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Abstract

Recent developments in pretrained language001
models have led to many advances in NLP.002
These models have excelled at learning power-003
ful contextual representations from very large004
corpora. Fine-tuning these models for down-005
stream tasks has been one of the most used (and006
successful) approaches to solving a plethora007
of NLP problems. But how capable are these008
models in capturing subtle linguistic traits like009
ambiguity in their representations? We present010
results from a probing task designed to test the011
capability of the models to identify ambiguous012
sentences under different experimental settings.013
The results show how different pretrained mod-014
els fare against each other in the same task. We015
also explore how domain specificity limits the016
representational capabilities of the probes.017

1 Introduction018

Over the past few years, contextual embeddings019

have proven their worth over static embeddings020

(Liu et al., 2020). Pretrained models like BERT021

(Devlin et al., 2019) and GPT-2 (Radford et al.,022

2019) have made use of the Transformer (Vaswani023

et al., 2017) architecture and huge training datasets024

to serve as excellent base models that can be fine-025

tuned for multiple down-stream tasks (Qiu et al.,026

2020). However it is often unclear why these mod-027

els work so well or what features these models028

learn that make them so effective. To address these029

questions, probing classifiers (Belinkov, 2021) are030

often used to analyze and interpret these models.031

Liu et al. (2019) use probing on a set of tasks in-032

cluding token labelling, segmentation and pairwise033

relation extraction to test the abilities of contextual034

embeddings. Hewitt and Manning (2019) use a035

linear probe to identify syntax in contextual embed-036

dings. (Jawahar et al., 2019) show that while the037

earlier layers of BERT capture more phrase-level038

information, the later layers capture long-distance039

dependency information. Furthermore, (Tenney040

et al., 2019) show that information syntax is cap- 041

tured more on the earlier layers of BERT and that 042

higher layers are better at representing semantic 043

information. Training a shallow network multi- 044

layer perceptron (MLP) as a probe is an established 045

technique in MLP (Adi et al., 2016; Tenney et al., 046

2019). Accordingly, we utilize a shallow MLP for 047

our experiments in this work. 048

In this paper, we focus on the task of classifying 049

ambiguous sentences as a probing task. We use 050

three existing datasets to serve as our corpus of 051

ambiguous sentences. We use the “out-of-domain 052

(MSCOCO) test set” used in WMT171 (Bojar et al., 053

2017) that contains captions with ambiguous verbs 054

corresponding to images. We also use the challenge 055

test-set of the Hindi-Visual-Genome(Parida et al., 056

2019) (HVG) that contains sentences with ambigu- 057

ous words. Sentences from HVG and COCO both 058

contain some form of lexical ambiguity. Finally, 059

we use the sentences from LAVA corpus (Berzak 060

et al., 2015) that contain sentences with syntactic 061

ambiguity. For the unambiguous sentences to feed 062

our probe, we use the “unambiguous” sentences 063

from the HVG and COCO corpora. For the purpose 064

of this work, we disregard the images associated 065

with the sentences in these corpora and just focus 066

on the sentences itself. During the course of work- 067

ing with the sentences from the datasets, it was 068

found out that many sentences contained grammat- 069

ical errors. Hence, we selected a set of ambiguous 070

and unambiguous sentences from a combination 071

of the LAVA, COCO and HVG corpora and cor- 072

rected them. An in-house annotator (a native En- 073

glish speaker) vetted the sentences. Then, a team 074

of in-house annotators ranked the sentences on the 075

basis of how “ambiguous” they seemed. We se- 076

lected the top 100 sentences each of ambiguous 077

and unambiguous types from the ranked list for 078

experiments described later. We call this dataset 079

“curated dataset” for the reminder of the paper. 080

1https://www.statmt.org/wmt17/multimodal-task.html
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Our contributions in the paper are the following:081

