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Abstract

We study the task of spoken natural language001
to SQL parsing (speech-to-SQL), where the002
goal is to map a spoken utterance to the corre-003
sponding SQL. Existing work on SQL parsing004
has focused on text as input (text-to-SQL). To005
develop a speech-to-SQL parser, we harness006
progress in text-to-SQL parsing, and automatic007
speech recognition (ASR). However, ASR is008
still error-prone, we therefore propose an er-009
ror correction method that fixes ASR errors010
in the context of a DB schema. We present a011
novel multi-modal representation of text, au-012
dio, and DB schema with audio attention and013
a phoneme prediction auxiliary task. Our ex-014
periments show that our method yields better015
performance, is much faster to train, has greater016
transparency, and is parser-agnostic compared017
to baselines that seek to adapt to ASR errors.018

1 Introduction019

Interfaces that support human language as a020

medium of communication between humans and021

computers have been of interest for decades (Wino-022

grad, 1971; Woods, 1972; Codd, 1974; Hendrix023

et al., 1978; Zelle and Mooney, 1996; Popescu024

et al., 2003; Zettlemoyer and Collins, 2012).025

Known as Natural Language Interfaces (NLIs),026

early systems saw limited success due to the dif-027

ficult problem of endowing computers with the028

ability to understand natural language. Progress029

in language understanding has led to renewed in-030

terest in NLIs. In particular, several studies have031

focused on NLIs to databases (NLIDBs) (Zhong032

et al., 2017; Yin and Neubig, 2017; Yu et al., 2018;033

He et al., 2019; Guo et al., 2019; Wang et al., 2020).034

NLIDBs, when fully realized, stand to support035

users who are not proficient in query languages.036

Motivation. The primary focus of NLIDBs has037

been on parsing natural language text utterances038

into executable SQL queries (text-to-SQL parsing).039

Motivated by the rise of speech-driven digital as- 040

sistants on smartphones, tablets, and other small 041

handheld devices, we study the task of parsing spo- 042

ken natural language to executable SQL queries 043

(speech-to-SQL parsing). A speech-to-SQL parser 044

has a number of potential use cases. For example, 045

in the healthcare domain, a nurse practitioner at a 046

patient bedside typically looks up patient details 047

on a desktop in the patient’s room by filling out 048

forms whose back-end is a database, where speech- 049

to-SQL could be used instead, for faster results. 050

Furthermore, speech-to-SQL removes the need for 051

keyboards that can be slow and cumbersome on 052

small devices, when querying databases. 053

Approach. To build a speech-to-SQL parser, we 054

leverage progress in text-to-SQL parsing, auto- 055

matic speech recognition (ASR). However, ASR 056

is still error-prone. To deal with ASR errors, we 057

propose an error correction method that fixes ASR 058

errors in the context of a DB schema. Our error 059

correction method, TaggerILM rewriter, edits the 060

ASR transcription by tagging tokens (Tagger) to 061

indicate if they should be edited, and then rewriting 062

the appropriate tokens using an infilling language 063

model (ILM). We build both the Tagger and ILM 064

on top of a novel multi-modal representation of 065

text, audio, and DB schema, with audio attention 066

and a phoneme prediction auxiliary task. 067

Summary of Contributions. We make the fol- 068

lowing contributions: i) study the problem of spo- 069

ken natural language to SQL parsing, illustrated 070

in Figure 1, which is currently under-explored 071

in the neural era. ii) propose an ASR error cor- 072

rection method, TaggerILM rewriter build on a 073

novel encoder that produces multi-modal represen- 074

tations from text, audio, and DB schema represen- 075

tations using audio attention and a phoneme predic- 076

tion auxiliary task. We show that the TaggerILM 077

rewriter yields better performance, is faster to train, 078

has greater transparency and is parser-agnostic. iii) 079
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What is the
number of votes
from the state
of California?

speech to
SQL
parser

SQL

SELECT count(*)
FROM votes
WHERE
state = ‘CA’

Figure 1: The speech-to-SQL parsing task takes as input a spoken natural language query, and outputs the
corresponding SQL query.

Gold: Show me the fares from Dallas to Boston
ASR: Show me affairs from Dallas to Boston

Figure 2: An example ASR error wherein a phrase, "the fares", is incorrectly described as “affairs". Passing ASR
errors to the text-to-SQL parser is unlikely to produce the correct SQL.

