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ABSTRACT

When two players are engaged in a repeated game with unknown payoff matrices,
they may be completely unaware of the existence of each other and use multi-armed
bandit algorithms to choose the actions, which is referred to as the “blindfolded
game” in this paper. We show that when the players use Thompson sampling, the
game dynamics converges to the Nash equilibrium under a mild assumption on
the payoff matrices. Therefore, algorithmic collusion doesn’t arise in this case
despite the fact that the players do not intentionally deploy competitive strategies.
To prove the convergence result, we find that the framework developed in stochastic
approximation doesn’t apply, because of the sporadic and infrequent updates of
the inferior actions and the lack of Lipschitz continuity. We develop a novel
sample-path-wise approach to show the convergence.

1 INTRODUCTION

Algorithmic collusion refers to the market phenomenon that when two or more competing parties use
algorithms to assist decision-making, over time it may unintentionally lead to collusion instead of the
typical Nash equilibrium. For example, consider two firms setting prices for their products, which are
competing for customers. In the classic Bertrand competition, when the demand functions (how the
market demand for either product depends on the prices of itself and the competitor) for both products
are common knowledge, the firms may charge $10 in the (symmetric) Nash equilibrium. On the other
hand, when the demand functions are unknown initially, the two firms may deploy reinforcement
learning algorithms to learn the demand functions and maximize profits simultaneously. Algorithmic
collusion emerges when the long-term outcome of the algorithms is an equilibrium in which both
firms charge more than $10 for the products.

It has been shown in the recent literature that algorithmic collusion is possible in theoretical and
experimental settings (Calvano et al., 2020; Hansen et al., 2021; Meylahn & V. den Boer, 2022). The
settings of the studies usually differ in terms of the choice of algorithms and the information structure
such as whether the players observe the past actions and payoffs of other players. Many studies show
that all players using specifically designed algorithms (which usually requires some knowledge of the
other players and sometimes synchronization among players) can lead to algorithmic collusion.

Setup. In this paper, on the contrary, we study a repeated game with a simple and straightforward
setup, which we refer to as “blindfolded game.” We consider two players and each player has two
actions (i, j) ∈ {1, 2}2. The expected payoffs for actions (i, j) are (Ai,j , Bi,j) for the two players,
respectively, although the players don’t know the payoff matrix {(Ai,j , Bi,j)}2i,j=1 initially. The
realized payoffs of the game in round n for the two players, (an, bn), depend on the actions taken
by the two players in that round (in, jn). In particular, their expected values are Ain,jn and Bin,jn ,
respectively. We consider a zero-information setting where the players only observe the past actions
and payoffs of themselves, not their competitor’s, thus referred to as blindfolded. In fact, the players
don’t have to be aware of the existence of the other player. We emphasize that the blindfolded
game requires the least amount of information among the studies in the literature: the players only
observe their own actions and realized payoffs in the past, without observing any information of the
competitor or the knowledge of the payoff matrix. This resembles many real-word business settings
such as price competition: the firm usually doesn’t have the data on where the eroded market share is
directed to, at least in the short run. In this setting, from a player’s point of view, the repeated game
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can be treated as stochastic multi-armed bandits (MAB) where her two actions are regarded as two
arms. We investigate the scenario when both players apply Thompson sampling, a popular Bayesian
algorithm in MAB and reinforcement learning (Russo et al., 2018).

Informal results. We find that when the payoff matrix satisfies a mild condition and the game has a
unique pure-strategy Nash equilibrium, the actions of the two players converge to the Nash equilibrium
as n→∞. In other words, algorithmic collusion doesn’t emerge and the supra-competitive outcomes
will not arise. This is surprising: the realized payoff of a player in each round depends on the action
of the competitor but Thompson sampling completely ignores such dependence. Therefore, viewed
from the lens of multi-armed bandit, the payoffs are distorted and non-stationary. Still, Thompson
sampling converges to the Nash equilibrium. Note that not all multi-armed bandit algorithms have
this property; see a counterexample for UCB in Hansen et al. (2021). In contrast to the literature, our
result demonstrates the robustness of the concept of Nash equilibrium.

