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Abstract
While differentiable algorithms are a popular way
to imbue neural networks with an algorithmic in-
ductive bias, it’s been hypothesised that their per-
formance is limited by the ‘scalar bottleneck’: the
requirement that rich latent states be projected to
scalars in order to be used as algorithmic inputs.
This motivated the development of neural algo-
rithmic processors (NAPs), neural networks that
imitate algorithms in high-dimensional space, as
a way to avoid this bottleneck while still retain-
ing an algorithmic inductive bias. So far, how-
ever, there has been little work exploring whether
this bottleneck exists in practice, and if so, the
extent to which NAPs successfully mitigate it.
Here, we present a case study of the scalar bottle-
neck on a new synthetic dataset inspired by recent
work in neural algorithmics. While we found that
the differentiable algorithm we tested did indeed
suffer from a ‘scalar bottleneck’, we also found
that this bottleneck was not alleviated by frozen
NAPs, but rather by simply using an unfrozen,
algorithmically-aligned neural network. Based
on these results, we hypothesise that the problem
might be better thought of as an ‘ensembling bot-
tleneck’, caused by the inability to execute mul-
tiple instances of the same algorithm in parallel.
We thus develop the parallel differentiable algo-
rithmic black-box (pDAB), which preserves the
efficiency and correctness guarantees of its scalar
counterpart, while avoiding the scalar bottleneck.

1. Introduction
Algorithms are used to automatically solve complex real-
world problems (e.g. finding the shortest path between two
cities), provided we can model them mathematically (e.g.
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as a graph with edge weights in R). In machine learning,
many tasks we wish to solve (e.g. finding the shortest path
between two cities given weather and traffic conditions) are
algorithmic in nature but hard to model mathematically. As
such, there is much interest in building neural networks with
an algorithmic inductive bias (i.e. incentivised to learn
computations that ‘look like’ those of some algorithm A)
through the use of algorithmic modules: differentiable
functions, imitating the behaviour of a particular algorithm,
usable as components within a larger neural network.

One popular way to build an algorithmic module is to take
an implementation of algorithm A and simply make it dif-
ferentiable, thereby constructing a scalar differentiable
algorithmic black-box (sDAB) [1]–[4] that can be used as
a module in a larger network. Veličković and Blundell [5],
however, claim that the performance of sDABs is impaired
by what they call the scalar bottleneck: the requirement
that we project rich latent states down to single scalar inputs.

As such, they propose the alternative approach of neural
algorithmic reasoning [5]: training a neural network Â to be
a neural algorithmic processor (NAP) imitating A in high-
dimensional space, freezing it, and using it as a module in a
larger network. Although NAPs require costly pre-training
and lack the correctness guarantees of sDABs (especially
out-of-distribution [6]), Veličković and Blundell [5] claim
that NAPs should alleviate the scalar bottleneck as they
operate over a high-dimensional latent space.

So far, however, there has been little work exploring whether
this scalar bottleneck exists in practice, and if so, whether
NAPs successfully remove it. As such, we perform a
case study of the scalar bottleneck phenomenon in sDABs
and NAPs, in the context of the synthetic WARCRAFT-
SHORTEST-PATH-TREE dataset (requiring models to find
the shortest-path tree from an image of a k ˆ k Warcraft
terrain map). Our contributions are as follows:

1. Contrary to Veličković and Blundell [5], we find that
sDABs and frozen NAPs suffer from the scalar bot-
tleneck, but not unfrozen NAPs or ANNs (Section 3.1).

2. We therefore hypothesise that this ‘scalar bottleneck’
is better thought of as an ensembling bottleneck,
caused by the inability to learn to execute multiple in-
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stances of the same algorithm in parallel (Section 3.2).
3. In line with our hypothesis, we find that a parallelised

version of our sDAB outperforms all other models
tested both in and out of distribution, giving us the ef-
ficiency and correctness guarantees of sDABs without
their performance bottleneck (Section 4).

2. Our benchmark environment
For our case study, we must choose both a problem with
an appropriate algorithmic prior, and the NAPs and sDABs
we wish to compare. To study the scalar bottleneck in
a controlled environment representative of the literature,
we design the synthetic WARCRAFT-SHORTEST-PATH-
TREE benchmark based on a popular environment for test-
ing sDABs [1]. This benchmark evaluates NAPs and sDABs
by using them as ‘algorithmic modules’ within a larger neu-
ral network, which we train to find the shortest-path tree
from a Warcraft II terrain map (Figure 1).

