
1

Scalable and Effective Arithmetic Tree Generation
for Adder and Multiplier Designs

Yao Lai1, Jinxin Liu3, David Z. Pan2, Ping Luo1
1The University of Hong Kong, 2The University of Texas at Austin,

3Zhejiang University

Abstract

Across a wide range of hardware scenarios, the computational efficiency and phys-
ical size of the arithmetic units significantly influence the speed and footprint of
the overall hardware system. Nevertheless, the effectiveness of prior arithmetic
design techniques proves inadequate, as they do not sufficiently optimize speed
and area, resulting in increased latency and larger module size. To boost comput-
ing performance, this work focuses on the two most common and fundamental
arithmetic modules, adders and multipliers. We cast the design tasks as single-
player tree generation games, leveraging reinforcement learning techniques to
optimize their arithmetic tree structures. This tree generation formulation allows
us to efficiently navigate the vast search space and discover superior arithmetic
designs that improve computational efficiency and hardware size within just a few
hours. Our proposed method, ArithTreeRL, achieves significant improvements
for both adders and multipliers. For adders, our approach discovers designs of
128-bit adders that achieve Pareto optimality in theoretical metrics. Compared
with PrefixRL, it reduces delay and size by up to 26% and 30%, respectively. For
multipliers, compared to RL-MUL, our method enhances speed and reduces size by
as much as 49% and 45%. Additionally, ArithTreeRL’s flexibility and scalability
enable seamless integration into 7nm technology. We believe our work will offer
valuable insights into hardware design, further accelerating speed and reducing size
through the refined search space and our tree generation methodologies. Codes are
released at github.com/laiyao1/ArithmeticTree.

1 Introduction

Since the inception of computers, researchers have striven to boost computing speed and decrease
hardware size. High computing speed is essential for a wide range of real-world applications, such as
artificial intelligence [1], high-performance computing [2], and high-frequency trading [3], particu-
larly for the recent applications of large language models like GPT [4]. Concurrently, the demand for
smaller hardware has escalated due to the growth of wearable devices and IoT technology [5].

Hardware specialists have steadily miniaturized CMOS technology [6] to boost processor speeds
and shrink chip sizes. However, as CMOS technology’s scaling nears its fundamental physical
limits [7], further miniaturization poses significant challenges. Therefore, exploring innovative circuit
design has emerged as a vital alternative to drive performance enhancement and area reduction.
Among the family of arithmetic modules for hardware architectures, adders and multipliers constitute
two essential modules, playing a critical role in various computational operations. For example,
basic addition and multiplication operations compute all convolution and fully connected layers

1Corresponding to: Ping Luo (pluo@cs.hku.hk).

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/laiyao1/ArithmeticTree

AddGame
Prefix
Tree

Design

Compressor
Tree

Design

MultGame

Co-design

Adder

Multiplier Half
Adder

a b

cout sum

Full
Adder

a
b

cout sum

cin

= 1 binary bit

Compressor Tree

(b) (c)

low bithigh bit

Prefix Tree

0

1

2

3

(8,8) (7,7) (6,6) (5,5) (4,4)Level (3,3) (2,2) (1,1)

(7,8) (5,6) (3,4) (1,2)

(5,8) (5,7) (1,4) (1,3)

level = 3
size = 20

= 1 cell = 2 binary bits (Pi:j , Gi:j)
= 1 cell = 1 binary bit (Gi:j)

Pi:j : propagation bit, Gi:j : generation bit

(1,8) (1,7) (1,6) (1,5)

(a)

low bithigh bit

Figure 1: (a) ArithTreeRL framework. Two agents optimize prefix and compressor trees, respectively,
modeling the tasks as AddGame for adders and MultGame for multipliers. (b) Prefix tree. (c) Compressor tree.
Different tree structures lead to different qualities of adder and multiplier designs.

of deep learning models. Performance analysis of the ResNet model [8] reveals that the convolution
operation, consisting solely of addition and multiplication, constitutes 98.4% of the overall GPU
execution time during model inference. Under Amdahl’s Law [9], an enhancement of 30% in
addition and multiplication operation speeds could result in a 29% improvement in inference speed.
Intriguingly, this improvement is comparable to the speedup typically seen with a generational
upgrade in semiconductor process technology [10, 11]. Thus, designing more efficient and compact
adders and multipliers is crucial for the overall advancement of hardware design.

Numerous arithmetic module design methods have been proposed in recent years. These techniques
generally fall into one of three main categories: human-based [12, 13], optimization-based [14–16],
and learning-based [17–19]. However, these methods either demand significant hardware expertise or
get trapped in local optimal due to the vast design search space for adders and multipliers modules.
For human-based methods, hardware experts have crafted a variety of arithmetic modules, such as
the Sklansky adder [12] and the Wallace multiplier [13]. Nevertheless, designing new structures
becomes increasingly challenging for humans as input bits increase. Optimization-based methods,
like bottom-up enumerate search [14, 15] and integer linear programming [16], can enhance the
quality of arithmetic designs by exploring a wider variety of structures. Despite their potential,
the extensive search space poses a challenge, necessitating manually defined assumptions to limit
the search scope for feasible computation. For example, Ma et al. [20] assumed the existence of
semi-regular structures in adders, which may lead to locally optimal solutions. While learning-based
approaches have emerged as a promising tool for automating hardware design in recent years [17–
19], navigating the vast design space to find the optimal solution for arithmetic modules remains
a formidable challenge. For example, the two primary components of an N -bit multiplier, the
compressor tree and the prefix tree, have approximately O(2N

2

) and O(24N
2

) design space [17],
respectively. Consequently, the search space of a simple 16-bit multiplier is already comparable to
that of the Go game (3361) [21]. Meanwhile, such learning-based approaches also fail to consider the
joint optimization of different components within arithmetic hardware [17, 18], thus easily leading to
degenerated hardware with undesired performance bottleneck.

To resolve the above limitations and boost the performance, we formulate the arithmetic adder and
multiplier design problems as two single-player tree generation games, AddGame and MultGame,
respectively, as shown in Fig. 1a. The key insight is that by reframing the design problems into
interactive tree generation games, we harness the power of progressive optimization algorithms,
allowing us to explore the intricate design space of arithmetic units dynamically. Starting from an
initial prefix tree, the player in AddGame sequentially modifies cells in the prefix tree, in the same
spirit as tactical movements in board games. Our MultGame contains two parts, specifically for
designing the compressor tree and the prefix tree of multipliers. The compressor tree design involves
the player compressing all partial products with different compressors, similar to a match game. In
contrast, the prefix tree design follows the same rules as the AddGame. Unlike the default design
process depicted in Fig. 2a, the tree structures discovered in games are converted into specific Verilog
codes [22], as illustrated in Fig. 2b. We demonstrate that the delay and area of arithmetic modules
can be largely decreased by substituting the default designs with our discovered tree structures.

2

1 module multiplier(x, y, o):
2 input [1:0] x, y;
3 output [3:0] o;
4 assign o = x * y;
5 endmodule

1 module multiplier(x, y, o):
2 input [1:0] x, y; output [3:0] o;
3 wire ip_0_0, ip_0_1, ip_1_0, ip_1_1;
4 wire p0, p1, p2, p4, p5, p6, p7, p8, p9, …
6 and and0(ip_0,0, x[0], y[0]);
7 // compressor tree
8 halfadder fa0(ip_1_0, ip_0_1, p0, p1);
9 // prefix tree
10 wire [3:0] a, b, s; …
11 adder add(a, b, s);
12 endmodule
13 module adder(a, b, s):
14 input [3:0] a, b; output [3:0] s;
15 // get propagate bit(p) and generate bit(g)
16 wire p1_1, g1_1, p1_2, g1_2, p2_2, g2_2, …
17 assign p1_1 = a[0] ^ b[0];
18 assign g1_1 = a[0] & b[0]; …
19 // merge segments
20 assign p1_2 = p1_1 & p2_2; …
21 // get outputs
22 assign s1 = g1_1; …
23 endmodule

Physical
Synthesis

MultGame
Practical Multiplier

Design
(delay = 409 ps,
area = 74 um2)

Practical Multiplier
Design

(delay = 353 ps,
 area = 70 um2)

yosys Logical
Synthesis

Physical
Synthesis

yosys Logical
Synthesis

x[0]
x[1]

y[0]
y[1]

o[0]

o[1]

o[2]
o[3]

AddGame

x[0]
x[1]

y[0]
y[1]

o[0]

o[1]

o[2]
o[3]

x2 x1
× y2 y1

(a) (b)

A 2-bit
MultiplierDefault

Structural Trees

Figure 2: Comparison of design processes. (a) Default design process. The synthesis tool automatically
generates a default multiplier when using multiplication commands (x*y) in Verilog HDL code. (b) Enhanced
design process in ArithTreeRL. ArithTreeRL discovers an optimized multiplier structure and generates
specialized Verilog HDL code for this improved structure, reducing delay and area after synthesis.