• Demonstrate how layer representations from082

different pretrained models differ for the same083

task, using the same data.084

• Demonstrate how different “sentence repre-085

sentations” of models affect the performance086

of the probing classifiers.087

• Demonstrate how probing classifiers are do-088

main specific.089

2 Related Work090

Work done on this area has mostly concentrated on091

the determination of ambiguity at the lexical level092

and not at the sentence level. Yaghoobzadeh et al.093

(2019) use a probing task to classify ambiguous094

words. Şahin et al. (2020) also use probing tasks095

for token-level and type-level identification of am-096

biguities. Chen et al. (2020) explore the geometry097

of BERT and ELMo (Peters et al., 2018) using a098

structural probe to study the representational geom-099

etry of ambiguous sentences. (Meyer and Lewis,100

2020) use density matrices to model-word level101

ambiguity. Bordes et al. (2019) have used a combi-102

nation of visual and text data to ‘ground’ the textual103

representations. But their work targeted visual am-104

biguity. Thus, quite some works in the recent past105

have looked at the representation of ambiguity in106

neural models using probing techniques. We ex-107

tend that line of investigation in this paper. The108

following sections describe the experiments and109

observations.110

3 Experiments111

In this work, we investigate the capability of a shal-112

low MLP classifier probe to identify ambiguous113

sentences from pretrained model representations.114

We investigate three kinds of sentence representa-115

tions: mean, sum and product. For each sentence116

Si, we first obtain the contextual representation117

for each word in the sentence. We then take the118

mean of the representations of the words to get the119

mean sentence representation. Similarly, we add120

the word representations to get the sum represen-121

tation. Finally, we obtain the Hadamard product122

of the word representations to get the product sen-123

tence representation. We obtain such sentence rep-124

resentations of BERT and GPT-2 layers. We use the125

pretrained models provided by Huggingface (Wolf126

et al., 2019) for obtaining the representations.127

The sentence representations are then used to 128

train a probing classifier that identifies if a sentence 129

is ambiguous. We perform the probing task in two 130

settings: 131

• In-Domain: The training and test data came 132

from the same source. 133

• Cross-Domain: The training and test data 134

came from different sources. 135

3.1 In-Domain probing 136

For the experiments in this case, we considered data 137

from COCO and HVG. As mentioned earlier, sen- 138

tences in both corpora contain lexical ambiguities. 139

For ambiguous sentences, we used the MSCOCO 140

ambiguous test-set and the HVG challenge test-set 141

respectively for the two experiments. The unam- 142

biguous sentences were drawn from the original 143

(unambiguous) MSCOCO (Lin et al., 2014) and 144

HVG datasets. As Fig. 1 and Fig. 2 show, the clas- 145

sifier was quite accurate across all the layers of 146

both models for the two datasets. Across models,

Figure 1: Probing classifier accuracy across layers for
in-domain probing with COCO

Figure 2: Probing classifier accuracy across layers for
in-domain probing with HVG

147
their performance is more or less the same. The 148

mean sentence representation for GPT-2 seems to 149

be the worst performer among all the other repre- 150

sentations. 151
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As the last experiment in this category, we use152

the curated dataset that we created (described in153

Section 1) for the probing task. The results are154

shown in Fig. 3. It is observed that the product155

sentence representation performs the best and GPT-156

2 outperforms BERT.157

Thus, even when trained on a mix of data from158

different datasets, the sentence representations of159

the models manage to encode features that help the160

classifier obtain reasonable scores on the task.161

Figure 3: Probing classifier accuracy across layers for
in-domain probing with curated dataset

3.2 Cross-Domain probing162

In the cross-domain probing experiments, we163

wanted to investigate how the classifier would per-164

form on sentences with similar ambiguity type165

(lexical) even if they were drawn from different166

datasets. In other words, does the classifier learn167

some unique features about the ambiguity in sen-168

tences (irrespective of what data it is being trained169

on)? First, we trained the classifier on the HVG170

corpus while we used the COCO corpus as the test-171

set. The results of the probe are shown in Fig. 4.172

We see that the classifier performs poorly across

Figure 4: Probing classifier accuracy across layers for
cross-domain probing with HVG and COCO

173
all layers for both the models. Thus, it does not174

seem that the classifier learns any general traits that175

helps it identify the lexical ambiguity.176

Next, we investigate the performance of the 177

classifier when the type of ambiguity is changed. 178

Hence, we replace the ambiguous sentences from 179

COCO with those from LAVA corpus in the test- 180

data. In other words, we train the classifier to detect 181

lexical ambiguities and test it on syntactic ambi- 182

guities. Fig. 5 shows similar performance (if not

Figure 5: Probing classifier accuracy across layers for
cross-domain probing with HVG and LAVA as ambigu-
ity