Architectural details. This network uses the first five layers
of ResNet-18 [8] to extract a k ˆ k grid of latent features,
runs the algorithmic module over a grid graph constructed
from these features, and applies the pointer decoder from
Veličković, Badia, Budden, et al. [9] to extract the predeces-
sor node for each cell. For more details, see Appendix A.

Choice of algorithmic module. Note that, to avoid the
confounding effects of different continuous relaxation meth-
ods, our chosen problem’s underlying algorithm should not
require any continuous relaxations to be used as an sDAB.
Indeed, WARCRAFT-SHORTEST-PATH-TREE admits solu-
tions using the Bellman-Ford algorithm, through which
we can differentiate directly. As such, we compare GNN-
based NAPs trained to imitate Bellman-Ford (as per the
CLRS benchmark [9]), and ‘natively differentiable’ sDABs
implementing Bellman-Ford (following [4]).

Problem variants. We explore two different variants of
this problem: the simpler optimal variant, where we train
our model to predict a distribution equally weighted over all
optimal shortest-path predecessors, and the more complex
tie-breaking variant, where we train our model to break

Figure 1: An example Warcraft II terrain map [7], the cost
to traverse each tile in its underlying grid, and the length of
the shortest path from the top left tile to each tile in the grid.

ties between optimal predecessors in a deterministic way
(see Appendix B). Note that, as neither our sDAB nor our
NAP break ties in this way, the tiebreaking environment lets
us explore the case where the underlying algorithm of our
problem differs slightly from our algorithmic prior.

Metrics. We assessed each model on either exact tree-
accuracy (i.e. the % of grids with all predecessors correctly
predicted) or optimal tree-accuracy (i.e. the % of grids
for which all predicted predecessor distributions in that
grid have an optimal pointer as their mode) as appropriate.
We report model performance through bootstrapped 95%
confidence intervals (CIs) for mean (exact / optimal) tree-
accuracy, and compare models through bootstrapped 95%
CIs for probability-of-improvement (PoI).

Hyperparameters, training and evaluation. For each
algorithmic module tested, across each problem variant, we
performed 5 training runs with different seeds. For each
run, we trained on maps of size 12 ˆ 12, and periodically
evaluated on maps of size 18 ˆ 18. We reported the results
of the highest-performing checkpoint of each run on the
test sets of Vlastelica, Paulus, Musil, et al. [1], assessing
in-distribution (12 ˆ 12) and out-of-distribution (18 ˆ 18)
performance. For full details, see Appendix C.

3. Comparing modules: both NAPs and sDABs
suffer from the ‘scalar bottleneck’

We now compare algorithmic modules in the WARCRAFT-
SHORTEST-PATH-TREE environment, evaluating the per-
formance of non-algorithmic baselines, NAPs and sDABs,
and exploring the effect of both unfreezing our NAPs, and
randomly initialising their weights.

3.1. Results

Algorithmic modules beat non-algorithmic baselines. To
check the correctness of our environment, we first com-
pare the performance of sDABs and NAPs against non-
algorithmic baselines. We evaluate our algorithmic mod-
ules against both ResNet-18 [8] and a baseline where we
only use the feature extractor. To verify that our NAPs
are properly trained, we also evaluate them against frozen,
randomly-initialised GNNs. As per Figure 2, we see that
both sDABs and NAPs outperform all three of our baselines.
Specifically, we observe from Figure 3 that both sDABs
and NAPs outperform ResNet-18 (left), that NAPs (i.e.
frozen, pre-trained GNNs) outperform frozen, randomly-
initialised GNNs (right), and that ablating the executor from
WARCRAFT-NET does impair its performance (middle).

Frozen NAPs do not outperform sDABs. But, although
both NAPs and sDABs outperform algorithmic baselines,
NAPs do not substantially outperform sDABs on either the
optimal or tiebreaking environments (Figure 4).
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Figure 2: 95% CIs for mean tree accuracy, in-distribution (12x12) and out of distribution (18x18), in both environments.

Figure 3: 95% CIs for PoI in tree-accuracy for sDABs and NAPs over various non-algorithmic baselines, in-distribution (ID)
and out-of-distribution (OOD), in the optimal (Opt) and tie-breaking (Tie) environments.

Figure 4: 95% CIs for PoI in tree-accuracy for sDABs over NAPs, for unfrozen NAPs over NAPs, and for ANNs over
unfrozen NAPs, in-distribution (ID) and out-of-distribution (OOD), in the optimal (Opt) and tie-breaking (Tie) environments.

