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Abstract

Neural audio synthesis methods now allow speci-
fying ideas in natural language. However, these
methods produce results that cannot be easily
tweaked, as they are based on large latent spaces
and up to billions of uninterpretable parameters.
We propose a text-to-audio generation method
that leverages a virtual modular sound synthesizer
with only 78 parameters. Synthesizers have long
been used by skilled sound designers for media
like music and film due to their flexibility and
intuitive controls. Our method, CTAG, iteratively
updates a synthesizer’s parameters to produce
high-quality audio renderings of text prompts that
can be easily inspected and tweaked. Sounds
produced this way are also more abstract, captur-
ing essential conceptual features over fine-grained
acoustic details, akin to how simple sketches can
vividly convey visual concepts. Our results show
how CTAG produces sounds that are distinctive,
perceived as artistic, and yet similarly identifiable
to recent neural audio synthesis models, position-
ing it as a valuable and complementary tool.'

1. Introduction

“Of course, bubbles don’t make sound, but this
is the magic of sound design...you can create the
concept of a sound and it seems real.”

— Suzanne Ciani

In creative sound design, realism isn’t everything. In the late
1970s, composer Suzanne Ciani famously demonstrated this
principle with her iconic Coca Cola pop and pour sound
effect. This sound, which has become synonymous with the
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Figure 1. CTAG leverages a virtual modular synthesizer to gener-
ate sounds capturing the semantics of user-provided text prompts
in a sketch-like way, rather than being acoustically literal. Spec-
trograms of auditory outputs corresponding to six text prompts
showcase the range of sounds this approach can yield, accompa-
nied by a fully interpretable and controllable parameter space.

refreshing experience of opening a soda, was not recorded
from an actual soda bottle, but skillfully crafted using a
Buchla synthesizer. Ciani’s work illustrates the immense
power of abstraction in auditory representation, where the
essence of a concept can be expressed without mimicking
real-world acoustic details, while achieving greater impact.

This approach extends beyond single examples into the do-
main of procedural sound design: creating sounds algorith-
mically using parameters that can be manipulated to achieve
desired sonic effects. By applying procedural techniques,
sound designers can often transcend what’s physically plau-
sible to obtain by recording real-world events. These meth-
ods can lead to highly evocative and expressive sounds in
music, film, video games, advertising, product design, and
other media.

Neural audio synthesis methods have transformed the state
of sound design, enabling specifying sound ideas using in-
tuitive inputs like textual prompts. However, there remains
unrealized potential in integrating expressive sound design
principles into neural audio synthesis. Current techniques
prioritize acoustic recreation and end-to-end application, of-
ten overlooking creative possibilities for evoking emotions
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or concepts, and interactive aspects like manipulating, iter-
ating, and interpolating between sounds. While recent ad-
vances showcase remarkable capabilities in replicating real-
world sounds, this emphasis can limit the creative palette
and expressive potential of generated audio. We propose a
method to bridge this gap.

Overall, this work contributes:

* A novel method that integrates a virtual modular syn-
thesizer with a pretrained audio-language model for
generating sounds that resonate with human intuition
without being literal representations.

* A lightweight, fully interpretable, and controllable syn-
thesizer resulting from our approach, allowing for easy
inspection and tweaking for creative purposes.

* Extensive experiments evaluating different approaches
to solving this problem, varying optimization algo-
rithms, sound durations, and synthesis architectures.

 Qualitative and quantitative results that highlight how
sounds from our method have distinct features from
those produced by other neural audio generators, while
still being identified at similar rates. We conduct a
user study as a gold standard evaluation, given the
novelty of the task, which shows the identifiability and
potential artistic value of CTAG’s sounds.

» Examples of this approach generating several datasets
of sounds with their synthesis parameters, and interpo-
lating between different sounds in the parameter space.

We will open-source our approach, both to provide a tool for
novices and experts alike to realize their ideas, as well as to
provoke future audio generation paradigms that recognize
abstraction as an important factor for creative expression.

2. Related Work
2.1. Sound Synthesis

Neural audio synthesis consists of two main strands: ap-
proaches that generate audio waveforms directly in the
time domain, and those that do so in the frequency domain.
WaveNet (Oord et al., 2016) notably introduced an autore-
gressive approach to audio synthesis by predicting one sam-
ple at a time. This slow iterative sampling approach, later
refined in SampleRNN (Mehri et al., 2016) and WaveRNN
(Kalchbrenner et al., 2018), reflects the sequential nature of
audio data, in contrast to images wherein GANs with global
latent conditioning and efficient parallel sampling quickly
became a dominant method for synthesis. Later, WaveGAN
(Donahue et al., 2018) and GANSynth (Engel et al., 2019)
demonstrated that GANs could in fact be used to synthesize

locally-coherent audio, outperforming sequential models’
speed by several orders of magnitude while maintaining a
focus on high-fidelity, natural-sounding audio.

A third strand of so-called oscillator models, largely pro-
pelled by Differentiable Digital Signal Processing (DDSP)
(Engel et al., 2020) is physically and perceptually motivated
by the rich history of synthesis and signal processing tech-
niques. Our approach is motivated by this direction, but
relies on a simple synthesizer architecture, CLAP (Wu et al.,
2023), for text-conditioning, and gradient-free optimization
to provide a simple, training-free solution.