Technical contribution and the connection to the literature. Our approach relies on two crucial
steps: First, we construct a stochastic system that represents the evolution of the blindfolded game
under Thompson sampling, such as the posterior distribution of the two arms for both players. The
dynamics resemble a system that can be analyzed using stochastic approximation Kushner & Yin
(2003). However, a few unique features of the problem make the existing theories of stochastic
approximation unable to be applied. In particular, there are three potential existing approaches.
(1) Stochastic approximation with two time scales Borkar (1997) requires the state to be updated
simultaneously but with different scales, while in our system, the posterior of the inferior action
is only updated infrequently and sporadically. (2) Asynchronous stochastic approximation Borkar
(1998) allows the states to be updated in different rounds, but the updating frequencies need to be of
the same order. In contrast, in our system, because of Thompson sampling, the inferior action is only
taken O(log n) of the n rounds. The two challenges above make the standard framework developed
in stochastic approximation, such as the analysis of the associated ODEs, unsuitable to be applied.
(3) The closest study to our problem is Tsitsiklis (1994), which uses a sample-path-wise argument
instead of an ODE-based approach. However, this study relies on a crucial assumption: the Lipschitz
continuity of the dynamics w.r.t. the state. In our system, however, when the posterior variances are
very small, the system is not globally Lipschitz continuous in the neighborhood where the empirical
means of the actions/arms are equal. Therefore, in our second step, we use the sample-path-wise
approach from scratch to overcome these challenges. It greatly extends the approach used in Tsitsiklis
(1994). The proof strategy is novel and has not been seen in the literature before. The discussion is
summarized in Table 1.

Approach Literature Challenge

SA with two time scales Borkar (1997; 2009) Not updated simultaneously
Asynchronous SA Borkar (1998) Updated with very different frequencies
Sample-path-wise argument Tsitsiklis (1994) Not globally Lipschitz continuous

Table 1: Connection to the literature on proving the convergence of the system

1.1 OTHER RELATED LITERATURE

Algorithmic collusion has attracted the attention of scholars and regulators recently. Calvano et al.
(2020) demonstrate using simulation that when two competing firms both use Q-learning algorithms,
the set prices may converge to an collusive equilibrium higher than the Nash equilibrium, although
the two firms do not collude explicitly. Similar phenomena have been observed for UCB (Hansen
et al., 2021) or more sophisticated learning algorithms Meylahn & V. den Boer (2022); Aouad & den
Boer (2021); Klein (2021). We demonstrate a negative result: algorithmic collusion cannot arise in
the blindfolded game. The key difference in our setup is the lack of information communication:
the algorithms in the literature typically require the competitors’ past actions or a shared state of the
system as inputs. For example, in Calvano et al. (2020), each player remembers the prices of all
players in the last k rounds and uses it as a state for the Q-learning algorithm. Therefore, comparing
the setups, our result supports the claim that the forced disclosure or transparency of firms in a
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market may backfire and lead to algorithmic collusion. In a recent paper, (Calvano et al., 2021)
show that algorithmic collusion can still emerge in low-information settings with ε-greedy-based
Q-learning. Hence, our result may also be specific to the nature of Thompson sampling, which
encourages sufficient exploration.

Repeated games and learning have been a classic topic in economics (Fudenberg et al., 1998). The
convergence of fictitious play has been studied extensively Hofbauer & Sandholm (2002). Besides
fictitious play, Cesa-Bianchi & Lugosi (2006) provide a summary of classic results: if all players
adopt no-regret algorithms (sublinear regret against adversaries), then the empirical distribution
of the actions converges to the coarse correlated Nash equilibrium. Since then, there has been a
growing body of literature on multi-agent learning in games. The focus has been shifted toward the
so-called last-iterate convergence instead of the empirical distribution (Mertikopoulos & Staudigl,
2017; Mertikopoulos & Zhou, 2019; Mazumdar et al., 2020) Perkins et al. (2015). A survey can
be found in Yang & Wang (2020). This study also focuses on the last-iterate convergence. The
main difference of our setup is that the actions are not continuous and the players do not receive
first-order feedback. This setup is first proposed in Ortega & Braun (2014) and the convergence is
shown numerically. O’Donoghue et al. (2021) show that using Thompson sampling in games when
the competitor plays a different policy can lead to linear regret. In contrast, in our setup, both players
use Thompson sampling.

Our study deviates from multi-agent reinforcement learning in terms of the motivation and research
question. In multi-agent reinforcement learning (Zhang et al., 2021; Yang et al., 2018) or multi-agent
Thompson sampling (Verstraeten et al., 2020), the goal is to design algorithms and communication
protocols that only rely on the local information of each agent to achieve convergence to the co-
operative or Nash equilibrium. In our study, we do not design new algorithms but document the
dynamics under the classic Thompson sampling. There is no communication between the players
either. Thompson sampling has been a popular algorithm for stochastic multi-armed bandit. A tutorial
of Thompson sampling is given in Russo et al. (2018) and the theoretical property is proved in, e.g.,
Kaufmann et al. (2012); Agrawal & Goyal (2012). The introduction of the MAB setup and other
algorithms can be found in Bubeck & Cesa-Bianchi (2012); Lattimore & Szepesvári (2020).

To conclude this introduction, we mention some additional studies on stochastic approximation.
While we focus on asymptotic convergence analysis, we note that there is a growing body of literature
recently on finite-time analysis of SA, see, e.g., Srikant & Ying (2019); Qu & Wierman (2020); Chen
et al. (2021); Haque et al. (2023) and references therein.

