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Abstract

We propose IPSI, a general iterative framework for structural inference in interact-
ing dynamical systems. It integrates a pretrained structural estimator and a joint
inference module based on the Variational Autoencoder (VAE); these components
are alternately updated to progressively refine the inferred structures. Initially, the
structural estimator is trained on labels from either a meta-dataset or a baseline
model to extract features and generate structural priors, which provide multi-level
guidance for training the joint inference module. In subsequent iterations, pseudo-
labels from the joint module replace the initial labels. IPSI is compatible with
various VAE-based models. Experiments on synthetic datasets of physical systems
demonstrate that IPSI significantly enhances the performance of structural infer-
ence models such as Neural Relational Inference (NRI). Ablation studies reveal
that feature and structural prior inputs to the joint module offer complementary
improvements from representational and generative perspectives.

1 Introduction

In many domains, dynamical systems can be understood as collections of interacting agents, ranging
from physical, biological to multi-agent systems [9, 5, 15, 13, 1, 10]. These interactions are often
modeled by an interaction graph, where nodes represent agents and edges denote the existence of
interactions. Understanding the structure of such a graph is essential for analyzing, controlling, and
optimizing the behavior of the underlying system. However, in practice, the interaction structure is
frequently unobserved or only partially known, and only the observable agent states are available.
For instance, in molecular biology, understanding the interactions between drug compounds and
target proteins is critical for applications such as drug discovery, side-effect prediction, and drug
repurposing [6]. These interactions are typically governed by underlying molecular structures and
biochemical affinities, which are difficult to deduce purely from theoretical analysis. Moreover,
experimentally identifying all potential interactions is often costly and time-consuming. Structural
inference offers a promising alternative by uncovering latent interaction patterns based on molecular
dynamics that can be observed more easily, thereby reducing the reliance on expensive experimental
procedures and providing mechanistic insights into pharmacological activity [15].

As a milestone in the field of structure inference, the Neural Relational Inference (NRI) model
leverages the latent space of a Variational Autoencoder (VAE) [7] to model underlying structures [8].
However, it may face challenges when applied to complex physical systems such as charged particle
interactions. This is largely due to the limitations of unsupervised joint training and the reliance
on overly simplistic priors for latent variables. While some approaches incorporate prior structural
knowledge, few systematically address how to conveniently obtain reliable structure priors across
diverse dynamical systems.
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To address these challenges, we propose the Iterative Pretrained Structural Inference Framework
(IPSI), an iterative framework for structural inference that combines a pretrained structural estimator
SIprior with a VAE-based joint inference module SIjoint. Specifically, SIjoint receives embedding
representations including structural information and a learnable structural prior both provided by
SIprior. These components, together with state labels, provide multi-level supervision for the various
modules within SIjoint during training. Meanwhile, SIjoint and SIprior are alternately updated in an
iterative process, allowing the model to escape local optima and progressively refine its structure
inference.

SIprior can be seen as a structural prior network, and is trained under supervision using structural
labels. To this end, we propose two complementary strategies to generate structural labels for
the first iteration, while in subsequent iterations, pseudo-labels from SIjoint are used instead. The
design of IPSI follows a general paradigm common to many structure inference models, enabling
seamless integration with a variety of existing frameworks. Experimental results demonstrate that IPSI
significantly improves the performance of multiple baselines and achieves state-of-the-art accuracy
across several datasets.

2 Related work

Structural inference aims to uncover latent interaction structures from observable sequences of agent
states. Compared to traditional statistical and information-theoretic methods, recent deep learning
approaches—particularly those based on neural networks—offer enhanced capabilities in modeling
high-dimensional data requiring fewer assumptions. A major milestone in this direction is NRI,
which pioneered the use of VAEs for inferring latent structures [8]. NRI employs a fully connected
Graph Neural Network (GNN) encoder to propagate information across nodes, while modeling latent
variables as probabilistic adjacency matrices. These latent structures are then used by the decoder to
predict future states. However, NRI relies on oversimplified priors over the latent space and faces
challenges in jointly training the encoder and decoder without external supervision—particularly in
complex systems.