2.2. Language-Sound Correspondence

Advances in multi-modal sound-language models have been
partly motivated by CLIP (Radford et al., 2021) for im-
ages. Wav2CLIP (Wu et al., 2022) builds directly onto
CLIP by adding an audio encoder, and VQGAN+CLIP
(Crowson et al., 2022) generates and edits images guided
by text prompts. Audio representation models, such as Mi-
crosoft’s CLAP (Elizalde et al., 2023) and LAION-CLAP
(Wu et al., 2023), emulate CLIP’s approach by using con-
trastive learning on audio-text pairs. We use LAION-CLAP
as our audio-language model in this work.

Other recent approaches cast audio generation as a lan-
guage modeling task. AudioGen (Kreuk et al., 2022) is
an autoregressive model conditioned on text inputs. Audi-
oLLM (Borsos et al., 2023) uses a multi-stage Transformer-
based language model. WavJourney (Liu et al., 2023b)
uses text instructions to create scripts, which are then used
for compositional audio creation. Make-An-Audio 1 and
2 (Huang et al., 2023b;a) offer text-to-audio synthesis with
prompt-enhanced diffusion models, using CLAP to map text
to latent representations with a spectrogram autoencoder.
AudioLDM (Liu et al., 2023a) learns continuous audio rep-
resentations from CLAP latents and can perform text-guided
audio manipulations. We compare to two state-of-the-art
solutions, namely AudioGen and AudioLDM, in our exper-
iments. Our goals differ significantly from those of these
models, as we seek to generate abstract yet high-quality
sounds, rather than literal recording-like renditions.

2.3. Abstract Synthesis

Visual sketching offers an intuitive analog to abstract sound
synthesis. Minimal representations like monochromatic
line drawings might use only straight lines and curves with
no additional shading or color. These renderings are non-
photorealistic; they evocatively convey meaning while em-
phasizing a subject’s essence over its real-world presenta-
tion. They can also reveal insights about a subject’s under-
lying geometry, proportions, and symbolism that may be
obscured in more realistic depictions.
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The problem of computing recognizable and insightful ab-
stract renderings has seen more progress in the visual than
the audio domain. CLIPasso (Vinker et al., 2022) lever-
ages CLIP to distill semantic meanings from images and
sketches alike and thereby guide text-to-image generation,
varying the number of strokes according to the desired level
of abstraction. CLIPTexture (Song, 2022) enables a user
to manipulate a simple sketch or layout through textual de-
scriptions. CLIPVG (Song et al., 2023) follows the same
progressive optimization approach, but performs image ma-
nipulation using vector graphics rather than pixels. ES-CLIP
(Tian & Ha, 2022) tackles the problem via evolution strate-
gies, generating configurations of colored triangles on a
canvas, then assessing their fitness for further iteration. We
were inspired by this approach, though we rely on the well-
established, easily interpretable, and tweakable paradigm of
modular synthesis.

In the auditory domain, the Sound Sketchpad (Singh, 2021)
combines sounds together using audio-visual sketches, and
the SKAT-VG project (Rocchesso et al., 2015) applies vocal
and gestural manipulation as natural sketching tools. In our
approach, we focus on language input, and synthesis rather
than the composition of existing sounds.

2.4. Interpretable and Controllable Synthesis

Interpretability and controllability of results is essential to
human-machine co-creation, in which it is often desirable to
closely examine, understand, and fine-tune an artifact. For
creative sound design using neural synthesis methods, it can
be impossible to retrace decisions made by a complex neu-
ral synthesis model en route to synthesizing an output. The
model may also not provide any opportunity to iteratively
refine the output. Some prior work (Young et al., 2022) high-
lights the potential of program synthesis for interpretability
in sequence data, including music. Some neural synthesis
models integrate techniques like timbre-regularization (Es-
ling et al., 2018) to bridge powerful synthesis methods with
perceptually-motivated organization of latent spaces. By
contrast, our approach offers a fully interpretable and con-
trollable parameter space without requiring us to develop
additional neural infrastructure.

2.5. The Synthesizer Programming Problem

Despite the near-ubiquitous presence of synthesized sound
in modern music, synthesizer programming—that is, the act
of creating new sounds through careful analysis and modu-
lation of synthesizer parameters—is a complex task that can
often impede the creative process, if not bar entry entirely.
In particular, the conceptual disconnect between parameter
settings and the associated auditory output (Shier, 2021)
makes synthesizer programming especially non-intuitive
without special training. Recent work has investigated tech-

niques for inverse synthesis—given a target sound, infer the
parameter setting that will emulate the sound to the closest
extent possible—on both musical sounds (Yee-King et al.,
2018) and real-world sounds, such as animal vocalizations
(Hagiwara et al., 2022), including deep learning methods
to learn invertible mappings (Esling et al., 2020). How-
ever, this task still requires a specific audio clip to start.
We provide text-to-parameter inference to bridge this gap,
generalizing beyond specific audio files to broader semantic
notions of arbitrary sounds.

