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Abstract

Recent developments in pretrained language
models have led to many advances in NLP.
These models have excelled at learning power-
ful contextual representations from very large
corpora. Fine-tuning these models for down-
stream tasks has been one of the most used (and
successful) approaches to solving a plethora
of NLP problems. But how capable are these
models in capturing subtle linguistic traits like
ambiguity in their representations? We present
results from a probing task designed to test the
capability of the models to identify ambiguous
sentences under different experimental settings.
The results show how different pretrained mod-
els fare against each other in the same task. We
also explore how domain specificity limits the
representational capabilities of the probes.

1 Introduction

Over the past few years, contextual embeddings
have proven their worth over static embeddings
(Liu et al., 2020). Pretrained models like BERT
(Devlin et al., 2019) and GPT-2 (Radford et al.,
2019) have made use of the Transformer (Vaswani
et al., 2017) architecture and huge training datasets
to serve as excellent base models that can be fine-
tuned for multiple down-stream tasks (Qiu et al.,
2020). However it is often unclear why these mod-
els work so well or what features these models
learn that make them so effective. To address these
questions, probing classifiers (Belinkov, 2021) are
often used to analyze and interpret these models.
Liu et al. (2019) use probing on a set of tasks in-
cluding token labelling, segmentation and pairwise
relation extraction to test the abilities of contextual
embeddings. Hewitt and Manning (2019) use a
linear probe to identify syntax in contextual embed-
dings. (Jawahar et al., 2019) show that while the
earlier layers of BERT capture more phrase-level
information, the later layers capture long-distance
dependency information. Furthermore, (Tenney

et al., 2019) show that information syntax is cap-
tured more on the earlier layers of BERT and that
higher layers are better at representing semantic
information. Training a shallow network multi-
layer perceptron (MLP) as a probe is an established
technique in MLP (Adi et al., 2016; Tenney et al.,
2019). Accordingly, we utilize a shallow MLP for
our experiments in this work.

In this paper, we focus on the task of classifying
ambiguous sentences as a probing task. We use
three existing datasets to serve as our corpus of
ambiguous sentences. We use the “out-of-domain
(MSCOCO) test set” used in WMT17' (Bojar et al.,
2017) that contains captions with ambiguous verbs
corresponding to images. We also use the challenge
test-set of the Hindi-Visual-Genome(Parida et al.,
2019) (HVG) that contains sentences with ambigu-
ous words. Sentences from HVG and COCO both
contain some form of lexical ambiguity. Finally,
we use the sentences from LAVA corpus (Berzak
et al., 2015) that contain sentences with syntactic
ambiguity. For the unambiguous sentences to feed
our probe, we use the “unambiguous” sentences
from the HVG and COCO corpora. For the purpose
of this work, we disregard the images associated
with the sentences in these corpora and just focus
on the sentences itself. During the course of work-
ing with the sentences from the datasets, it was
found out that many sentences contained grammat-
ical errors. Hence, we selected a set of ambiguous
and unambiguous sentences from a combination
of the LAVA, COCO and HVG corpora and cor-
rected them. An in-house annotator (a native En-
glish speaker) vetted the sentences. Then, a team
of in-house annotators ranked the sentences on the
basis of how “ambiguous” they seemed. We se-
lected the top 100 sentences each of ambiguous
and unambiguous types from the ranked list for
experiments described later. We call this dataset
“curated dataset” for the reminder of the paper.

"https://www.statmt.org/wmt17/multimodal-task.htm]



Our contributions in the paper are the following:

* Demonstrate how layer representations from
different pretrained models differ for the same
task, using the same data.

* Demonstrate how different “sentence repre-
sentations” of models affect the performance
of the probing classifiers.

* Demonstrate how probing classifiers are do-
main specific.