Building upon this foundation, some subsequent works have explored incorporating prior knowledge
of real-world interaction structures into the NRI framework. Li et al. [11] and Chen et al. [2]
introduced structural priors derived from real-world networks—such as degree distributions, sparsity,
and connectivity—as regularization terms to guide latent structure learning. Along with these
structural priors, Wang et al. [16] proposed an iterative training scheme in which edge weights are
refined during training to emphasize likely interactions and suppress noisy connections. While these
methods demonstrate improved structure inference, they often depend on manually crafted priors that
are difficult to generalize across domains.

In addition to incorporating structural priors, several variants and extensions of NRI have been
proposed to enhance performance and flexibility, including alternative decoding mechanisms [21],
multi-interaction systems [22], and improved optimization strategies [4], among others [17, 23, 24,
18, 19]. Despite these advances, limited attention has been given to the question of how to obtain
informative structural priors efficiently. This gap becomes critical in unsupervised settings, where the
joint learning of dynamics and structure can suffer without effective prior guidance.

3 Preliminaries

3.1 Notations and Problem Formulation

In this paper, we denote the number of agents in the interacting system as N . The state of agent
i at time t is represented by a vector xt

i ∈ Rd, where d is the dimensionality of the state space
and the number of time steps is denoted as T . For simplicity, the collection of all agent states
at time t is denoted as xt = {xt

i}Ni=1 ∈ RN×d, the time series data of agent i is denoted as
xi = {xt

i}Tt=1 ∈ RT×d, and the collection of all time series data of all agents is denoted as
x = {xi}Ni=1 ∈ RN×T×d . The underlying interaction structure among the agents is modeled
as a graph G = (V, E), where V = {v1, v2, . . . , vN} represents the set of vertices (agents), and
E ⊆ V × V represents the set of edges encoding the interactions between agents. The interaction
graph is characterized by its adjacency tensor z ∈ RN×N×K to consider multiple types of interactions,
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where each entry zijk is defined as:

zijk =

{
1, if there is an interaction of type k from agent i to agent j,
0, otherwise.

(1)

The problem of structural inference we consider in this paper is to recover the hidden interaction
graph G or equivalently its adjacency tensor z from the observed sequences of agent states x. More
formally, given the agent states over time, the objective is to learn a function f : x → z, where f(·)
captures the underlying structure from states. This problem involves both inferring the structure of
the graph G and modeling the interactions mechanisms that govern the dynamics of the system.

3.2 Neural Relational Inference

3.2.1 Model Overview

NRI is a foundational method for unsupervised structure learning in dynamical systems, which
learns the latent interaction graph among agents from observed trajectories without ground-truth edge
information [8].

Built on the VAE framework, NRI consists of two main components: a GNN-based encoder and
a trajectory-prediction decoder. The encoder processes observable node sequences x ∈ RN×T×d

through message passing to extract structural information and outputs a distribution over latent edge
types, modeled as categorical variables with K classes, forming the adjacency tensor z ∈ RN×N×K :

h = fenc(x), qϕ(z|x) = softmax(h). (2)

Since directly sampling the discrete adjacency tensor z is non-differentiable, NRI employs the
Gumbel-Softmax trick [12] for backpropagation. The inferred graph z is then fed into the GNN-based
decoder, which predicts future dynamics via message passing on the sampled interaction graph. The
decoder is optimized to minimize reconstruction loss between predicted and true future states:

zij = softmax ((hij + g)/τ) , pθ(x|z) =
T∏

t=1

pθ(x
t+1|x1:t, z). (3)

The model is trained by maximizing the evidence lower bound (ELBO):

ELBO = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z)), (4)

where the first term minimizes state prediction error and the second regularizes the latent space by
constraining qϕ(z|x) to align with the prior p(z) (typically uniform).

