Speech-to-SQL Parsing:
Error Correction with Multi-modal Representations

Anonymous ACL submission

Abstract

We study the task of spoken natural language
to SQL parsing (speech-to-SQL), where the
goal is to map a spoken utterance to the corre-
sponding SQL. Existing work on SQL parsing
has focused on text as input (text-to-SQL). To
develop a speech-to-SQL parser, we harness
progress in text-to-SQL parsing, and automatic
speech recognition (ASR). However, ASR is
still error-prone, we therefore propose an er-
ror correction method that fixes ASR errors
in the context of a DB schema. We present a
novel multi-modal representation of text, au-
dio, and DB schema with audio attention and
a phoneme prediction auxiliary task. Our ex-
periments show that our method yields better
performance, is much faster to train, has greater
transparency, and is parser-agnostic compared
to baselines that seek to adapt to ASR errors.

1 Introduction

Interfaces that support human language as a
medium of communication between humans and
computers have been of interest for decades (Wino-
grad, 1971; Woods, 1972; Codd, 1974; Hendrix
et al., 1978; Zelle and Mooney, 1996; Popescu
et al., 2003; Zettlemoyer and Collins, 2012).
Known as Natural Language Interfaces (NLIs),
early systems saw limited success due to the dif-
ficult problem of endowing computers with the
ability to understand natural language. Progress
in language understanding has led to renewed in-
terest in NLIs. In particular, several studies have
focused on NLIs to databases (NLIDBs) (Zhong
et al., 2017; Yin and Neubig, 2017; Yu et al., 2018;
He et al., 2019; Guo et al., 2019; Wang et al., 2020).
NLIDBs, when fully realized, stand to support
users who are not proficient in query languages.

Motivation. The primary focus of NLIDBs has
been on parsing natural language text utterances
into executable SQL queries (text-to-SQL parsing).

Motivated by the rise of speech-driven digital as-
sistants on smartphones, tablets, and other small
handheld devices, we study the task of parsing spo-
ken natural language to executable SQL queries
(speech-to-SQL parsing). A speech-to-SQL parser
has a number of potential use cases. For example,
in the healthcare domain, a nurse practitioner at a
patient bedside typically looks up patient details
on a desktop in the patient’s room by filling out
forms whose back-end is a database, where speech-
to-SQL could be used instead, for faster results.
Furthermore, speech-to-SQL removes the need for
keyboards that can be slow and cumbersome on
small devices, when querying databases.

Approach. To build a speech-to-SQL parser, we
leverage progress in text-to-SQL parsing, auto-
matic speech recognition (ASR). However, ASR
is still error-prone. To deal with ASR errors, we
propose an error correction method that fixes ASR
errors in the context of a DB schema. Our error
correction method, TaggerILM rewriter, edits the
ASR transcription by tagging tokens (Tagger) to
indicate if they should be edited, and then rewriting
the appropriate tokens using an infilling language
model (ILM). We build both the Tagger and ILM
on top of a novel multi-modal representation of
text, audio, and DB schema, with audio attention
and a phoneme prediction auxiliary task.

Summary of Contributions. We make the fol-
lowing contributions: i) study the problem of spo-
ken natural language to SQL parsing, illustrated
in Figure 1, which is currently under-explored
in the neural era. ii) propose an ASR error cor-
rection method, TaggerILM rewriter build on a
novel encoder that produces multi-modal represen-
tations from text, audio, and DB schema represen-
tations using audio attention and a phoneme predic-
tion auxiliary task. We show that the TaggerILM
rewriter yields better performance, is faster to train,
has greater transparency and is parser-agnostic. iii)

What is the
number of votes
from the state
of California?

SELECT count(*)

speech to FROM votes
SQL |- SQL WHERE
parser state = ‘CA’

Figure 1: The speech-to-SQL parsing task takes as input a spoken natural language query, and outputs the

corresponding SQL query.

Gold:
ASR:

Show me the
Show

fares

me _ from Dallas to

Boston
Boston

from Dallas to

Figure 2: An example ASR error wherein a phrase, "the fares", is incorrectly described as “affairs". Passing ASR
errors to the text-to-SQL parser is unlikely to produce the correct SQL.

present a new dataset which is a spoken version of
the Spider text-to-SQL benchmark (Yu et al., 2018),
named Spoken Spider (link provided in Appendix).
iv) carried out extensive experiments on Spoken
Spider, showing the strengths and limitations of our
proposed methods via an in-depth analysis to pro-
vide guidance for future research in this direction.

2 Baselines

Blackbox Baseline. Given a spoken utterance,
the task is to emit the corresponding SQL. An ob-
vious solution to this problem is to first pass the
spoken utterance through an automatic speech rec-
ognizer (ASR), and then issue the top-ranked ASR
transcription to a text-to-SQL parser which pro-
duces the final SQL. We name it the blackbox base-
line. A drawback of this baseline is that no attempt
is made to deal with ASR errors. Figure 2 shows
an example of such errors. Passing ASR errors to
the text-to-SQL parser is unlikely to produce the
correct SQL.

Domain Adaptation Baselines. We consider an-
other set of baselines that frame the problem of
speech-to-SQL as a domain adaptation problem
of text-to-SQL. That is, we can treat clean text as
the source domain, and ASR transcriptions as the
target domain. The source domain data is the origi-
nal text-to-SQL data, i.e. clean text and gold SQL
queries. We generate the target domain data by pair-
ing ASR transcriptions with gold SQL queries. To
let the parser learn to adapt to ASR errors (target do-
main), we train the text-to-SQL parser model on the
new data we generated. Domain adaption via data
pre-processing can produce strong results (Daumé,
2007). We consider two variations, Retraining-ASR
and Retraining-mixed. Retraining-ASR uses the tar-
get domain data only; Retraining-mixed uses both
the source and the target domain data.