2 TWO-PLAYER BLINDFOLDED GAME WITH THOMPSON SAMPLING

2.1 PROBLEM FORMULATION

Consider a game with two players, player 1 and player 2, each having 2 possible actions {1, 2}.
The payoff of the game is represented by G = (A,B), where A,B are both 2 × 2 matrices. In
particular, the expected payoff of player 1 is Ai,j where i, j ∈ {1, 2} are the actions taken by player
1 and player 2, respectively. Similarly Bi,j is the expected payoff of player 2 under the same action
profile. The game is played repeatedly. We use in and jn to denote the actions taken by player 1 and
player 2 in round n. Given in and jn, the realized payoffs in round n are normal random variables:
ain,n ∼ N (Ain,jn , 1) and bjn,n ∼ N (Bin,jn , 1), where N (µ, σ2) denotes the normal distribution
with mean µ and variance σ2.

We consider a specific strategy for both players. In particular, both players treat the two actions as
two arms, and use Thompson sampling (Russo et al., 2018) ignoring the existence of the other player.
Roughly speaking, Thompson sampling assumes a prior distribution for the unknown mean of the
two arms. At every time step, play an arm according to its posterior probability of being the best
arm. We refer to this as the blindfolded game, as if the players are not aware of the game and simply
conduct stochastic multi-armed bandits. We formally state the dynamics of the game in Algorithm 1.

In the blindfolded game, both players cannot (or do not need to) observe the past actions and payoffs
of the other player. They only keep track of the past actions and payoffs of themselves. It is arguably
the most realistic setting in business, when algorithmic collusion attracts the attention of regulators.
The firms usually don’t realize and react to the competitive pressure from new entrants. Even if they
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Algorithm 1 Two-Player Blindfolded Game with Thompson Sampling

Require: Payoff matrices G = (A,B)
1: Initialize: number of pulls for both actions for player 1, Ni,0 = 0 (i = 1, 2), and for player 2,
Mj,0 = 0 (j = 1, 2)

2: for n = 1, 2, . . . do
3: player 1: for action k = 1, 2, sample θk,n independently from Gaussian distribution

N
(∑n−1

s=1 ais,s·1{is=k}
Nk,n−1+1 , 1

Nk,n−1+1

)
where Nk,n−1 =

∑n−1
s=1 1{is=k}, then choose the action

in = arg maxk θk,n.
4: player 2: for action k = 1, 2, sample ρk,n independently from Gaussian distribution

N
(∑n−1

s=1 bjs,s·1{js=k}
Mk,n−1+1 , 1

Mk,n−1+1

)
where Mk,n−1 =

∑n−1
s=1 1{js=k}, then choose the action

jn = arg maxk ρk,n.
5: Observe the reward ain,n ∼ N (Ain,jn , 1) and bjn,n ∼ N (Bin,jn , 1) for two players.
6: end for

do, the past actions or payoffs of the competitor are typically confidential. It is reasonable to assume
that the firms just focus on the business decisions of their own, and deploy single-agent reinforcement
learning algorithms, among which Thompson sampling is probably the simplest one.

Note that Thompson sampling is not correctly specified. When considering the actions of the other
player, the expected payoffs of both arms/actions are not stationary. Moreover, although the two
players are blindfolded, their actions are tightly coupled through the realized payoffs they observe,
which feed into the posterior distributions in a highly nonlinear way. Therefore, a priori it is not clear
how the game evolves or whether it converges. In the rest of the paper, we will show that, surprisingly,
the game converges to the Nash equilibrium under a set of general conditions. As a result, there is no
algorithmic collusion in two-player blindfolded games with Thompson sampling.

2.2 GAME DYNAMICS

We first introduce a number of states to record the system dynamics for the two-player blindfolded
game with Thompson sampling. For player 1, we define for i = 1, 2,

xi,n :=

{
0, if n = 0,∑n

s=1 ais,s·1{is=i}
Ni,n+1 , if n ≥ 1, and wi,n :=

{
1, if n = 0,

1
Ni,n+1 , if n ≥ 1, (1)

where Ni,n :=
∑n
s=1 1{is=i} denotes the number of plays of action i by Player 1 up to round n.

It is clear that xi,n is the empirical mean of action i after n rounds. For Thompson sampling with
Gaussian priors and unit-variance Gaussian reward observations, xi,n and wi,n represent the mean
and variance of the posterior Gaussian distribution at the beginning of round n + 1 of action i for
player 1, see, e.g., Russo et al. (2018). Similarly, we define for player 2, for j = 1, 2,

yj,n :=

{
0, if n = 0,∑n

s=1 bjs,s·1{js=j}
Mj,n+1 , if n ≥ 1, and vj,n :=

{
1, if n = 0,

1
Mj,n+1 , if n ≥ 1, (2)

with Mj,n :=
∑n
s=1 1{js=j} denoting the number of plays of action j by Player 2 up to round n.