3.2.2 Limitations of NRI

Despite the elegant formulation and general applicability of NRI, it suffers from several notable
limitations when applied to complex dynamical systems. First, the uniform prior imposed over
the latent interaction graph often deviates significantly from the true underlying structure which
leads to suboptimal inference. Second, the joint unsupervised training of encoder and decoder relies
solely on trajectory reconstruction loss, which may not provide sufficiently informative gradients
to uncover accurate interaction structures. Lastly, the absence of external structural supervision
makes one-shot training strategies prone to premature convergence to suboptimal solutions. These
limitations highlight the need for a more flexible and informed structure inference framework—one
that can incorporate external structural cues to provide multi-level supervision or guidance for both
the encoder and decoder, and employ iterative optimization to escape local minima.

4 Model design

4.1 Motivation and Overall Pipeline Architecture

Most VAE-based structural inference models can be summarized as follows (trajectory embedding is
separated from the encoder):

trajectory data
embedding−−−−−→ embedding vector encoder−−−−→ inferred structure decoder−−−−→ predicted trajectory
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(a) Uniform prior (b) Learned prior (c) Ground truth

Figure 1: Comparison of two kinds of prior distributions and the ground truth.

This paradigm consists of three trainable components: trajectory embedding, encoder, and decoder.
However, only the ground-truth trajectories are available as supervision signals. In IPSI, we address
this issue by providing pretraining inputs for the trajectory embedding and encoder modules. These
two inputs are used to guide the embedding and encoder modules, and together with state labels,
achieving simultaneous guidance of three trainable modules, thus effectively alleviating the difficulties
caused by long chain joint training. Specifically, the pretrained structure estimator SIprior extracts
features from raw trajectories. These features are concatenated with the original node embeddings
and fed into the encoder of SIjoint. Since the training of SIprior is supervised by structural labels, this
strategy will result in richer representations that embed structural cues.

Next, SIprior’s predicted edge probabilities define an informed prior qprior
ϕ (z|x) of structure. We

replace the standard uniform prior p(z) in the KL divergence term with this learned prior:

LKL = DKL

(
qϕ(z|x) ∥ qprior

ϕ (z|x)
)
. (5)

While the uniform prior adopted in NRI serves as a regularization mechanism to constrain the
structure of the latent space, it may significantly deviate from the true underlying distribution. In
contrast, IPSI employs a learned prior that functions both as a regularizer and a soft target. This
approach not only guides the early stages of training but also mitigates the adverse effect of the KL
divergence loss on prediction accuracy during later training phases. Figure 1 shows a comparison
between two kinds of priors and the ground truth.

A key challenge in the IPSI framework lies in how to obtain structural labels for supervising the
training of SIprior, since ground-truth structures are unavailable in unsupervised structural inference.
In this work, we propose an iterative training framework. In the first round of iteration, the structural
labels are derived either from a synthetic meta-dataset or from pseudo-labels inferred by a baseline
model, depending on whether prior knowledge of system dynamics is available (more details will be
introduced in Section 4.5). In subsequent rounds of iteration, as SIjoint has been trained and achieves
more accurate inference, its outputs are used as new pseudo-labels to update SIprior. Through this
iterative process, both SIprior and SIjoint are progressively refined, this alternating update strategy
will help the model escape from local optima and ultimately achieve performance that significantly
surpasses that of the baseline models. Figure 2 shows the complete pipeline architecture of IPSI.

Given that IPSI is designed based on the general paradigm of VAE-based structural inference models,
it possesses universality and can be integrated into various such models. Next, we will use the NRI
model as an example to illustrate how IPSI integrates and enhances the performance of the NRI
model.