2 Related Work

Work done on this area has mostly concentrated on
the determination of ambiguity at the lexical level
and not at the sentence level. Yaghoobzadeh et al.
(2019) use a probing task to classify ambiguous
words. Sahin et al. (2020) also use probing tasks
for token-level and type-level identification of am-
biguities. Chen et al. (2020) explore the geometry
of BERT and ELMo (Peters et al., 2018) using a
structural probe to study the representational geom-
etry of ambiguous sentences. (Meyer and Lewis,
2020) use density matrices to model-word level
ambiguity. Bordes et al. (2019) have used a combi-
nation of visual and text data to ‘ground’ the textual
representations. But their work targeted visual am-
biguity. Thus, quite some works in the recent past
have looked at the representation of ambiguity in
neural models using probing techniques. We ex-
tend that line of investigation in this paper. The
following sections describe the experiments and
observations.

3 Experiments

In this work, we investigate the capability of a shal-
low MLP classifier probe to identify ambiguous
sentences from pretrained model representations.
We investigate three kinds of sentence representa-
tions: mean, sum and product. For each sentence
Si, we first obtain the contextual representation
for each word in the sentence. We then take the
mean of the representations of the words to get the
mean sentence representation. Similarly, we add
the word representations to get the sum represen-
tation. Finally, we obtain the Hadamard product
of the word representations to get the product sen-
tence representation. We obtain such sentence rep-
resentations of BERT and GPT-2 layers. We use the
pretrained models provided by Huggingface (Wolf
et al., 2019) for obtaining the representations.

The sentence representations are then used to
train a probing classifier that identifies if a sentence
is ambiguous. We perform the probing task in two
settings:

* In-Domain: The training and test data came
from the same source.

* Cross-Domain: The training and test data
came from different sources.

3.1 In-Domain probing

For the experiments in this case, we considered data
from COCO and HVG. As mentioned earlier, sen-
tences in both corpora contain lexical ambiguities.
For ambiguous sentences, we used the MSCOCO
ambiguous test-set and the HVG challenge test-set
respectively for the two experiments. The unam-
biguous sentences were drawn from the original
(unambiguous) MSCOCO (Lin et al., 2014) and
HVG datasets. As Fig. 1 and Fig. 2 show, the clas-
sifier was quite accurate across all the layers of
both models for the two datasets. Across models,

Figure 1: Probing classifier accuracy across layers for
in-domain probing with COCO

Figure 2: Probing classifier accuracy across layers for
in-domain probing with HVG

their performance is more or less the same. The
mean sentence representation for GPT-2 seems to
be the worst performer among all the other repre-
sentations.



As the last experiment in this category, we use
the curated dataset that we created (described in
Section 1) for the probing task. The results are
shown in Fig. 3. It is observed that the product
sentence representation performs the best and GPT-
2 outperforms BERT.

Thus, even when trained on a mix of data from
different datasets, the sentence representations of
the models manage to encode features that help the
classifier obtain reasonable scores on the task.

Figure 3: Probing classifier accuracy across layers for
in-domain probing with curated dataset

3.2 Cross-Domain probing

In the cross-domain probing experiments, we
wanted to investigate how the classifier would per-
form on sentences with similar ambiguity type
(lexical) even if they were drawn from different
datasets. In other words, does the classifier learn
some unique features about the ambiguity in sen-
tences (irrespective of what data it is being trained
on)? First, we trained the classifier on the HVG
corpus while we used the COCO corpus as the test-
set. The results of the probe are shown in Fig. 4.
We see that the classifier performs poorly across

Figure 4: Probing classifier accuracy across layers for
cross-domain probing with HVG and COCO

all layers for both the models. Thus, it does not
seem that the classifier learns any general traits that
helps it identify the lexical ambiguity.

Next, we investigate the performance of the
classifier when the type of ambiguity is changed.
Hence, we replace the ambiguous sentences from
COCO with those from LAVA corpus in the test-
data. In other words, we train the classifier to detect
lexical ambiguities and test it on syntactic ambi-
guities. Fig. 5 shows similar performance (if not

Figure 5: Probing classifier accuracy across layers for
cross-domain probing with HVG and LAVA as ambigu-

1ty

worse) as the last experiment. It should be noted
however, in terms of relative performance, the prod-
uct sentence representation still performs better and
GPT performing slightly better than BERT. But it
doesn’t seem that the classifier learns some univer-
sal features for ambiguity detection.