Unfreezing NAPs improves their performance – but
they’re still no better than a randomly-initialised GNN.
As NAPs are simply frozen GNNs pre-trained on abstract
algorithmic tasks, we explore the effect of unfreezing them
during training. We also contrast their performance with
unfrozen, randomly-initialised GNNs: as GNNs have been
shown to align with Bellman-Ford [10], we consider these
to be algorithmically-aligned neural networks (ANNs).
We observe from Figure 4 that, contrary to established wis-
dom [11] (but in line with the more recent observations of
Georgiev, Numeroso, Bacciu, et al. [12]), unfreezing NAPs
substantially improves their performance across all environ-
ments, with the largest performance improvements observed
in the (more algorithmically-aligned) optimal environment.
But we also observe that our ANNs match or beat the perfor-
mance of unfrozen NAPs: while ANNs perform comparably
to NAPs in the optimal environment, they substantially out-
perform NAPs in the tiebreaking environment.

Conclusions: NAPs and sDABs suffer from the ‘scalar
bottleneck’, but ANNs do not. Contrary to Veličković and
Blundell [5], we found that NAPs do not outperform sDABs
in either environment – and seem to suffer from the same
instability issues as sDABs. Moreover, we find that both
unfrozen NAPs and ANNs have better stability and perfor-
mance than either NAPs or sDABs (even out-of-distribution).
And, on the more complex tiebreaking task, it appears that
introducing a parameter-based algorithmic prior is actively
harmful to performance. So, in this environment, it is very
likely that NAPs trained as per Veličković, Badia, Budden,

et al. [9] do not alleviate the scalar bottleneck of sDABs,
and that this bottleneck can instead be overcome by ANNs.

3.2. Understanding our results: developing hypotheses
on the nature of the scalar bottleneck

Now, these results leave us with a compelling question: why
are sDABs outperformed by ANNs, but not by NAPs? We
list two hypotheses, which we explore in the next section:

The ensembling-bottleneck hypothesis. ANNs outperform
sDABs and frozen NAPs because they can learn to perform
many versions of the algorithm in parallel, over simple
(possibly scalar) representations. (Indeed, there is some
evidence to suggest that neural networks solving complex
problems ‘in the wild’ learn multiple independent modules
performing the same algorithm in parallel [13].)

The expressivity-bottleneck hypothesis. ANNs outper-
form sDABs and frozen NAPs because they can learn differ-
ent variants of the algorithm, over complex representations,
that map more closely to the exact problem at hand.

4. Testing the ensembling-bottleneck
hypothesis: the power of parallel DABs

One way to test the ensembling-bottleneck hypothesis
(i.e. that increasing algorithmic parallelism without increas-
ing network expressivity can improve model performance)
is to simply modify our sDAB to execute an ensemble of al-
gorithms in parallel, and to compare the performance of the
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Figure 5: 95% CIs for probabilities of improvement in tree-accuracy for pDABs over all other modules tested, both
in-distribution (ID) and out-of-distribution (OOD), in the optimal (Opt) and tie-breaking (Tie) environments.

resulting parallel DAB (pDAB) to that of other algorithmic
modules in the optimal environment. As such, we built a
pDAB for Bellman-Ford as illustrated in Algorithm 1, and
tested it under all conditions explored in Section 3.

pDABs dominate all other algorithmic modules across
all environments. Observe from Figure 2 that pDABs dom-
inate all other algorithmic modules in the optimal envi-
ronment. We see that pDABs very substantially outperform
both sDABs (top left) and NAPs (top right), in and out of dis-
tribution. And, while pDABs perform on par with unfrozen
NAPs (and marginally better than ANNs) in-distribution,
they very substantially outperform both out-of-distribution.
Moreover, we observe that this result holds even in the tie-
breaking environment, where Bellman-Ford alone should
not be sufficient to solve the problem. This is surprising, as
no positional information is passed to the pDAB.

The high dimensionality of pDABs can be used in unan-
ticipated ways to handle variant algorithms. To under-
stand why pDABs do so well in the tiebreaking environment,
we visualise the per-tile weight and initial distance matrices
they receive as input (Figure 6). While some dimensions of
the pDAB are used to predict the true shortest-path lengths
for each tile, others appear to be used to generate vertical
and horizontal gradients. As these artefacts only appear in
pDABs trained on the tiebreaking problem, we hypothesise
that our models have learned to use the extra dimensions of
the pDAB in an unexpected way, to generate robust posi-
tional encodings for tiebreaking.