3. Methods

Our methodology hinges on three pillars: a synthesizer, im-
plemented via SYNTHAX (Cherep & Singh, 2023), gradient-
free optimization methods, implemented via the Evosax
(Lange, 2023) evolutionary optimization library, and an
objective function based on the LAION-CLAP (Wu et al.,
2023) model, which we use to estimate semantic alignment
between the synthesized audio and its corresponding text
prompt (see Figure 2 for an overview of the pipeline).

3.1. Synthesizer

We use a simple synthesizer implementation available in
SYNTHAX, a fast modular synthesizer written in JAX (Brad-
bury et al., 2018). We specifically use the Voice synthesizer
architecture, adapted from rorchsynth (Turian et al., 2021),
which has already been used for programmatic resynthesis
of sounds (Hagiwara et al., 2022). It consists of 78 pa-
rameters for a monophonic keyboard, two low-frequency
oscillators (LFOs), six ADSR envelopes, a sine voltage-
controlled oscillator (VCO), a square-saw VCO, a noise
generator, voltage-controlled amplifiers (VCAs), a modula-
tion mixer and an audio mixer. All parameters are initialized
uniformly, §; ~ U(0,1).

In addition to this architecture, we evaluate the following
variants in increasing order of architectural complexity:

» ShapedNoise: An 18 parameter synthesizer consisting
of a noise generator, and two control elements to shape
the noise amplitude over time: an ADSR envelope, and
a low-frequency oscillator (LFO). These are combined
into a modulation signal through a modulation matrix,
which itself has learnable weights for this combination.

e OneOsc: A 23 parameter synthesizer consisting of a
sine wave voltage-controlled oscillator (VCO), and the
same two control elements as above. These elements
are combined into two signals through a modulation
matrix, one each for frequency and amplitude.

* NoLFO: A 29 parameter two-VCO synthesizer, where
one is a sine wave oscillator and the other is a square-
saw wave oscillator with a “shape” parameter which



Creative Text-to-Audio Generation via Synthesizer Programming

" Sound of a Helicopter”

([ [T TTTTTT 7T |
[ gl [ | EREE

[ o RN [ | 'l I'm
Al IEEEE (1)
| wasiiia

Synthesized Audio ‘

SYNTHAX L=={" b
L

(€ == = — —

Compute Similarity

Figure 2. High-level overview: we use the LAION-CLAP model (Wu et al., 2023) to compute the similarity between a user-provided text
prompt and SYNTHAX’s (Cherep & Singh, 2023) output. The optimization procedure iteratively adjusts the parameter settings.

controls the degree of “square-ness” vs. “saw-ness”.
This synthesizer has no LFO components, all modula-
tion is conducted by two ADSR envelopes combined
into four separate modulation signals (pitch and ampli-
tude controls for each of the two VCOs).

* NoNoise: A 51 parameter synthesizer with two VCOs
(as before), and a more complex modulation structure.
Here, there is a single LFO, but there are additional AD-
SRs to modulate the frequency and amplitude of this
LFO. The modulated LFO and two ADSR envelopes
comprise the inputs to the modulation matrix.

* Voice+FM: A 130 parameter synthesizer which adds a
frequency modulation (FM) component to the original
Voice architecture.

For reference, an ADSR envelope is a piecewise control
signal consisting of linear or exponential segments: Attack,
Decay, and Release, which specify the duration of each
envelope segment. The Sustain parameter is the level of the
control signal after the decay phase. An LFO is an oscillator
whose frequencies are typically lower than audible frequen-
cies, i.e. below 20-40 Hz. These are used for periodic
control of synthesis parameters.

In all our experiments, the synthesizer has a control rate of
480 Hz and the audio is generated in batches at a sample
rate of 48 kHz. This sample rate is much higher than that
commonly used for neural audio synthesis systems (often
16 kHz) and therefore admits much more high-frequency
content to be generated.

3.2. Optimization

During initial experiments, we found the gradients of our dif-
ferentiable synthesizer to be highly unstable. This instability
hindered optimization performance even after attempting
mitigation strategies. Recent works in abstract visual syn-
thesis have shown that non-gradient methods can achieve

Algorithm 1 Our optimization procedure for producing
sounds in CTAG. Note: d is the number of parameters of the
synthesizer S; for simplicity we omit batches.

Require: Text prompt p
Require: Population/batch size N
Require: Iterations M

Components:

CLAP text embedding model C;(p) — EP
SynthAX synthesizer S(0©) — X

CLAP audio embedding model C, (X?) — EX"
Optimization Strategy: O

Initialize:
Synthesis parameters © = {61,...,0n5},0; ~ U(0,1)
Flattened parameters © ; € [0, 1]V *? = Flatten(©)

for: =1to M do
anew — OaSk((—))

Generate candidates

Onew < Reshape(©y,) Reshape
X% < S(Opew) Synthesize audio
EX"  C,(X9) Get audio embeddings
F « —EX"grT Compute fitness

Otell(@new» F)
O +— Opew
end for

Update optimizer state

0* = argmin, F Select optimal parameters

state-of-the-art results without relying on gradient informa-
tion (Tian & Ha, 2022). Given these findings, we decided
to explore non-gradient approaches which are more suit-
able for our synthesizer’s instability and have demonstrated
effectiveness for this task. Focusing efforts here allowed
us to sidestep gradient issues while leveraging successful
techniques from related synthesis domains.

