
Creative Text-to-Audio Generation via Synthesizer Programming

Manuel Cherep * 1 Nikhil Singh * 1 Jessica Shand 1

Abstract
Neural audio synthesis methods now allow speci-
fying ideas in natural language. However, these
methods produce results that cannot be easily
tweaked, as they are based on large latent spaces
and up to billions of uninterpretable parameters.
We propose a text-to-audio generation method
that leverages a virtual modular sound synthesizer
with only 78 parameters. Synthesizers have long
been used by skilled sound designers for media
like music and film due to their flexibility and
intuitive controls. Our method, CTAG, iteratively
updates a synthesizer’s parameters to produce
high-quality audio renderings of text prompts that
can be easily inspected and tweaked. Sounds
produced this way are also more abstract, captur-
ing essential conceptual features over fine-grained
acoustic details, akin to how simple sketches can
vividly convey visual concepts. Our results show
how CTAG produces sounds that are distinctive,
perceived as artistic, and yet similarly identifiable
to recent neural audio synthesis models, position-
ing it as a valuable and complementary tool.1

1. Introduction
“Of course, bubbles don’t make sound, but this
is the magic of sound design...you can create the
concept of a sound and it seems real.”

— Suzanne Ciani

In creative sound design, realism isn’t everything. In the late
1970s, composer Suzanne Ciani famously demonstrated this
principle with her iconic Coca Cola pop and pour sound
effect. This sound, which has become synonymous with the

*Equal contribution 1Media Lab, Massachusetts Insti-
tute of Technology, Cambridge MA, USA. Correspondence
to: Manuel Cherep <mcherep@mit.edu>, Nikhil Singh <ns-
ingh1@mit.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1ctag.media.mit.edu

Figure 1. CTAG leverages a virtual modular synthesizer to gener-
ate sounds capturing the semantics of user-provided text prompts
in a sketch-like way, rather than being acoustically literal. Spec-
trograms of auditory outputs corresponding to six text prompts
showcase the range of sounds this approach can yield, accompa-
nied by a fully interpretable and controllable parameter space.

refreshing experience of opening a soda, was not recorded
from an actual soda bottle, but skillfully crafted using a
Buchla synthesizer. Ciani’s work illustrates the immense
power of abstraction in auditory representation, where the
essence of a concept can be expressed without mimicking
real-world acoustic details, while achieving greater impact.

This approach extends beyond single examples into the do-
main of procedural sound design: creating sounds algorith-
mically using parameters that can be manipulated to achieve
desired sonic effects. By applying procedural techniques,
sound designers can often transcend what’s physically plau-
sible to obtain by recording real-world events. These meth-
ods can lead to highly evocative and expressive sounds in
music, film, video games, advertising, product design, and
other media.

Neural audio synthesis methods have transformed the state
of sound design, enabling specifying sound ideas using in-
tuitive inputs like textual prompts. However, there remains
unrealized potential in integrating expressive sound design
principles into neural audio synthesis. Current techniques
prioritize acoustic recreation and end-to-end application, of-
ten overlooking creative possibilities for evoking emotions

1

https://ctag.media.mit.edu/

Creative Text-to-Audio Generation via Synthesizer Programming

or concepts, and interactive aspects like manipulating, iter-
ating, and interpolating between sounds. While recent ad-
vances showcase remarkable capabilities in replicating real-
world sounds, this emphasis can limit the creative palette
and expressive potential of generated audio. We propose a
method to bridge this gap.

Overall, this work contributes:

• A novel method that integrates a virtual modular syn-
thesizer with a pretrained audio-language model for
generating sounds that resonate with human intuition
without being literal representations.

• A lightweight, fully interpretable, and controllable syn-
thesizer resulting from our approach, allowing for easy
inspection and tweaking for creative purposes.

• Extensive experiments evaluating different approaches
to solving this problem, varying optimization algo-
rithms, sound durations, and synthesis architectures.

• Qualitative and quantitative results that highlight how
sounds from our method have distinct features from
those produced by other neural audio generators, while
still being identified at similar rates. We conduct a
user study as a gold standard evaluation, given the
novelty of the task, which shows the identifiability and
potential artistic value of CTAG’s sounds.