3 Method

We propose a neural error correction method that
fixes ASR errors in the transcription before pass-
ing the transcription to a text-to-SQL parser. Our
proposed method, TaggerlILM rewriter, consists of
a Tagger and an Infilling Language Model (ILM)
rewriter. The input to our TaggerILM rewriter con-
sists of: 1) the top-k ASR transcriptions. ii) the DB
schema. iii) the raw audio stream of input speech
and schema tokens. The output is a corrected ASR
transcription. In contrast to adaptation baselines,
fixing errors has the advantage of transparency, as
opposed to implicitly adapting to errors. Further-
more, this approach is agnostic to the text-to-SQL
parser, thus can be applied to any new strong parser
without requiring additional training of the parser,
which is a significant computational advantage.

Tagging Tokens. Our Tagger first tags each token
in the input transcription as KEEP, DEL or EDIT.
These tags are denoted as rewriter tags. The DEL
and EDIT tags are based on the BIOUL tagging
schema, thus marking certain spans' in the sen-
tence to be deleted or edited. The KEEP tags are
the O tags in BIOUL, marking tokens that should
be kept. After the tagging step, tokens marked as
KEEP or DELETE are kept or deleted, respectively.
Each EDIT span is replaced by a [BLANK] token.

Rewriting Spans with an Infilling Language
Model (ILM). After tagging, the ILM rewriter,
which is an Infilling Language Model (ILM) (Don-
ahue et al., 2020), takes the transformed sentence
as input and fills in each [BLANK]. The ILM is an
autoregressive language model. A working exam-
ple of ILM is shown in Table 1. It takes as input a
sentence with blanks, and predicts a sequence with

"For example, tokens from B-DEL to L-DEL, or single
U-DEL, make a DEL span. See Table 1 for a concrete example.

Rewriter tag type)

Utter-mention-Schema)*” T

[Optional Auxiliary tasks]

Token Phonemes)«-wmeeememmmmmeenemeees

Audio Encoder

Multi-modal Representation
»(Schema-dir-mentioned

Utterancerep. Schema rep. -

“4(Schema-imp-mentioned
‘ Sequence encoder (LSTM)

‘(reéidu;l) :

‘ Audio-attention layer

Rewritter Tags . Tag Embeddings
onlyin1iM) |
v)) “> Rewritter Tag Embeddings (padding) _
1 Align Tag Embeddings (padding)
Align Tags I :

Encoded Audio Features

(concat)

Schema

Utterance audio feats. 5
audio feats.

I

‘ (Utterance-schema) Text Representation

—

Utterance rep. Schema rep.

(1D-CNN)
t

Pretrained Language Model (BERT / TaBERT)

I [Input text] Show me affairs from Dallas to Boston . [SEP] airport : id , name , ...

[Input audio]

Utterance (ASR transcript) Schema tokens

Figure 3: Our error correction encoder fuses free text, audio, and a structured DB schema to obtain a multi-modal
representation. Auxiliary tasks such as the "token phonemes" task seek to ensure that certain information is encoded

in the representation.

Gold Whose name has substring ABC 7

ASR Who’s name has sub string ABC

Tags U-EDIT KEEP KEEP U-DEL B-EDIT L-EDIT KEEP U-EDIT
ILM Input [BLANK] name has [BLANK] ABC [BLANK]

ILM Prediction | Whose [ANS] substring [ANS] ? [ANS]

Final Output Whose name has substring ABC ?

Table 1: Infilling Language Model (ILM) example. Gold text is invisible to the model. In the tagged ASR output,
adjacent tokens with a single U or from B to L make a span. For example, “Who’s” and “sub string” are EDIT spans

[73eL]

and “a” is a DEL span.

content for each blank. Content for different blanks
are separated by a special [ANS] token.

We next describe the details of the Tagger and
the ILM rewriter. They share an encoder, but each
model has a separate decoder.

3.1 Shared Encoder

We introduce a novel encoder that fuses different
representations from free text, audio, and structured
DB schema, illustrated in Figure 3. The novel com-
ponents of the shared encoder include an audio
attention layer, align tag features, and auxiliary
probing loss. This encoder is shared by both the
Tagger and the ILM rewriter, with only slight vari-
ations to accommodate differences in their input.
We introduce each part of the model in detail.

3.1.1 Input Modalities and Features

Text. We obtain the representation of the utter-
ance and schema text using a pre-trained language

model (PLM), as shown in Figure 3, for transfer
learning of language. A possible choice is to uti-
lize a general-purpose PLM, such as BERT. We
concatenate an utterance (ASR transcription) and
DB schema with a [SEP] token and feed the con-
catenated sequence into the PLM to get a contex-
tualized utterance-schema representation for each
token (using a scalar mix of the hidden represen-
tations from each self-attention layer). We also
experimented with TABERT (Yin et al., 2020), a
BERT-style model that jointly represents a natural
language sentence and structured data in a DB. The
details of adapting TaBERT to our model are in the
appendix.

Audio. Our input includes the audio features of
both utterance tokens and schema tokens. For the
utterance, we extract the audio slice of each token
using the timestamps provided in ASR output. For
schema tokens, we directly use a speech synthe-

sizer to obtain their audios. We use a standard
1D-CNN to obtain audio encoding vectors for each
token?.

Tags. There are two types of tags used in our
encoder: align tags and rewriter tags. First, align
tags provide information about whether other ASR
candidates agree with the input one on a certain
token. If all other ASR candidates agree, the token
is tagged [SAME]; if = other candidates agree but
y disagree, the tag will be [DIFF(d)] where d =
x — y. Intuitively, these tags include additional
information from other ASR candidates to help the
model decide the correctness of each token, which
is helpful given that the input text of our model
includes only one ASR candidate. Second, we
have rewriter tags which flag tokens to be kept or
modified. These tags will be the output of Tagger
and input of ILM rewriter. Both types of tags are
embedded into vectors using a separate randomly-
initialized embedding table.