We experimented with several non-gradient optimization
algorithms, using implementations from Evosax (Lange,
2023). Specifically, we examined simple baselines like
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random search and a simple genetic algorithm (Such et al.,
2017), well-known methods like CMA-ES (Hansen & Oster-
meier, 2001) and Particle Swarm Optimization (Kennedy &
Eberhart, 1995), and state-of-the-art methods like Learned
and Discovered Evolution Strategies (Lange et al., 2023).
For each algorithm, we first tuned hyperparameters using
Bayesian optimization via the Adaptive Experimentation
(AX) platform (Bakshy et al., 2018). We tuned for 50 trials
on the ESC-10 dataset, a subset of ESC-50 (Piczak, 2015).
Note that the hyperparameter tuning uses no privileged in-
formation and can easily be applied downstream on new
prompt sets to maximize the performance.

The optimization procedure is specified in Algorithm 1.

3.3. Objective Function

We use LAION-CLAP (Wu et al., 2023) with an HTSAT-
based audio encoder (Chen et al., 2022) and a RoBERTa-
based text encoder (Liu et al., 2019). We used the audioset-
best checkpoint for general audio less than 10 seconds long.

The encoders process the audio data X* in batches of size
B where B corresponds to the optimizer’s population size,
along with a prompt p. Note that (X, p) is one particu-
lar pair of synthesized audio with input text prompt. We
extract the audio embeddings £ € R5*512 and the text
embeddings EP € R!1*512 with the encoders and use them
to calculate the similarity score between a batch of audio
data and a specific prompt.

X =5(0:) (1
9* = argemin —Ef(oi)EpT 2)

Equation (1) shows how the synthesizer S takes parameters
6; and produces a sound (in practice, this is done batched).
Then Equation (2) formulates the optimization problem to
optimize the similarity score between each audio in the
batch and one given text prompt using their corresponding
embeddings.

3.4. Evaluation Metrics

Since we propose a novel synthesis task without existing
evaluation metrics, we devise a principled evaluation suite
that allows us to quantitatively assess our contributions, in
addition to qualitatively reviewing synthesized examples.

Classification Experiments To determine whether our
generated sounds are more abstract than neural synthesis
methods, we compared results on pretrained classifiers with
sounds generated from their class labels. Lower scores can

indicate a distribution shift from real audio, despite explic-
itly optimizing for similarity to the label. We complement
with human listener ratings.

Without a perfect synthesis engine, any methods to generate
sound will introduce a distribution shift from real audio.
In our case, there is a deliberate domain shift to abstract
audio. We evaluate on two well-known datasets. The first
is ESC-50, a 50-class canonical environmental sound clas-
sification dataset (Piczak, 2015). The second is a subset
of AudioSet (Gemmeke et al., 2017); the full ontology of
classes is very large (over 500). We consider classes from
“sounds of things” given that this category contains the most
sub-classes and sub-selected the top 50 classes by number
of annotations, removing duplicates or equivalent classes.
We use a pretrained Audio Spectrogram Transformer (AST)
model for AudioSet-50, and fine-tune an AST for ESC-
50 classification (Gong et al., 2021). When evaluating on
AudioSet-50, we mask the remaining logits to effectively
make it a 50-class classifier.

Synthesis Quality A significant benefit of our approach
is synthesizing clean audio using signal generators while
keeping attributes like sample rate flexible. We find synthe-
sized sounds also often exaggerate aspects of the prompts,
resulting in large variations in acoustic properties over time.
Evaluating audio quality reference-free is challenging, so we
examine acoustic features that correlate with these aspects
(such as high-frequency content and spectral variation).

User Study We conduct a listening test with human evalu-
ators. We ask them to classify sounds, rate their confidence,
and rate sounds along a scale from realistic portrayal to artis-
tic interpretation. This offers us the most direct signal of
our abstraction-related goal. We share details on this study
in the next subsection. We compared against the recent
neural generation methods AudioLDM (Liu et al., 2023a)
and AudioGen (Kreuk et al., 2022).

From our 50-prompt subset of AudioSet (Gemmeke et al.,
2017) classes, we randomly selected 10 for this study. We
used text embeddings of the labels with a facility loca-
tion submodular optimization algorithm from the apricot
package (Schreiber et al., 2020) to select a modest-sized
semantically representative subset. Within each prompt,
we randomly sampled two of 10 available CTAG sounds.
The prompts were: Truck air brake, Water tap, Train horn,
Motorcycle, Microwave oven, Liquid slosh, Chainsaw, Air-
plane, Bicycle bell, and Machine gun. For AudioLDM and
AudioGen, we used their default parameters to generate two
sounds per prompt.