We propose ArithTreeRL (Arithmetic Tree Reinforcement Learning), a novel approach that utilizes
customized reinforcement learning agents for optimizing arithmetic tree structures. In practical imple-
mentation, ArithTreeRL employs two distinct agents tailored to the specific characteristics of prefix
and compressor tree optimization. For the prefix tree, appearing in both AddGame and MultGame,
we utilize a Monte-Carlo Tree Search (MCTS) [23] agent to efficiently explore the large action space
while preserving previous exploration experience. For the compressor tree, exclusive to MultGame,
we take a Proximal Policy Optimization (PPO) [24] agent due to its superior exploration efficiency.
To capture the global design for multiplier designs, we also designed an optimization curriculum as
depicted in Fig. 1, iteratively running MCTS and PPO agents to refine the prefix and compressor trees.

This paper has three main contributions. Firstly, we model the arithmetic module design tasks as
single-player tree generation games, i.e., AddGame and MultGame, which inherit the well-established
RL capabilities for complex decision-making tasks (arithmetic tree optimization). Secondly, we
propose a co-designed framework that integrates prefix and compressor tree modules, enabling the
discovery of optimal combinations that lead to global optimal multipliers. Thirdly, our experiments
reveal that our designed 128-bit Pareto-optimal adders outperform the latest theoretical designs.
Also, our designed adders achieved up to 26% and 30% reductions in delay and area compared to
PrefixRL [17], and multipliers offer 33% and 45% improvements over RL-MUL [18] in the same
metrics. These designs are ready for direct integration into synthesis tools, offering significant
industrial benefits, and are flexible and scalable enough to be seamlessly adopted into 7nm technology.

2 Preliminaries

Adder Design. An N -bit adder can be constructed by cascading N 1-bit adders. However, this
approach results in an O(N) delay due to the sequential propagation of the carry signal from the lower
bit to the higher bit. To address this issue, prefix adders have been proposed [25, 26]. Prefix adders are
designed based on the principles of addition, with a focus on reusing and parallelizing intermediate
signal bits. These signal bits can be divided into two categories: propagation bits pi = ai ⊕ bi and
generation bits gi = ai · bi, where ai, bi ∈ {0, 1}, i ∈ {1, 2, . . . , N} represent the addends at the i-th
bit, and ‘⊕’ and ‘·’ denote the logic XOR and AND operations, respectively [27]. These propagation
and generation signals can be defined at both the individual bit level and across a range of bits. For an
individual bit with index i, they are denoted by Pi:i = pi and Gi:i = gi. When considering a range of
bits, this range is treated as an interval identified by a tuple (i, j). Within each such interval, we have a
single propagation signal Pi:j =

∏j
k=i pk and a single generation signal Gi:j = gj +

∑j−1
k=i Pk:j ·gk ,

where ‘+’ represents the logic OR operation. Note that the computation of Pi:j and Gi:j is influenced
solely by the input bits from position i to j. The (N + 1) outputs of the adder can be calculated from
the signal bits with the initial condition G1:0 = 0 by cN+1 = gN + pN ·G1:N and si = pi ⊕G1:i−1,
where cN+1 is the carry-out bit and si is the i-th sum bit.

The prefix adder design aims to optimize a hierarchical tree structure that generates all intervals (1, i)
from the initial intervals (i, i), as shown in Fig. 1b. Signal bits for two adjacent intervals, (i, k) and

3

(k + 1, j), can be merged to form the larger interval (i, j) by the computations Pi:j = Pi:k · Pk+1:j

and Gi:j = Gi:k · Pk+1:j + Gk+1:j . This merging process generates a prefix tree where each cell
represents an (i, j) interval with two signal bits. If an interval results from merging two others, its
corresponding cell is the child node in the tree, and the merged intervals are its parent node. For
example, the (5, 8) cell is the child node of the (5, 6) and (7, 8) cells because it derived from them.
A key advantage of this structure is that cells with no dependencies can be computed in parallel.
Different tree structures can result in adders with varying delays and areas. When evaluating the
theoretical quality of the prefix adder, We can use level (tree height) and size (number of cells) as
theoretical metrics to substitute for practical metrics like delay and area.

Multiplier Design. An N -bit multiplier carries out the multiplication of two N -bit multiplicands,
which can be regarded as the cumulative addition of N addends, involving a total of N2 bits. Each
addend represents a partial product with different powers of two weights, illustrated in Fig. 4b.
Multipliers can be easily achieved by cascading (N − 1) N -bit adders or using a single N -bit adder
(N − 1) times. However, both result in a large area or high delay. To mitigate this, the N2 bits
in the partial products can be added simultaneously by 1-bit adders, which can also be seen as a
bit compression process because the number of bits gradually decreases. The compression process
halts when the number of bits for each binary digit is reduced to two or fewer before feeding into
a downstream adder, as illustrated in Fig. 1c. The process generates a compressor tree, describing
a compression mechanism that merges N2 bits into fewer bits by compressors such as half and
full adders. Introducing an additional carry-in input distinguishes a full adder from a half adder, as
shown in Fig. 1b, which affects the latency and area. The difference is crucial when configuring the
compressor tree in multipliers to optimize for delays and area requirements. Upon completing the
compression, the remaining bits are processed by a 2N -bit prefix adder, designed to yield the globally
optimal multiplier. In summary, adder and multiplier design tasks can be interpreted as a tree-based
structural generation process to optimize hardware metrics while maintaining functionality.

3 Our Approach

We use reinforcement learning to solve the tree generation for adder and multiplier designs. The
environments are modeled as single-player tree generation games: AddGame for adder design and
MultGame for multipliers, as illustrated in Fig. 1a. Considering differences among the games, such
as action space, we propose two types of agents: one by MCTS [28] and another by PPO [24].

3.1 AddGame

AddGame is modeled for designing prefix trees in adders and multipliers, as shown in Fig. 3. In this
game, the player modifies the structures of given initial prefix trees by basic actions to optimize the
adders’ metrics. The state of the game is denoted as s, corresponding to the current prefix tree. In
our evaluation, each state s is assessed on two theoretical metrics, level and size, and two practical
metrics, delay and area. The player always chooses one action from two kinds of actions: (1) delete a
cell (i, j), (2) add a cell (i, j), which (i, j) is the cell index as shown in Fig. 1b. A cell (i, j) (i < j)
can be deleted if the prefix tree does not have the cell (i, k) subject to k > j and i > 1, and all
deletable cells are marked in red in Fig. 3 and 5. A cell (i, j) can be added if it does not exist in the
prefix tree. All positions where cells can be added are marked with ‘×’. A legalization operation [17]
is always executed after one action to guarantee the feasibility of the prefix tree as Fig. 3. The game
aims to maximize the performance score R(s) of the adder s. This score is determined by a weighted
combination of delay and area (using level and size when optimizing theoretical metrics).

Given the large action space, the agent for playing AddGame is based on an improved MCTS method,
which has demonstrated its effectiveness in numerous game tasks [21, 29, 30]. Starting from the
prefix trees in human-designed adders, the MCTS agent continuously cycles through four phases:
selection, expansion, simulation, and backpropagation, and gradually builds a search tree in this
process. Each node in the search tree represents one prefix tree.

In the selection phase, the agent selects the child node with state s that has the highest score W (s),
continuing until it encounters a node that has not been fully expanded. The scores for evaluating
nodes are computed by the Upper Confidence bounds applied to Trees (UCT) [31], keeping the
balance between exploration and exploitation. In the search tree, each node with the state s stores a
visit count N(s) and an action value V (s). The visit count N(s) records the number of visits to the

4

node s. The action value V (s) is the weighted sum of the best performance score maxR and average
performance score R of all its descendant nodes, which can be formalized as:

V (s) = (1− β)
∑

s′∈D(s)

R(s′)/|D(s)|

︸ ︷︷ ︸
avg performance score

+ β max
s′∈D(s)

R(s′)︸ ︷︷ ︸
best performance score

(1)

where D(s) represents all descendant nodes of the node s (including s itself), i.e., all generated
adders by a sequence of actions from adder s. | · | gives the number of nodes. R(s′) indicates the
performance score of the adder of the state s′, which is defined as −Delay − αArea or −Size. α and
β are sum weights.

Delete cell

1. Selection

Delete cell 2. Expansion

…
3. Simulation

Add or delete cells

by default policy

4. Backpropagation

Update

Score

Update

Score

Update

Score

𝑅(𝑠) = −Delay − 𝛼 ∙ Area
or

𝑅(𝑠) = −Size

Add cell

Figure 3: Method for designing prefix trees with
MCTS. Four phases in the search process are executed
iteratively, gradually building a search tree.

We define the node score W (s) with the state s as
follows:

W (s) =

√
lnN(P (s))

N(s)
+ cV (s) (2)

where P (s) is the parent node of s, N(·) is visit
count function, and c is an adjustable parameter.

In the expansion phase, a random action is
chosen from the unexplored actions available
at the node identified in the selection phase
and executed. It expands the search tree by
adding a new node corresponding to the result
after that action. In the simulation phase, a
sequence of actions is taken until the performance
scores of adders can no longer be improved (in
theoretical metrics optimization) or the simulation
exceeds the maximum steps (in practical metrics
optimization). In the backpropagation phase, the
last state s reached in the simulation phase is
evaluated to get a performance score R(s), which
is then backpropagated to update the scores of all
preceding nodes in the search tree.

