
-200

-800
-600
-400
-200

-400
-300
-200
-100

-500

0.2

0.4

0.6

0.8

-1000

-1500

-1000

-500

0

0 0

0
0

0

0

200

200

400 600
400
200

500

100
200

Figure 13: Avg. return over training for AVF-QMIX–{D0, D1, D2}-MS using the joint macro-state.

BP-10 BP-30 WTD-S

WTD-FWTD-T

CT

WTD-D

-1500

-1000 -1000

-1500

-500 -500
-100
-200
-300

-500
-400

-200
-200

-400

0
0

0

0
0 0

0

200
100

500400
200

200

400

0.2

0.4

0.6

Figure 14: Avg. return over training for AVF-QPLEX-{D0, D1, D2} using the macro-state.

Moreover, Figure 16 shows the training curves for previous macro-action baselines (Xiao et al.,
2022; 2020a; Xu et al., 2023).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

BP-10 BP-30 WTD-S

WTD-FWTD-T

CT

WTD-D

-1500

-1000

-1000

-500

-800
-600
-400
-200

-400

-200

-500-500
-400

-200

0 0
0

000

0

200

400 500

200 200

500

0.2

0.4

0.6

Figure 15: Avg. return over training for AVF-QPLEX-MS-{D0, D1, D2} using the joint macro-
state.

Figure 16: Avg. return over training for Dec-MADDRQN, Cen-MADDRQN, Mac-IAICC, HAVEN.

24

	Introduction
	Preliminaries and related work
	Value factorization
	Learning macro-action-based policies
	Synchronous and Asynchronous macro-action baselines.

	Macro-action-based IGM
	Asynchronous value factorization
	Macro-state buffer

	Empirical evaluation
	AVF experiments
	Additional comparisons and ablation study

	Conclusion
	Representational Complexity of Mac-IGM and MacAdv-IGM
	Representational Expressiveness of AVF Algorithms
	Omitted Proofs in Section 3

	Expressiveness of AVF-QPLEX-D0
	Limitations and Broader impact
	Hyper-parameters
	Environmental Impact
	Domain Description
	Box Pushing (BP)
	Warehouse Tool Delivery (WTD)
	Capture Target (CT)

	Missing plots from Section 5