present a new dataset which is a spoken version of080

the Spider text-to-SQL benchmark (Yu et al., 2018),081

named Spoken Spider (link provided in Appendix).082

iv) carried out extensive experiments on Spoken083

Spider, showing the strengths and limitations of our084

proposed methods via an in-depth analysis to pro-085

vide guidance for future research in this direction.086

2 Baselines087

Blackbox Baseline. Given a spoken utterance,088

the task is to emit the corresponding SQL. An ob-089

vious solution to this problem is to first pass the090

spoken utterance through an automatic speech rec-091

ognizer (ASR), and then issue the top-ranked ASR092

transcription to a text-to-SQL parser which pro-093

duces the final SQL. We name it the blackbox base-094

line. A drawback of this baseline is that no attempt095

is made to deal with ASR errors. Figure 2 shows096

an example of such errors. Passing ASR errors to097

the text-to-SQL parser is unlikely to produce the098

correct SQL.099

Domain Adaptation Baselines. We consider an-100

other set of baselines that frame the problem of101

speech-to-SQL as a domain adaptation problem102

of text-to-SQL. That is, we can treat clean text as103

the source domain, and ASR transcriptions as the104

target domain. The source domain data is the origi-105

nal text-to-SQL data, i.e. clean text and gold SQL106

queries. We generate the target domain data by pair-107

ing ASR transcriptions with gold SQL queries. To108

let the parser learn to adapt to ASR errors (target do-109

main), we train the text-to-SQL parser model on the110

new data we generated. Domain adaption via data111

pre-processing can produce strong results (Daumé,112

2007). We consider two variations, Retraining-ASR113

and Retraining-mixed. Retraining-ASR uses the tar-114

get domain data only; Retraining-mixed uses both115

the source and the target domain data.116

3 Method 117

We propose a neural error correction method that 118

fixes ASR errors in the transcription before pass- 119

ing the transcription to a text-to-SQL parser. Our 120

proposed method, TaggerILM rewriter, consists of 121

a Tagger and an Infilling Language Model (ILM) 122

rewriter. The input to our TaggerILM rewriter con- 123

sists of: i) the top-k ASR transcriptions. ii) the DB 124

schema. iii) the raw audio stream of input speech 125

and schema tokens. The output is a corrected ASR 126

transcription. In contrast to adaptation baselines, 127

fixing errors has the advantage of transparency, as 128

opposed to implicitly adapting to errors. Further- 129

more, this approach is agnostic to the text-to-SQL 130

parser, thus can be applied to any new strong parser 131

without requiring additional training of the parser, 132

which is a significant computational advantage. 133

Tagging Tokens. Our Tagger first tags each token 134

in the input transcription as KEEP, DEL or EDIT. 135

These tags are denoted as rewriter tags. The DEL 136

and EDIT tags are based on the BIOUL tagging 137

schema, thus marking certain spans1 in the sen- 138

tence to be deleted or edited. The KEEP tags are 139

the O tags in BIOUL, marking tokens that should 140

be kept. After the tagging step, tokens marked as 141

KEEP or DELETE are kept or deleted, respectively. 142

Each EDIT span is replaced by a [BLANK] token. 143

Rewriting Spans with an Infilling Language 144

Model (ILM). After tagging, the ILM rewriter, 145

which is an Infilling Language Model (ILM) (Don- 146

ahue et al., 2020), takes the transformed sentence 147

as input and fills in each [BLANK]. The ILM is an 148

autoregressive language model. A working exam- 149

ple of ILM is shown in Table 1. It takes as input a 150

sentence with blanks, and predicts a sequence with 151

1For example, tokens from B-DEL to L-DEL, or single
U-DEL, make a DEL span. See Table 1 for a concrete example.
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Figure 3: Our error correction encoder fuses free text, audio, and a structured DB schema to obtain a multi-modal
representation. Auxiliary tasks such as the "token phonemes" task seek to ensure that certain information is encoded
in the representation.

Gold Whose name has substring ABC ?
ASR Who’s name has a sub string ABC .

Tags U-EDIT KEEP KEEP U-DEL B-EDIT L-EDIT KEEP U-EDIT
ILM Input [BLANK] name has [BLANK] ABC [BLANK]
ILM Prediction Whose [ANS] substring [ANS] ? [ANS]
Final Output Whose name has substring ABC ?

Table 1: Infilling Language Model (ILM) example. Gold text is invisible to the model. In the tagged ASR output,
adjacent tokens with a single U or from B to L make a span. For example, “Who’s” and “sub string” are EDIT spans
and “a” is a DEL span.

content for each blank. Content for different blanks152

are separated by a special [ANS] token.153

We next describe the details of the Tagger and154

the ILM rewriter. They share an encoder, but each155

model has a separate decoder.156

3.1 Shared Encoder157

We introduce a novel encoder that fuses different158

representations from free text, audio, and structured159

DB schema, illustrated in Figure 3. The novel com-160

ponents of the shared encoder include an audio161

attention layer, align tag features, and auxiliary162

probing loss. This encoder is shared by both the163

Tagger and the ILM rewriter, with only slight vari-164

ations to accommodate differences in their input.165

We introduce each part of the model in detail.166

3.1.1 Input Modalities and Features167

Text. We obtain the representation of the utter-168

ance and schema text using a pre-trained language169

model (PLM), as shown in Figure 3, for transfer 170

learning of language. A possible choice is to uti- 171

lize a general-purpose PLM, such as BERT. We 172

concatenate an utterance (ASR transcription) and 173

DB schema with a [SEP] token and feed the con- 174

catenated sequence into the PLM to get a contex- 175

tualized utterance-schema representation for each 176

token (using a scalar mix of the hidden represen- 177

tations from each self-attention layer). We also 178

experimented with TaBERT (Yin et al., 2020), a 179

BERT-style model that jointly represents a natural 180

language sentence and structured data in a DB. The 181

details of adapting TaBERT to our model are in the 182

appendix. 183

Audio. Our input includes the audio features of 184

both utterance tokens and schema tokens. For the 185

utterance, we extract the audio slice of each token 186

using the timestamps provided in ASR output. For 187

schema tokens, we directly use a speech synthe- 188
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sizer to obtain their audios. We use a standard189