• Examples of this approach generating several datasets
of sounds with their synthesis parameters, and interpo-
lating between different sounds in the parameter space.

We will open-source our approach, both to provide a tool for
novices and experts alike to realize their ideas, as well as to
provoke future audio generation paradigms that recognize
abstraction as an important factor for creative expression.

2. Related Work
2.1. Sound Synthesis

Neural audio synthesis consists of two main strands: ap-
proaches that generate audio waveforms directly in the
time domain, and those that do so in the frequency domain.
WaveNet (Oord et al., 2016) notably introduced an autore-
gressive approach to audio synthesis by predicting one sam-
ple at a time. This slow iterative sampling approach, later
refined in SampleRNN (Mehri et al., 2016) and WaveRNN
(Kalchbrenner et al., 2018), reflects the sequential nature of
audio data, in contrast to images wherein GANs with global
latent conditioning and efficient parallel sampling quickly
became a dominant method for synthesis. Later, WaveGAN
(Donahue et al., 2018) and GANSynth (Engel et al., 2019)
demonstrated that GANs could in fact be used to synthesize

locally-coherent audio, outperforming sequential models’
speed by several orders of magnitude while maintaining a
focus on high-fidelity, natural-sounding audio.

A third strand of so-called oscillator models, largely pro-
pelled by Differentiable Digital Signal Processing (DDSP)
(Engel et al., 2020) is physically and perceptually motivated
by the rich history of synthesis and signal processing tech-
niques. Our approach is motivated by this direction, but
relies on a simple synthesizer architecture, CLAP (Wu et al.,
2023), for text-conditioning, and gradient-free optimization
to provide a simple, training-free solution.

2.2. Language-Sound Correspondence

Advances in multi-modal sound-language models have been
partly motivated by CLIP (Radford et al., 2021) for im-
ages. Wav2CLIP (Wu et al., 2022) builds directly onto
CLIP by adding an audio encoder, and VQGAN+CLIP
(Crowson et al., 2022) generates and edits images guided
by text prompts. Audio representation models, such as Mi-
crosoft’s CLAP (Elizalde et al., 2023) and LAION-CLAP
(Wu et al., 2023), emulate CLIP’s approach by using con-
trastive learning on audio-text pairs. We use LAION-CLAP
as our audio-language model in this work.

Other recent approaches cast audio generation as a lan-
guage modeling task. AudioGen (Kreuk et al., 2022) is
an autoregressive model conditioned on text inputs. Audi-
oLM (Borsos et al., 2023) uses a multi-stage Transformer-
based language model. WavJourney (Liu et al., 2023b)
uses text instructions to create scripts, which are then used
for compositional audio creation. Make-An-Audio 1 and
2 (Huang et al., 2023b;a) offer text-to-audio synthesis with
prompt-enhanced diffusion models, using CLAP to map text
to latent representations with a spectrogram autoencoder.
AudioLDM (Liu et al., 2023a) learns continuous audio rep-
resentations from CLAP latents and can perform text-guided
audio manipulations. We compare to two state-of-the-art
solutions, namely AudioGen and AudioLDM, in our exper-
iments. Our goals differ significantly from those of these
models, as we seek to generate abstract yet high-quality
sounds, rather than literal recording-like renditions.

2.3. Abstract Synthesis

Visual sketching offers an intuitive analog to abstract sound
synthesis. Minimal representations like monochromatic
line drawings might use only straight lines and curves with
no additional shading or color. These renderings are non-
photorealistic; they evocatively convey meaning while em-
phasizing a subject’s essence over its real-world presenta-
tion. They can also reveal insights about a subject’s under-
lying geometry, proportions, and symbolism that may be
obscured in more realistic depictions.

2

Creative Text-to-Audio Generation via Synthesizer Programming

The problem of computing recognizable and insightful ab-
stract renderings has seen more progress in the visual than
the audio domain. CLIPasso (Vinker et al., 2022) lever-
ages CLIP to distill semantic meanings from images and
sketches alike and thereby guide text-to-image generation,
varying the number of strokes according to the desired level
of abstraction. CLIPTexture (Song, 2022) enables a user
to manipulate a simple sketch or layout through textual de-
scriptions. CLIPVG (Song et al., 2023) follows the same
progressive optimization approach, but performs image ma-
nipulation using vector graphics rather than pixels. ES-CLIP
(Tian & Ha, 2022) tackles the problem via evolution strate-
gies, generating configurations of colored triangles on a
canvas, then assessing their fitness for further iteration. We
were inspired by this approach, though we rely on the well-
established, easily interpretable, and tweakable paradigm of
modular synthesis.