Then the system state for the blindfolded game is denoted by Sn at time n, which is defined by

Sn := (x1,n, x2,n, y1,n, y2,n, w1,n, w2,n, v1,n, v2,n) ∈ R4 × R4
+, (3)

where R+ = (0,∞). Note that Sn is a sufficient statistics for both players to sample their actions in
round n+ 1 based on Algorithm 1.

We next discuss the dynamics of the state Sn. We focus on the dynamics of xi,n and wi,n for i = 1, 2.
By symmetry, we can express the dynamics of the other states similarly. For player 1, if action
i ∈ {1, 2} is chosen in round n+ 1, then Ni,n+1 = Ni,n + 1 and N−i,n+1 = N−i where −i is the
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action other than i. We can infer from (1) that

xi,n+1 =

∑n+1
s=1 ais,s · 1{is=i}
Ni,n+1 + 1

=
xi,n(Ni,n + 1) + ai,n+1

Ni,n+1 + 1
= xi,n +

−xi,n + ai,n+1

Ni,n+1 + 1
,

wi,n+1 =
1

Ni,n+1 + 1
=
wi,n(Ni,n + 1)

Ni,n+1 + 1
= wi,n +

−wi,n
Ni,n+1 + 1

.

If action i is not chosen at round n+ 1, then Ni,n+1 = Ni,n, and it is easy to see that

xi,n+1 = xi,n, wi,n+1 = wi,n.

Combining these two cases, we obtain for i = 1, 2,

xi,n+1 = xi,n + αi,n+1 · (−xi,n + ai,n+1), and wi,n+1 = wi,n + αi,n+1 · (−wi,n), (4)

where αi,n+1 are binary-valued random variables with αi,n+1 = 1
Ni,n+1+1 if action i is selected in

round n+ 1 and αi,n+1 = 0 otherwise.

To express the dynamics (4) in terms of the current state Sn, we need to understand the probability
distribution of αi,n+1 and ai,n+1. Note that with Thompson sampling, given the information Fn up
to round n, the probability that player 1 chooses action i in round n+ 1 is given by

ϕi,n+1 := P(in+1 = i|Fn) = P(θi,n+1 ≥ θ−i,n+1|Sn) = Φ

(
xi,n − x−i,n√
wi,n + w−i,n

)
, (5)

where recall that θi,n+1 ∼ N (xi,n, wi,n), and Φ(·) denotes the cumulative distribution function of a
standard normal distribution. This implies that for i = 1, 2,

P

(
αi,n+1 =

1

Ni,n+1 + 1

∣∣∣∣Sn) = ϕi,n+1, and P(αi,n+1 = 0|Sn) = 1− ϕi,n+1. (6)

Next we analyze the term ai,n+1. When player 1 selects action i ∈ {1, 2} and player 2 selects
action jn+1 in round n+ 1, the reward is ai,n+1 ∼ N (Ai,jn+1

, 1) (see Algorithm 1). We can rewrite
the expression as ai,n+1 =

∑2
j=1Ai,j1{jn+1=j} + εi,n+1, where εi,n+1 ∼ N (0, 1) is the noise

independent of everything else. Our goal is to decompose ai,n+1 into a term that is adapted to Fn
and a martingale-difference term. To do so, denote by ψj,n+1 the probability that player 2 selects
action j ∈ {1, 2} in round n+ 1. It is given by

ψj,n+1 := P(jn+1 = j|Fn) = P(ρj,n+1 ≥ ρ−j,n+1|Sn) = Φ

(
yj,n − y−j,n√
vj,n + v−j,n

)
, (7)

where recall that ρj,n+1 ∼ N (yj,n, vj,n) by Algorithm 1. Hence, given action i is chosen by player 1
in round n+ 1, we have ai,n+1 =

∑
j Ai,jψj,n+1 + āi,n+1, where

āi,n+1 =

 2∑
j=1

Ai,j1{jn+1=j} −
2∑
j=1

Ai,jψj,n+1

+ εi,n+1. (8)

It is easy to see that āi,n+1 has mean zero conditional on Fn or Sn. This allows us to rewrite (4) as
follows:

xi,n+1 = xi,n + αi,n+1 · (−xi,n +
∑
j

Ai,jψj,n+1 + āi,n+1), wi,n+1 = wi,n + αi,n+1 · (−wi,n). (9)

Analogously, we can derive for j = 1, 2,

yj,n+1 = yj,n + βj,n+1 · (−yj,n +

2∑
i=1

Bi,jϕi,n+1 + b̄j,n+1), vj,n+1 = vj,n + βj,n+1 · (−vj,n). (10)

Here, βj,n+1, j = 1, 2, are also binary-valued random variables with

P

(
βj,n+1 =

1

Mj,n+1 + 1

∣∣∣∣Sn) = ψj,n+1, and P(βj,n+1 = 0|Sn) = 1− ψj,n+1, (11)
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and

b̄j,n+1 =

[
2∑
i=1

Bi,j1{in+1=i} −
2∑
i=1

Bi,jϕi,n+1

]
+ ε̃j,n+1, (12)

where (ε̃i,n) are i.i.d standard normal random noise independent of everything else.