Algorithm 1 A d-dimensional Bellman-Ford pDAB, for use
as a module in WARCRAFT-NET (Algorithm 2).

Require: The following learnable linear layers:
encw : I Ñ Rd dech : Rd Ñ On

encd : I Ñ Rd dece : I Ñ Oe

1: def PDAB(Gpthiu, teijuq : GrI, Is) : GrOn,Oes

2: # Get stack of weights from edge features
3: wij : Rd Ð encwpeijq

4: # Get stack of initial distances from node features
5: d

p0q

i : Rd Ð 100 ¨ σpencdphiqq

6: # Perform BF on stack of d grid graphs
7: for t Ð 1, ..., pk ˆ kq do
8: d

ptq
j “ minpd

pt´1q

j ,miniÑjpd
pt´1q

i ` wijqq

9: # Map final distances to latent space
10: return Gptdechpd

pkˆkq

i qu, tdecepeijquq

pDABs are much more efficient to train than ANNs.
Finally, we observe that, not only do pDABs not require
pre-training, but they are much more efficient to train than
ANNs. Indeed, training pDABs incurred an average time per
epoch of 11.4˘ 1.7 seconds (across 15 runs); while slightly
more compute-intensive than sDABs (9.2 ˘ 1.4 seconds),
they are over four times faster than both NAPs (42.5 ˘ 1.6
seconds) and ANNs (51.4 ˘ 0.7 seconds).

Conclusions: our results support the ensembling-
bottleneck hypothesis. So, as pDABs dominate all other
models in the optimal environment, we have strong evidence
supporting the ensembling-bottleneck hypothesis in this en-
vironment – specifically, that increasing the dimensionality
of sDABs is enough to make them match the performance
of ANNs in-distribution. But we also observed that pDABs
are much more efficient than ANNs, generalise much better
than ANNs out-of-distribution, and even outperform ANNs
(which should, in principle, be more flexible than pDABs)
on problems whose underlying algorithm deviates slightly
from our algorithmic prior. As such, while we leave a sys-
tematic exploration of pDABs across a range of architectures
and domains to future work, we are potentially close to a
long-standing goal of neural algorithmics [14]: develop-
ing a way to deterministically distill an algorithm into a
robust, high-dimensional processor network that preserves
both the efficiency and correctness guarantees of sDABs
while avoiding their performance bottleneck.

Figure 6: The ground-truth initial weight, initial distance
and final distance matrices for the terrain map from Figure 1,
alongside the inputs that we learn to pass to our sDAB, and
representative examples of the three main classes of inputs
that we learn to pass to individual Bellman-Ford instances
within our pDAB. (See Appendix D for more details.)
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Glossary
ANN (algorithmically-aligned neural network) A neural network whose modules correspond to the subroutines of some

target algorithm [15]. For this case study exploring Bellman-Ford, our ANN of choice is a graph neural network [10].
1, 3, 4

GNN (graph neural network) neural networks acting over graphsG “ pV,Eq (whose nodes u have one-hop neighbourhoods
Nu “ tv P V | pv, uq P Eu and features xu), of the form

hu “ ϕ

˜

xu,
à

vPNu

ψpxu,xvq

¸

for ψ a learnable message function, ϕ a learnable readout function and ‘ a permutation-invariant aggregation function.
Note that this ‘template’ can be instantiated in many ways, with different choices of ϕ, ψ and ‘ yielding popular
architectures such as GCNs [16] and GATs [17]; for more background on GNNs, see e.g. [18]. 2, 3

NAP (neural algorithmic processor) A neural network Â trained to imitate the action of an algorithmA in a high-dimensional
latent space (e.g. [11], [19]). 1–4, 8–11

pDAB (parallel differentiable algorithmic black-box) Our modified sDAB that executes an ensemble of instances of the
same algorithm in parallel. 4, 13