3.1.2 Multi-modal Representation

To generate a final representation of the input
modalities and features, we concatenate the text fea-
tures, audio features and tag embedding features
of each token, and feed the result into an audio-
attention layer, followed by a standard LSTM se-
quence encoder, to get the multi-modal represen-
tation. The audio-attention layer is similar to a
standard self-attention layer, but only uses audio
features as attention keys and queries to compute
attention weights instead of using the whole con-
catenated representations. We use cosine attention,
and add the token features to the attention output
as a residual link. The multi-modal representation
is then used by the decoder of different models,
which we describe later.

3.1.3 Encoder Probes as Auxiliary Losses

Since the encoder is a complex combination of dif-
ferent modalities, there is potential to lose impor-
tant predictive information in the training process.
Thus, to encourage representations to retain certain
important information, we added corresponding
probes to provide guidance for the internal repre-
sentations of the model. The auxiliary losses of
probes are added to the total training loss. Below,
Joint probes are applied onto the the multi-modal
joint representation, and Audio probes are applied
on the audio encoding.

Details are given in appendix.

A) Rewriter tags (Joint). predicting the type of
rewriter tag (KEEP/EDIT/DEL) for each token.
This is similar to the task for Tagger but without
BIOUL prefixes.

B) Utterance token mentions schema (Joint).
predicting whether an utterance token refers to a
schema item, i.e. a table or column. The purpose
is to force schema information to be expressed in
the utterance representation.

C) Schema item directly mentioned (Joint).
predicting whether a schema item is directly men-
tioned by the utterance. A direct mention essen-
tially means a string match. This is to ensure the
utterance information is fused into schema repre-
sentation.

D) Schema item implicitly mentioned (Joint).
predicting whether a schema item is implicitly men-
tioned by the utterance. An implicit mention means
the item appears in the final SQL query. This is
more challenging than task C, and encourages a
deeper understanding in the multi-modal represen-
tation towards the final SQL prediction task.

E) Token phonemes (Audio). predicting which
phonemes exist in the token pronunciation. This
is a multi-label classification task. This task is ap-
plied to the audio encoding only, since language
understanding should not be needed for predicting
phonemes. As the input ASR transcription may
contain errors, this task enforces the model to uti-
lize the raw audio stream and not fully rely on the
text modality.

We studied adding each auxiliary task separately.
Each task involves an MLP classifier head on top
of the audio or joint representations.

3.2 Decoders

For both Tagger and ILM, the decoder takes the
multi-modal representation from encoder as input.

Tagger Decoder. The Tagger decoder is an
LSTM-CREF sequence labeler. During training, we
require “gold rewriter tags” to supervise the Tagger.
We leverage work on aligning tokens in machine
translation. In particular, we apply Fast Aligner
(Dyer et al., 2013) to every ASR candidate and its
corresponding ground truth text and obtain the gold
tags for each token based on the output alignment.

Infilling LM Decoder. The ILM rewriter decoder
is a standard LSTM-based decoder. During train-
ing, it takes the gold rewriter tags as input, to avoid

error cascading from the Tagger. The gold output is
the correct blank-filling sequence, described above.
During inference, it takes the Tagger prediction of
rewriter tags as input.

4 Experiments

4.1 Experimental Setup

Dataset. The main dataset we use is Spider (Yu
et al., 2018). Spider is a large-scale text-to-SQL
dataset in which the train, dev, and test data have
a different subset of DBs, thus models must gen-
eralize to unseen databases. In order to evaluate
speech-to-SQL systems, we created a spoken ver-
sion of Spider, named Spoken Spider. We used
Amazon Polly speech synthesizer to obtain the au-
dio of all natural language queries and tokens in
DB schemata.

External models. Our baselines and proposed
methods make use of an external ASR system and
text-to-SQL system. For ASR, we use Amazon
Transcribe, which is a state-of-the-art commercial
ASR system whose outputs includes the transcrip-
tion candidate list. It also outputs the timestamps
and confidence scores of each transcribed token
in each candidate. For text-to-SQL parsing, we
mainly use RAT-SQL (Wang et al., 2020) which
was one of the best-performing models on the Spi-
der leaderboard when we started our experiments.
Currently it is still a key part of many competitive
methods on the leaderboard. In order to show the
advantage of our TaggerILM rewriter being parser-
agnostic, we also experimented with a stronger text-
to-SQL parser, Picard, which was proposed very
recently at EMNLP 2021 (Scholak et al., 2021).
We used the released Picard model checkpoint with
no further training. Due to computational resource
limitation, we did not retrain the Picard model.

Evaluation Metrics. For evaluation, we use
BLEU score against the gold utterance as the met-
rics for text quality. To measure the end-to-end
speech-to-SQL performance, we use the SQL exact
match score provided in the Spider official eval-
uation script, which is the metrics for one of the
Spider leaderboards.

4.2 BLEU, Exact Match, and Run Time

The main results are shown in Figure 4. For our
TaggerILM method, we trained each model (Tagger
& ILM) 5 times, only varying the random seeds

between runs. The bar heights represent the aver-
age values and the error bar lengths represents the
standard deviations.

With RAT-SQL Parser. With RAT-SQL as the
text-to-SQL parser, our TaggerILM rewriter sig-
nificantly outperforms the blackbox baseline on
both BLEU (0.871 vs 0.801) and SQL exact match
scores (0.528 vs 0.455). Compared to retraining
methods, TaggerILM has the same significant ad-
vantage in BLEU, as retraining methods make no
efforts to revise the text directly. On exact match
scores, TaggerILM method has a slight advantage
over retraining methods, although the improvement
is not statistically significant (p ~ 0.15). Besides
performance differences, retraining methods have
several limitations. First, retraining the text-to-SQL
parser is computationally expensive. As shown
in Figure 4b, retraining methods take significantly
longer to train, compared to TaggerILM, even when
we used a small parser model®. Furthermore, in
real-world applications, users usually want to check
the text input to ensure that the system has under-
stood the spoken utterance. Not being able to fix
the text could hurt user trust of the system.