Pruning. To enhance efficiency, we implement
pruning techniques to avoid the exploration of un-
necessary sub-trees. When optimizing theoretical
metrics, we restrict modifications to delete cell
actions, as adding cells does not improve the design outcome. Furthermore, we impose an upper limit
on the level metric to prevent the creation of structures with excessively high complexity. This upper
limit, denoted as L, is set for each MCTS search and is gradually relaxed with each search iteration.

Two-level Retrieval. We adopt a two-level retrieval strategy to balance synthesis accuracy and
computational efficiency. We divide the search into two stages because the full synthesis flow is
highly accurate but time-consuming. A faster yet marginally less simulating accurate synthesis flow
is employed in the first stage, eliminating the time-intensive steps such as routing. Only the top K
adders identified in the first stage undergo full synthesis in the second stage.

3.2 MultGame

MultGame consists of two parts for jointly designing compressor and prefix trees in multipliers,
as shown in Fig. 1. The part focused on the prefix tree design is identical to that in AddGame.
Meanwhile, the part focused on the compressor tree design involves continually merging bits in
partial products through compression actions, as depicted in Fig. 4. This process is similar to some
match games like ‘2048’ [32], where items are merged in a specific way to achieve high scores.

The compressor tree is built from scratch instead of starting from existing solutions for more design
flexibility. The game state st at step t is represented by a vector representing the current compressor
tree status. The player chooses one of two actions: (1) using a half adder or (2) using a full adder to

5

𝑎0 =	half adder

𝑠1 (𝑟1 = −𝑝)

𝑎1 =	full adder

𝑠2	 (𝑟2 = 0)𝑠0 𝑠𝑇 (𝑟𝑇 = −delay)

action digit

𝑎2 =	half adder,

1 0 1 0
× 1 0 1 1

1 0 1 0

1 0 1 0

0 0 0 0

1 0 1 0

1 0 1 0
× 1 0 1 1

1 0 1 0

1 0 1 0

0 0 0

1 0 1 0

0

1 0 1 0
× 1 0 1 1

0 0 1 0

1 0 1 0

0 0 1

1 0 1

0

1 0 1 0
× 1 0 1 1

0 0 1 0

1 1 1 0

0 1

1 0

0 0

Half adder in: A, B out: S, Cout
𝑑𝑒𝑙𝑎𝑦 S = max 𝑑𝑒𝑙𝑎𝑦 A , 𝑑𝑒𝑙𝑎𝑦 B + 1
𝑑𝑒𝑙𝑎𝑦 Cout = 𝑑𝑒𝑙𝑎𝑦(S)

Full adder in: A, B, Cin out: S, Cout

𝑑𝑒𝑙𝑎𝑦 S = max max 𝑑𝑒𝑙𝑎𝑦 A , 𝑑𝑒𝑙𝑎𝑦 B + 1, Cin + 1
𝑑𝑒𝑙𝑎𝑦 Cout = 𝑑𝑒𝑙𝑎𝑦(S) + 1

x4 x3 x2 x1
y4 y3 y2 y1

multiplicand
multiplier

partial products

x4 x3 x2 x1 y1

y2

y3

y4
A B

Cout S

A B
Cout S

A B Cin
Cout S

x4 x3 x2 x1

x4 x3 x2 x1

x4 x3 x2 x1

2 bits → 2 bits
Dot

Notation 3 bits → 2 bits

Binary Bit
Notation

Logic Gate
Notation

bit value

estimated delay value

* Assuming that all logic gates possess a unit delay, including
AND, OR, XOR gates.

*

(a)

𝑎3, … , 𝑎%&'

(b)

(c)

Figure 4: Designing compressor trees with PPO. Three representations are illustrated. (a) Dot notation.
Each dot represents an output bit, with the number inside indicating the estimated delay for selecting adder input
bits. The agent’s actions involve adding full or half adders to compress the bits until each binary digit contains
no more than two bits. The final reward, rT , is defined as the inverse of the delay, encouraging designs with
lower delays. (b) Binary bit notation. 0/1 are values of bits for the example multiplication. (c) Logic gate
notation. The actual logic gate circuit design for each state.

compress bits at the action digit, which is defined as the lowest digit containing more than two bits,
as indicated in Fig. 4a. Half and full adders compress two or three bits in the k-th digit and generate
a carry-out bit in the (k + 1)-th digit and a sum bit in the k-th digit. Rough delays for all bits are
estimated, assuming a one-unit delay for all basic logic gates, as shown in the dots of Fig. 4a. To
minimize the increase in total delay, the bits with the lowest estimated delays are selected as inputs
for the adders. The game terminates at step T when all digits have two or fewer bits. A reward rT is
computed through the synthesis tools as the negative of the delay, denoted rT = −delay. Moreover,
a penalty term −p is also applied to rt if the action at−1 uses a half adder, where 1 ≤ t ≤ T . This
penalty reflects that a full adder accepts three input bits (two addend bits and a carry-in bit) and
produces two output bits (a sum bit and a carry-out bit), effectively reducing the bit count. In contrast,
a half adder only processes two addend bits and outputs two bits, thus not contributing to a reduction
in bit count. A half adder’s lack of bit count reduction can lead to more adder modules, increasing
the overall module area.

We train an RL agent with policy and value networks using the PPO method. Both networks are built
by multi-layer perceptions (MLPs) [33] with three layers. The inputs comprise pre-defined features
as Table 1, including action digit, max delay, number of half adders, eligible action type, and the
estimated delays of bits. The policy and value networks contain (64, 16, 2) and (64, 8, 1) neurons in
each layer. The last layer of the policy network is connected to a Softmax activation function [34] for
choosing actions.

Table 1: State features for policy and value network.
Feature Size Description

Action digit 1 Digit for action.
Max delay 1 Maximum estimated delay value of all bits.
Number of half adders 1 Number of added half adders in action digit.
Mask for action 2 The mask for ensuring valid action.
Delay of action bits 3 The delays of bits for action.

When training, the objective function can be defined as follows for maximizing the game’s cumulative
reward:

J(θ) = Eτ∼πθ

[
GT

]
= Eτ∼πθ

[T∑
i=0

γiri
]

(3)

6

where τ = (s0, a0, s1, r1, a1, ..., aT−1, sT , rT) is a trajectory from the game episode, and πθ denotes
the policy parameterized by θ. GT refers to the cumulative discounted reward from step 0 to step
T . The discount factor γ adjusts the emphasis between immediate and future rewards. When
implementing the PPO, the objective function for optimizing the policy network can be formalized as:

L(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(4)

where Êt[·] indicates the empirical average over a finite batch of samples, and rt(θ) denotes the
probability ratio πθ(at|st)

πθold
(at|st) . Here, θold is the policy network parameters before the update. Ât =

Gt − V̂t is an estimation of the advantage function at step t, and V̂t is the value estimated by the value
network. clip(·, 1− ϵ, 1 + ϵ) is the function restricting results to the interval [1− ϵ, 1 + ϵ].

Simultaneously, the value network with parameters ϕ is updated by optimizing the following objective
function L(ϕ) = Êt

[
smooth_L1(Gt, V̂t)

]
, where smooth_L1(·) is the smooth L1 loss function [35].

Synthesis Acceleration. In RL-MUL [18], running synthesis tools proved to be a bottleneck,
especially for scaling to multipliers with higher bit-widths. To address this, our enhancements to
the synthesis flow yield a 10× speedup in reward computation without sacrificing accuracy. These
modifications facilitate the design of multipliers up to 64-bit, expanding from the 16-bit limit in
RL-MUL. Enhancements include activating the fast mode in the logical synthesis script and adopting
direct code template-based generation of Verilog HDL code from our search results, moving away
from the time-consuming EasyMAC [36] tool.

Co-design Framework. As shown in Fig. 1, we developed a joint design approach to optimize the
multiplier’s two primary components: the prefix and compressor trees. Our method involves an
iterative process where each round involves optimizing the compressor tree with a fixed prefix tree
and searching for an ideal prefix tree that aligns with the optimized compressor. This alternating
optimization continues until the computational iterations conclude.

4 Experiments

We use the logic synthesis tool Yosys 0.27 [37] and the physical synthesis tool OpenROAD 2.0 [38]
with Nangate45 [39] and ASAP7 [40] libraries to implement experiments. Both synthesis tools are
open-sourced for result reproduction. All experiments are run on one GeForce RTX 3090 GPU and
one AMD Ryzen 9 5950X 16-core CPU. Detailed settings are in Appendix A.3 and A.5. All designed
modules have successfully undergone functional verification.

4.1 Adder Design

Theoretical Evaluation. As illustrated in Fig. 1b, prefix tree structures define the technology-
independent theoretical metrics of level and size. Empirically, optimizing the level usually presents
more challenges than size. Therefore, we set the search objective when optimizing theoretical
metrics to find the optimal size for each specified upper bound level L. We begin our search with
the Sklansky adder [12], which has a theoretical minimum level of log2 N . Starting with L set at
this minimum, we incrementally increase it for each new iteration, using the smallest prefix tree
identified in the previous round as the initial state. We limited the number of steps to 4 × 105 for
each search iteration. For baselines, the results were obtained directly from the respective original
publications. Table 2 shows that our method surpasses the state-of-the-art designs in [14]. Some
discovered adder structures are presented in Fig. 5. Despite the exponentially growing search space,
our MCTS method can enhance 128-bit adders, surpassing the designs from optimization-based
methods. Notably, guided by Snir’s theoretical lower bound for size at a given level [41], we were
the first to discover an optimal 128-bit adder with 10 levels and a size of 244.