PoI (probability of improvement) For architectures A and B, the probability that a randomly-sampled training run for A
will outperform a randomly-sampled training run for B. 2–4, 12

sDAB (scalar differentiable algorithmic black-box) A differentiable implementation of an algorithm A that can be used
as a module within a larger neural network, so called because latent states must be projected to scalars before being
passed through the module. These can be obtained either by using an algorithm that is differentiable almost everywhere
(e.g. [4]), approximating the gradient of a non-differentiable algorithm (e.g. [1], [20]–[22]), or constructing a continuous
relaxation of a discontinuous algorithm (e.g. [3], [4]). 1–4, 7–11
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A. The WARCRAFT-SHORTEST-PATH benchmark
In this appendix, we describe the design of the WARCRAFT-SHORTEST-PATH benchmark. This benchmark, inspired by the
work of Vlastelica, Paulus, Musil, et al. [1], allows for the comparison of algorithmic modules in the context of finding the
shortest-path tree for a Warcraft terrain map; as such, we outline both the adaptations we made to the problem setting of
Vlastelica, Paulus, Musil, et al. [1], and the architecture we used to compare algorithmic modules on this problem.

A.1. Adaptations made to prior work

As we’re trying to explore the null hypothesis that NAPs encounter the scalar bottleneck but sDABs don’t, in order to
minimise the risk of false positives, we typically choose design decisions that are favourable towards the NAP.

The original problem setting. Recall that we based the design of this problem on WARCRAFT-SHORTEST-PATH, a popular
problem for benchmarking sDABs [1], [4], [23]. This problem involved training a network (with an algorithmic inductive
bias) to take as input an image of a k ˆ k Warcraft terrain map, and return as output a k ˆ k matrix indicating the cells of
the terrain map involved in the optimal shortest path from the top left to the bottom right corner.

Exploring the problem in the context of Bellman-Ford. Note that, to solve this problem, we can use algorithmic modules
with an algorithmic inductive bias (AIB) towards any single-source shortest path algorithm (e.g. Dijkstra [1] or Bellman-Ford
[4]). As we wish to benchmark step-level NAPs against natively-differentiable sDABs, we choose to explore algorithmic
modules with an AIB towards Bellman-Ford, a simple, natively-differentiable algorithm that aligns well with graph-based
NAPs.

From shortest-path to shortest-path-tree. Observe, however, that to actually solve this problem, we need algorithmic
modules that not only compute the minimum distance from the source to every other node, but also walk the resulting
predecessor tree in OpV q time in order to recover the actual shortest path from the top left to the bottom right cell. Now,
while it is easy to add this postprocessing step to an sDAB, adding another OpV q steps to a Bellman-Ford NAP could
substantially impact performance. As such, to minimise the trajectory length of our NAP, and to align more closely with
the version of Bellman-Ford used to train NAPs in the literature [9], we avoid this postprocessing overhead by instead
supervising on the shortest path tree of per-node predecessors rooted in the top-left grid cell.

Removing the inductive bias of algorithmic supervision. Now, in its original form, WARCRAFT-SHORTEST-PATH is a
problem of algorithmic supervision [4]: given an sDAB mapping a grid with weights to an indicator matrix representing the
shortest path across it, we precompose this sDAB with a feature extractor (which should learn to predict a cost for each type
of tile) and supervise directly on the shortest-path output of our sDAB. We note, however, that in most real-world problems
with AIBs (which are ultimately where we want to apply NAR), we can’t directly supervise on algorithmic outputs – instead,
we must typically learn to postprocess (or project out relevant information from) the output of our algorithmic module. As
such, we adapt our architecture by both pre-composing and post-composing our algorithmic module with learnable layers,
and ensuring the outputs of our algorithmic modules require some mild post-processing in order to extract the final outputs.

A.2. The WARCRAFT-NET architecture

So, given our adapted problem of WARCRAFT-SHORTEST-PATH-TREE, we now outline the architecture we built to solve
it. We define this architecture as a function WARCRAFT-NET : Gridrp8k, 8kq, 3s Ñ Gridrp8k, 8kq, Categoricalr8ss,
mapping 8k ˆ 8k ˆ 3 images of Warcraft terrain maps to grids of categorical variables indicating the predecessor cell for
each cell in the grid.

We present a pseudocode implementation of the WARCRAFT-NET architecture in Algorithm 2.

A high-level summary of Warcraft-Net. In a manner akin to other NAR architectures [11], our WARCRAFT-NET has four
main components: extracting a kˆ k grid of features from the original image, generating a latent graph from these features,
applying an algorithmic module to this latent graph, and projecting out predecessor pointers from this latent graph.