1D-CNN to obtain audio encoding vectors for each190

token2.191

Tags. There are two types of tags used in our192

encoder: align tags and rewriter tags. First, align193

tags provide information about whether other ASR194

candidates agree with the input one on a certain195

token. If all other ASR candidates agree, the token196

is tagged [SAME]; if x other candidates agree but197

y disagree, the tag will be [DIFF(d)] where d =198

x − y. Intuitively, these tags include additional199

information from other ASR candidates to help the200

model decide the correctness of each token, which201

is helpful given that the input text of our model202

includes only one ASR candidate. Second, we203

have rewriter tags which flag tokens to be kept or204

modified. These tags will be the output of Tagger205

and input of ILM rewriter. Both types of tags are206

embedded into vectors using a separate randomly-207

initialized embedding table.208

3.1.2 Multi-modal Representation209

To generate a final representation of the input210

modalities and features, we concatenate the text fea-211

tures, audio features and tag embedding features212

of each token, and feed the result into an audio-213

attention layer, followed by a standard LSTM se-214

quence encoder, to get the multi-modal represen-215

tation. The audio-attention layer is similar to a216

standard self-attention layer, but only uses audio217

features as attention keys and queries to compute218

attention weights instead of using the whole con-219

catenated representations. We use cosine attention,220

and add the token features to the attention output221

as a residual link. The multi-modal representation222

is then used by the decoder of different models,223

which we describe later.224

3.1.3 Encoder Probes as Auxiliary Losses225

Since the encoder is a complex combination of dif-226

ferent modalities, there is potential to lose impor-227

tant predictive information in the training process.228

Thus, to encourage representations to retain certain229

important information, we added corresponding230

probes to provide guidance for the internal repre-231

sentations of the model. The auxiliary losses of232

probes are added to the total training loss. Below,233

Joint probes are applied onto the the multi-modal234

joint representation, and Audio probes are applied235

on the audio encoding.236

2Details are given in appendix.

A) Rewriter tags (Joint). predicting the type of 237

rewriter tag (KEEP/EDIT/DEL) for each token. 238

This is similar to the task for Tagger but without 239

BIOUL prefixes. 240

B) Utterance token mentions schema (Joint). 241

predicting whether an utterance token refers to a 242

schema item, i.e. a table or column. The purpose 243

is to force schema information to be expressed in 244

the utterance representation. 245

C) Schema item directly mentioned (Joint). 246

predicting whether a schema item is directly men- 247

tioned by the utterance. A direct mention essen- 248

tially means a string match. This is to ensure the 249

utterance information is fused into schema repre- 250

sentation. 251

D) Schema item implicitly mentioned (Joint). 252

predicting whether a schema item is implicitly men- 253

tioned by the utterance. An implicit mention means 254

the item appears in the final SQL query. This is 255

more challenging than task C, and encourages a 256

deeper understanding in the multi-modal represen- 257

tation towards the final SQL prediction task. 258

E) Token phonemes (Audio). predicting which 259

phonemes exist in the token pronunciation. This 260

is a multi-label classification task. This task is ap- 261

plied to the audio encoding only, since language 262

understanding should not be needed for predicting 263

phonemes. As the input ASR transcription may 264

contain errors, this task enforces the model to uti- 265

lize the raw audio stream and not fully rely on the 266

text modality. 267

We studied adding each auxiliary task separately. 268

Each task involves an MLP classifier head on top 269

of the audio or joint representations. 270

3.2 Decoders 271

For both Tagger and ILM, the decoder takes the 272

multi-modal representation from encoder as input. 273

Tagger Decoder. The Tagger decoder is an 274

LSTM-CRF sequence labeler. During training, we 275

require “gold rewriter tags” to supervise the Tagger. 276

We leverage work on aligning tokens in machine 277

translation. In particular, we apply Fast Aligner 278

(Dyer et al., 2013) to every ASR candidate and its 279

corresponding ground truth text and obtain the gold 280

tags for each token based on the output alignment. 281

Infilling LM Decoder. The ILM rewriter decoder 282

is a standard LSTM-based decoder. During train- 283

ing, it takes the gold rewriter tags as input, to avoid 284
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error cascading from the Tagger. The gold output is285