Practical Evaluation. Practical metrics, including the delay and area of hardware modules, are
computed through synthesis tools for evaluation. We run 1000 full syntheses for adders in each
method to ensure a fair comparison. Our ArithTreeRL method begins each search from one of three
adders: Sklansky [12], Brent-Kung [43], and ripple-carry [44]. A two-level retrieval strategy is
implemented by dividing the search into two stages: (1) 5000 fast syntheses. (2) 500 full syntheses
with the top 500 adders selected from the first stage. Efficiency tests show that one full flow’s
computational load equals 10 fast flows. Thus, the proposed strategy achieves the same computational

7

Table 2: Comparisons of discovered adders in size and area. Smaller sizes are preferable.
Input Bit Level Theory Size Bound [41] Sklansky Size [12] Area Heuristic [42] Best Known Size [14] ArithTreeRL

64 6 120 192 169 167 167
64 7 119 - 138 126 126
64 8 118 - 120 118 118
64 9 117 - 117 117 117
64 10 116 - 116 116 116
128 7 247 448 375 364 364
128 8 246 - 304 276 273
128 9 245 - 284 250 248
128 10 244 - 257 245 244

128-bit adder (level = 8, size = 273)

128-bit adder (level = 9, size = 248)

128-bit adder (level = 10, size = 244)

Figure 5: Some first discovered prefix trees for 128-bit adders with the smallest sizes.

300 350 400 450 500 550 600 650 700
Area (m2)

0.25

0.30

0.35

0.40

0.45

0.50

De
la

y
(n

s)

32-bit adder
PrefixRL
PrefixRL (2-level retr.)
ArithTreeRL
Sklansky
Brent-Kung
Kogge-Stone

600 800 1000 1200 1400
Area (m2)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

De
la

y
(n

s)

64-bit adder
PrefixRL
PrefixRL (2-level retr.)
ArithTreeRL
Sklansky
Brent-Kung
Kogge-Stone

1000 1500 2000 2500 3000
Area (m2)

0.4

0.6

0.8

1.0

1.2

1.4

De
la

y
(n

s)
128-bit adder

PrefixRL
PrefixRL (2-level retr.)
ArithTreeRL
Sklansky
Brent-Kung
Kogge-Stone

Figure 6: Comparison of adders in delay and area. Each point represents one adder and line segments
connect Pareto-optimal adders. ‘PrefixRL (2-level retr.)’ is the raw PrefixRL method improved by our two-level
retrieval strategy. Sklansky, Brent-Kung, and Kogge-Stone refer to human-designed adders. ArithTreeRL can
significantly improve the delay and area, particularly for high-bit adders. Furthermore, it can discover adders
with minimal delays. Our two-level retrieval strategy can effectively find superior designs.

volume with 1000 full flows. The state-of-the-art method PrefixRL [17] is implemented with optimal
settings. In our results in Fig. 6, each prefix adder is represented by a 2D point based on its delay
and area. It shows the significant improvement achieved when our two-level retrieval strategy is
used in the PrefixRL method due to efficiency improvements that facilitate exploring an expanded
sample corpus. Moreover, employing the MCTS method can lead to the discovery of more superior
adders because this method effectively navigates through problems with vast state spaces, utilizing
information stored during the search process. Overall, our approach can reduce the delay or area
of adders by up to 26% and 30%, respectively, compared with PrefixRL, while maintaining the
computational amount.

Visualization. The scores of the first actions after 400 search steps when optimizing the theoretical
metrics are visualized as heatmaps in Fig. 7. In the selection phase, the action with the highest score
is chosen. For example, the first action for the 8-bit adder is to delete the (5, 7) cell with the highest
score because this reduces the size of the adder. On the contrary, the action with the lowest score is to
add the (4, 7) cell because it augments both size and level.

8

Del (5, 7)

Add (4, 7) Add (6, 15) Add (4, 8)

Add (8, 9)Add (19, 21)

Add (52, 62) Add (22, 23)

Figure 7: Heatmap for first action scores. The actions with the highest and lowest scores are marked.

Accuracy of Fast Flow. The time-consuming routing phase is removed in the fast flow of the
two-level strategy. To evaluate the impact of this simplification, we tested the simulation accuracy of
the fast flow against the full flow. The results in Table 3 indicate that the fast flow can still achieve an
utterly accurate area estimation and over 95% accurate delay. Therefore, the fast synthesis flow can
help improve efficiency without significantly losing accuracy.

Table 3: Accuracy of fast synthesis flow.
Bits of adders 32 64 128

Delay Acc. (%) 96.11±0.86 95.82±1.12 95.34±2.60
Area Acc. (%) 100.00±0.00 100.00±0.00 100.00±0.00

4.2 Multiplier Design

Practical Evaluation. Given the lack of a commonly adopted theoretical metric for multipliers, we
use practical metrics for evaluation. Our multiplier design utilizes a co-design framework with three
iterative search rounds, incorporating 900 steps for the compressor tree and 100 for the prefix tree
each round. This yields 3000 steps, consistent with the search steps of other baseline methods in our
experiments. As shown in Fig. 8 and Appendix Fig. 14, we compared the effectiveness of our method
with several baselines, including the human-designed Wallace multiplier [13], optimization-based
methods including GOMIL [16] and SA [45], the default multiplier given in the synthesis tool, and the
learning-based method RL-MUL [18]. In our evaluation, we assessed the multipliers’ performance
by adjusting the expected delay parameter in the synthesis process. Subsequently, the resulting areas
of each multiplier at different delays are depicted as a segmented line. Consistent with the RL-
MUL [18] assessment approach, each method selects an optimal multiplier for comparison. Results
for Wallace [13], GOMIL [16], SA [45], and RL-MUL [18] in 8/16 bits are referenced from the
RL-MUL work. RL-MUL method is reproduced and tested in 32/64 bits. The results show that the co-
design method, ArithTreeRL, outperforms the synthesis tool’s baselines and default multipliers. This
is because of the co-design framework, the restructured MultGame, and the improved synthesis flow.
It can achieve second-best results even when only optimizing the compressor tree. Compared with the
state-of-the-art RL-MUL method, our method can reduce the delay by up to 33% and the area by 45%.
Furthermore, our method can reduce the delay of the default multipliers used in the Yosys tool [37]
by up to 16% and the area by 35%. We also report the delays and areas in Table 4. Our method
consistently achieves minimal delays for the delay minimization. When optimizing for a trade-off
(delay + 0.001area), our approach achieves optimal or comparable results. Also, The multipliers
designed by 45nm technology are compatible with the 7nm [40] without any modifications.

Efficiency. Due to the time-consuming nature of the full synthesis flow, we developed a synthesis
flow that is over 10× faster while maintaining high simulation accuracy for adder design, as discussed
in the method. The efficiency is shown in Fig. 9a. Additionally, we optimized the logic synthesis
and HDL code generation processes in the synthesis flow for multiplier design. According to Fig.
9b, our improved fast flow can accelerate the process up to 20×.

5 Conclusion

Designing adder and multiplier modules is a fundamental and crucial task in computer science. We
first model this task as a tree-generation process, conceptualizing it as a sequential decision-making

9

Table 4: Numerical comparison of multipliers in delay (ns) and area (µm2). (45nm)
Num of bits 8-bit 16-bit 32-bit 64-bit

Objective Method area delay area delay area delay area delay

RL-MUL 496 0.7089 2271 1.1330 8767 2.0150 34810 2.6771
PPO w/ raw flow 496 0.6921 2259 1.1277 8788 1.9437 34810 2.6355

Min Delay Default 555 0.6203 2499 0.8908 10637 1.0745 42128 1.3498
PPO 692 0.5180 2551 0.7392 11329 0.9960 41237 1.2424
ArithTreeRL 714 0.4905 2955 0.7138 11460 0.9685 39436 1.2401

RL-MUL 388 0.7691 1695 1.2668 7033 2.1932 28616 2.8891
PPO w/ raw flow 388 0.7618 1687 1.2268 7036 2.0945 28609 2.8928

Trade-off Default 367 0.6837 1590 0.9997 6685 1.4170 26871 1.9403
PPO 377 0.6558 1568 1.0135 6581 1.3856 26088 1.7941
ArithTreeRL 384 0.6420 1566 0.9487 6469 1.3262 26087 1.7038

1000 1250 1500 1750 2000 2250 2500 2750 3000
Area (m2)

0.6

0.8

1.0

1.2

1.4

De
la

y
(n

s)

16-bit multiplier

3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
Area (m2)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
De

la
y

(n
s)

32-bit multiplier

20000 25000 30000 35000 40000
Area (m2)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

De
la

y
(n

s)

64-bit multiplier

120 125 130

0.50

0.55

0.60

0.65

7nm

490 500 510 520 530

0.65

0.70

0.75

0.80

0.85
7nm

1950 1975 2000 2025 2050

0.9

1.0

1.1
7nm

Method (raw flow): Wallace GOMIL SA RL-MUL PPO (our) Method (our flow): Default PPO (our) ArithTreeRL Technology: 45nm 7nm

Figure 8: Comparison of multipliers. The designs were tested in 45nm and 7nm. Each segmented line
represents the performance of one multiplier under different timing constraints. ‘Method (our flow)’ are
methods with our improved flow. The ‘Default’ multipliers are those generated by the synthesis tool by
default. ‘ArithTreeRL’ is our co-design method combining PPO and MCTS, while ‘PPO (our)’ optimizes
only the compressor tree. We apply 45nm designs to the 7nm library without modifications, showcasing the
transferability.