Extracting the grid of features. As per Vlastelica, Paulus, Musil, et al. [1], we extract features from our input image using
the first five layers of ResNet-18. But while Vlastelica, Paulus, Musil, et al. [1] use this feature extractor to directly predict a
k ˆ k grid of cell costs which they pass to their sDAB, as we wish to use our architecture with either sDABs or NAPs, we
instead return a k ˆ k grid f : Gridrpk, kq, Is of latent per-cell features.

Generating the grid graph. Given such a grid f , in order to compute its shortest-path tree, we must first generate its

8
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Algorithm 2 A pseudocode implementation of WARCRAFT-NET for a k ˆ k terrain map.

Require: The following learnable functions:
enc : R3 Ñ I :“ Linear
f1, f2 : On Ñ P :“ Linear
fe : Oe Ñ P :“ Linear
(alongside the first five layers of ResNet-18)

1: def RESNET-FEATURE-EXTRACTOR(img : Gridrp8k, 8kq, 3s) : Gridrp8k, 8kq, Is

2: h : Gridrp2k, 2kq, 3s Ð ResNet-18.pconv1 Ź bn1 Ź ReLU Ź MaxPool Ź layer1qpimgq

3: h1 : Gridrp2k, 2kq, Is Ð mappenc,hq

4: return maxPoolph1, p2k, 2kq Ñ pk, kqq

5: def BUILD-GRAPH(h : Gridrpk, kq, Is) : GrI, Is

6: g Ð newGraphpnodes “ tpy, xq | y, x P r1..ksuq

7: for py, xq P r1..ks ˆ r1..ks do
8: g.nodesrpy, xqs Ð hyx

9: g.addEdgesptpy1, x1q
hyx

ÝÝÑ py, xq | py1, x1q P getAdjacent8Cellspy, xquq

10: return g

11: def PREDICT-POINTERS(Gpthiu, teijuq : GrOn,Oes) : Gridrpk, kq, Categoricalr8ss

12: Ź For each node, compute a weighted distribution over its in-edges.
13: πiÑj : R Ð fmpmaxrf1phjq, f2phiq ` fepeijqsq

14: Ź Convert these per-node weighted distributions to a grid of categoricals
15: representing the direction tN,NE,E, SE, S, ...u of the pointed-to in-edge
16: predsyx Ð softmaxprπpy1,x1qÑpy,xq | py1, x1q P getAdjacent8Cellspi, jqsq

17: return preds

18: def ALGORITHMIC-MODULE(g : GrI, Is) : GrOn,Oes

19: Ź A NAP or sDAB, wrapped in appropriate encoders and decoders.

20: def WARCRAFT-NET(img : Gridrp8k, 8kq, 3s) : Gridrpk, kq, Categoricalr8ss

21: Ź Extract a k ˆ k grid of features from the terrain map.
22: h Ð RESNET-FEATURE-EXTRACTORpobsq

23: Ź Generate latent grid graph from grid
24: gpinq Ð BUILD-GRAPHph0q

25: Ź Execute algorithmic module on grid graph
26: gpoutq Ð ALGORITHMIC-MODULEpgpinqq

27: Ź For each node, identify its optimal predecessor(s) by attending to its in-edges.
28: return PREDICT-POINTERSpgpoutqq

9
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underlying latent grid graph. This graph has a node pi, jq for every cell fij in the grid, and each node pi, jq has an out-edge
to each neighbouring cell pi1, j1q (including those diagonally adjacent to pi, jq). Now, to decide how to populate nodes and
edges with features, based on the type signature of the Bellman-Ford algorithm we want our nodes to carry information
about whether or not their corresponding cell is the source node, and our edges to carry information about their cost of
traversal. As such, we populate nodes pi, jq with node features fij , and following Vlastelica, Paulus, Musil, et al. [1], who
synthesise their grid graph such that the weight of an edge pi, jq Ñ pi1, j1q is the cost of the terrain type of cell pi1, j1q, we
populate edges pi, jq Ñ pi1, j1q with edge features fi1j1 .

Executing the algorithmic module. Now, once we have a latent grid graph g : GrI, Is, we can apply a wrapped algorithmic
module in order to execute Bellman-Ford over it. For this benchmark, we provide two algorithmic modules for comparison:

• NAP. A frozen, graph-based encode-process-decode NAP (pre-trained as per Veličković, Badia, Budden, et al. [9], and
with adaptations as per Ong [24]), wrapped with linear encoders and decoders (Algorithm 3).