the correct blank-filling sequence, described above.286

During inference, it takes the Tagger prediction of287

rewriter tags as input.288

4 Experiments289

4.1 Experimental Setup290

Dataset. The main dataset we use is Spider (Yu291

et al., 2018). Spider is a large-scale text-to-SQL292

dataset in which the train, dev, and test data have293

a different subset of DBs, thus models must gen-294

eralize to unseen databases. In order to evaluate295

speech-to-SQL systems, we created a spoken ver-296

sion of Spider, named Spoken Spider. We used297

Amazon Polly speech synthesizer to obtain the au-298

dio of all natural language queries and tokens in299

DB schemata.300

External models. Our baselines and proposed301

methods make use of an external ASR system and302

text-to-SQL system. For ASR, we use Amazon303

Transcribe, which is a state-of-the-art commercial304

ASR system whose outputs includes the transcrip-305

tion candidate list. It also outputs the timestamps306

and confidence scores of each transcribed token307

in each candidate. For text-to-SQL parsing, we308

mainly use RAT-SQL (Wang et al., 2020) which309

was one of the best-performing models on the Spi-310

der leaderboard when we started our experiments.311

Currently it is still a key part of many competitive312

methods on the leaderboard. In order to show the313

advantage of our TaggerILM rewriter being parser-314

agnostic, we also experimented with a stronger text-315

to-SQL parser, Picard, which was proposed very316

recently at EMNLP 2021 (Scholak et al., 2021).317

We used the released Picard model checkpoint with318

no further training. Due to computational resource319

limitation, we did not retrain the Picard model.320

Evaluation Metrics. For evaluation, we use321

BLEU score against the gold utterance as the met-322

rics for text quality. To measure the end-to-end323

speech-to-SQL performance, we use the SQL exact324

match score provided in the Spider official eval-325

uation script, which is the metrics for one of the326

Spider leaderboards.327

4.2 BLEU, Exact Match, and Run Time328

The main results are shown in Figure 4. For our329

TaggerILM method, we trained each model (Tagger330

& ILM) 5 times, only varying the random seeds331

between runs. The bar heights represent the aver- 332

age values and the error bar lengths represents the 333

standard deviations. 334

With RAT-SQL Parser. With RAT-SQL as the 335

text-to-SQL parser, our TaggerILM rewriter sig- 336

nificantly outperforms the blackbox baseline on 337

both BLEU (0.871 vs 0.801) and SQL exact match 338

scores (0.528 vs 0.455). Compared to retraining 339

methods, TaggerILM has the same significant ad- 340

vantage in BLEU, as retraining methods make no 341

efforts to revise the text directly. On exact match 342

scores, TaggerILM method has a slight advantage 343

over retraining methods, although the improvement 344

is not statistically significant (p ≃ 0.15). Besides 345

performance differences, retraining methods have 346

several limitations. First, retraining the text-to-SQL 347

parser is computationally expensive. As shown 348

in Figure 4b, retraining methods take significantly 349

longer to train, compared to TaggerILM, even when 350

we used a small parser model3. Furthermore, in 351

real-world applications, users usually want to check 352

the text input to ensure that the system has under- 353

stood the spoken utterance. Not being able to fix 354

the text could hurt user trust of the system. 355

With Picard Parser. Using the recent parser, Pi- 356

card, the exact match score is boosted for Blackbox 357

baseline to outperform any method with RAT-SQL. 358

Nonetheless, applying our TaggerILM further sig- 359

nificantly improves the performance. These results 360

with Picard reflect the parser-agnostic nature of our 361

TaggerILM rewriter where our text-to-SQL parser 362

can be quickly swapped out for another without 363

further training. 364

Lastly, there is large performance gap between 365

all methods and directly passing the gold queries 366

to text-to-SQL parser. This shows room for further 367

improvements on the task of speech-to-SQL. 368

4.3 Analysis 369

4.3.1 Oracle Replacements 370

To examine the bottleneck of our method, we tested 371

the performance of the Tagger and ILM rewriter 372

separately, with the other part replaced by an oracle. 373

In detail, the oracle Tagger always predicts the gold 374

labels for rewriter tags; the oracle ILM rewriter 375

always rewrites an edit span with its aligned span 376

in the gold utterance. 377

3We used the smaller model, RAT-SQL-Glove, instead of
the best performing RAT-SQL-BERT, due to GPU memory
limit.
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(a) BLEU Scores. (b) Training time. (c) Exact Match Scores (RAT-SQL). (d) Exact Match Scores (Picard).

Figure 4: Spoken Spider results. (a) BLEU scores are computed on the text transcriptions. (b) training time for
Blackbox ASR and Gold queries are not reported as we used out-of-the-box text-to-SQL model and additional
training is not required. (c) SQL exact match using RAT-SQL as parser. (d) SQL exact match using Picard as parser.
Since we were not able to retrain the recently released Picard, we do not present Picard results for baselines that
require retraining.

Tagger ILM Exact Match BLEU
Trained Trained 0.5283(±0.0065) 0.8714(±0.0103)

Oracle Trained 0.5262(±0.0079) 0.8951(±0.0044)

Trained Oracle 0.5755(±0.0051) 0.9246(±0.0027)

Table 2: Oracle analysis results showing that the ILM is
the current performance bottleneck.