0 5 10 15 20 25 30 35 40
Time (s)

32

64

128

Nu
m

 o
f b

its

7.0

18.8

39.2

0.6

0.9

1.3

(a) Adder design
full flow
fast flow (ArithTreeRL)

0 20 40 60 80 100 120 140 160
Time (s)

8

16

32

64

Nu
m

 o
f b

its

8.1

11.3

28.7

156.7

0.4

1.2

4.2

16.7

(b) Multiplier design
raw flow
fast flow (ArithTreeRL)

Figure 9: Design flow time consumption. (average of 1000 runs)

game. Then, we propose a reinforcement learning method to solve it, facilitating a scalable and
efficient search for globally optimal designs. Through extensive experiments, our approach achieves
state-of-the-art performance for adders and multipliers in terms of delay and area within the same
computational resources. Moreover, our method has demonstrated transferability, as the designs
we discovered can be applied to more advanced technology processes. This enhancement in basic
arithmetic modules optimizes hardware performance and size, showing significant potential for
boosting computationally intensive fields.

Limitations. This paper focuses exclusively on designing and optimizing adder and multiplier
modules, which are fundamental components in computational systems. It does not explore other
basic elements, such as exponentiation or more complex arithmetic units. However, our method is
naturally extendable to other arithmetic operations, such as exponentiation. Future research could
explore these extensions to unlock further designs across various hardware components.

10

Acknowledgments and Disclosure of Funding

We gratefully acknowledge Ronghao Lin of Sun Yat-sen University for his assistance with the
introduction video. This paper is partially supported by the National Key R&D Program of China
No.2022ZD0161000 and the General Research Fund of Hong Kong No.17200622 and 17209324.

References
[1] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, and H. Qian, “Fully hardware-implemented

memristor convolutional neural network,” Nature, vol. 577, no. 7792, pp. 641–646, 2020.

[2] M. Haseeb and F. Saeed, “High performance computing framework for tera-scale database search of mass
spectrometry data,” Nature computational science, vol. 1, no. 8, pp. 550–561, 2021.

[3] R. Orús, S. Mugel, and E. Lizaso, “Quantum computing for finance: Overview and prospects,” Reviews in
Physics, vol. 4, p. 100028, 2019.

[4] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama,
A. Ray et al., “Training language models to follow instructions with human feedback,” Advances in Neural
Information Processing Systems (NeurIPS), vol. 35, pp. 27 730–27 744, 2022.

[5] J. Min, S. Demchyshyn, J. R. Sempionatto, Y. Song, B. Hailegnaw, C. Xu, Y. Yang, S. Solomon, C. Putz,
L. E. Lehner et al., “An autonomous wearable biosensor powered by a perovskite solar cell,” Nature
Electronics, pp. 1–12, 2023.

[6] M. T. Bohr and I. A. Young, “Cmos scaling trends and beyond,” IEEE Micro, vol. 37, no. 6, pp. 20–29,
2017.

[7] Y. Taur, “Cmos design near the limit of scaling,” IBM Journal of Research and Development, vol. 46, no.
2.3, pp. 213–222, 2002.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recognition (CVPR). IEEE, 2016, pp. 770–778.

[9] D. P. Rodgers, “Improvements in multiprocessor system design,” ACM SIGARCH Computer Architecture
News, vol. 13, no. 3, pp. 225–231, 1985.

[10] T. Hiramoto, “Five nanometre cmos technology,” Nature Electronics, vol. 2, no. 12, pp. 557–558, 2019.

[11] S. Salahuddin, K. Ni, and S. Datta, “The era of hyper-scaling in electronics,” Nature Electronics, vol. 1,
no. 8, pp. 442–450, 2018.

[12] J. Sklansky, “Conditional-sum addition logic,” IEEE Transactions on Electronic computers, pp. 226–231,
1960.

[13] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions on electronic Computers, pp. 14–17,
1964.

[14] S. Roy, M. Choudhury, R. Puri, and D. Z. Pan, “Towards optimal performance-area trade-off in adders
by synthesis of parallel prefix structures,” in Proceedings of the Annual Design Automation Conference
(DAC). ACM/IEEE, 2013, pp. 1–8.

[15] ——, “Towards optimal performance-area trade-off in adders by synthesis of parallel prefix structures,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 33, no. 10,
p. 1517, 2014.

[16] W. Xiao, W. Qian, and W. Liu, “Gomil: Global optimization of multiplier by integer linear programming,”
in Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2021, pp. 374–379.

[17] R. Roy, J. Raiman, N. Kant, I. Elkin, R. Kirby, M. Siu, S. Oberman, S. Godil, and B. Catanzaro, “Prefixrl:
Optimization of parallel prefix circuits using deep reinforcement learning,” in Proceedings of the Annual
Design Automation Conference (DAC). ACM/IEEE, 2021, pp. 853–858.

[18] D. Zuo, Y. Ouyang, and Y. Ma, “RL-MUL: Multiplier design optimization with deep reinforcement
learning,” in Proceedings of the Annual Design Automation Conference (DAC). ACM/IEEE, 2023, pp.
1–8.

11

[19] H. Geng, Y. Ma, Q. Xu, J. Miao, S. Roy, and B. Yu, “High-speed adder design space exploration via
graph neural processes,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 41, no. 8, pp. 2657–2670, 2021.

[20] Y. Ma, S. Roy, J. Miao, J. Chen, and B. Yu, “Cross-layer optimization for high speed adders: A pareto
driven machine learning approach,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 38, no. 12, pp. 2298–2311, 2018.

[21] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[22] S. Palnitkar, Verilog HDL: a guide to digital design and synthesis. Prentice Hall Professional, 2003,
vol. 1.

[23] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,
S. Samothrakis, and S. Colton, “A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43, 2012.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

[25] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solution of a general class of recurrence
equations,” IEEE Transactions on Computers (TC), vol. 100, no. 8, pp. 786–793, 1973.

[26] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” Journal of the ACM (JACM), vol. 27, no. 4,
pp. 831–838, 1980.

[27] C. H. Roth Jr, L. L. Kinney, and E. B. John, Fundamentals of logic design. Cengage Learning, 2020.

[28] M. Świechowski, K. Godlewski, B. Sawicki, and J. Mańdziuk, “Monte carlo tree search: A review of
recent modifications and applications,” Artificial Intelligence Review, vol. 56, no. 3, pp. 2497–2562, 2023.

[29] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell,
T. Ewalds, P. Georgiev et al., “Grandmaster level in starcraft ii using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[30] A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes, M. Barekatain, A. Novikov, F. J. R Ruiz,
J. Schrittwieser, G. Swirszcz et al., “Discovering faster matrix multiplication algorithms with reinforcement
learning,” Nature, vol. 610, no. 7930, pp. 47–53, 2022.

[31] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in European conference on machine
learning (ECML). Springer, 2006, pp. 282–293.

[32] A. Dedieu and J. Amar, “Deep reinforcement learning for 2048,” in Conference on Neural Information
Processing Systems (NeurIPS), 2017.

[33] F. Murtagh, “Multilayer perceptrons for classification and regression,” Neurocomputing, vol. 2, no. 5-6, pp.
183–197, 1991.

[34] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning. Springer, 2006, vol. 4.

[35] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on computer vision (ICCV).
IEEE, 2015, pp. 1440–1448.

[36] J. Zhang, Q. Gao, Y. Guo, B. Shi, and G. Luo, “Easymac: design exploration-enabled multiplier-
accumulator generator using a canonical architectural representation,” in Proceedings of Asia and South
Pacific Design Automation Conference (ASP-DAC). IEEE, 2022, pp. 647–653.

[37] C. Wolf, “Yosys open synthesis suite,” 2016.

[38] T. Ajayi and D. Blaauw, “Openroad: Toward a self-driving, open-source digital layout implementation
tool chain,” in Proceedings of Government Microcircuit Applications and Critical Technology Conference,
2019.

[39] I. NanGate, “NanGate FreePDK45 open cell library,” 2008.

[40] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline, C. Ramamurthy, and G. Yeric, “ASAP7:
A 7-nm FinFET predictive process design kit,” Microelectronics Journal, vol. 53, 2016.

12

[41] M. Snir, “Depth-size trade-offs for parallel prefix computation,” Journal of Algorithms, vol. 7, no. 2, pp.
185–201, 1986.