In the auditory domain, the Sound Sketchpad (Singh, 2021)
combines sounds together using audio-visual sketches, and
the SkAT-VG project (Rocchesso et al., 2015) applies vocal
and gestural manipulation as natural sketching tools. In our
approach, we focus on language input, and synthesis rather
than the composition of existing sounds.

2.4. Interpretable and Controllable Synthesis

Interpretability and controllability of results is essential to
human-machine co-creation, in which it is often desirable to
closely examine, understand, and fine-tune an artifact. For
creative sound design using neural synthesis methods, it can
be impossible to retrace decisions made by a complex neu-
ral synthesis model en route to synthesizing an output. The
model may also not provide any opportunity to iteratively
refine the output. Some prior work (Young et al., 2022) high-
lights the potential of program synthesis for interpretability
in sequence data, including music. Some neural synthesis
models integrate techniques like timbre-regularization (Es-
ling et al., 2018) to bridge powerful synthesis methods with
perceptually-motivated organization of latent spaces. By
contrast, our approach offers a fully interpretable and con-
trollable parameter space without requiring us to develop
additional neural infrastructure.

2.5. The Synthesizer Programming Problem

Despite the near-ubiquitous presence of synthesized sound
in modern music, synthesizer programming—that is, the act
of creating new sounds through careful analysis and modu-
lation of synthesizer parameters—is a complex task that can
often impede the creative process, if not bar entry entirely.
In particular, the conceptual disconnect between parameter
settings and the associated auditory output (Shier, 2021)
makes synthesizer programming especially non-intuitive
without special training. Recent work has investigated tech-

niques for inverse synthesis—given a target sound, infer the
parameter setting that will emulate the sound to the closest
extent possible—on both musical sounds (Yee-King et al.,
2018) and real-world sounds, such as animal vocalizations
(Hagiwara et al., 2022), including deep learning methods
to learn invertible mappings (Esling et al., 2020). How-
ever, this task still requires a specific audio clip to start.
We provide text-to-parameter inference to bridge this gap,
generalizing beyond specific audio files to broader semantic
notions of arbitrary sounds.

3. Methods
Our methodology hinges on three pillars: a synthesizer, im-
plemented via SYNTHAX (Cherep & Singh, 2023), gradient-
free optimization methods, implemented via the Evosax
(Lange, 2023) evolutionary optimization library, and an
objective function based on the LAION-CLAP (Wu et al.,
2023) model, which we use to estimate semantic alignment
between the synthesized audio and its corresponding text
prompt (see Figure 2 for an overview of the pipeline).

3.1. Synthesizer

We use a simple synthesizer implementation available in
SYNTHAX, a fast modular synthesizer written in JAX (Brad-
bury et al., 2018). We specifically use the Voice synthesizer
architecture, adapted from torchsynth (Turian et al., 2021),
which has already been used for programmatic resynthesis
of sounds (Hagiwara et al., 2022). It consists of 78 pa-
rameters for a monophonic keyboard, two low-frequency
oscillators (LFOs), six ADSR envelopes, a sine voltage-
controlled oscillator (VCO), a square-saw VCO, a noise
generator, voltage-controlled amplifiers (VCAs), a modula-
tion mixer and an audio mixer. All parameters are initialized
uniformly, �i � U(0; 1).

In addition to this architecture, we evaluate the following
variants in increasing order of architectural complexity:

• ShapedNoise: An 18 parameter synthesizer consisting
of a noise generator, and two control elements to shape
the noise amplitude over time: an ADSR envelope, and
a low-frequency oscillator (LFO). These are combined
into a modulation signal through a modulation matrix,
which itself has learnable weights for this combination.

• OneOsc: A 23 parameter synthesizer consisting of a
sine wave voltage-controlled oscillator (VCO), and the
same two control elements as above. These elements
are combined into two signals through a modulation
matrix, one each for frequency and amplitude.