With Picard Parser. Using the recent parser, Pi-
card, the exact match score is boosted for Blackbox
baseline to outperform any method with RAT-SQL.
Nonetheless, applying our TaggerILM further sig-
nificantly improves the performance. These results
with Picard reflect the parser-agnostic nature of our
TaggerILM rewriter where our text-to-SQL parser
can be quickly swapped out for another without
further training.

Lastly, there is large performance gap between
all methods and directly passing the gold queries
to text-to-SQL parser. This shows room for further
improvements on the task of speech-to-SQL.

4.3 Analysis
4.3.1 Oracle Replacements

To examine the bottleneck of our method, we tested
the performance of the Tagger and ILM rewriter
separately, with the other part replaced by an oracle.
In detail, the oracle Tagger always predicts the gold
labels for rewriter tags; the oracle ILM rewriter
always rewrites an edit span with its aligned span
in the gold utterance.

3We used the smaller model, RAT-SQL-Glove, instead of
the best performing RAT-SQL-BERT, due to GPU memory
limit.

Spider-ASR Results - BLEU Spider-ASR Results - Training time Spoken Spider Results - Exact match (RAT-SQL) Spoken Spider Results - Exact match (Picard)

35

0.6929

1.0000 2.6530

~
n

0.6234

1.9718
0.5872
(10.1339) (£0.0115)

0.8714
rrrrrrrrrrrrrrrrrr (£0.0103) -

N
°

,_.
n
Scores

0.5283
0.5247 {+0.0065)

0.8010 0.8010 0.5064

Training time (days)

1.0 0.50 0.50
0.75 l_l \ 0.5 0.45 0.45
0.70
o S & & 0.0 0.40 0.40
&g N R
EA « & R A LA Y
F Q\v & 3 & /\@QQ & & & /@QQ % & /\@QQ %
ST 3 & NS 52 3 & 3 X3 & &
N & RG R B & R & < &
& ¢ & € &
(a) BLEU Scores. (b) Training time. (c) Exact Match Scores (RAT-SQL). (d) Exact Match Scores (Picard).

Figure 4: Spoken Spider results. (a) BLEU scores are computed on the text transcriptions. (b) training time for
Blackbox ASR and Gold queries are not reported as we used out-of-the-box text-to-SQL model and additional
training is not required. (¢) SQL exact match using RAT-SQL as parser. (d) SQL exact match using Picard as parser.
Since we were not able to retrain the recently released Picard, we do not present Picard results for baselines that
require retraining.

Tagger ILM Exact Match BLEU o Token Accuracy Exact Match

> ’ POS tags | Total R Rewritt AA AF AM
Trained | Trained | 0.5283(%0.0065) | 0.8714(%0.0103) SORCT 605 o e 2 ISCGCST ; 0123 ; 020Tl
Oracle | Trained 0.5262(:£0.0079) | 0.8951(£0.0044) NUM 114 | 06228 | 0.7719 | 0.1491 | -0.0128 | 0.0146
Trained | Oracle | 0.5755(40.0051) | 0.9246(+0.0027) PRON | 316 | 0.9494 | 0.9935 | 0.0441 | -0.0110 | 0.0146
VERB | 508 | 0.9134 | 0.9567 | 0.0433 || -0.0018 | 0.0055
Table 2: Oracle analysis results showing that the ILM is AUX 519] 09364 | 0.9595 | 0.0231 || 0.0018 | -0.0018
the current performance bottleneck. NOUN | 1875 | 0.9275 | 0.9482 | 0.0207 || -0.0164 | 0.0146
ADP 824 | 09551 | 09757 | 0.0206 || -0.0091 | 0.0110
DET 1093 | 0.9607 | 0.9725 | 0.0118 || -0.0018 | 0.0073
: : SCONJ | 55 | 09636 | 0.9636 | 0.0000 || 0.0000 | 0.0018
The 'results.are in Table 2. Using an oracle tagger D, 255 05756 T 09773 T =0.0031 | 0.0000 1 0.0018
only gives minor improvement on BLEU and no CCONJ | 176 | 0.9886 | 0.9830 | -0.0056 || 0.0000 | 0.0018
improvement for exact match. However, using an | ADY 175] 09486 | 09429 | -0.0057) 0.0037 | -0.0018
) . .. PART 63 | 0.8730 | 0.8571 | -0.0159 | 0.0000 | 0.0018
oracle ILM rewriter prov1des a s1gn1ﬁcant pCI'fOI'- PROPN 276 || 0.7138 | 0.6436 | -0.0702 || -0.0091 | 0.0183

mance boost on both metrics. We can therefore
conclude that ILM rewriter is the bottleneck in the
TaggerILM pipeline. In future work, to further im-
prove the TaggerILM method (or the like), the key
would be to improve the ILM rewriter part.

4.3.2 Syntactic Category Analysis

To better understand the strengths and limitations
of our approach, we analyzed the token accuracy of
rewritten utterances on each Part-of-Speech (POS)
tag. The results are shown in Table 3, under meta-
column “Token Accuracy”. POS tags are sorted by
AAcc, i.e. the token accuracy change of rewritten
utterances compared to raw ASR output. At the
bottom are the POS tags on which the rewriter is
least successful. The PROPN (proper noun) is the
hardest POS tag for the rewriter. Most proper nouns
in the Spider dataset are value literals in databases.
They are challenging for the ASR system because
they are mostly uncommon words that are unlikely
to appear in ASR training data. Additionally, our
current pipeline does not provide synthesized au-
dio for value literals because of the excessively

Table 3: TaggerILM performance analysis with freez-
ing/modifying POS tags. “Raw” stands for raw ASR out-
put; “Rewritten” for utterances rewritten by our model.
The proper nouns (PROPN) tag is the most challenging
for our model. AF is the exact match performance drop
when freezing tokens under the POS (the lower, the ed-
its more helpful). AM is the performance gain when
only modifying the POS (the higher the more helpful).

large amount of them. It would be an important fu-
ture work to improve the rewriting performance on
these value literals, potentially by better represent-
ing and combining the audio features of utterance
tokens and the database tokens.