[42] T. Matsunaga and Y. Matsunaga, “Area minimization algorithm for parallel prefix adders under bitwise
delay constraints,” in Proceedings of the 17th ACM Great Lakes symposium on VLSI, 2007, pp. 435–440.

[43] Brent and Kung, “A regular layout for parallel adders,” IEEE Transactions on Computers (TC), vol. 100,
no. 3, pp. 260–264, 1982.

[44] P. Behrooz, “Computer arithmetic: Algorithms and hardware designs,” Oxford University Press, vol. 19,
pp. 512 583–512 585, 2000.

[45] P. J. Van Laarhoven, E. H. Aarts, P. J. van Laarhoven, and E. H. Aarts, Simulated annealing. Springer,
1987.

[46] J. K. Ousterhout et al., Tcl: An embeddable command language. University of California, Berkeley,
Computer Science Division, 1989.

[47] S. D. Compiler, “Synopsys design compiler,” Pages/default. aspx, 2016.

[48] N. H. Weste and D. Harris, CMOS VLSI design: a circuits and systems perspective. Pearson Education
India, 2015.

[49] T. Han, D. A. Carlson, and S. P. Levitan, VLSI DESIGN OF HIGH-SPEED, LOW-AREA ADDITION
CIRCUITRY. IEEE, 1987.

[50] J. Liu, S. Zhou, H. Zhu, and C.-K. Cheng, “An algorithmic approach for generic parallel adders,” in
International Conference on Computer Aided Design (ICCAD). IEEE, 2003, pp. 734–740.

[51] J. P. Fishburn, “A depth-decreasing heuristic for combinational logic: or how to convert a ripple-carry adder
into a carry-lookahead adder or anything in-between,” in Proceedings of the Annual Design Automation
Conference (DAC). ACM/IEEE, 1991, pp. 361–364.

[52] R. Zimmermann, “Non-heuristic optimization and synthesis of parallel-prefix adders,” in proc. of IFIP
workshop. Citeseer, 1996.

[53] H. Zhu, C.-K. Cheng, and R. Graham, “Constructing zero-deficiency parallel prefix adder of minimum
depth,” in Proceedings of Asia and South Pacific Design Automation Conference (ASP-DAC), 2005, pp.
883–888.

[54] F. S. Melo, “Convergence of q-learning: A simple proof,” Institute Of Systems and Robotics, Tech. Rep, pp.
1–4, 2001.

[55] L. Dadda, “Some schemes for parallel multipliers,” Alta frequenza, vol. 34, pp. 349–356, 1965.

[56] W. J. Townsend, E. E. Swartzlander Jr, and J. A. Abraham, “A comparison of dadda and wallace multiplier
delays,” in Advanced signal processing algorithms, architectures, and implementations XIII, vol. 5205.
SPIE, 2003, pp. 552–560.

[57] D. J. Mankowitz, A. Michi, A. Zhernov, M. Gelmi, M. Selvi, C. Paduraru, E. Leurent, S. Iqbal, J.-B.
Lespiau, A. Ahern et al., “Faster sorting algorithms discovered using deep reinforcement learning,” Nature,
vol. 618, no. 7964, pp. 257–263, 2023.

[58] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lockhart,
D. Hassabis, T. Graepel et al., “Mastering atari, go, chess and shogi by planning with a learned model,”
Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[59] Z. Wang, J. Wang, Q. Zhou, B. Li, and H. Li, “Sample-efficient reinforcement learning via conservative
model-based actor-critic,” in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), vol. 36,
no. 8, 2022, pp. 8612–8620.

[60] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot, M. Azar,
and D. Silver, “Rainbow: Combining improvements in deep reinforcement learning,” in Proceedings of the
AAAI conference on artificial intelligence (AAAI), vol. 32, no. 1, 2018.

[61] R. Yang, J. Wang, Z. Geng, M. Ye, S. Ji, B. Li, and F. Wu, “Learning task-relevant representations for
generalization via characteristic functions of reward sequence distributions,” in Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD), 2022, pp. 2242–2252.

13

[62] J. Wang, R. Yang, Z. Geng, Z. Shi, M. Ye, Q. Zhou, S. Ji, B. Li, Y. Zhang, and F. Wu, “Generalization in
visual reinforcement learning with the reward sequence distribution,” arXiv preprint arXiv:2302.09601,
2023.

[63] Z. Wang, T. Pan, Q. Zhou, and J. Wang, “Efficient exploration in resource-restricted reinforcement
learning,” in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), vol. 37, no. 8, 2023, pp.
10 279–10 287.

[64] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing
atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602, 2013.

[65] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous
control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971, 2015.

[66] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for reinforcement learning
with function approximation,” Conference on Neural Information Processing Systems (NeurIPS), vol. 12,
1999.

[67] A. Hosny, S. Hashemi, M. Shalan, and S. Reda, “Drills: Deep reinforcement learning for logic synthesis,” in
2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2020, pp. 581–586.

[68] K. Zhu, M. Liu, H. Chen, Z. Zhao, and D. Z. Pan, “Exploring logic optimizations with reinforcement
learning and graph convolutional network,” in Proceedings of the 2020 ACM/IEEE Workshop on Machine
Learning for CAD (MLCAD), 2020, pp. 145–150.

[69] Z. Wang, J. Wang, D. Zuo, J. Yunjie, X. Xia, Y. Ma, H. Jianye, M. Yuan, Y. Zhang, and F. Wu, “A
hierarchical adaptive multi-task reinforcement learning framework for multiplier circuit design,” in Forty-
first International Conference on Machine Learning (ICML), 2024.

[70] Z. Wang, L. Chen, J. Wang, Y. Bai, X. Li, X. Li, M. Yuan, H. Jianye, Y. Zhang, and F. Wu, “A circuit
domain generalization framework for efficient logic synthesis in chip design,” in Forty-first International
Conference on Machine Learning (ICML), 2024.

[71] D. Niu, Y. Dong, Z. Jin, C. Zhang, Q. Li, and C. Sun, “Ossp-pta: An online stochastic stepping policy for
pta on reinforcement learning,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 2023.

[72] Z. Jin, H. Pei, Y. Dong, X. Jin, X. Wu, W. W. Xing, and D. Niu, “Accelerating nonlinear dc circuit simulation
with reinforcement learning,” in Proceedings of the 59th ACM/IEEE Design Automation Conference (DAC),
2022, pp. 619–624.

[73] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang, Y.-J. Lee, E. Johnson, O. Pathak,
A. Nazi et al., “A graph placement methodology for fast chip design,” Nature, vol. 594, no. 7862, pp.
207–212, 2021.

[74] R. Cheng and J. Yan, “On joint learning for solving placement and routing in chip design,” Advances in
Neural Information Processing Systems (NeurIPS), vol. 34, pp. 16 508–16 519, 2021.

[75] Y. Lai, Y. Mu, and P. Luo, “Maskplace: Fast chip placement via reinforced visual representation learning,”
Advances in Neural Information Processing Systems (NeurIPS), vol. 35, pp. 24 019–24 030, 2022.

[76] Y. Lai, J. Liu, Z. Tang, B. Wang, J. Hao, and P. Luo, “Chipformer: Transferable chip placement via offline
decision transformer,” in ICML. PMLR, 2023, pp. 18 346–18 364.

[77] Y. Shi, K. Xue, L. Song, and C. Qian, “Macro placement by wire-mask-guided black-box optimization,”
Advances in Neural Information Processing Systems (NeurIPS), 2023.

[78] R. Zhong, J. Ye, Z. Tang, S. Kai, M. Yuan, J. Hao, and J. Yan, “Preroutgnn for timing prediction with order
preserving partition: Global circuit pre-training, local delay learning and attentional cell modeling,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 15, 2024, pp. 17 087–17 095.

[79] Z. Geng, J. Wang, Z. Liu, S. Xu, Z. Tang, M. Yuan, H. Jianye, Y. Zhang, and F. Wu, “Reinforcement
learning within tree search for fast macro placement,” in Forty-first International Conference on Machine
Learning (ICML), 2024.

[80] Z. Wang, Z. Geng, Z. Tu, J. Wang, Y. Qian, Z. Xu, Z. Liu, S. Xu, Z. Tang, S. Kai et al., “Benchmarking
end-to-end performance of ai-based chip placement algorithms,” arXiv preprint arXiv:2407.15026, 2024.

14

[81] H. Chen, K.-C. Hsu, W. J. Turner, P.-H. Wei, K. Zhu, D. Z. Pan, and H. Ren, “Reinforcement learning
guided detailed routing for custom circuits,” in Proceedings of the 2023 International Symposium on
Physical Design (ISPD), 2023, pp. 26–34.

[82] T. Qu, Y. Lin, Z. Lu, Y. Su, and Y. Wei, “Asynchronous reinforcement learning framework for net order
exploration in detailed routing,” in 2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2021, pp. 1815–1820.

[83] X. Du, C. Wang, R. Zhong, and J. Yan, “Hubrouter: Learning global routing via hub generation and
pin-hub connection,” Advances in Neural Information Processing Systems (NeurIPS), vol. 36, 2024.