4.2 Pretrained Structure Estimator

The pretrained structural estimator, denoted as SIprior, adopts the same GNN-based encoder architec-
ture as the joint inference module SIjoint, but is trained in a supervised manner to extract trajectory
embedding containing more structural information and generate learnable structural priors, and then
input them into the joint training model SIjoint. The encoder comprises a temporal node embedding
module followed by a fully connected message-passing network. To better capture the temporal
dynamics of each agent’s trajectory, we replace the Multi-Layer Perceptron (MLP) embedding used
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Figure 2: Illustration of the iterative supervision pipeline. The first iteration uses ground-truth labels
of meta-dataset or pseudo-labels from baseline model to supervise the training of SIprior, which then
produces an informative prior to guide SIjoint. The process is repeated in a loop to progressively
improve both modules.

in NRI with a Gated Recurrent Unit (GRU) [3]:

Node Embedding: h1,prior
j = GRU(xj), (6)

v → e : h1,prior
(i,j) = fprior

e

(
[h1,prior

i ,h1,prior
j ]

)
, (7)

e → v : h2,prior
i = fprior

v

∑
j ̸=i

h1,prior
(i,j)

 , (8)

v → e : h2,prior
(i,j) = fprior

e

(
[h2,prior

i ,h2,prior
j ]

)
. (9)

The final edge representation h2,prior
(i,j) is then used to predict the edge type through a categorical

posterior distribution:

qpriorϕ (zij |x) = softmax
(
h2,prior
(i,j)

)
, (10)

where ϕ denotes the learnable parameters of the encoder, and x represents the full input trajectories.
We use ground-truth labels aijk corresponding to K types of edges to supervise the prediction of
edge existence via the binary cross-entropy loss:

Lprior = −
∑
i<j

K∑
k=1

aijk log q
prior
ϕ (zijk = 1|x). (11)

Details of the source of the structural supervision signal aijk will be introduced in Section 4.5.

4.3 VAE-based Structural Inference Model

The VAE-based structural inference model SIjoint adopts an encoder–decoder architecture similar
to the NRI framework, but introduces a key enhancement by incorporating prior knowledge from
SIprior. Specifically, SIjoint’s encoder concatenates its own node embeddings with those provided by
SIprior along the feature dimension. The GRUs in Eq. (6) and Eq. (12) and the learnable prior module
in Eq. (18) are independently parameterized, as SIjoint and SIprior serve distinct roles: the former
includes both an encoder and a decoder for inference and reconstruction, while the latter contains
only an encoder that generates structural priors to guide iterative updates. Except for concatenating
trajectory embeddings from SIprior after the trajectory embedding layer, the decoder and encoder of
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SIjoint are identical to the baseline model (such as NRI):

Node Embedding: h1
j = [GRU(xj),h

1,prior
j ]. (12)

It is worth noting that this modification is relatively minor but both effective and widely applicable.
Since encoding raw trajectory data into latent node representations is a highly generic step, this
design enables IPSI to serve as a general-purpose structural inference enhancement framework that
can be flexibly combined with various existing encoder–decoder architectures.

4.4 Training with Hybrid Loss

As introduced in Section 4.1, we replace the simple uniform prior p(z) in NRI loss with a learnable
prior qpriorϕ (z|x), which serves both as a regularizer and as a soft target. This learnable prior demon-
strates significant advantages over the uniform prior, and, compared to manually crafted structural
prior losses proposed in various subsequent works such as sparsity and smoothness, it requires no
task-specific design and avoids the difficulty of tuning numerous additional hyperparameters:

L = Lp + β DKL

(
qϕ(z|x) ∥ qpriorϕ (z|x)

)
, (13)

where β controls the influence of the structural prior. Similar to the modifications made in the model,
this modification is lightweight yet effective, and can be readily incorporated into most VAE-based
structural inference models. As it requires no modification to the base architecture and simply
replaces the prior distribution.

4.5 Two Sources of Supervision for Pretraining

As introduced in Section 4.1, in order to train SIprior with structural labels without ground-truth
structure of the target system, we introduce two complementary strategies that provide supervision
signals under different assumptions about prior knowledge.

4.5.1 Supervision from a Synthetic Meta-Dataset with Prior Knowledge

When partial prior knowledge of the system’s interaction form is available, we propose constructing a
synthetic meta-dataset of labeled interactions. This dataset includes multiple simulated systems with
similar dynamical properties but excludes the exact target configuration, aiming to enable SIprior to
learn transferable structural motifs applicable to unseen yet related systems.