To further examine the separate influence of each
POS on the SQL exact match performance, we ex-
perimented to freeze tokens with certain POS dur-
ing ILM rewriting, or only modifying tokens with
certain POS, and check the performance changes.
Conceptually, a higher performance loss when
freezing or a higher gain when modifying a POS
indicates that rewriting this POS provides more
positive influence on the final performance. The re-

sults are in Table 3, under “Exact Match”. The most
contributing POS include PUNCT, NUM, PRON,
NOUN, ADP (adpositions, such as “in”, “and”,
“or”, etc.) and PROPN. NOUN is important as ex-
pected, because most of the entity mentions that
are directly related to SQL query are nouns. It is
also the most frequency POS in Spider. Surpris-
ingly, fixing PROPN has a highly positive affect on
the SQL performance, although its token accuracy
largely dropped. A possible explanation is that,
since the exact match metrics ignore value literals
in SQL, having an incorrect proper noun with cor-
rect type (e.g. “Johnson” and “Jason”) suffices for
a correct SQL. Besides, ADP are also important
because they often decide the logic operators in the
SQL. Other influential POS are less explainable.
Our assumption is that fixing these POS conceptu-
ally maps the utterance back to the domain where
text-to-SQL parser is trained, therefore improves
performance. Several examples of correcting cer-
tain POS improving SQL prediction are shown in
Table 6.

4.3.3 Probing Tests

Aside from quantitative performances, we also
check the internal behaviors of the model to shed
light on what information is captured in the hidden
representation. We do probing tests on the same
tasks as mentioned in Section 3.1.3. We examine to
what extent adding such auxiliary losses can help
the model capture corresponding information, and
how much they improve the final performance. We
only experiment on ILM rewriter for these exper-
iments, not Tagger, as we have shown that ILM
is the overall performance bottleneck. Results are
in Table 4. The task of classifying gold rewriter
tags (A) achieved F1 score close to 1. This indi-
cates that tag information is already captured, and
adding auxiliary loss on this task is unnecessary.
For other tasks on utterance-schema relation (B-D),
adding corresponding auxiliary loss can drastically
improve the probing accuracy. However, they bring
no clear improvement on the model performance,
either BLEU or exact match. This implies that the
model is not bottle-necked by the fusion of utter-
ance and schema features. In contrast, adding a
loss for token phonemes (E) improves both prob-
ing accuracy and overall performance (on exact
match). The probe for token phonemes is similar to
an acoustic model; however, before adding the loss,
the probing F1 score is very low. As we observe the
model, the audio encoder often degrades and out-

No Aux Loss

Probe F1 EM
0.9969
0.7899
0.2369
0.0916
0.0221

With Aux Loss

Task P(pos) Probe F1 | EM | BLEU

BLEU

(A) Gold tags 0.3480
(B) Utter-MS 0.2573
(C) Schema-DM | 0.1113
0.0713
0.0985

0.5225 | 0.8730
0.5225 | 0.8710
0.5229 | 0.8714
0.5283 | 0.8714

0.9223
0.7462
0.4628
0.2113

0.5283 | 0.8714
0.5283 | 0.8714
0.5283 | 0.8714
0.5250 | 0.8721

(D) Schema-IM
(E) phonemes

Table 4: Probing test results. “P(pos)” is the propor-
tion of positive labels*. EM means exact match. Gold
rewriter tags (A) are almost fully predicable without
explicit supervision. All other tasks (B-E) are more
predictable with the auxiliary loss, but only (E) yields a
slight improvement in performance.

Ablation Exact Match BLEU

Best config 0.5283(40.0065) | 0.8714(40.0103)
Audio-att—Full-att | 0.5159(4+0.0107) | 0.8705(40.0090)
- Align tags 0.5214(40.0144) | 0.8705(%0.0107)
BERT—TaBERT 0.4958(40.0122) | 0.8585(40.0120)

Table 5: Ablation study results showing that our audio
attention and align tags in our encoder are important for
performance.

put the same encoding for every token, indicating
that the model is relying solely on text features and
ignoring audio input. As a result, adding the loss
on phonemes “activated” the audio encoder and
also slightly improved the overall performance.

4.3.4 Other Ablation Studies

We conducted ablation studies to justify other afore-
mentioned design choices. The results are shown
in Table 5. TaBERT is not as good as BERT in
our case, even though it is pretrained for table
data. It might be because the model becomes less
robust to ASR errors after tuning. Other design
choices, mainly audio attention and align tags, are
also shown to be useful, especially on exact match.

4.4 Sample Predictions

Several sample queries in which the TaggerILM
method improved the final SQL prediction are
shown in Table 6. These samples illustrate that
the rewriter improves SQL accuracy by fixing criti-
cal ASR errors, such as “ids” recognized as “It’s”
in Table 6(a), “and” recognized as “in” in (b) and
“codes” recognized as “coats” in (c). Nonetheless,
the rewriter is still unable to fix some errors, for in-
stance, “bought” recognized as “spot” in Table 6(b).
To be able to fix such errors, the rewriter will need
a better understanding of context and a better audio
representation.

ASR show. It’s for all templates not used by any document.
SELECT Templates. Template_Details FROM Templates

ASR SQL WHERE Templates.Template_ID NOT IN

(SELECT Documents.Template_ID FROM Documents) (0.1111)
Rewritten show ids for all templates not used by any document .
Rewritien SQL SELECT Templates. Template_ID FROM Templates EXCEPT

SELECT Documents.Template_ID FROM Documents (1.0)
Gold Show ids for all templates not used by any document.
SELECT template_id FROM Templates EXCEPT

Gold SQL SELECT template_id FROM Documents

(a) Fixing pronouns.
ASR what are the average in maximum number of tickets spot in all visits .
ASR SQL SELECT Avg(visit.Num_of_Ticket) FROM visit (0.2)
Rewritten what are the average and maximum number of tickets spot in all visits ?
Rewritten SQL SELECT Avg(visit. Num_of_Ticket),

Max(visit.Num_of_Ticket) FROM visit (1.0)
Gold What are the average and maximum number of tickets bought in all visits?
Gold SQL SELECT avg(num_of_ticket) , max(num_of_ticket) FROM visit

(b) Fixing adpositions & punctuation (failed to fix verb).