[84] S. A. Beheshti-Shirazi, A. Vakil, S. Manoj, I. Savidis, H. Homayoun, and A. Sasan, “A reinforced learning
solution for clock skew engineering to reduce peak current and ir drop,” in Proceedings of the 2021 on
Great Lakes Symposium on VLSI, 2021, pp. 181–187.

[85] H. Wang, K. Wang, J. Yang, L. Shen, N. Sun, H.-S. Lee, and S. Han, “Gcn-rl circuit designer: Transferable
transistor sizing with graph neural networks and reinforcement learning,” in Proceedings of the Annual
Design Automation Conference (DAC). ACM/IEEE, 2020, pp. 1–6.

[86] Y.-C. Lu, S. Nath, V. Khandelwal, and S. K. Lim, “Rl-sizer: Vlsi gate sizing for timing optimization
using deep reinforcement learning,” in Proceedings of the Annual Design Automation Conference (DAC).
ACM/IEEE, 2021, pp. 733–738.

[87] Z. Shi, M. Li, S. Khan, L. Wang, N. Wang, Y. Huang, and Q. Xu, “Deeptpi: Test point insertion with deep
reinforcement learning,” in 2022 IEEE International Test Conference (ITC). IEEE, 2022, pp. 194–203.

15

Appendix

A Method Details

A.1 Level Upper Bound

When optimizing adders in theoretical metrics, the search process is stratified based on a series of
incremental level upper bounds, L. The initial bound is set to log2 N and is incrementally raised in
subsequent stages. For each new stage, the starting configuration state is the adder design with the
minimum size obtained from the previous stage’s search, as illustrated in Fig. 10.

1st search

2nd search

N
L = 6

size = N

N L = 7

size = N
…

192

191 191

191 190

167

166 167

…

……

…

Figure 10: Level upper bound L for optimizing theoretical metrics of adders. The example is for
64-bit adder design. The search is divided into stages, and the level upper bound L increases one at a
time. The initial state for each search is set to the best adder found in the last search iteration.

A.2 Two-Level Retrieval

In our two-level retrieval strategy, we implement a fast synthesis flow with minimal loss of precision.
In the fast flow, we keep all other steps, including logic synthesis, clock tree synthesis, and placement,
but remove the most expensive routing step. According to our efficiency test in Fig. 9, our fast
synthesis flow without the routing step can speed up more than ten times. At the same time, the
fast flow can still achieve highly accurate area measurements and 95% accurate delay estimations
as detailed in Table 3. Thus, the fast synthesis flow can help search for as many adders as possible
without losing accuracy. At the end of the first stage of two-level retrieval, we use the coordinate
(area, delay) as the representative points for adders and compute all distances from these points to
the Pareto boundary. We sort the distances in ascending order and use the K-th distance D as the
threshold for selecting the adders to the second stage. As shown in Fig. 11, the K adders with the
shortest distances to the Pareto boundary—constituting the top 10% in our efficiency settings—will
be selected for full synthesis execution.

A.3 Synthesis Scripts

The logical and physical synthesis process for Yosys and OpenROAD is implemented using the Tcl
scripting language [46]. We provide the complete Tcl scripts used for the logical synthesis in Fig. 12.

A.4 Cache, Save, and Recover Design

Our configuration allows the prefix and compressor trees to be easily saved and restored. The prefix
tree is stored as an upper triangular matrix AN×N , where a cell (i, j) is marked with Ai,j = 1 if
it exists; otherwise, Ai,j = 0 if it does not. The compressor tree is represented by a variable-length
sequence S = {a0, a1, a2, . . . , aT−1} with each ai ∈ 0, 1. Here, ai = 0 represents the addition of
a full adder, and ai = 1 signifies the addition of a half adder. In the context of our game modeling,
the matrix A and the sequence S together can completely reconstruct the prefix and compressor
trees, respectively. Furthermore, both structures can be serialized into strings. These strings are then

16

Area

D
e
la

y

K = 8

Selected

Unselected

Figure 11: Select adders in two-level retrieval. After the first stage of the two-level retrieval process,
each adder is represented by a 2D point based on its delay and area. When selecting the top K
adders for the second stage, we sort them according to their distances from these points to the Pareto
boundary. The K adders with the smallest distances are selected. The threshold distance, denoted as
D, is defined by the distance of the K-th adder to the Pareto boundary.

read -sv input.v

synth -top main

flatten

opt

abc -constr ./abc_constr -fast -liberty

library_typical.lib -D 100

write_verilog output.v

set_driving_cell BUF_X1

set_load 10.0 [all_outputs]

constraint file: abc_constr

logic synthesis script

Figure 12: Scripts for logical synthesis.

processed through a hash function to generate fixed-length values that serve as keys in our cache.
This cache stores the results of previous syntheses, which helps in avoiding redundant synthesis runs.

A.5 Hyperparameter

Our hyperparameter configuration can be found in Table 5.

Table 5: Hyperparameter Configuration
Name Description Value

α Weight for delay and area in Fig. 3 0.01/0.001/0 *

β Sum weight in Eq. 1 0.01
c Sum weight in Eq. 2 10

√
2

p Penalty value for using half adders 0.1
γ Discount factor in Eq. 3 0.8
ϵ Gradient clip norm in Eq. 4 0.2
- Batch size for PPO 64
- Replay buffer size for PPO 6N2

- learning rate 0.001

* 0.01 for designing multipliers, 0 (ripple-carry adder as initial
state) and 0.001 (others) for designing adders, where the unit
of delay is ns, and the unit of area is µm2.

17

A.6 Input Selection in Compressor Tree

In the compressor tree design, both half and full adders are utilized. When assigning input bits to a
full or half adder, we prioritize the bits with minimal estimated delays. For instance, consider the case
where we are selecting inputs for action a0, and the available input bits have delays {0, 0, 0, 0, 1}. In
this situation, the three bits with a delay of 0 would be chosen as inputs for a full adder to minimize the
overall delay. The rationale behind this is that adders introduce additional delays, and our objective is
to minimize the maximum delay across all bits. A more nuanced strategy is employed when inputs
are fed into a full adder: the bit with the highest delay out of the three is connected to the carry input.
For example, given input bits with delays {0, 0, 1}, the bit with a delay of 1 would be connected to
the carry input of the full adder. This strategy is adopted because the delay from the carry input to the
output bits involves only two logic gates, which is faster than the three logic gates’ delay from the
addend inputs to the outputs.

A.7 Strategy for Searching Multipliers

In the search process, each multiplier is tested on two boundary expected delay parameters (50 and
2 × 105). The average delay and area are then calculated from the results obtained at these two
boundary conditions. The performance score for each multiplier is the weighted sum of the average
delay and area. The multiplier with the highest score is selected for final evaluation.

A.8 Module Functionality Verification

Each module undergoes a rigorous testing protocol comprising 100 addition or multiplication op-
erations to ensure the correctness and reliability of its functionality. For specific test bench details,
please refer to our code.

B Supplementary Results

B.1 Adder Design

In addition to Fig. 5, we present some novel designs of the 128-bit adder discovered by our method
in Fig. 13, which achieve minimal sizes under the given levels.

As illustrated in Fig. 6, we concurrently present the timeline for optimizing key performance metrics
in the design of the adder. Our approach ensures sustained efficiency throughout the design process.
The primary bottleneck remains in the simulation phase.

Table 6: Time cost for Adder Design (hours).
Method 32-bit 64 bit 128-bit

PrefixRL 1.74 4.36 11.62
PrefixRL (two-level retrieval) 1.88 3.79 8.05
ArithTreeRL 1.71 3.68 7.34

B.2 Multiplier Design

The design results of the 8-bit multiplier are reported in Fig. 14.

B.3 Correlation between Metrics

We investigated the correlation between theoretical and practical metrics to demonstrate the signifi-
cance of optimizing theoretical metrics. For 64-bit and 128-bit adders, we sampled 6, 000 instances
to assess their theoretical and practical metrics. Our results show a high correlation between two
groups of metrics: level with delay and size with area, as illustrated in Fig. 15. Thus, structures with
lower levels and smaller sizes are more likely to result in adders with lower delays and smaller areas.

18

Figure 13: Additional examples of 128-bit adders. More structures of the 128-bit adder first
discovered by our method are shown.

200 300 400 500 600 700 800
Area (m2)

0.4

0.5

0.6

0.7

0.8

De
la

y
(n

s)

8-bit multiplier
Method (raw flow):
Wallace
GOMIL
SA
RL-MUL
PPO (our)
Method (our flow):
Default
PPO (our)
ArithTreeRL
Technology:
45nm
7nm

28 29 30 31 32

0.35

0.40

0.45

0.50
7nm

Figure 14: Comparison of 8-bit multipliers.

Figure 15: Correlation of theoretical and practical metrics. The fitted lines indicate strong
correlations in delay-level and area-size. The data are derived from 6k adders for each.