For example, in systems governed by radial forces (e.g., springs or charged particles systems), we
generate synthetic trajectories from various parameterized systems with edge types such as attractive,
repulsive, or null, and with different distance dependencies (e.g., constant, inverse, inverse-square).
Importantly, we exclude systems matching the specific parameters of the target system, thereby
simulating the following situation: "The observer is aware that interactions are radial in nature, but
has no knowledge of the proportion of attractive, repulsive, or null connections, nor the precise
functional relationship between force magnitude and distance."

As introduced in Section 4.1, SIprior is trained on the synthetic meta-dataset using ground-truth
structural labels as supervision in the first round of iteration, and trained on the target dataset using
pseudo-labels as supervision in the following rounds.

4.5.2 Supervision via Pseudo-Labels without Prior Knowledge

When prior knowledge of the system dynamics is unavailable, we first train a baseline model such
as NRI and use its structure inference outputs as pseudo-labels to provide supervision. Although
this approach does not incorporate the additional information from the synthetic meta-dataset, the
pseudo-labels still offer a more informative prior estimate than uniform prior. Furthermore, the
subsequent iterative process described in Section 4.1 is applied in the same manner, alternating the
optimization of modules SIprior and SIjoint, ultimately leading to improved performance.
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5 Experiments

5.1 Datasets

To evaluate the effectiveness of the two supervision strategies, we focus on the three synthetic physical
systems proposed in [8]—the spring, charged particle, and Kuramoto oscillator systems—as our
synthetic meta-datasets are constructed based on the spring and charged particle systems. We adopt
the same simulation configuration as in the original setup: each system is simulated for 5000 time
steps, with 5 or 10 interacting objects, and the interaction graph is set to undirected. The data is
split into training, validation, and test sets with a 5:1:1 ratio. And the details about the synthetic
meta-dataset are described in supplementary materials.

5.2 Baselines

We compare our model with several recent structural inference approaches that focus on physical
systems with available and complete codes:

• NRI [8]: a VAE-based structural inference model that jointly learns the relations and dynamics.

• SUGAR [11]: a method that introduces structural prior knowledge for structural inference.

• MPM [2]: a method that combines a relation interaction mechanism and a spatio-temporal message
passing mechanism.

• iSIDG [16]: a method that iteratively updates the encoder structure based on the inferred structure.

Our model is evaluated in both the with prior (w/ prior) and without prior (w/o prior) situations,
which correspond to different supervision methods as described in Section 4.5. And the evaluation
metric is edge classification accuracy, which reflects how accurately the inferred edge types match
the ground truth. Due to space limitations, the results on trajectory prediction error are provided in
the supplementary materials. We apply IPSI framework on two different models, NRI and MPM, and
report the improved performance to evaluate the generality and flexibility of IPSI.

5.3 Results

The experimental results are summarized in Table 1. Across three types of physical systems, the
performance of models enhanced with IPSI is significantly better than the original model. This
improvement is particularly pronounced on the Charged Particle dataset, where the interactions
include both attraction and repulsion, leading to more complex motion patterns.

Table 1 also presents the performance of SIprior trained exclusively on the synthetic meta-dataset.
While SIprior outperforms the NRI baseline on charged particle datasets, it is still surpassed by the
full IPSI pipeline, indicating that SIjoint actively refines the initial priors through joint training rather
than merely replicating them. Moreover, on datasets with lower baseline accuracy, IPSI performs
better when w/ prior, highlighting the complementary benefits of the two supervision strategies.
Finally, despite the non-radial nature of interactions in the Kuramoto system, SIprior still provides
a reasonable structural estimate, demonstrating its generalization capability. This suggests that
constructing a larger synthetic meta-dataset to train a more powerful SIprior—inspired by the scaling
principles of large language models—could be a promising direction for future work.