ASR what are the coats of template types that are not used for any document?
ASR SQL SELECT Templates. Template_Details FROM Templates WHERE
Templates. Template_ID NOT IN (SELECT Documents.Template_ID FROM

Documents) (0.1111)
what are the codes of template types that are not used for any document ?
SELECT Templates. Template_Type_Code FROM Templates

EXCEPT SELECT Dc Template_ID FROM Dc (0.8)
Gold What are the codes of template types that are not used for any document?
SELECT template_type_code FROM Templates EXCEPT

SELECT template_type_code FROM Templates AS T1

JOIN Documents AS T2 ON T1.template_id = T2.template_id

Rewritten

Rewritten SQL

Gold SQL

(c) Fixing nouns.

Table 6: Samples improved by our TaggerILM rewriter.
Numbers in brackets after SQL queries are their partial
match scores (1.0 is an exact match. Detailed explana-
tions are given in the appendix.)

5 Related Work

Speech-to-SQL and Text-to-SQL. While there
is previous work on speech-to-SQL (Jamoussi et al.,
2005; Kumar et al., 2013; Hiregoudar et al., 2019),
to our knowledge, our work is the first to system-
atically explored adaption vs. error correction ap-
proaches and to propose a method that builds on
state-of-the-art deep learning based techniques. A
closely related task, SQL dictation (speech-to-text),
has recently been introduced (Shah et al., 2020).
Our speech-to-SQL system enables users to speak
natural language, thus can support users who are
not proficient in query languages.

Renewed interest in text-to-SQL parsing has re-
sulted in a number of contributions. New datasets
have been introduced, such as WikiSQL (Zhong
et al., 2017) and Spider (Yu et al., 2018). Meth-
ods leveraging these datasets have been developed
such as NL2Code(Yin and Neubig, 2017), IR-
Net (Guo et al., 2019), X-SQL (He et al., 2019),
RAT-SQL (Wang et al., 2020), and Picard (Scholak
et al., 2021). The methods devised in this paper
can benefit from further progress in text-to-SQL
parsing to improve speech-to-SQL performance.

ASR Correction. Mani et al. (2020) treat ASR
correction as a machine translation (MT) task, but

their input only consists of the ASR transcription,
no raw audio or DB schema. Weng et al. (2020)
leverage multi-task learning by jointly learning a
language model (LM) and a dialog state tracker
(DST), and using the LM to rerank ASR candi-
dates. Corona et al. (2017) use the confidence of
downstream model to rerank ASR transcription
candidates. Our rewriter model is more flexible
than reranking approaches as it edits the ASR tran-
scriptions.

Spoken Dialogue Systems. Spoken dialogue sys-
tems extract semantic concepts from spoken utter-
ances to perform tasks such as intent detection and
slot filling. Research on such systems has attacked
the problem of adapting to ASR errors, leveraging
information from lattices or word confusion net-
works (Hakkani-Tiir et al., 2006; Tiir et al., 2013;
Ladhak et al., 2016; Zhu et al., 2018; Shivakumar
and Georgiou, 2019; Huang and Chen, 2019), sim-
ulated errors (Simonnet et al., 2018; Zhu et al.,
2018), or by ASR robust contextualized embed-
dings (Huang and Chen, 2020). Our task on speech-
to-SQL has a structured DB schema against which
errors can be corrected; however, it is also more
challenging due to the complexity of DB schema
structures and value literals.

6 Conclusion

We proposed an error correction method for speech-
to-SQL parsing. Powered by a novel multi-modal
encoder, our proposed TaggerILM method fixes
a substantial number of ASR errors as reflected
by the strong BLEU scores. Additionally, it sig-
nificantly outperforms the blackbox baseline on
SQL prediction, and outperforms the strong retrain-
ing baseline where the gains are significant when
we take advantage of our method’s parser-agnostic
nature by plugging in a strong newly released text-
to-SQL parser, Picard. The in-depth analyses we
conducted can serve as a guide for future work to-
wards further improvements on the speech-to-SQL
task. For example, future work can explore incor-
porating more context in the form of literals in the
database, to address the current poor performance
on proper nouns. Another future direction is to con-
sider an end-to-end fully-differentiable approach
to the problem since performance of our current
approach is upper-bounded by the performance of
the text-to-SQL parser.

References

Edgar F Codd. 1974. Seven steps to rendezvous with
the casual user. IBM Corporation.

Rodolfo Corona, Jesse Thomason, and R. Mooney. 2017.
Improving black-box speech recognition using se-
mantic parsing. In IJCNLP 2017.

Hal Daumé. 2007. Frustratingly easy domain adapta-
tion. In ACL.

Chris Donahue, Mina Lee, and Percy Liang. 2020. En-
abling language models to fill in the blanks. In ACL,
pages 2492-2501. Association for Computational
Linguistics.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of ibm model 2. In HLT-NAACL.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-
wards complex text-to-sql in cross-domain database
with intermediate representation. In ACL, pages
4524-4535.

Dilek Hakkani-Tiir, Frédéric Béchet, Giuseppe Riccardi,
and Gokhan Tur. 2006. Beyond asr 1-best: Using
word confusion networks in spoken language under-
standing. Computer Speech & Language, 20(4):495-
514.

Pengcheng He, Yi Mao, Kaushik Chakrabarti, and
Weizhu Chen. 2019. X-sql: reinforce schema

representation with context. arXiv_ preprint
arXiv:1908.08113.