B.4 Commercial Synthesis Tool Results

In addition to our tests on open-source tools, we also utilized a commercial synthesis tool, Synopsys
Design Compiler 2020 [47], to demonstrate the generalizability of our approach. Table 7 presents the
results of the multipliers designed by this tool. We did not incorporate timing constraints when testing
the delay of the critical path. The technology library used was the Nangate 45nm library [39]. The
speed of our designed multiplier still holds a significant advantage, illustrating our design approach’s
broad applicability and substantial potential.

B.5 Design Time

The overall design time is reported in Table 8, and the duration is within an acceptable range for the
design process.

19

Table 7: Results of a commercial synthesis tool. All designs are the best-discovered multipliers
with the OpenROAD tool. Corresponding Verilog codes are input into the Synopsis Design Compiler
for synthesis.

Bits in multiplier 8-bit 16-bit 32-bit 64-bit

Method area (µm2) delay (ns) area (µm2) delay (ns) area (µm2) delay (ns) area (µm2) delay (ns)

Default 314.1 1.30 1288.5 2.60 5203.2 4.88 20844.3 9.29
RL-MUL 313.9 1.47 1373.6 2.98 5757.3 5.86 23563.6 11.73
PPO 416.6 1.65 1734.9 3.19 7331.5 6.07 29545.7 11.92
ArithTreeRL 465.5 1.20 1866.8 1.76 7555.5 2.34 30134.1 3.17

Table 8: Total design time.
Module Adder Multiplier

Bits 32 64 128 8 16 32 64
Time (h) 1.71 3.68 7.34 0.82 2.26 4.04 27.92

20

C Related Work

C.1 Computer Arithmetic

In the quest for high performance and low cost, computer arithmetic design plays a crucial role in
computer hardware, one of the most fundamental fields in computer science [44]. Issues for study
include number representation, arithmetic operations, and real arithmetic. The addition is the most
common arithmetic operation and serves as a basic unit for many other operations, making it the most
studied module. The most basic adder structure is the ripple carry adder, which propagates the carry
bit from low to high bits. Due to its serial structure, both the delay and size are O(N) for an N -bit
addition. The carry look-ahead adder has been proposed to improve the delay by computing the
carries for each digit simultaneously through an expanded formula. It can achieve O(logN) delay
and O(N logN) size. However, due to the long internal delay of higher-valency gates used in the
look-ahead adder [48], various prefix adders have been developed, including the Brent-Kung [43],
Sklansky [12], Kogge-Stone [25], and Han-Carlson adders [49]. Most of these designs are variations
of prefix adders. Although the minimal delay complexity is still O(logN), these adders can often
have lower delays than the carry look-ahead adder because they use faster two-input logic gates [48].
Additionally, different prefix adders can strike a balance between delay and area, making them more
suitable for actual hardware design.

Despite extensive research, human-engineered prefix adders encounter challenges in realizing Pareto-
optimal designs. Notably, the dimensions of the Sklansky adder can be further minimized whilst
maintaining its operational level, as indicated by Roy et al. [14]. Consequently, a plethora of
optimization-oriented methodologies have been put forward [42, 50–52, 41, 53]. The heuristic
algorithm proposed by Roy and colleagues [14] employs a bottom-up enumeration tactic, commencing
with a binary adder and iteratively escalating the bit count inductively based on extant structures. To
reconcile the disparity between theoretical and empirical metrics, Ma et al. [20] developed a training
regimen for a predictive model to estimate actual metrics from theoretical ones. This model utilizes a
Pareto active learning approach to selectively scrutinize adders, which exhibit latent high-performance
metrics, for empirical validation via synthesis tools. Additionally, Geng et al. [19] have embraced
graph neural networks to enhance the precision of the predictive model. However, these methodologies
necessitate the pre-selection of a finite set of adders for prediction purposes, representing merely a
fraction of the comprehensive feasible space and potentially overlooking superior adder configurations.
The foray of reinforcement learning into the domain of adder design was pioneered by Roy et al.
[17], integrating a novel approach to address design challenges. Nevertheless, the employed Q-
network methodology [54] lacks exploration capabilities when applied to expansive problem domains.
Moreover, it mandates complete synthesis for each adder design, a prohibitively time-intensive
process when attempting to sample a vast array of adder configurations, thereby yielding suboptimal
solutions.

In analog to adder design, foundational research on multipliers has also been rooted in manual
methodologies. An N -bit multiplication fundamentally involves generating N partial products by
deploying N2 AND gates, which correspond to each pair of bits to be multiplied [48]. Subsequently,
these partial products are accumulated to yield a 2N -bit result. The most straightforward strategy
employs N successive accumulation operations over N clock cycles, utilizing a serial approach that
requires solely one adder and one register. Nevertheless, this method incurs a delay of O(N logN)
with the employment of a logarithmic delay adder [44], indicating a super-linear increase relative
to the bit count. To elevate computational efficiency, one may adopt a compressor tree structure to
compress the partial products concurrently using full and half adders, finalizing the computation with
a single 2N -bit adder. Given that the compressor tree’s height is roughly O(logN), the delay of the
multiplier can be refined to O(logN + log(2N)) = O(logN). Although Wallace [13] and Dadda
trees [55]—the predominant compressor trees—share a theoretical logarithmic delay, empirical delays
vary [56], underscoring the impact of the specific tree structure on multiplier performance. Xiao et al.
[16] translated the design of these trees into an integer linear problem, addressed via a combinatorial
solver, yet they did not include practical metrics in their model. Zuo et al. [18] pioneered the use of
reinforcement learning to refine the multiplier design. Their approach, which modifies the Wallace
tree structure rather than constructing anew, narrows the state space due to the finite action sequence
length. Moreover, the synthesis process remains laborious, presenting challenges in optimizing
multipliers exceeding 16 bits. Furthermore, the technique has not considered the joint optimization of

21

the compressor and prefix trees within the multiplier, which poses a barrier to identifying a globally
optimal design.

C.2 Reinforcement Learning

Reinforcement Learning (RL) has surpassed human performance in many domains, including the
ancient game of Go [21], the complex strategy game StarCraft [29], optimizing sorting algorithms
[57], and improving matrix multiplication techniques [30]. At its heart, RL involves training agents to
make a series of decisions to achieve a goal, learning from interactions with their environment by trial
and error to maximize a reward over time. There are two primary categories of RL methods: model-
based and model-free. In model-based RL, agents use an explicit model of the environment to inform
their decisions [58, 59]. Tools like Monte Carlo Tree Search (MCTS) [28], which simulate various
future paths to aid decision-making, are often integrated with these methods. This combination has
proven particularly potent for tasks requiring a long sequence of decisions. Conversely, model-free
RL methods [60–63], such as DQN [64], DDPG [65], and policy gradient approaches [66], operate
without an explicit model of the environment. A prominent example of model-free RL is Proximal
Policy Optimization (PPO) [24]. This algorithm iteratively refines the agent’s policy, optimizing a
surrogate objective function to balance the need for stable policy updates with the desire for efficient
exploration. This leads to high sample efficiency and reduced training times. Choosing the right RL
method is crucial, as different tasks may require different approaches. By aligning the strengths of
specific RL techniques with the demands of the task at hand, agents can navigate complex decision
spaces with remarkable effectiveness.

Recent advancements have shown that reinforcement learning is a powerful tool at every hardware
design phase, because circuit design and testing are fundamentally combinatorial optimization
problems. These tasks aim to navigate a vast solution space for the most efficient configuration.
Notable examples of prior achievements include logic synthesis [67–70], circuit simulation [71, 72],
chip placement [73–80], chip routing [81–83], clock tree synthesis [84], circuit gate sizing [85, 86],
and hardware testing [87], among others. As such, reinforcement learning’s widespread success
in various Electronic Design Automation (EDA) tasks highlights its remarkable capabilities and
adaptability as a tool for hardware design optimization.

D Societal Impact

The advancements presented in this study have significant implications for various sectors reliant
on high-performance computing and artificial intelligence. By optimizing the design of adders and
multipliers, we can enhance the efficiency and reduce the physical footprint of hardware systems,
leading to more powerful and compact devices. This can result in faster processing speeds and
lower energy consumption, contributing to more sustainable technology practices. However, the
societal impact extends beyond just technical improvements. As these optimized designs become
more prevalent, they could reduce costs in producing advanced computational hardware, making
high-performance computing more accessible to a wider range of industries and researchers. This
democratization of technology could spur innovation and accelerate advancements in fields such as
medicine, environmental science, and education. Nonetheless, the potential for job displacement in
traditional hardware design roles should be considered, and efforts should be made to retrain and
upskill workers to adapt to these technological advancements.

22

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.

23

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

24

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

26

https://neurips.cc/public/EthicsGuidelines

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

27

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Preliminaries
	Our Approach
	AddGame
	MultGame

	Experiments
	Adder Design
	Multiplier Design

	Conclusion
	Method Details
	Level Upper Bound
	Two-Level Retrieval
	Synthesis Scripts
	Cache, Save, and Recover Design
	Hyperparameter
	Input Selection in Compressor Tree
	Strategy for Searching Multipliers
	Module Functionality Verification

	Supplementary Results
	Adder Design
	Multiplier Design
	Correlation between Metrics
	Commercial Synthesis Tool Results
	Design Time

	Related Work
	Computer Arithmetic
	Reinforcement Learning

	Societal Impact