5.4 Additional Evaluation on the DoSI Benchmark

To further assess the generalization ability of our approach under different graph structures, we
conducted additional experiments on the DoSI benchmark [20], which simulates dynamical trajec-
tories over empirically-derived graphs from real-world domains. In particular, we evaluated three
biologically inspired datasets, each containing 15 nodes: Brain Networks (BN), Gene Regulatory
Networks (GRN), and Vascular Networks (VN). Besides the conventional Springs simulator, we
additionally used the NetSims simulator, which models brain activity by assigning nodes to brain
regions and edges to their interactions [14].

For this study, we applied our method under the IPSI (w/o prior) configuration. Table 2 reports
the AUROC scores on all six datasets. We observe that IPSI consistently outperforms the baseline
methods (NRI [8], MPM [2]) across both simulators, achieving state-of-the-art performance among
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Table 1: Edge prediction accuracy (%) on Springs, Charged, and Kuramoto systems. For NRI,
SUGAR, and MPM, we directly used the results from [8] and [2] after checking the consistency
of the benchmark. For iSIDG [16], we used our own measured results because different datasets
generation methods were used.

Model Springs Charged Kuramoto
5 objects

NRI 99.9 ± 0.0 82.1 ± 0.6 96.0 ± 0.1
SUGAR 99.9 ± 0.0 82.9 ± 0.8 91.8 ± 0.1
MPM 99.9 ± 0.0 93.3 ± 0.5 97.3 ± 0.2
iSIDG 99.9 ± 0.0 91.7 ± 0.6 96.9 ± 0.3
IPSI (NRI-based, w/ prior) 99.9 ± 0.0 91.2 ± 0.4 97.2 ± 0.3
IPSI (NRI-based, w/o prior) 99.9 ± 0.0 89.3 ± 0.3 97.4 ± 0.3
IPSI (MPM-based, w/ prior) 99.9 ± 0.0 94.3 ± 0.4 98.0 ± 0.3
IPSI (MPM-based, w/o prior) 99.9 ± 0.0 94.3 ± 0.3 98.1 ± 0.2

SIprior (NRI-based, w/ prior) 89.7 ± 0.2 86.7 ± 0.3 77.1 ± 0.5
Supervised 99.9 ± 0.0 95.4 ± 0.1 99.3 ± 0.0

10 objects
NRI 98.4 ± 0.0 70.8 ± 0.4 75.7 ± 0.3
SUGAR 98.3 ± 0.0 72.0 ± 0.9 74.0 ±0.2
MPM 99.1 ± 0.0 81.6 ± 0.2 80.3 ± 0.6
iSIDG 99.2 ± 0.0 82.1 ± 0.3 80.6 ± 0.5
IPSI (NRI-based, w/ prior) 99.2 ± 0.1 77.1 ± 0.5 77.3 ±0.4
IPSI (NRI-based, w/o prior) 99.2 ± 0.1 75.3 ± 0.3 76.9 ±0.3
IPSI (MPM-based, w/ prior) 99.6 ± 0.1 86.4 ±0.7 82.6 ±0.8
IPSI (MPM-based, w/o prior) 99.6 ± 0.1 86.2 ±0.5 82.8 ±0.6

SIprior (NRI-based, w/ prior) 87.6 ± 0.4 76.2 ± 0.5 73.3 ± 0.6
Supervised 99.4 ± 0.0 89.7 ± 0.1 94.3 ± 0.8

VAE-based structural inference models. These results suggest that IPSI remains robust in a more
realistic evaluation environment.

5.5 Training Dynamics

To further elucidate the training dynamics, we track three metrics during a single run of SIjoint
training: the state-prediction mean squared error (MSE), the KL-divergence regularization term,
and the edge-prediction accuracy on the training set. As illustrated in Figure 3a, the KL term
initially decreases—indicating that the model closely follows the pretrained prior—then rises as
SIjoint diverges to learn more precise structures. In contrast, both MSE and edge accuracy improve
steadily throughout training. This behavior suggests that the model first undergoes a phase of prior
imitation and subsequently refines the structures based on the initial priors, resulting in enhanced
predictive performance. There three experiments are conducted on charged particle dataset with 5
objects and w/o prior situation.