The results are in Table 2. Using an oracle tagger378

only gives minor improvement on BLEU and no379

improvement for exact match. However, using an380

oracle ILM rewriter provides a significant perfor-381

mance boost on both metrics. We can therefore382

conclude that ILM rewriter is the bottleneck in the383

TaggerILM pipeline. In future work, to further im-384

prove the TaggerILM method (or the like), the key385

would be to improve the ILM rewriter part.386

4.3.2 Syntactic Category Analysis387

To better understand the strengths and limitations388

of our approach, we analyzed the token accuracy of389

rewritten utterances on each Part-of-Speech (POS)390

tag. The results are shown in Table 3, under meta-391

column “Token Accuracy”. POS tags are sorted by392

∆Acc, i.e. the token accuracy change of rewritten393

utterances compared to raw ASR output. At the394

bottom are the POS tags on which the rewriter is395

least successful. The PROPN (proper noun) is the396

hardest POS tag for the rewriter. Most proper nouns397

in the Spider dataset are value literals in databases.398

They are challenging for the ASR system because399

they are mostly uncommon words that are unlikely400

to appear in ASR training data. Additionally, our401

current pipeline does not provide synthesized au-402

dio for value literals because of the excessively403

POS tags Total
Token Accuracy Exact Match

Raw Rewritten ∆Acc↑ ∆F↓ ∆M↑
PUNCT 605 0.6661 0.8529 0.1868 -0.0183 0.0201
NUM 114 0.6228 0.7719 0.1491 -0.0128 0.0146
PRON 316 0.9494 0.9935 0.0441 -0.0110 0.0146
VERB 508 0.9134 0.9567 0.0433 -0.0018 0.0055
AUX 519 0.9364 0.9595 0.0231 0.0018 -0.0018
NOUN 1875 0.9275 0.9482 0.0207 -0.0164 0.0146
ADP 824 0.9551 0.9757 0.0206 -0.0091 0.0110
DET 1093 0.9607 0.9725 0.0118 -0.0018 0.0073
SCONJ 55 0.9636 0.9636 0.0000 0.0000 0.0018
ADJ 489 0.9796 0.9775 -0.0021 0.0000 0.0018
CCONJ 176 0.9886 0.9830 -0.0056 0.0000 0.0018
ADV 175 0.9486 0.9429 -0.0057 0.0037 -0.0018
PART 63 0.8730 0.8571 -0.0159 0.0000 0.0018
PROPN 276 0.7138 0.6436 -0.0702 -0.0091 0.0183

Table 3: TaggerILM performance analysis with freez-
ing/modifying POS tags. “Raw” stands for raw ASR out-
put; “Rewritten” for utterances rewritten by our model.
The proper nouns (PROPN) tag is the most challenging
for our model. ∆F is the exact match performance drop
when freezing tokens under the POS (the lower, the ed-
its more helpful). ∆M is the performance gain when
only modifying the POS (the higher the more helpful).

large amount of them. It would be an important fu- 404

ture work to improve the rewriting performance on 405

these value literals, potentially by better represent- 406

ing and combining the audio features of utterance 407

tokens and the database tokens. 408

To further examine the separate influence of each 409

POS on the SQL exact match performance, we ex- 410

perimented to freeze tokens with certain POS dur- 411

ing ILM rewriting, or only modifying tokens with 412

certain POS, and check the performance changes. 413

Conceptually, a higher performance loss when 414

freezing or a higher gain when modifying a POS 415

indicates that rewriting this POS provides more 416

positive influence on the final performance. The re- 417
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sults are in Table 3, under “Exact Match”. The most418

contributing POS include PUNCT, NUM, PRON,419

NOUN, ADP (adpositions, such as “in”, “and”,420

“or”, etc.) and PROPN. NOUN is important as ex-421

pected, because most of the entity mentions that422

are directly related to SQL query are nouns. It is423

also the most frequency POS in Spider. Surpris-424

ingly, fixing PROPN has a highly positive affect on425

the SQL performance, although its token accuracy426

largely dropped. A possible explanation is that,427

since the exact match metrics ignore value literals428

in SQL, having an incorrect proper noun with cor-429

rect type (e.g. “Johnson” and “Jason”) suffices for430

a correct SQL. Besides, ADP are also important431

because they often decide the logic operators in the432

SQL. Other influential POS are less explainable.433

Our assumption is that fixing these POS conceptu-434

ally maps the utterance back to the domain where435

text-to-SQL parser is trained, therefore improves436

performance. Several examples of correcting cer-437

tain POS improving SQL prediction are shown in438

Table 6.439

4.3.3 Probing Tests440

Aside from quantitative performances, we also441

check the internal behaviors of the model to shed442

light on what information is captured in the hidden443

representation. We do probing tests on the same444

tasks as mentioned in Section 3.1.3. We examine to445

what extent adding such auxiliary losses can help446

the model capture corresponding information, and447

how much they improve the final performance. We448

only experiment on ILM rewriter for these exper-449

iments, not Tagger, as we have shown that ILM450

is the overall performance bottleneck. Results are451

in Table 4. The task of classifying gold rewriter452

tags (A) achieved F1 score close to 1. This indi-453

cates that tag information is already captured, and454

adding auxiliary loss on this task is unnecessary.455

For other tasks on utterance-schema relation (B-D),456

adding corresponding auxiliary loss can drastically457

improve the probing accuracy. However, they bring458

no clear improvement on the model performance,459

either BLEU or exact match. This implies that the460

model is not bottle-necked by the fusion of utter-461

ance and schema features. In contrast, adding a462

loss for token phonemes (E) improves both prob-463

ing accuracy and overall performance (on exact464

match). The probe for token phonemes is similar to465

an acoustic model; however, before adding the loss,466

the probing F1 score is very low. As we observe the467

model, the audio encoder often degrades and out-468

Task P(pos)
No Aux Loss With Aux Loss

Probe F1 EM BLEU Probe F1 EM BLEU
(A) Gold tags 0.3480 0.9969 - - - - -
(B) Utter-MS 0.2573 0.7899 0.5283 0.8714 0.9223 0.5225 0.8730
(C) Schema-DM 0.1113 0.2369 0.5283 0.8714 0.7462 0.5225 0.8710
(D) Schema-IM 0.0713 0.0916 0.5283 0.8714 0.4628 0.5229 0.8714
(E) phonemes 0.0985 0.0221 0.5250 0.8721 0.2113 0.5283 0.8714

Table 4: Probing test results. “P(pos)” is the propor-
tion of positive labels4. EM means exact match. Gold
rewriter tags (A) are almost fully predicable without
explicit supervision. All other tasks (B-E) are more
predictable with the auxiliary loss, but only (E) yields a
slight improvement in performance.