In a vector form, given S := (x1, x2, y1, y2, w1, w2, v1, v2) ∈ R4 × R4
+, we define a function

F (·) : R4 × R4
+ 7→ R8 as follows:

F (S) := (A1,1ψ1 +A1,2ψ2, A2,1ψ1 +A2,2ψ2, B1,1ϕ1 +B2,1ϕ2, B1,2ϕ1 +B2,2ϕ2, 0, 0, 0, 0) , (13)

where

ϕ1 = Φ

(
x1 − x2√
w1 + w2

)
= 1− ϕ2 and ψ1 = Φ

(
y1 − y2√
v1 + v2

)
= 1− ψ2. (14)

Then we can vectorize (9) and (10) that the dynamics of Sn in (3) is given by

Sn+1 − Sn = γn+1 ◦
(
F (Sn)− Sn + ξ̄n+1

)
, (15)

where γn+1 := (α1,n+1, α2,n+1, β1,n+1, β2,n+1, α1,n+1, α2,n+1, β1,n+1, β2,n+1), the notation ◦
denotes the component-wise multiplication, and

ξ̄n+1 := (ā1,n+1, ā2,n+1, b̄1,n+1, b̄2,n+1, 0, 0, 0, 0), (16)

where āi,n+1 and b̄j,n+1 are given in (8) and (12) respectively.

From (15), it is clear that the system dynamics can be described by a special form of stochastic
approximation (Kushner & Yin, 2003). In particular, γn+1 is the random (vectorized) “step size” and
the term ξ̄n+1 is the noise conditional on Sn.

2.3 EQUILIBRIUM POINT OF THE GAME

Next we impose assumptions on the game itself for our theoretical analysis of the system.

Assumption 1. (1) There are no ties in the payoffs: Ai,j 6= Ai′,j and Bi,j 6= Bi,j′ for i 6= i′, j 6= j′.
(2) There is a unique pure-strategy Nash equilibrium.

The first part of the assumption has also appeared in the literature Wunder et al. (2010). For the
second part, by symmetry, assume (1, 1) is the unique pure-strategy Nash equilibrium. It implies that
one of following three cases hold

Case 1. A1,1 > A2,1, A1,2 > A2,2, B1,1 > B1,2, B2,1 > B2,2.

Case 2. A1,1 > A2,1, A1,2 > A2,2, B1,1 > B1,2, B2,1 < B2,2.

Case 3. A1,1 > A2,1, A1,2 < A2,2, B1,1 > B1,2, B2,1 > B2,2.

For the two-player two-action game we consider, Vega-Redondo (2003) point out that there are
two additional cases: there may be a unique mixed-strategy Nash equilibrium, or there may be two
pure-strategy Nash equilibria and one mixed-strategy Nash equilibrium. In this study, we mainly
focus on the game satisfying Assumption 1 for analytical tractability. In particular, we can show
that there is a unique equilibrium point that the system (14) may converge to corresponding to the
pure-strategy Nash equilibrium (1, 1):

S∗ = (x∗1, x
∗
2, y
∗
1 , y
∗
2 , w

∗
1 , w

∗
2 , v
∗
1 , v
∗
2) = (A1,1, A2,1, B1,1, B1,2, 0, 0, 0, 0). (17)

The rest of the paper develop an approach to prove the almost sure convergence of Sn to S∗.

3 PRELIMINARY RESULTS

To establish the convergence of Sn, we first show the following results. The proofs are given in
Appendix A.2, A.3, A.4 and A.5.
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Lemma 1. limn→∞Ni,n = ∞ almost surely for i = 1, 2. Similarly, limn→∞Mj,n = ∞ almost
surely for j = 1, 2.

Lemma 1 states that for each player, both actions have been taken infinitely often. Recall the random
step sizes (αi,n)i=1,2 and (βj,n)j=1,2 given in (6) and (11), and the noise ξ̄n given in (16).

Lemma 2. For i = 1, 2,
∑+∞
n=1 αi,n = ∞ and

∑+∞
n=1 α

2
i,n < ∞ almost surely. Similarly,∑+∞

n=1 βj,n =∞ and
∑+∞
n=1 β

2
j,n <∞ almost surely for j = 1, 2.

Note that the nature of Lemmas 1 and 2 is different from the stochastic MAB, because the exploration
of actions also depends on the past actions of the other player. Using the mechanism of Thompson
sampling, we show that the past actions of the other player do not hinder the exploration. It is
also important to note that unlike in standard SA, the step sizes (αi,n) and (βj,n) in our study are
randomly sampled (6) and are not standard decreasing sequences (e.g. αi,n = 0 is arm i is not pulled
in round n).