• sDAB. A scalar implementation of Bellman-Ford, wrapped with skip-connected linear encoders and decoders (Al-
gorithm 4). Note that, when extracting initial distances from node features, we apply a scaled sigmoid to introduce
an inductive bias towards either predicting dp0q

i “ 0 or dp0q

i “ 8 (where 8 « 100 to avoid issues with numerical
instability).

Predicting predecessor pointers. Finally, once we have our output graph g : GrOn,Oes, for each node in our graph, we
attend to its in-edges (using node pointer decoding as in [9]) to obtain a distribution over its 8 possible predecessors. We
output these per-node predecessor distributions as a grid of per-cell categorical variables indicating the cardinal direction
(e.g. North, North-East, East etc) of the predecessor cell.

Algorithm 3 A pseudocode implementation of a Bellman-Ford NAP (i.e. a wrapper around an EPD-NAP pre-trained as in
Ong [24]), for use as an ALGORITHMIC-MODULE in WARCRAFT-NET (Algorithm 2).

Require: The following learnable functions:
encn : I Ñ Vpinq

n :“ Linear dech : Vpoutq
n Ñ On :“ Linear

ence : I Ñ Vpinq
e :“ Linear dece : Vpoutq

e Ñ Oe :“ Linear

1: def NAP(Gpthiu, teijuq : GrI, Is) : GrOn,Oes

2: Ź Map into algorithmic latent space
3: h

pinq

i , e
pinq

ij Ð enchphiq, encepeijq

4: Ź Execute EPD-trained NAP
5: Gpth

poutq
i u, te

poutq
ij uq Ð EPD-NAPpGpth

pinq

i , e
pinq

ij uqq

6: Ź Map out of algorithmic latent space
7: h

pretq
i , e

pretq
ij Ð dechph

pinq

i ,h
poutq
i q, decepe

pinq

ij , e
poutq
ij q

8: Ź Return graph
9: return Gpth

pretq
i u, te

pretq
ij uq

B. Details of the optimal and tiebreaking dataset variants
For comparability, we base our dataset on that of Vlastelica, Paulus, Musil, et al. [1], consisting of 10,000 training, 1,000
validation and 1,000 test images of randomly-generated terrain maps from the Warcraft II tileset [7].

Now, we observe that these terrain maps do not always have unique shortest paths (let alone shortest path trees). Indeed,
while Vlastelica, Paulus, Musil, et al. [1] simply ignore this issue,1 we handle it by adapting our training and evaluation
metrics accordingly.

1Note that, during training, Vlastelica, Paulus, Musil, et al. [1] select a particular shortest path to supervise on for each map, and during
evaluation, they score models based on whether or not their predicted shortest path is optimal. This can potentially lead to performance
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Algorithm 4 A pseudocode implementation of a Bellman-Ford sDAB, for use as an ALGORITHMIC-MODULE in WARCRAFT-
NET (Algorithm 2).

Require: The following learnable functions:
encw : I Ñ R :“ Linear dech : R Ñ On :“ Linear
encd : I Ñ R :“ Linear dece : I Ñ Oe :“ Linear

1: def SDAB(Gpthiu, teijuq : GrI, Is) : GrOn,Oes

2: Ź Extract weights from edge features
3: wij : R Ð encwpeijq

4: Ź Extract initial distances from node features
5: d

p0q

i : R Ð 100 ¨ σpencdphiqq

6: Ź Perform Bellman-Ford relaxations on grid graph
7: for t Ð 1, ..., pk ˆ kq do
8: d

ptq
j “ minpd

pt´1q

j ,miniÑjpd
pt´1q

i ` wijqq

9: Ź Map final distances to latent space and return latent graph
10: return Gptdechpd

pkˆkq

i qu, tdecepeijquq

Indeed, we explore two different ways of dealing with non-unique predecessors:

Optimal variant. For each grid cell, we train via cross-entropy loss to predict a distribution over its predecessors, with
uniform weight over all optimal predecessors, and zero weight everywhere else. We evaluate our models based on both
optimal accuracy (i.e. the percentage of predicted predecessor distributions which have an optimal pointer as their
mode), and optimal tree-accuracy (i.e. the percentage of grids for which all predicted predecessor distributions in that
grid have an optimal pointer as their mode).

Tie-breaking variant. For each grid cell, we train via cross-entropy loss to predict the optimal predecessor, breaking ties
by priority (with the highest priority predecessor being the eastern cell, and priority decreasing clockwise). We evaluate
our models based on exact accuracy (i.e. the percentage of correctly-predicted predecessors), and exact tree-accuracy
(i.e. the percentage of trees with correctly-predicted predecessors).