Ablation Exact Match BLEU
Best config 0.5283(±0.0065) 0.8714(±0.0103)
Audio-att→Full-att 0.5159(±0.0107) 0.8705(±0.0090)
- Align tags 0.5214(±0.0144) 0.8705(±0.0107)
BERT→TaBERT 0.4958(±0.0122) 0.8585(±0.0120)

Table 5: Ablation study results showing that our audio
attention and align tags in our encoder are important for
performance.

put the same encoding for every token, indicating 469

that the model is relying solely on text features and 470

ignoring audio input. As a result, adding the loss 471

on phonemes “activated” the audio encoder and 472

also slightly improved the overall performance. 473

4.3.4 Other Ablation Studies 474

We conducted ablation studies to justify other afore- 475

mentioned design choices. The results are shown 476

in Table 5. TaBERT is not as good as BERT in 477

our case, even though it is pretrained for table 478

data. It might be because the model becomes less 479

robust to ASR errors after tuning. Other design 480

choices, mainly audio attention and align tags, are 481

also shown to be useful, especially on exact match. 482

4.4 Sample Predictions 483

Several sample queries in which the TaggerILM 484

method improved the final SQL prediction are 485

shown in Table 6. These samples illustrate that 486

the rewriter improves SQL accuracy by fixing criti- 487

cal ASR errors, such as “ids” recognized as “It’s” 488

in Table 6(a), “and” recognized as “in” in (b) and 489

“codes” recognized as “coats” in (c). Nonetheless, 490

the rewriter is still unable to fix some errors, for in- 491

stance, “bought” recognized as “spot” in Table 6(b). 492

To be able to fix such errors, the rewriter will need 493

a better understanding of context and a better audio 494

representation. 495
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ASR show. It’s for all templates not used by any document.

ASR SQL
SELECT Templates.Template_Details FROM Templates
WHERE Templates.Template_ID NOT IN
(SELECT Documents.Template_ID FROM Documents) (0.1111)

Rewritten show ids for all templates not used by any document .

Rewritten SQL
SELECT Templates.Template_ID FROM Templates EXCEPT
SELECT Documents.Template_ID FROM Documents (1.0)

Gold Show ids for all templates not used by any document.

Gold SQL
SELECT template_id FROM Templates EXCEPT
SELECT template_id FROM Documents

(a) Fixing pronouns.
ASR what are the average in maximum number of tickets spot in all visits .
ASR SQL SELECT Avg(visit.Num_of_Ticket) FROM visit (0.2)
Rewritten what are the average and maximum number of tickets spot in all visits ?

Rewritten SQL
SELECT Avg(visit.Num_of_Ticket),
Max(visit.Num_of_Ticket) FROM visit (1.0)

Gold What are the average and maximum number of tickets bought in all visits?
Gold SQL SELECT avg(num_of_ticket) , max(num_of_ticket) FROM visit

(b) Fixing adpositions & punctuation (failed to fix verb).
ASR what are the coats of template types that are not used for any document?

ASR SQL
SELECT Templates.Template_Details FROM Templates WHERE

Templates.Template_ID NOT IN (SELECT Documents.Template_ID FROM
Documents) (0.1111)

Rewritten what are the codes of template types that are not used for any document ?

Rewritten SQL
SELECT Templates.Template_Type_Code FROM Templates
EXCEPT SELECT Documents.Template_ID FROM Documents (0.8)

Gold What are the codes of template types that are not used for any document?

Gold SQL
SELECT template_type_code FROM Templates EXCEPT
SELECT template_type_code FROM Templates AS T1
JOIN Documents AS T2 ON T1.template_id = T2.template_id

(c) Fixing nouns.

Table 6: Samples improved by our TaggerILM rewriter.
Numbers in brackets after SQL queries are their partial
match scores (1.0 is an exact match. Detailed explana-
tions are given in the appendix.)