5.6 Robustness

Figure 3b illustrates the impact of SIprior accuracy and iteration round on SIjoint performance. The
results show that even when SIprior is completely untrained (guessing randomly with two edge types
will achieve about 50% accuracy), SIjoint still achieves the same performance as the NRI baseline.
This demonstrates the robustness of the IPSI framework: even when the prior inputs are poor, IPSI is
capable of learning to shield against these erroneous priors, maintaining performance comparable to
the original baseline model. Meanwhile, the inserted figure shows that the accuracy steadily increases
and eventually converges, demonstrating the effectiveness and stability of the proposed iterative
training strategy.
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Table 2: Results on the DoSI benchmark (AUROC, %). All datasets contain 15 nodes. IPSI (w/o
prior) maintains strong performance and achieves the best results among VAE-based approaches.
Higher is better.

Methods Springs (AUROC) NetSims (AUROC)

BN GRN VN BN GRN VN

NRI [8] 99.75 90.55 92.68 99.79 78.08 89.13
ACD 99.75 91.10 94.34 99.87 80.18 80.32
MPM [2] 99.98 94.02 96.56 99.95 76.06 91.18
iSIDG 99.97 92.91 96.59 99.91 71.11 91.20
RCSI 99.81 93.01 97.03 99.72 77.45 91.53

IPSI (NRI-based, w/o prior) 99.75 91.19 93.77 99.80 84.40 93.75
IPSI (MPM-based, w/o prior) 99.98 98.95 99.39 99.97 95.32 96.75

(a) (b) (c)

Figure 3: Three additional experiments conducted on the charged particle dataset with 5 objects (a)
Training dynamics of SIjoint. (b) Impacts of iteration round and SIprior accuracy on SIjoint accuracy.
(c) Loss perturbation analysis of NRI and IPSI. Each curve shows the loss change under random
parameter perturbations, where ε denoting perturbation magnitude (x-axis).

5.7 Perturbation Analysis

To gain deeper insight into IPSI, we performed a random-direction perturbation analysis: For both
trained NRI and IPSI models, all model parameters were flattened into a single vector, a random
unit vector of identical dimension was sampled as a perturbation direction, and scaled perturbations
were added to evaluate the change in loss. We analyzed two loss functions: (1) the training loss
(ELBO objective), and (2) the target loss (1-ACC), reflecting structural inference quality. Across 100
random directions, we computed two quantitative measures: non-optimal proportion (the fraction of
perturbation directions yielding lower loss than the original model, within a tolerance) and relative
improvement (the mean percentage decrease of loss among those non-optimal directions).

Experiments on the GRN dataset (Springs, 15 nodes, w/o prior) yielded the results summarized in
Table 3. Under the training loss, both NRI and IPSI exhibit comparable local optimality, suggesting
that the Adam optimizer effectively finds stable basins for both. However, under the target loss, IPSI
demonstrates more stable minima, reflected by lower non-optimal proportion and smaller relative
improvement. The perturbation line plots in Figure 3c further visualize these differences, where each
curve corresponds to a random perturbation direction. For target loss sensitivity of IPSI (bottom
right), most curves are monotonically increasing, while target loss sensitivity of NRI (bottom left)
shows irregular patterns with many curves decreasing under perturbation. These observations suggest
that both models converge to local optima under the training loss, but IPSI converges to better optima
under the task-relevant target loss. IPSI effectively reshapes the loss landscape through iteratively
updates trajectory embeddings and structural priors, thereby aligning the training objective with the
structural inference target.
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Table 3: Perturbation analysis on GRN (Springs, 15 nodes).