• NoLFO: A 29 parameter two-VCO synthesizer, where
one is a sine wave oscillator and the other is a square-
saw wave oscillator with a “shape” parameter which

3

Creative Text-to-Audio Generation via Synthesizer Programming

Figure 2.High-level overview: we use the LAION-CLAP model (Wu et al., 2023) to compute the similarity between a user-provided text
prompt and SYNTHAX's (Cherep & Singh, 2023) output. The optimization procedure iteratively adjusts the parameter settings.

controls the degree of “square-ness” vs. “saw-ness”.
This synthesizer has no LFO components, all modula-
tion is conducted by two ADSR envelopes combined
into four separate modulation signals (pitch and ampli-
tude controls for each of the two VCOs).

• NoNoise: A 51 parameter synthesizer with two VCOs
(as before), and a more complex modulation structure.
Here, there is a single LFO, but there are additional AD-
SRs to modulate the frequency and amplitude of this
LFO. The modulated LFO and two ADSR envelopes
comprise the inputs to the modulation matrix.

• Voice+FM: A 130 parameter synthesizer which adds a
frequency modulation (FM) component to the original
Voicearchitecture.

For reference, an ADSR envelope is a piecewise control
signal consisting of linear or exponential segments:Attack,
Decay, andRelease, which specify the duration of each
envelope segment. TheSustain parameter is the level of the
control signal after the decay phase. An LFO is an oscillator
whose frequencies are typically lower than audible frequen-
cies, i.e. below 20-40 Hz. These are used for periodic
control of synthesis parameters.

In all our experiments, the synthesizer has a control rate of
480 Hz and the audio is generated in batches at a sample
rate of 48 kHz. This sample rate is much higher than that
commonly used for neural audio synthesis systems (often
16 kHz) and therefore admits much more high-frequency
content to be generated.

3.2. Optimization

During initial experiments, we found the gradients of our dif-
ferentiable synthesizer to be highly unstable. This instability
hindered optimization performance even after attempting
mitigation strategies. Recent works in abstract visual syn-
thesis have shown that non-gradient methods can achieve

Algorithm 1 Our optimization procedure for producing
sounds inCTAG. Note:d is the number of parameters of the
synthesizerS; for simplicity we omit batches.
Require: Text promptp
Require: Population/batch sizeN
Require: IterationsM

Components:
CLAP text embedding modelCt (p) ! E p

SynthAX synthesizerS(�) ! X a

CLAP audio embedding modelCa(X a) ! E X a

Optimization Strategy:O

Initialize:
Synthesis parameters� = f � 1; : : : ; � N g; � i � U(0; 1)
Flattened parameters� f 2 [0; 1]N � d = F latten (�)

for i = 1 to M do
� f new Oask(�) Generate candidates
� new Reshape(� f new) Reshape
X a S(� new) Synthesize audio
E X a

 Ca(X a) Get audio embeddings
F � E X a

E pT Compute �tness
Otell(� new; F) Update optimizer state
� � new

end for

� � = arg min � F Select optimal parameters

state-of-the-art results without relying on gradient informa-
tion (Tian & Ha, 2022). Given these �ndings, we decided
to explore non-gradient approaches which are more suit-
able for our synthesizer's instability and have demonstrated
effectiveness for this task. Focusing efforts here allowed
us to sidestep gradient issues while leveraging successful
techniques from related synthesis domains.

We experimented with several non-gradient optimization
algorithms, using implementations from Evosax (Lange,
2023). Speci�cally, we examined simple baselines like

4

Creative Text-to-Audio Generation via Synthesizer Programming

random search and a simple genetic algorithm (Such et al.,
2017), well-known methods like CMA-ES (Hansen & Oster-
meier, 2001) and Particle Swarm Optimization (Kennedy &
Eberhart, 1995), and state-of-the-art methods like Learned
and Discovered Evolution Strategies (Lange et al., 2023).
For each algorithm, we �rst tuned hyperparameters using
Bayesian optimization via the Adaptive Experimentation
(AX) platform (Bakshy et al., 2018). We tuned for 50 trials
on the ESC-10 dataset, a subset of ESC-50 (Piczak, 2015).
Note that the hyperparameter tuning uses no privileged in-
formation and can easily be applied downstream on new
prompt sets to maximize the performance.