Gary G Hendrix, Earl D Sacerdoti, Daniel Saga-
lowicz, and Jonathan Slocum. 1978. Develop-
ing a natural language interface to complex data.
ACM Transactions on Database Systems (TODS),
3(2):105-147.

Shravankumar Hiregoudar, Manjunath Gonal, and
Karibasappa K G. 2019. Speech to sql generator-a
voice based approach. Journal of Basic and Applied
Research International, Vol 4:01-05.

Chao-Wei Huang and Yun-Nung Chen. 2019. Adapt-
ing pretrained transformer to lattices for spoken lan-
guage understanding. In IEEE Automatic Speech
Recognition and Understanding Workshop, ASRU,
pages 845-852.

Chao-Wei Huang and Yun-Nung Chen. 2020. Learning
asr-robust contextualized embeddings for spoken lan-
guage understanding. In ICASSP, pages 8009-8013.

S. Jamoussi, Kamel Smaili, and J. Haton. 2005. From
speech to sql queries : a speech understanding system.
In AAAI 2005.

S. Kumar, A. Kumar, P. Mitra, and G. Sundaram. 2013.
System and methods for converting speech to sql.
ArXiv, abs/1308.3106.

Faisal Ladhak, Ankur Gandhe, Markus Dreyer, Lambert
Mathias, Ariya Rastrow, and Bjorn Hoffmeister. 2016.
Latticernn: Recurrent neural networks over lattices.
In Interspeech, pages 695-699.

Anirudh Mani, Shruti Palaskar, Nimshi Venkat Meripo,
Sandeep Konam, and F. Metze. 2020. Asr er-
ror correction and domain adaptation using ma-
chine translation. ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and
Signal Processing ICASSP), pages 6344—6348.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language
interfaces to databases. In Proceedings of the
8th international conference on Intelligent user
interfaces, pages 149-157.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard - parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Vraj Shah, Side Li, Arun Kumar, and Lawrence Saul.
2020. Speakql: Towards speech-driven multimodal
querying of structured data. In SIGMOD, pages
2363-2374.

Prashanth Gurunath Shivakumar and Panayiotis G.
Georgiou. 2019. Confusion2vec: towards enriching
vector space word representations with representa-
tional ambiguities. PeerJ Comput. Sci., 5.

Edwin Simonnet, Sahar Ghannay, Nathalie Camelin,
and Yannick Esteve. 2018. Simulating ASR errors
for training SLU systems. In LREC.

Gokhan Tiir, Anoop Deoras, and Dilek Hakkani-
Tiir. 2013. Semantic parsing using word confu-
sion networks with conditional random fields. In
INTERSPEECH, pages 2579-2583.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL.:
relation-aware schema encoding and linking for text-
to-sql parsers. In ACL, pages 7567-7578.

Yue Weng, Sai Sumanth Miryala, Chandra Khatri,
Runze Wang, Huaixiu Zheng, Piero Molino, M. Na-
mazifar, A. Papangelis, H. Williams, Franziska Bell,
and G. Tur. 2020. Joint contextual modeling for
asr correction and language understanding. ICASSP
2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 6349—-6353.

Terry Winograd. 1971. Procedures as a representation
for data in a computer program for understanding
natural language. Technical report, Massachusetts
Institute of Technology.

William Woods. 1972. The lunar sciences natural lan-
guage information system. BBN report.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In ACL, pages 440—450.

Pengcheng Yin, Graham Neubig, Wen tau Yih, and
Sebastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. In ACL.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and
Dragomir R. Radev. 2018. Spider: A large-scale
human-labeled dataset for complex and cross-domain
semantic parsing and text-to-sql task. In EMNLP,
pages 3911-3921.

John M Zelle and Raymond J Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the national

conference on artificial intelligence, pages 1050-
1055.

Luke S Zettlemoyer and Michael Collins. 2012. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
arXiv preprint arXiv:1207.1420.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

Su Zhu, Ouyu Lan, and Kai Yu. 2018. Robust spoken
language understanding with unsupervised asr-error
adaptation. In ICASSP, pages 6179-6183. IEEE.

10

A Method Details

A.1 Model Details

For the model structure diagrams, an LSTM block
stands for a single LSTM layer. LSTM encoders
are bidirectional and decoders are unidirectional.
The pretrained LM, BERT or TaBERT, is frozen
during training. Text-schema representations di-
mension is 768 (same as BERT-base); audio fea-
ture dimension is 68, including the values and delta
values of 34 basic audio features; audio encoding
(from 1D-CNN) dimension is 128; tag embedding
dimension is 100; char-level embedding dimension
is 128. LSTM hidden dimension is 256 (128 per
direction for bidirectional LSTM). For Reranker,
the FF layers are (Linear; Leaky-ReL.U(0.01); Lin-
ear; Sigmoid). The middle dimension between FF
layers is 64. The margin in the margin loss is 0.25.
For all models, the optimizer is Adam with initial
learning rate 0.001. Batch size is 8. We use early
stopping with patience 10 epochs for Tagger, 50
epochs for ILM, based on preliminary study.

For text representation, we added a standard char-
acter embedding and a 1D-CNN char-level encoder
to obtain the char-level representations of each to-
ken, concatenated with the PLM text representa-
tions.

We also attempted the following modifications
in preliminary experiments (on ILM rewriter), but
they did not improve the model performance: fine-
tuning the PLM (all layers or top 2 layers); for
audio attention, using other attention types (linear,
bilinear, etc.); for encoder final encoding layer, us-
ing self-attention in place of LSTM; using more
layers of audio-attention or LSTM; using SGD as
the optimizer in place of Adam. For the Tagger,
we are actually using a basic version (not using
token phoneme losses), due to our findings in pre-
liminary study that Tagger is not the performance
bottleneck.