This study was determined to be exempt by our institution’s
IRB. Each participant rated 60 sounds (20 per method) in
random order. To examine category-level recognition, par-
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Figure 3. Results from our ablation study; all experiments are conducted with ESC-50. (Top) CLAP maximization curves, averaged across
10 iterations for each of the 50 prompts. Colored bands show 95% confidence intervals. (Bottom) Classification accuracy, with error bars
showing 95% confidence intervals. Top and bottom plots share colors. (Left) Performance of different algorithms, with hyperparameters
tuned on ESC-10. LES is strongest in both optimization and downstream classification. (Center) Different sound durations; we find 2
seconds to be strongest. (Right) Impact of synthesizer architecture, finding strongest results from the Voice model. Parameter counts are

given in parenthesis, such as (78) for Voice.

ticipants were asked to select a category given a list of
options and rate their confidence. To determine whether
our generated sounds were perceived as (abstract) artistic
interpretations, we posed the question: “Would you asso-
ciate this sound more with a realistic portrayal or an artistic
interpretation of the label that you selected?”” with options
on a scale from 1 (realistic portrayal) to 5 (artistic interpreta-
tion). We modeled participant responses with mixed-effects
logistic and linear regression models and post-hoc contrasts.

4. Results
4.1. Ablation Studies

Figure 3 shows results from our ablation studies, including,
from left to right, (1) optimization algorithms with tuned
hyperparameters, (2) sound durations, and (3) synthesis ar-
chitectures. Overall, we observe that the LES algorithm
significantly outperforms our other options within the com-
putation budget of 300 iterations (more than needed for
several prompts). This experiment was conducted with 2-
second long sounds, which we observe in the Durations

experiment to yield a higher overall CLAP score and clas-
sification accuracy than 1, 3, or 4-second long generations.
Finally, we see that the Voice architecture yields the best
results, offering a balance of flexibility in its parameters and
modular structure, as well as ease of optimization. However,
we note that expanding to larger architectures like VoiceFM
could be useful for future work to explore, with more work
on the optimization strategy to obtain the best results.

Based on these results, we conduct all additional experi-
ments discussed with the LES optimizer, 2-second sounds,
and the Voice architecture. We conducted a full hyperpa-
rameter tuning run with 50 trials of all ESC-50 prompts to
obtain the final optimization hyperparameters.

4.2. Qualitative Results

4.2.1. EXAMPLES

Figure 1 shows spectrograms of sounds—given in the sup-
plementary material—corresponding to six text prompts.
The “spray” shows bands of noisy bursts, reflecting the
short, sharp sound of aerosol being expelled. The “bees
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buzzing” presents a band of low to high frequencies, encap-
sulating the vibrant hum of a bee. The “police car siren”
is characterized by high-frequency oscillations that sharply
rise and fall. The “machine gun” reveals rapid, staccato
bursts of energy across a broad frequency range. The “train
horn” displays horizontal bands across mid to high frequen-
cies, illustrating the horn’s fundamental tone and its partials.
Lastly, the “chainsaw” spectrogram is dominated by intense,
continuous mid-range frequencies, punctuated by peaks cor-
responding to the engine’s roaring and cutting action.

4.2.2. INTERPOLATION

In sound synthesis, interpretable parameters offer a unique
opportunity for deeper insight. Our method provides a fixed
set of parameters that possess this property—a salient dis-
tinction from contemporary models equipped with high-
dimensional latent spaces. This interpretability extends to
interpolation between parameters of distinct sounds, grant-
ing auditory access to intermediate acoustical transitions.
In Figure 4, we present a systematic series of spectrograms
between pairs of prompts: (1) “Spray” to “Machine gun”,
(2) “Train horn” to “Chainsaw”, and (3) “Train wagon” to
“Engine revving,” with three intermediary steps linearly inter-
polated. This discernible gradation corroborates the capacity
of our parameter space to retain congruence.

Spra Machine gun

Train horn

Train wagon Engine revvin

Figure 4. Spectrogram series as the result of linear interpolation of
the synthesizer’s parameters (1) from “Spray” (left) to “Machine
gun” (right), (2) from “Train horn” to “Chainsaw”, and (3) from
“Train wagon” to “Engine revving”. Each spectrogram in the
sequence represents a step in the interpolation, highlighting the
systematic shift in acoustic properties.

4.3. Classification Results

Results are shown in Table 2. On AudioSet-50, our results
are higher than AudioLDM. On ESC-50, the classifier recog-
nizes CTAG’s sounds the least, showcasing the distribution
shift from its training on realistic sounds. We experimented
with constructing concise and descriptive prompts from each

sound class from both ESC-50 and AudioSet-50. We used
GPT-4 (OpenAl, 2023) to automatically produce caption-
style prompts. We also tried a simple template (i.e. “Sound
of a/an ...”) to compare. Table 2 also shows results for these
template (CTAG+T) and caption-style prompts (CTAG+C).
Introducing such strategies does not appear to greatly influ-
ence classifier identification. However, in a few cases, we
observed the elaborated prompts helped to produce quali-
tatively more accurate results. Overall, CTAG sounds are
classified correctly significantly higher than chance, and
competitively with AudioLDM.

4.4. Synthesis Quality and Variation

Evaluating the quality of generated examples is challenging
for two reasons. First, we lack auditory references to com-
pare against, as we generate from text directly and never
use text-audio reference pairs. Most audio quality metrics
are reference-based. Second, distance-based metrics such as
FAD will likely be confounded by realism. CTAG’s sounds
are high-quality in that they can be generated at high sample
rates and are free of noise or artifacts owing to real-world
recording environments or neural synthesis.