5 Related Work496

Speech-to-SQL and Text-to-SQL. While there497

is previous work on speech-to-SQL (Jamoussi et al.,498

2005; Kumar et al., 2013; Hiregoudar et al., 2019),499

to our knowledge, our work is the first to system-500

atically explored adaption vs. error correction ap-501

proaches and to propose a method that builds on502

state-of-the-art deep learning based techniques. A503

closely related task, SQL dictation (speech-to-text),504

has recently been introduced (Shah et al., 2020).505

Our speech-to-SQL system enables users to speak506

natural language, thus can support users who are507

not proficient in query languages.508

Renewed interest in text-to-SQL parsing has re-509

sulted in a number of contributions. New datasets510

have been introduced, such as WikiSQL (Zhong511

et al., 2017) and Spider (Yu et al., 2018). Meth-512

ods leveraging these datasets have been developed513

such as NL2Code(Yin and Neubig, 2017), IR-514

Net (Guo et al., 2019), X-SQL (He et al., 2019),515

RAT-SQL (Wang et al., 2020), and Picard (Scholak516

et al., 2021). The methods devised in this paper517

can benefit from further progress in text-to-SQL518

parsing to improve speech-to-SQL performance.519

ASR Correction. Mani et al. (2020) treat ASR520

correction as a machine translation (MT) task, but521

their input only consists of the ASR transcription, 522

no raw audio or DB schema. Weng et al. (2020) 523

leverage multi-task learning by jointly learning a 524

language model (LM) and a dialog state tracker 525

(DST), and using the LM to rerank ASR candi- 526

dates. Corona et al. (2017) use the confidence of 527

downstream model to rerank ASR transcription 528

candidates. Our rewriter model is more flexible 529

than reranking approaches as it edits the ASR tran- 530

scriptions. 531

Spoken Dialogue Systems. Spoken dialogue sys- 532

tems extract semantic concepts from spoken utter- 533

ances to perform tasks such as intent detection and 534

slot filling. Research on such systems has attacked 535

the problem of adapting to ASR errors, leveraging 536

information from lattices or word confusion net- 537

works (Hakkani-Tür et al., 2006; Tür et al., 2013; 538

Ladhak et al., 2016; Zhu et al., 2018; Shivakumar 539

and Georgiou, 2019; Huang and Chen, 2019), sim- 540

ulated errors (Simonnet et al., 2018; Zhu et al., 541

2018), or by ASR robust contextualized embed- 542

dings (Huang and Chen, 2020). Our task on speech- 543

to-SQL has a structured DB schema against which 544

errors can be corrected; however, it is also more 545

challenging due to the complexity of DB schema 546

structures and value literals. 547

6 Conclusion 548

We proposed an error correction method for speech- 549

to-SQL parsing. Powered by a novel multi-modal 550

encoder, our proposed TaggerILM method fixes 551

a substantial number of ASR errors as reflected 552

by the strong BLEU scores. Additionally, it sig- 553

nificantly outperforms the blackbox baseline on 554

SQL prediction, and outperforms the strong retrain- 555

ing baseline where the gains are significant when 556

we take advantage of our method’s parser-agnostic 557

nature by plugging in a strong newly released text- 558

to-SQL parser, Picard. The in-depth analyses we 559

conducted can serve as a guide for future work to- 560

wards further improvements on the speech-to-SQL 561

task. For example, future work can explore incor- 562

porating more context in the form of literals in the 563

database, to address the current poor performance 564

on proper nouns. Another future direction is to con- 565

sider an end-to-end fully-differentiable approach 566

to the problem since performance of our current 567

approach is upper-bounded by the performance of 568

the text-to-SQL parser. 569
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A Method Details705