We also concatenated the layer representations
together and fed the concatenated representation
to the probe. The rationale was to see if the probe
would identify some useful feature from across all
the layers. The results are shown in Table 1 and
Table 2

H Representation ‘ BERT ‘ GPT-2 H

mean 0.444 | 0.426
sum 0.449 | 0.475
product 0.508 | 0.514

Table 1: Classifier accuracy for concatenated layers
(cross domain probing with HVG and COCO)

H Representation ‘ BERT ‘ GPT-2 H

mean 0.378 | 0.310
sum 0.390 | 0.359
product 0.555 | 0.506

Table 2: Classifier accuracy for concatenated layers
(cross domain probing with HVG and LAVA)

As the tables show, no significant performance
gain was observed.



As the final experiment, we use HVG as the
training data and the curated dataset as the test data.
The results are shown in Fig. 6. Consistent with the

Figure 6: Probing classifier accuracy across layers for
cross-domain probing with HVG and curated data

observations before, the classifier fails to identify
ambiguous sentences with accuracy.

4 Discussion

As described in the Section 3.2, a number of ex-
periments involving combinations of datasets were
used to train the probes and observe how different
models and different sentence representations fare
against each other. The mean performance of the
probes across the tasks corresponding to the three
sentence representations for BERT and GPT-2 is
presented in Fig. 7 and Fig. 8 respectively. It

Mean classifier accuracy across layers for BERT (all mixed experiments)

/

—— BERT (mean representation)
—— BERT (sum representation)
—— BERT (product representation)

o 1 2 3 4 5 6 7 8 9 10 1
Layers

Figure 7: Mean Probing classifier accuracy for BERT
across layers for cross-domain probing tasks

Mean classifier accuracy across layers for GPT (all mixed experiments)

—— GPT (mean representation)
—— GPT (sum representation)
—— GPT (product representation)

o 1 2 3 4 5 6 7 8 9 10 1
Layers

Figure 8: Mean Probing classifier accuracy for GPT-2
across layers for cross-domain probing tasks

appears that across both the models, the product
representation works better compared to other sen-
tence representations. As discussed in Section 2,
probing mechanisms for ambiguity detection has
been explored at the word-level. Getting probes
to work at the sentence level requires choosing
the most appropriate form of sentence representa-
tions. And from the experiments described here, it
seems that Hadamard product representations seem
to work better for the purpose. Although there have
been some criticisms regarding averaged word rep-
resentations (Conneau et al., 2017) and proposed
solutions (Riicklé et al., 2018), the objective in this
paper was not to find the best way of obtaining sen-
tence representations. The objective was to merely
show how different sentence representations per-
form in the probing task.

Also, it is apparent that the sentence represen-
tations generated by the pretrained models do not
seem to explicitly encode general features to iden-
tify ambiguity. The reasonable performance of the
classifier in the in-domain task (including the one
with the curated data) and the sub-par performance
in the cross-domain task shows how probing tasks
are domain-dependent.

However, it should be noted that all the ambigu-
ity datasets used in this work (MSCOCO, LAVA,
HVG) were designed to be used along with their
corresponding images. And hence, it would be
interesting to extend this line of analysis to a mul-
timodal scenario to investigate if the inclusion of
modalities impact the performance of the probes.

5 Conclusion

In this paper we explore how probing methods can
be used to ascertain how and if pretrained models
like BERT and GPT-2 identify ambiguity in sen-
tences fed to them. We make use of three ways
(mean,sum,product) to obtain sentence representa-
tions from the individual word representations to
be fed to the probe. The experiments indicate that
the Hadamard product representation for sentences
works better than the others. We also observe how
the sentence representations from both models per-
form remarkably well when the probing task in-
volves a test-set drawn from the same domain as
the training data and that cross-domain probing
yields a bad performance.
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