To evaluate, we use auditory descriptors (implemented us-
ing Essentia (Bogdanov et al., 2013)) that are plausible
correlates of these notions of quality, shown in Table 1.
Spectral complexity highlights the presence of more peaks,
signaling diversity in the timbral components, while flux
shows greater variation of timbre over time for CTAG com-
pared with other methods. Following these, HFC (high-
frequency content), spectral rolloff, and spectral centroid
provide signals of “brightness” or high-frequency presence
in the sounds. All of these results show our method’s ability
to introduce high-frequency content into generated sounds,
likely in part due to the higher sample rate we use.

We also report compression ratio, under variable bit rate
(VBR) MP3 compression (quality = 4). Interestingly, CTAG
achieves a higher average compression ratio. VBR gener-
ally works by applying lower ratios to more perceptually
complex input. Whether related to high-frequency content
or other factors, this suggests CTAG sounds contain more
perceptual redundancy or are perceptually “simpler”.

Note that none of these measures are validated as perceptual
metrics of audio quality, and we do not intend to use them
as such. Rather, they help us to quantify the qualitative
differences we observe between CTAG-synthesized sounds
and other text-to-audio generation models’ results.

4.5. User Study

We recruited 10 participants via Prolific at $12/h for a to-
tal of $53.33, resulting in a total of 600 observations per
outcome variable (i.e. accuracy, confidence, and artistic
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AudioSet-50 ESC-50

AudioGen  AudioLDM ~ CTAG | AudioGen AudioLDM  CTAG
Complexity 16.50 17.65 18.06 9.60 12.94 17.76
Flux 0.08 0.11 0.18 0.06 0.09 0.15
HFC 53.25 152.06 427.03 34.49 101.32 380.74
Rolloff 2,487.71 1,628.55 7,031.67 | 2,254.98 1,647.51 6,996.19
Centroid 1,629.95 1,096.16 4,139.99 | 1,512.55 1,108.42 4,227.08
Compression Ratio | 6.42 7.09 9.51 6.46 7.58 9.57

Table 1. Comparison of spectral descriptors—complexity, flux, HFC, rolloff, centroid—and audio compression ratio, across ESC-50 and

AudioSet-50. Results are grouped by the evaluation of three methods: AudioGen, AudioLDM, and our method, CTAG.

AudioSet-50

ESC-50

AudioGen  AudioLDM  CTAG CTAG+T CTAG+C \ AudioGen AudioLDM  CTAG CTAG+T CTAG+C
Acc (Top-1) | 51.6 17.4 26.2 25.2 23.6 54.0 23.0 16.4 114 13.8
Acc (Top-5) | 774 44.2 45.2 52.2 51.6 71.8 494 30.4 26.4 31.0

Table 2. Top-1 and Top-5 classification accuracies (%) for pre-trained classifiers with AudioSet-50 and ESC-50. We evaluated both models
on results collected using AudioGen, AudioLDM, and our method with just the class labels (CTAG), a simple template (i.e. “Sound of a
...7) for each sound (CTAG+T) and finally using an LLM for prompt engineering (CTAG+C).

interpretiveness). Table 3 contains the results, which show
that our sounds were identified by listeners substantially
more accurately than those from AudioLDM (odds ratio =
2.72,95% CI [1.61, 4.58], p < .0001), and only slightly
less than AudioGen on average (odds ratio = 0.85, 95%
CI [0.51, 1.42], p = 1). Interestingly, though the confi-
dence ratings replicate the ordering of the accuracy results,
respondents were significantly more confident rating Audio-
Gen sounds, and reported similar, lower confidence levels
for both CTAG and AudioLDM. This underscores the ab-
stractness of CTAG’s sounds; despite being identified more
correctly, they still create uncertainty.

4.6. Additional Analyses

In Appendix A we provide additional analyses relating to
generation time, CLAP scores, prompting strategies for the
baseline models, user study results, and a visualization of
the parameter space of CTAG-generated sounds.

5. Limitations

Our method requires iterating for each prompt from random
initialization, but techniques like semantic caching to ini-
tialize to similar prompts’ parameters, predictive methods
for prompt-to-parameter derivation, and a user interface ex-
tension for tweaking parameters are all potential extensions

| AudioGen  AudioLDM ~ CTAG to make our method more useful in real-world settings. We
Accuracy 59.5 34.0 56.0 also focus on brief, non-mixture sounds as these are what
Confidence 3.48 2.95 2.99 the synthesizer is suited to modeling. Future work could
Artistic Interpretation | 2.32 2.90 3.54 explore strategies to extend the duration and complexity of

Table 3. User study results for sounds from AudioGen, AudioLDM,
and our method, CTAG. We report accuracy percentage and con-
fidence (1-5) on label identification, and average rating of the
artistic interpretiveness (1-5) of the sound. Overall, CTAG retains
competitive identifiability while being perceived as more artistic.