A.1 Model Details706

For the model structure diagrams, an LSTM block707

stands for a single LSTM layer. LSTM encoders708

are bidirectional and decoders are unidirectional.709

The pretrained LM, BERT or TaBERT, is frozen710

during training. Text-schema representations di-711

mension is 768 (same as BERT-base); audio fea-712

ture dimension is 68, including the values and delta713

values of 34 basic audio features; audio encoding714

(from 1D-CNN) dimension is 128; tag embedding715

dimension is 100; char-level embedding dimension716

is 128. LSTM hidden dimension is 256 (128 per717

direction for bidirectional LSTM). For Reranker,718

the FF layers are (Linear; Leaky-ReLU(0.01); Lin-719

ear; Sigmoid). The middle dimension between FF720

layers is 64. The margin in the margin loss is 0.25.721

For all models, the optimizer is Adam with initial722

learning rate 0.001. Batch size is 8. We use early723

stopping with patience 10 epochs for Tagger, 50724

epochs for ILM, based on preliminary study.725

For text representation, we added a standard char-726

acter embedding and a 1D-CNN char-level encoder727

to obtain the char-level representations of each to-728

ken, concatenated with the PLM text representa-729

tions.730

We also attempted the following modifications731

in preliminary experiments (on ILM rewriter), but732

they did not improve the model performance: fine-733

tuning the PLM (all layers or top 2 layers); for734

audio attention, using other attention types (linear,735

bilinear, etc.); for encoder final encoding layer, us-736

ing self-attention in place of LSTM; using more737

layers of audio-attention or LSTM; using SGD as738

the optimizer in place of Adam. For the Tagger,739

we are actually using a basic version (not using740

token phoneme losses), due to our findings in pre-741

liminary study that Tagger is not the performance742

bottleneck.743

A.2 Pretrained LM744

For BERT, we using BERT-base-uncased. For745

TaBERT, we use the version of K=1. Another de-746

tail is that TaBERT only encodes a query and a747

single table, instead of all tables in a DB. When748

using TaBERT as pretrained LM, we feed the text749

query and each table into TaBERT, obtaining t rep-750

resentation results where t is the number of tables.751

Each query token has t representations, which are752

averaged; each schema token only has one repre-753

sentation, which is directly used as its token repre-754

sentation. 755

A.3 Audio Encoder 756

Given the audio of a token, we apply a slid- 757

ing window on the audio to compute a 758

matrix of basic audio features5, with shape 759

(num-of-windows, audio-feats-dim). 760

We then apply a 1D-CNN on the time di- 761

mension, i.e. num-of-windows, to get the 762

audio feature vector for the token, with length 763

audio-feats-dim. 764

A.4 Fast Aligner 765

We use Fast Aligner to get the “gold rewriter tags”. 766

However, Fast Aligner is originally for SMT and it 767

allows reordering of tokens during matching which 768

should not occur in ASR tokens matching. Also, it 769

only provides token-to-token matches. Therefore, 770

we postprocess Fast Aligner output by merging 771

successive tokens into spans and match spans with 772

any token matches in them, until there is not more 773

reordering. For all spans matches, if the text is iden- 774

tical, all tokens are tagged KEEP; if the text differ, 775

all tokens are tagged EDIT (in BIOUL). Tokens 776

without a match are tagged DEL. 777

A.5 Text-to-SQL parser 778

RAT-SQL Due to limited GPU memory we were 779

unable to train RAT-SQL-BERT; instead, we used 780

the Glove version. Our trained model achieved 781

62.4 exact match score on the dev set, close to the 782

reported performance 62.7 on the leaderboard entry 783

RATSQL v2 (DB content used). 784

Picard Again due to memory limit, we were 785

unable to setup the Picard parsing module, so 786

we used the officially released model version 787

“t5.1.1.lm100k.large w/o Picard”. It obtains 71.2 788

exact match on dev set, which is still much stronger 789

than RAT-SQL-Glove. 790

B Experiment Details 791

B.1 Spoken Spider Statistics 792

The statistics of our Spoken Spider dataset are 793

shown in Table 7. The dataset can be downloaded 794

at https://drive.google.com/file/d/16w4E_ 795

W6BqMs0OvWWsFmD6YAziItNVJeX/view?usp= 796

sharing. 797

5The basic audio features include frame energy, spectrum
features, MFCC, etc. Features are extracted using pyAudio-
Analysis library: https://github.com/tyiannak/
pyAudioAnalysis
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Dataset splits # of clean queries # of ASR candidate queries
Training 7000 41112
Dev 487 2707
Test 547 3075

Table 7: Spoken Spider statistics. The training set comes from “train_spider.json” in original Spider; the dev and
test set come from “dev.json”.

B.2 Partial Match Score798

The partial match scores provided in Spider official799

evaluation scripts are the F1 scores of each type800

of clause (Select, Where, GroupBy, etc.) between801

predicted and gold SQL. To make it a single-value802

evaluation metric, we compute an average score803

across clause types, weighted by the occurrences804

of each type. This score is better than exact match805

score as the supervision signal for Reranker be-806

cause it is continuous in range [0, 1] while exact807

match score is binary.808

C Analysis Study Details809

C.1 Oracle Analysis810

Oracle Tagger Directly output the gold rewriter811

tags812

Oracle ILM rewriter Based on the Fast Aligner813

alignment results (which we used to generate gold814

rewriter tags). For each EDIT span, rewrite the to-815

kens with their aligned tokens in the gold utterance.816

C.2 Syntactic Category Analysis (POS)817

We use SpaCy to assign a POS tag to each token in818

the ASR transcription. We use a simple dynamic819

programming edit-distance algorithm to align the820

rewritten utterance to the gold one, check if each821

token correctly aligns with the rewritten query, and822

compute the percentage of tokens being correct for823

each POS tag respectively. This percentage is used824

as token accuracy.825

The results are shown in Table 3 in main text. On826

the top of the table are the POS tags on which the827

ASR errors are relatively better addressed by the828

rewriter. For PUNCT, many ASR outputs have peri-829

ods at the end when the queries are questions. Also,830

some ASR outputs have extra ending punctuation831

marks in the middle. Errors on NUM are usually832

formatting errors, such as numbers transcribed into833

English words or mismatches in comma delimiters.834

Some of these errors actually appeared in samples835

in Table 4 in main text. Generally, the errors types836

listed above are more patterned and the rewriter is837

able to handle them well. At the bottom is PROPN 838

(proper nouns), which we have discussed in the 839

main text. 840

For freezing or modifying experiments, we only 841

used the run with medium performance (on exact 842

match) among all 5 runs. We treat it as a represen- 843

tative of all runs. 844

C.3 Probe 845

For each probing task, the model of probes is lo- 846

gistic regressor. Probing F1 score is also obtained 847

using the medium run among all 5 runs, similar 848

to the freezing / modifying experiments in POS 849

analysis. 850

For the utterance mentioning schema task and 851

schema directly mentioned task (B, C), a mention 852

is determined by word stem matching. 853

For the token phonemes task (E), the prob- 854

ing F1 is only averaged over phonemes with 855

P (pos) > 0.05, because there are a lot of infre- 856

quent phonemes that have almost no positive labels 857

in the dataset. 858

D Experiment Environment 859

CPU: 40 × Intel(R) Xeon(R) Silver 4114 CPU 860

@ 2.20GHz 861

GPU: 1 × Tesla P100-PCIE-12GB 862

CUDA: Version = 10.1 863

OS: Ubuntu 16.04.1 LTS (Xenial Xerus) 864
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