The optimization procedure is speci�ed in Algorithm 1.

3.3. Objective Function

We use LAION-CLAP (Wu et al., 2023) with an HTSAT-
based audio encoder (Chen et al., 2022) and a RoBERTa-
based text encoder (Liu et al., 2019). We used theaudioset-
bestcheckpoint for general audio less than 10 seconds long.

The encoders process the audio dataX a
i in batches of size

B whereB corresponds to the optimizer's population size,
along with a promptp. Note that(X a

i ; p) is one particu-
lar pair of synthesized audio with input text prompt. We
extract the audio embeddingsE a

B 2 RB� 512 and the text
embeddingsE p 2 R1� 512 with the encoders and use them
to calculate the similarity score between a batch of audio
data and a speci�c prompt.

X a
i = S(� i) (1)

� � = arg min
�

� E S(� i)
i E pT (2)

Equation (1) shows how the synthesizerS takes parameters
� i and produces a sound (in practice, this is done batched).
Then Equation (2) formulates the optimization problem to
optimize the similarity score between each audio in the
batch and one given text prompt using their corresponding
embeddings.

3.4. Evaluation Metrics

Since we propose a novel synthesis task without existing
evaluation metrics, we devise a principled evaluation suite
that allows us to quantitatively assess our contributions, in
addition to qualitatively reviewing synthesized examples.

Classi�cation Experiments To determine whether our
generated sounds are more abstract than neural synthesis
methods, we compared results on pretrained classi�ers with
sounds generated from their class labels. Lower scores can

indicate a distribution shift from real audio, despite explic-
itly optimizing for similarity to the label. We complement
with human listener ratings.

Without a perfect synthesis engine, any methods to generate
sound will introduce a distribution shift from real audio.
In our case, there is a deliberate domain shift to abstract
audio. We evaluate on two well-known datasets. The �rst
is ESC-50, a 50-class canonical environmental sound clas-
si�cation dataset (Piczak, 2015). The second is a subset
of AudioSet (Gemmeke et al., 2017); the full ontology of
classes is very large (over 500). We consider classes from
“sounds of things” given that this category contains the most
sub-classes and sub-selected the top 50 classes by number
of annotations, removing duplicates or equivalent classes.
We use a pretrained Audio Spectrogram Transformer (AST)
model for AudioSet-50, and �ne-tune an AST for ESC-
50 classi�cation (Gong et al., 2021). When evaluating on
AudioSet-50, we mask the remaining logits to effectively
make it a 50-class classi�er.

Synthesis Quality A signi�cant bene�t of our approach
is synthesizing clean audio using signal generators while
keeping attributes like sample rate �exible. We �nd synthe-
sized sounds also often exaggerate aspects of the prompts,
resulting in large variations in acoustic properties over time.
Evaluating audio quality reference-free is challenging, so we
examine acoustic features that correlate with these aspects
(such as high-frequency content and spectral variation).

User Study We conduct a listening test with human evalu-
ators. We ask them to classify sounds, rate their con�dence,
and rate sounds along a scale from realistic portrayal to artis-
tic interpretation. This offers us the most direct signal of
our abstraction-related goal. We share details on this study
in the next subsection. We compared against the recent
neural generation methodsAudioLDM (Liu et al., 2023a)
andAudioGen(Kreuk et al., 2022).

From our 50-prompt subset of AudioSet (Gemmeke et al.,
2017) classes, we randomly selected 10 for this study. We
used text embeddings of the labels with a facility loca-
tion submodular optimization algorithm from the apricot
package (Schreiber et al., 2020) to select a modest-sized
semantically representative subset. Within each prompt,
we randomly sampled two of 10 availableCTAGsounds.
The prompts were:Truck air brake, Water tap, Train horn,
Motorcycle, Microwave oven, Liquid slosh, Chainsaw, Air-
plane, Bicycle bell, andMachine gun. ForAudioLDMand
AudioGen, we used their default parameters to generate two
sounds per prompt.

This study was determined to be exempt by our institution's
IRB. Each participant rated 60 sounds (20 per method) in
random order. To examine category-level recognition, par-

5