Results also show CTAG sounds were perceived to be sig-
nificantly more artistically interpretive than both AudioGen
(contrast = 1.22, 95% CI [0.93, 1.51], ¢(579) = 10.20,
p < .0001) and AudioLDM (contrast = 0.65, 95% CI [0.36,
0.93], t(579) = 5.39, p < .0001).

These findings highlight our approach’s benefits in captur-
ing artistic interpretation compared to both the existing ap-
proaches. All p-values are Bonferroni-adjusted. Full results
for post-hoc contrasts are available in the Appendix.

sounds that can be synthesized this way.

6. Conclusion

In this work, we proposed a method for text-to-audio genera-
tion that offers a fresh perspective on neural audio synthesis
by using a virtual modular synthesizer. This approach em-
phasizes the meaningful abstraction of auditory phenomena,
contrary to prevalent methods that prioritize acoustic re-
alism. Our results position this approach as a distinctive
tool in the field of audio synthesis, capable of both expand-
ing the toolkit of novices and experts, and stimulating new
directions in audio generation research.
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Impact Statement

This work introduces a novel method for generating abstract
and creative sounds from text prompts, intending to expand
the creative possibilities for text-to-audio generation. We
foresee several potentially positive societal impacts: (1)
democratizing access to creative sound design tools, (2)
stimulating new directions in audio machine learning re-
search, (3) personalization and customization, (4) lowered
likelihood of re-generating training data, and (5) lowering
the computation barrier.

We do not foresee direct negative societal consequences
from this contribution. However, as with any generative
technology, there exists potential for misuse which should
be monitored. For example, synthesized sounds are not
always identifiable, and should not be used in high-stakes
circumstances where identification is essential. Additionally,
synthesizers can simplify complex real-world phenomena;
we recognize sounds can convey a rich variety of informa-
tion beyond this.
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A. Supplementary Analyses

A.1. Generation Time

Iter/Popsize 25 50 100
50 549+ 0.154  9.62+0.452 1843 +0.752
100 10.01 £0.194 18.05 £0.605 33.40 £ 0.331
300 27.61 £0.703 49.94 +0.424 97.23 £ 0.469

Table 4. Time (in seconds) for different population sizes (columns) and iteration counts (rows).

In Table 4 we illustrate the optimization times, in seconds, for different numbers of iterations (rows) and optimizer population
sizes (columns) below, on a modest GPU, i.e. single V100. Note that the necessary number of iterations varies for different
prompts, from 50 to 300+ to get optimal results.

A.2. CLAP Scores

Model AudioSet-50 ESC-50

AudioGen 0249 £0.160 0.277 £ 0.180
AudioLDM  0.166 £ 0.128  0.173 £ 0.142
CTAG 0.573 £0.126  0.585 £+ 0.130
Real - 0416 £0.139

Table 5. Comparison of CLAP scores between CTAG and other generative models on AudioSet-50 and ESC-50 datasets

Table 5 shows the CLAP (Wu et al., 2023) evaluations for each model with AudioSet-50 and ESC-50 prompts, as well as for
the actual ESC-50 dataset of real sounds. CLAP is the objective that we optimize in our synthesis-by-optimization approach,
and these results show how CTAG trivially achieves a higher score compared to all other models and even the real data.
This highlights the ability of our optimization strategy to effectively maximize the CLAP score, and also the importance of
finding alternative and distinct evaluation metrics as we showed in Section 3.4.

A.3. Prompting Strategies for All Tested Models

Dataset Metric Model Sounds Template Caption
AudioGen 51.6 57.0 48.8

Top-1  AudioLDM 17.4 21.0 16.6

. CTAG 26.2 252 23.6
AudioSet-50 AudioGen 774 848 80.8
Top-5  AudioLDM 44.2 49.8 48.0

CTAG 45.2 52.2 51.6

AudioGen 54.0 69.0 62.0

Top-1  AudioLDM 23.0 20.2 294

CTAG 16.4 11.4 13.8

ESC-30 AudioGen 71.8 85.2 81.8
Top-5  AudioLDM 49.4 47.0 58.4

CTAG 30.2 26.4 31.0

Table 6. Performance comparison, with different prompting strategies, of models on AudioSet-50 and ESC-50 datasets
For completeness, Table 6 provides all the results for all different models with templates and captions as we showed
for CTAG in Section 4.3. The performance of AudioGen shows a notable boost when using the +T (Template) strategy.

However, the impact of these strategies on the other models and datasets is less consistent, with some cases showing modest
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improvements and others exhibiting a decrease in performance (e.g., AudioLDM ESC-50 +T, AudioLDM AudioSet-50 +C).
Given the variability in results, it is difficult to make a definitive statement about the effectiveness of these strategies across
all baselines. While they may prove beneficial in certain scenarios, their impact appears to be context-dependent.