183
worse) as the last experiment. It should be noted 184

however, in terms of relative performance, the prod- 185

uct sentence representation still performs better and 186

GPT performing slightly better than BERT. But it 187

doesn’t seem that the classifier learns some univer- 188

sal features for ambiguity detection. 189

We also concatenated the layer representations 190

together and fed the concatenated representation 191

to the probe. The rationale was to see if the probe 192

would identify some useful feature from across all 193

the layers. The results are shown in Table 1 and 194

Table 2

Representation BERT GPT-2

mean 0.444 0.426
sum 0.449 0.475

product 0.508 0.514

Table 1: Classifier accuracy for concatenated layers
(cross domain probing with HVG and COCO)

195

Representation BERT GPT-2

mean 0.378 0.310
sum 0.390 0.359

product 0.555 0.506

Table 2: Classifier accuracy for concatenated layers
(cross domain probing with HVG and LAVA)

As the tables show, no significant performance 196

gain was observed. 197
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As the final experiment, we use HVG as the198

training data and the curated dataset as the test data.199

The results are shown in Fig. 6. Consistent with the

Figure 6: Probing classifier accuracy across layers for
cross-domain probing with HVG and curated data

200
observations before, the classifier fails to identify201

ambiguous sentences with accuracy.202

4 Discussion203

As described in the Section 3.2, a number of ex-204

periments involving combinations of datasets were205

used to train the probes and observe how different206

models and different sentence representations fare207

against each other. The mean performance of the208

probes across the tasks corresponding to the three209

sentence representations for BERT and GPT-2 is210

presented in Fig. 7 and Fig. 8 respectively. It

Figure 7: Mean Probing classifier accuracy for BERT
across layers for cross-domain probing tasks

Figure 8: Mean Probing classifier accuracy for GPT-2
across layers for cross-domain probing tasks

211
appears that across both the models, the product 212

representation works better compared to other sen- 213

tence representations. As discussed in Section 2, 214

probing mechanisms for ambiguity detection has 215

been explored at the word-level. Getting probes 216

to work at the sentence level requires choosing 217

the most appropriate form of sentence representa- 218

tions. And from the experiments described here, it 219

seems that Hadamard product representations seem 220

to work better for the purpose. Although there have 221

been some criticisms regarding averaged word rep- 222

resentations (Conneau et al., 2017) and proposed 223

solutions (Rücklé et al., 2018), the objective in this 224

paper was not to find the best way of obtaining sen- 225

tence representations. The objective was to merely 226

show how different sentence representations per- 227

form in the probing task. 228

Also, it is apparent that the sentence represen- 229

tations generated by the pretrained models do not 230

seem to explicitly encode general features to iden- 231

tify ambiguity. The reasonable performance of the 232

classifier in the in-domain task (including the one 233

with the curated data) and the sub-par performance 234

in the cross-domain task shows how probing tasks 235

are domain-dependent. 236

However, it should be noted that all the ambigu- 237

ity datasets used in this work (MSCOCO, LAVA, 238

HVG) were designed to be used along with their 239

corresponding images. And hence, it would be 240

interesting to extend this line of analysis to a mul- 241

timodal scenario to investigate if the inclusion of 242

modalities impact the performance of the probes. 243

5 Conclusion 244

In this paper we explore how probing methods can 245

be used to ascertain how and if pretrained models 246

like BERT and GPT-2 identify ambiguity in sen- 247

tences fed to them. We make use of three ways 248

(mean,sum,product) to obtain sentence representa- 249

tions from the individual word representations to 250

be fed to the probe. The experiments indicate that 251

the Hadamard product representation for sentences 252

works better than the others. We also observe how 253

the sentence representations from both models per- 254

form remarkably well when the probing task in- 255

volves a test-set drawn from the same domain as 256

the training data and that cross-domain probing 257

yields a bad performance. 258
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