We also have the following two results.
Lemma 3 (Martingale difference noise). (ξ̄n : n ≥ 1) is a martingale difference sequence with
E[ξ̄n+1|Fn] = 0 for all n. In addition, there exists C ≥ 0 such that E[ξ̄2

n+1|Fn] ≤ C for all n.
Lemma 4 (Boundedness of the iterates). supn ‖Sn‖ <∞ almost surely.

The four lemmas are commonly seen in stochastic approximation. While we need them in our proof
as well, as we shall see next, the proof deviates significantly from the stochastic approximation
literature.

4 MAIN RESULT AND ANALYSIS

This section presents our main theoretical results on the convergence. Without loss of generality,
suppose the game’s pure-strategy Nash Equilibrium is (1, 1) as in Section 2.3, i.e., both players 1 and
2 play action 1. We first state a somewhat artificial assumption that is crucial in proving the main
convergence result.
Assumption 2. The payoff matrices (A,B) satisfy |A1,2 − A1,1| + |A2,2 − A2,1| < A1,1 − A2,1

and |B2,1 −B1,1|+ |B2,2 −B1,2| < B1,1 −B1,2.

The assumption states that the payoff of the Nash equilibrium cannot be much worse than the
other actions. It plays an instrumental role in our sample-path-wise argument. It remains unknown
theoretically if the convergence can be guaranteed without this assumption, although numerical
experiments indicate that convergence can still be achieved. Next we state the main result.
Theorem 1. Suppose Assumptions 1 and 2 hold. The state that encodes the game dynamics Sn in
(3) converges to S∗ almost surely as n→∞, where S∗ is the equilibrium point.

Theorem 1 implies that xi,n → x∗i almost surely. That is, the average payoffs of playing action i
for player one converge to Ai,1. Similarly, the average payoffs of playing action j for player two
converge to B1,j .

On the other hand, from the three cases after Assumption 1 and the equilibrium point (17), we can see
that x∗1 = A1,1 > A2,1 = x∗2 and y∗1 = B1,1 > B1,2 = y∗2 . Therefore, in the limit, the probability of
playing action 1 by player 1 converges to

lim
n→∞

ϕ1,n+1 = lim
n→∞

Φ

(
x1,n − x2,n√
w1,n + w2,n

)
= Φ(∞) = 1, and lim

n→∞
ϕ2,n+1 = 0, (18)

where we recall that ϕi,n+1 denotes the probability that player 1 chooses action i ∈ {1, 2} at time
n+ 1 given the information up to time n. Similarly, we can obtain from (7) that

lim
n→∞

ψ1,n+1 = lim
n→∞

Φ

(
y1,n − y2,n√
v1,n + v2,n

)
= Φ(∞) = 1, and lim

n→∞
ψ2,n+1 = 0, (19)

where ψj,n+1 denotes the probability that player 2 chooses action j ∈ {1, 2} at time n+1. Therefore,
we deduce from (18) and (19) that the actions of the two players converge to the unique pure-strategy

7
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Nash equilibrium as n → ∞. This is referred to as the last-iterate convergence in the literature
(Lin et al., 2020; Golowich et al., 2020), which is stronger than the convergence of the empirical
distribution of plays.

The proof of Theorem 1 builds on the proof of Theorem 3 in (Tsitsiklis, 1994), but it is substantially
more involved. Theorem 3 in (Tsitsiklis, 1994) requires the iteration mapping F to be a contraction
which is violated in our case. In particular, F in (13) cannot be a contraction in the whole domain
of Sn. It is clear that when w and v are small, i.e., both actions of both players have been taken
many times, ϕ and ψ are not Lipschitz continuous in the neighborhood of x1 = x2 and y1 = y2.

For instance, we can easily compute that
∣∣∣∂ϕ1

∂x1

∣∣∣ = 1√
2π

exp

[
− 1

2

(
x1−x2√
w1+w2

)2
]

1√
w1+w2

, which will

blow up if x1 = x2 and w1 + w2 approaches zero.

Therefore, the intuition of the proof is to first argue that Sn will avoid the neighborhoods almost surely
when n tends to infinity. This is why Assumption 1 is essential. It guarantees that the equilibrium
point S∗ is bounded away from the neighborhood of x1 = x2 or y1 = y2.

5 SKETCHED PROOF OF THEOREM 1

We prove Theorem 1 by a sample-path-wise approach. See Appendix A.6 for the complete proof.