A.4. User Study Statistical Models

We report post-hoc contrasts for the user study results in Tables 7 to 9.

contrast odds.ratio SE asymp.LCL asymp.UCL zratio p.value
AudioLDM | AudioGen 0.31 0.07 0.19 053 -528 <le-04
CTAG / AudioGen 0.85 0.18 0.51 142 -075 1

CTAG / AudioLDM 272 0.59 1.61 4.58 459 <le-04

Table 7. Post-hoc contrasts from a mixed-effects logistic regression for accuracy.

contrast estimate SE df lower.CL upper.CL tratio p.value
AudioLDM - AudioGen -0.53 0.12 579 -0.82 -0.24 434 <le-04
CTAG - AudioGen -0.48 0.12 579 -0.78 -0.19  -3.97 0.00024
CTAG - AudioLDM 0.04 0.12 579 -0.25 034 037 1

Table 8. Post-hoc contrasts from a mixed-effects linear regression for confidence ratings.

contrast estimate SE df lower.CL upper.CL tratio p.value
AudioLDM - AudioGen 0.57 0.12 579 0.29 0.86 481 <le-04
CTAG - AudioGen .22 0.12 579 0.93 1.51 1020 <le-04
CTAG - AudioLDM 0.65 0.12 579 0.36 0.93 539 <le-04

Table 9. Post-hoc contrasts from a mixed-effects linear regression for artistic interpretativeness.

A.5. User Study Per-Prompt Accuracy

Figure 5 shows the accuracy of our user study participants at classifying sounds generated with CTAG, AudioGen, and
AudioLDM. Reviewing these differences shows that some sounds are overall more difficult to identify, for instance; “Truck
air brake”. This may be due to the ambiguity in what this can sound like, as it is not as common a sound as “Bicycle bell”.

1.00
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>
g . AudioGen
> 0.50 '
S B AudioLom
h CTAG
0.25 i J
0.00
\\!
o of N\o\omc N“’\a“ e o' a\e‘ \oha“‘e‘a G0 % 304 ce bem\“\g\ e &
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Figure 5. User study classification accuracy per prompt, for CTAG, AudioGen, and AudioLDM.
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Figure 6. Dimensionality reduction of the Voice synthesizer parameters using UMAP applied to 10 sounds from each of the 10 classes
from the user study. I t distinctly reveals clusters corresponding to individual sounds, and it shows how conceptually similar sounds such
as “water tap” and “liquid slosh” are closer in space.

A.6. Dimensionality Reduction

Having access to the parameters of the synthesizer also allows us to project them into a two-dimensional space to explore
the relationship between sounds. Leveraging the Uniform Manifold Approximation and Projection (UMAP) (Mclnnes
et al., 2018) algorithm for dimensionality reduction of the synthesizer parameters, Figure 6 shows how the representation
delineates clusters for each distinct sound class while retaining semantic meaning—sounds with similar acoustic properties
cluster together.

B. Caption Prompt

We used the following instructions to generate caption-like prompts from class labels:

“Write a simple one-sentence audio caption that describes objectively each sound itself in a real scenario without
making up any extra details about other possible sounds or places. You should define the most common action for
such an entity when multiple options are available. Avoid using templates such as ‘A sound of’ or ‘The sound of .
Sounds: [List]”

C. Listener Survey

In this section, we provide information about the survey design we used to collect human ratings.

C.1. Survey Flow

¢ Standard: Introduction (3 Questions)
¢ Block: Audio (4 Questions)

 Standard: Additional (2 Questions)

C.2. Start of Block: Introduction

Q1: We are conducting a survey to assess the quality of a novel method for text-to-audio generation. You will be presented
with a series of short sounds, and asked to select the closest category from a given list, the confidence in your prediction,
and how artistically designed the sound is compared to a more realistic interpretation.
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Q2: I consent to participate. I understand that my participation is voluntary and I may withdraw my consent at any time.

* Yes (1)
« No (2)

Q3: T am at least 18 years old.
* Yes (1)
* No (2)
Q4: Do you have any hearing loss or hearing difficulties?
* Yes (1)
* No (2)
QS: Are you fluent in English?
* Yes (1)
* No(2)
QS: What is your Prolific ID? Please note that this response should auto-fill with the correct ID

C.3. Start of Block: Audio
We use Qualtrics’ Loop & Merge functionality to loop through the sounds.

A: Select the closest category for the following sound: [Audio Clip]

¢ Truck air brake (1)

* Water tap (2)

Train horn (3)
* Motorcycle (4)

¢ Microwave oven (5)

Liquid slosh (6)

Chainsaw (7)

Airplane (8)

Bicycle bell (9)
* Machine gun (10)

B: How confident are you in your selected answer?

» Completely confident (1)
¢ Fairly confident (2)

¢ Somewhat confident (3)
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« Slightly confident (4)

* Not confident at all (5)

C: Would you associate this sound more with a realistic portrayal or an artistic interpretation of the category that you
selected?

* 1 (1) Realistic Portrayal

2(2) .
. 3(3)0
04(4)0

L]

5 (5) Attistic Interpretation

CA4. Start of Block: Additional
We have two questions to check that participants were paying attention.

A1 Please select ”Chainsaw” from the options below:

¢ Truck air brake (1)

Water tap (2)

Train horn (3)

Motorcycle (4)

¢ Microwave oven (5)

Liquid slosh (6)

Chainsaw (7)
 Airplane (8)

Bicycle bell (9)

* Machine gun (10)
A2: All of the sounds you heard during this survey were the same.

* Yes (1)
* No (2)

Completion Message: Thank you for taking part in this study. Please click the button below to be redirected back to Prolific
and register your submission.
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