A.2 Pretrained LM

For BERT, we using BERT-base-uncased. For
TaBERT, we use the version of K=1. Another de-
tail is that TABERT only encodes a query and a
single table, instead of all tables in a DB. When
using TaBERT as pretrained LM, we feed the text
query and each table into TaBERT, obtaining ¢ rep-
resentation results where ¢ is the number of tables.
Each query token has ¢ representations, which are
averaged; each schema token only has one repre-
sentation, which is directly used as its token repre-

11

sentation.

A.3 Audio Encoder

Given the audio of a token, we apply a slid-
ing window on the audio to compute a
matrix of basic audio features®, with shape
(num—of-windows, audio—-feats—-dim).
We then apply a 1D-CNN on the time di-
mension, i.e. num-of-windows, to get the
audio feature vector for the token, with length
audio-feats-dim.

A4 Fast Aligner

We use Fast Aligner to get the “gold rewriter tags”.
However, Fast Aligner is originally for SMT and it
allows reordering of tokens during matching which
should not occur in ASR tokens matching. Also, it
only provides token-to-token matches. Therefore,
we postprocess Fast Aligner output by merging
successive tokens into spans and match spans with
any token matches in them, until there is not more
reordering. For all spans matches, if the text is iden-
tical, all tokens are tagged KEEP; if the text differ,
all tokens are tagged EDIT (in BIOUL). Tokens
without a match are tagged DEL.

A.5 Text-to-SQL parser

RAT-SQL Due to limited GPU memory we were
unable to train RAT-SQL-BERT; instead, we used
the Glove version. Our trained model achieved
62.4 exact match score on the dev set, close to the
reported performance 62.7 on the leaderboard entry
RATSQL v2 (DB content used).

Picard Again due to memory limit, we were
unable to setup the Picard parsing module, so
we used the officially released model version
“t5.1.1.1m100k.large w/o Picard”. It obtains 71.2
exact match on dev set, which is still much stronger
than RAT-SQL-Glove.

B Experiment Details

B.1 Spoken Spider Statistics

The statistics of our Spoken Spider dataset are
shown in Table 7. The dataset can be downloaded
at https://drive.google.com/file/d/16wi4E_
W6BgMsOOVWWSFmD6YAz1ItNVJIeX/view?usp=
sharing.

SThe basic audio features include frame energy, spectrum
features, MFCC, etc. Features are extracted using pyAudio-

Analysis library: https://github.com/tyiannak/
pyAudioAnalysis

https://drive.google.com/file/d/16w4E_W6BqMs0OvWWsFmD6YAziItNVJeX/view?usp=sharing
https://drive.google.com/file/d/16w4E_W6BqMs0OvWWsFmD6YAziItNVJeX/view?usp=sharing
https://drive.google.com/file/d/16w4E_W6BqMs0OvWWsFmD6YAziItNVJeX/view?usp=sharing
https://drive.google.com/file/d/16w4E_W6BqMs0OvWWsFmD6YAziItNVJeX/view?usp=sharing
https://drive.google.com/file/d/16w4E_W6BqMs0OvWWsFmD6YAziItNVJeX/view?usp=sharing
https://github.com/tyiannak/pyAudioAnalysis
https://github.com/tyiannak/pyAudioAnalysis

Dataset splits | # of clean queries | # of ASR candidate queries
Training 7000 41112
Dev 487 2707
Test 547 3075

Table 7: Spoken Spider statistics. The training set comes from “train_spider.json” in original Spider; the dev and

test set come from “dev.json”.

B.2 Partial Match Score

The partial match scores provided in Spider official
evaluation scripts are the F1 scores of each type
of clause (Select, Where, GroupBy, etc.) between
predicted and gold SQL. To make it a single-value
evaluation metric, we compute an average score
across clause types, weighted by the occurrences
of each type. This score is better than exact match
score as the supervision signal for Reranker be-
cause it is continuous in range [0, 1] while exact
match score is binary.

C Analysis Study Details

C.1 Oracle Analysis

Oracle Tagger Directly output the gold rewriter
tags

Oracle ILM rewriter Based on the Fast Aligner
alignment results (which we used to generate gold
rewriter tags). For each EDIT span, rewrite the to-
kens with their aligned tokens in the gold utterance.

C.2 Syntactic Category Analysis (POS)

We use SpaCly to assign a POS tag to each token in
the ASR transcription. We use a simple dynamic
programming edit-distance algorithm to align the
rewritten utterance to the gold one, check if each
token correctly aligns with the rewritten query, and
compute the percentage of tokens being correct for
each POS tag respectively. This percentage is used
as token accuracy.

The results are shown in Table 3 in main text. On
the top of the table are the POS tags on which the
ASR errors are relatively better addressed by the
rewriter. For PUNCT, many ASR outputs have peri-
ods at the end when the queries are questions. Also,
some ASR outputs have extra ending punctuation
marks in the middle. Errors on NUM are usually
formatting errors, such as numbers transcribed into
English words or mismatches in comma delimiters.
Some of these errors actually appeared in samples
in Table 4 in main text. Generally, the errors types
listed above are more patterned and the rewriter is

12

able to handle them well. At the bottom is PROPN
(proper nouns), which we have discussed in the
main text.

For freezing or modifying experiments, we only
used the run with medium performance (on exact
match) among all 5 runs. We treat it as a represen-
tative of all runs.

C.3 Probe

For each probing task, the model of probes is lo-
gistic regressor. Probing F1 score is also obtained
using the medium run among all 5 runs, similar
to the freezing / modifying experiments in POS
analysis.

For the utterance mentioning schema task and
schema directly mentioned task (B, C), a mention
is determined by word stem matching.

For the token phonemes task (E), the prob-
ing F1 is only averaged over phonemes with
P(pos) > 0.05, because there are a lot of infre-
quent phonemes that have almost no positive labels
in the dataset.

D Experiment Environment

CPU: 40 x Intel(R) Xeon(R) Silver 4114 CPU
@ 2.20GHz

GPU:
CUDA: Version =10.1

1 x Tesla P100-PCIE-12GB

OS: Ubuntu 16.04.1 LTS (Xenial Xerus)