Step 1. Show Sn will avoid the region where F is not Lipschitz continuous for a sufficiently large n.
For n ≥ 1, we first rewrite the dynamics (15) to

Sn − S∗ = (1− γn) ◦ (Sn−1 − S∗) + γn ◦
(
F (Sn−1)− S∗ + ξ̄n

)
,

where S∗ is defined in (17). One can verify that it can be written in a component-wise recursive form
for k = 1, . . . , 8: (see Lemma 5 in Appendix)

Sk,n − S∗k = (Sk,0 − S∗k) ·
n∏
τ=1

(1− γk,τ ) +

n∑
τ=1

[
n∏

s=τ+1

(1− γk,s)

]
γk,τ

(
Fk(Sτ−1)− S∗k + ξ̄k,τ

)
,

where Sk,n and γk,n are the k-th entry of Sn and γn respectively. Hence we obtain

Sk,n − S∗k = Ck,n +Dk,n + Ek,n, (20)

whereCk,n := (Sk,0−S∗k)·
∏n
τ=1(1−γk,τ ),Dk,n :=

∑n
τ=1

[∏n
s=τ+1(1− γk,s)

]
γk,τ (Fk(Sτ−1)−

S∗k) and Ek,n :=
∑n
τ=1

[∏n
s=τ+1(1− γk,s)

]
γk,τ ξ̄k,τ .

The first term Ck,n on the right-hand-side (RHS) of (20) converges to zero as n → ∞. This is
because

∏∞
τ=1(1− γk,τ ) = 0 almost surely; see Lemma 7 in Appendix.

For the third term on the RHS of (20), we have Ek,n = 0, k = 5, 6, 7, 8 by the definition of the noise
ξ̄k,n. Moreover, we obtain limn→∞Ek,n = 0, k = 1, 2, 3, 4 from Lemma 2 of Tsitsiklis (1994).

Finally, for the second term on the RHS of (20), we can show that |Dk,n| ≤ |Ak,2 − Ak,1| for
k = 1, 2, |Dk,n| ≤ |B2,k−2 − B1,k−2| for k = 3, 4, and Dk,n = 0 for k = 5, 6, 7, 8, for all n. See
(30) and (31) in Appendix A.6.

On combining these three terms and using the definition of S∗ in (17), we infer that for ε, ε′ > 0,
|xi,n − Ai,1| ≤ |Ai,2 − Ai,1| + ε for i = 1, 2, and |yj,n − B1,j | ≤ |B2,j − B1,j | + ε′ for j = 1, 2,
when n ≥ N0 for some large N0. Then by Assumption 2, we obtain for n ≥ N0,

x1,n − x2,n >
ε1
2

(A1,1 −A2,1), y1,n − y2,n >
ε2
2

(B1,1 −B1,2),

for some small ε1, ε2 > 0. It follows that that Sn will avoid the region where F is not Lipschitz
continuous for a sufficiently large n. Note that N0 is random and it depends on the sample path.

Step 2. Prove the Lipschitz constant of F is smaller than 1. More precisely, we show there exists
η0 > N0 and δ ∈ [0, 1) such that for n > η0,

‖F (Sn)− F (S∗)‖∞ ≤ δ‖Sn − S∗‖∞.

8
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To prove the result, we first apply the mean value theorem and obtain for i = 1, . . . , 4,

Fi(Sn)− Fi(S∗) = ∇Fi(S̃n) · (Sn − S∗),

where S̃n = (x̃1,n, x̃2,n, ỹ1,n, ỹ2,n, w̃1,n, w̃2,n, ṽ1,n, ṽ2,n) is a point on the segment between Sn
and S∗. Hence it suffices to bound the gradient ∇Fi(S̃n). Denote by Lni,j = ∂Fi(S)

∂Sj
|S=S̃n

, i =

1, . . . , 4, j = 1, . . . , 8. We analyze i = 1 for illustration. We can calculate

Ln1,1 = Ln1,2 = Ln1,5 = Ln1,6 = 0,

|Ln1,3| = |Ln1,4| =
|A1,1 −A1,2|√

2π
· e− 1

2 z
2
1,n · z1,n ·

1

ỹ1,n − ỹ2,n
,

|Ln1,7| = |Ln1,8| =
|A1,1 −A1,2|

2
√

2π
· e− 1

2 z
2
1,n · z3

1,n ·
1

(ỹ1,n − ỹ2,n)2
,

where z1,n :=
ỹ1,n−ỹ2,n√
ṽ1,n+ṽ2,n

, z2,n :=
x̃1,n−x̃2,n√
w̃1,n+w̃2,n

. By Step 1 and the definition of S̃n, we have

x̃1,n − x̃2,n >
ε1
2 (A1,1 − A2,1), ỹ1,n − ỹ2,n >

ε2
2 (B1,1 − B1,2), w̃1,n + w̃2,n ≤ w1,n + w2,n =

1
N1,n+1 + 1

N2,n+1 , ṽ1,n + ṽ2,n ≤ v1,n + v2,n = 1
M1,n+1 + 1

M2,n+1 . From Lemma 1, we have
limn→∞Nj,n =∞ (i = 1, 2) and limn→∞Mj,n =∞ (j = 1, 2) almost surely. Thus, we can prove
that there exists η0 such that 0 ≤ Lni,j < 1 for n > η0, i = 1, . . . , 4, j = 1, . . . , 8.