As neither our sDAB nor our NAP are designed to break ties in the manner described above2, while the optimal problem
variant is easily solvable with only information about per-node distances, to solve the tiebreaking variant, our NAPs and
sDABs must need to learn to distinguish between different nodes with the same shortest path length. As such, comparing
performance across these two environments lets us explore the case where the underlying algorithm of our problem differs
slightly from our algorithmic prior.

C. Experimental details
Executors. Recall that the problem of WARCRAFT-SHORTEST-PATH-TREE has an algorithmic prior towards Bellman-Ford.
As such, in the following experiments, we compare the relative performance of WARCRAFT-NET (Appendix A) when
equipped with various executors with an algorithmic inductive bias towards Bellman-Ford – specifically, the Bellman-Ford
sDAB (as described in Appendix A), and a Bellman-Ford NAP (as trained in Ong [24]). The NAP we used achieved a
pointer accuracy of 0.9941 in-distribution (on graphs of size 16), and a pointer accuracy of 0.9561 out-of-distribution (on
graphs of size 64).

Hyperparameters and training. For each model, across each of our two environments, we performed 5 training runs

issues if the shortest path on which we supervise is selected in a deterministic way: in particular, the model may try to learn the algorithm
for choosing the exact shortest path in specific cases, at the cost of decreasing its overall performance at choosing an optimal path.

2Indeed, our sDAB only outputs per-node shortest path lengths, and while the NAP we use (i.e. the Bellman-Ford NAP from Section ??)
was trained with supervision on both per-node shortest path lengths and predecessor pointers, as all edges had weights uniformly randomly
sampled from r0, 1s, it never learned to perform tie-breaking.
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with different seeds. For each run, we adopted the hyperparameters and training regime of Vlastelica, Paulus, Musil, et al.
[1], training for 50 epochs with batch size 70 and learning rate 5 ˆ 10´4, and evaluating on a validation set of size 1,000
after every epoch to choose the highest-performing checkpoint for evaluation. We then evaluated the highest-performing
checkpoint of each run on the test sets of [1], assessing both in-distribution (tree size 12 ˆ 12) and out-of-distribution (tree
size 18 ˆ 18) performance in terms of either tree-accuracy or optimal tree-accuracy as appropriate.3

Note that, while in principle we should run our executors for |V | “ 144 steps, in order for Bellman-Ford to converge, we
need only apply our executors for n steps, where n is the maximum number of edges in any shortest path from the root
node. As such, due to compute limitations, we only apply our executors for 45 steps, the maximum number of edges in any
shortest path from the root node across all our training and test data.

Performance evaluation. As only reporting point estimates has historically led the field to erroneously conclude which
methods are state-of-the-art [25], [26], we follow the recommendations of the RLiable framework [27] and instead report
interval estimates of performance. Specifically, for each set of runs, we report model performance through bootstraped
95% confidence intervals [28] for mean tree-accuracy (or optimal tree-accuracy). And, in order to compare models X and
Y , we estimate 95% confidence intervals for the probability of improvement of X over Y (in terms of per-run maximum
average reward) via bootstrap resampling [27], by sampling from the empirical distributions of X and Y , and computing
the U-statistic from the Mann-Whitney U test [29] over these samples. Observe that, as we collect n “ 15 runs, we have
`

15`15´1
15

˘

“ 7.8 ˆ 107 possible bootstrap resamples, so we have sufficient data for bootstrap resampling to be meaningful.

3Note that, due to limitations of the ResNet-18 architecture, as per [1], we are unable to evaluate its out-of-distribution performance.
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D. An illustration of weight matrices from a learned pDAB-WARCRAFT-NET

For the Warcraft terrain map analysed in Section 4, we present all 64 sets of weight and initial distance matrices that our
feature extractor learns to pass to each of the 64 instances of Bellman-Ford in our pDAB, alongside their corresponding final
distance matrices, in Figure 7.

(a) Initial weight matrices (wij) (b) Initial distance matrices (dp0q

ij )

(c) Final distance matrices (dpkˆkq

ij )

Figure 7: The inputs and outputs to each of the 64 Bellman-Ford instances within our pDAB, when run on the Warcraft
terrain map analysed in Section 4, presented as (individually-scaled) heatmaps. Each cell pi, jq corresponds to the learned
input / output for the 8i` jth Bellman-Ford instance in our pDAB.

13