Model Training Loss Target Loss

Non-opt. (%) Rel. Imp. (%) Non-opt. (%) Rel. Imp. (%)

NRI 1 1.16 63 31.7
IPSI (w/o prior) 2 1.49 6 11.2

5.8 Ablation Study

To analyze the contribution of each pretrained input component, we perform an ablation study
on its two injection points within SIjoint: (1) the embedding vector and (2) the structural prior.
Three reduced variants are evaluated: one using only the embedding vector, one using only the
structural prior, and one using neither—equivalent to an NRI variant with a GRU embedding scheme.
Experiments are conducted under the w/ prior setting on the charged particle dataset with five objects,
and results are shown in Table 4.

Both single-input variants outperform the baseline without pretrained inputs, demonstrating that each
component independently improves performance. The full model, combining both the embedding
vector and the structural prior, achieves the best accuracy, indicating their complementarity. These
findings are consistent with our design rationale: the embedding vector provides enriched represen-
tations informed by global structural cues, while the latent prior serves as a regularization signal
that steers the latent distribution toward plausible interaction patterns. Together, they enhance the
structural inference at both the representation and generative levels.

Table 4: Ablation results on edge accuracy (%) for the Charged dataset with 5 objects.
Model Variant Charged Particle System
No pretrained input (baseline) 82.2 ± 0.4
Only embedding vector 89.5 ± 0.7
Only structural prior 84.1 ± 0.4
Full model (both inputs) 91.2± 0.4

6 Conclusion and Limitations

In this work, we introduced IPSI, an iterative pretrained structural inference framework that alternates
between data-driven inference and structure-guided refinement. Through extensive experiments on
both synthetic and empirically derived benchmarks, IPSI consistently improved structural accuracy
and generalization over existing VAE-based methods. The perturbation analysis further demonstrated
that IPSI enhances the alignment between training and task objectives by iteratively reshaping the
loss landscape, providing an intuitive explanation for its superior performance.

A key limitation of IPSI lies in the increased computational overhead introduced by its iterative
process, which makes it challenging to evaluate on large-scale systems (involving dozens or more
agents) and real-world datasets. Generalizing structural inference to large graphs remains a major
challenge, primarily due to the quadratic growth of computational cost with respect to the number of
nodes when employing fully connected GNN encoders.

Nevertheless, IPSI offers a promising direction to address this issue. By leveraging the pretrained
structural prior to guide the construction of encoder connectivity—rather than using it solely as a
latent prior—the effective edge complexity can be reduced from O(N2) to O(N) for systems with
sparse underlying structures. In future work, we plan to explore scalable variants of IPSI and apply
it to large-scale, real-world dynamical systems such as neural and biological networks, as well as
further investigate theoretical properties of its iterative optimization process.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: The abstract and introduction clearly state the main contributions.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Due to page limitation, we describe the limitation of our work with a few
words in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include any theoretical theorems or formal proofs; it
focuses on algorithmic design and empirical validation.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All necessary details for reproducing the results are provided in the paper
and supplementary materials, including datasets, simulation settings, and training protocols.
An anonymized GitHub repository has been prepared and will include complete code and
instructions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide an anonymized public GitHub repository at https://github.
com/anon-prebootsi-2025/prebootsi-anon. The full code and instructions will be
added. No author-identifying information is included.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 5 and supplementary materials detail the the training and test details.
These details will also be available in the anonymized repository.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All quantitative results are reported with standard deviations over multiple
runs, indicating statistical robustness of the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The details of the computational resources used in the experiment are described
in the supplementary materials

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work complies with the NeurIPS Code of Ethics. It uses synthetic data,
does not involve human subjects, and poses no foreseeable risk of harm, privacy violations,
or misuse.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on a structural inference framework for physical simulation
systems with no immediate real-world deployment or application risks.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The work poses no high-risk misuse scenarios.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets codes and models used are publicly available and properly cited.
Their use complies with the original licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: This paper proposes a new structural inference framework. Documentation on
it will be provided in the anonymized GitHub repository.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research does not involve crowdsourcing or any form of human subject
experimentation.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No IRB approval is required as no human subjects are involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLMs were used for core method development. LLMs have been used for
general writing assistance only.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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