Step 3. Obtain the convergence of Sn to S∗. On combining the above two steps and applying
Theorem 3 in Tsitsiklis (1994), we have Sn converging to S∗.

6 SIMULATION STUDIES

In this section, we present results from simulation studies. The experiments are conducted on a PC
with 2.10 GHz Intel Processor and 16 GB of RAM. We first consider a game that satisfies Assump-

tions 1and 2 and verify our theoretical prediction. The payoff matrices are A1 =

(
0.5 0.4
0.2 0.3

)
,

B1 =

(
0.7 0.3
0.6 0.5

)
and the unique pure-strategy Nash equilibrium is (1, 1). We simulate two sets

of games with different prior distributions for the reward of the actions.

Case 1. Both players have prior distributions N (0, 1) for both actions.

Case 2. Player 1 has prior distributions N (0.2, 1) for action 1 and N (0.6, 1) for action 2, while
player 2 has prior distributions N (0.4, 1) for action 1 and N (0.5, 1) for action 2.

Case 2 is designed to check if the game can converge to the Nash equilibrium when the prior
distributions favor the action not in the equilibrium. We plot the probability that each player chooses
action 1 for a random sample path (x-axis is in logarithmic scale) from round 1 to 3 × 105. The
solid (dashed) curves correspond to case one (two). From Figure 2a, the two solid curves tell us
that the game converges to the Nash equilibrium (probabilities converge to 1) which can verify
the convergence result in Theorem 1. Besides, the two dashed curves show that although players
start from the incorrect prior distribution of each action, the game will still converge to the Nash
equilibrium.

We then consider a game that satisfies Assumption 1 while Assumption 2 is violated, whose payoff

matrices are A2 =

(
0.2 0.5
0.1 0.4

)
, B2 =

(
0.2 0.1
0.5 0.4

)
with the unique pure-strategy Nash equilib-

rium (1, 1). This game corresponds to the prisoner’s dilemma. We find from Figure 2b that the game
will still converge to the Nash equilibrium with the above two prior distributions cases.
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(a) Payoff matrices (A1, B1) (b) Payoff matrices (A2, B2)

(c) Payoff matrices (A3, B3) (d) Payoff matrices (A4, B4)

Figure 1: The probability that two players choose the specified action in different game settings.

Moreover, we also report that it can be generalized to the misspecified case, i.e., when the actual
noise distribution is not consistent with the Bayesian updating rule in Thompson sampling. For
example, Thompson sampling may assume Gaussian noise in the algorithm but the actual noise can

be Bernoulli random variables. The payoff matrices are A3 =

(
0.5 0.4
0.2 0.3

)
, B3 =

(
0.7 0.3
0.6 0.5

)
with the unique pure-strategy Nash equilibrium (1, 1). We show that the game still converges
to the NE. See Figure 1c. We have also relaxed the assumption on two actions and shown the

convergence holds under the multiple actions setting in Figure 1d with A4 =

(
0.6 0.4 0.1
0.2 0.5 0.3
0.8 0.7 0.4

)
,

B4 =

(
0.4 0.6 0
0.3 0.3 0.6
0.5 0.6 0.4

)
, whose unique pure Nash equilibrium is (3,2).

7 CONCLUSION AND FUTURE WORK

In this paper, we study a two-player blindfolded game, where both players use Thompson sampling
to choose between two actions.. We show that the the game dynamics converge to the pure-strategy
Nash equilibrium under mild conditions and algorithmic collusion does not arise.

This study, for the purpose of exposition and clean analysis, makes a number of simplifying assump-
tions, including limiting our scope to normal conjugate priors, two players and two actions. We hope
to extend the analysis to a general setting with general distributions, multiple players and actions in
the future research. It is also an open question whether Thompson sampling can converge to the Nash
equilibrium in the absence of Assumption 2.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTS

We conduct additional experiments to illustrate the behavior of the game dynamics when there is no
unique pure-strategy Nash Equilirium (NE). The setups of the new numerical experiments are given
below.

• Two pure-strategy NE and one mixed-strategy NE. In this experiment, we consider the
following payoff matrices A = [0.3 0.3; 0.4 0.1], B = [0.1 0.3; 0.4 0.3]. The game has
two pure-strategy NE (action 1, action 2), (action 2, action 1) and one mixed-strategy NE
(1/3, 2/3). We simulate 100 sample paths, and find that the game may converge to one of
pure-strategy Nash equilibriums:it converges to (action 1, action 2) with probability 78%
and (action 2, action 1) with 22%.

• No pure-strategy NE and one mixed-strategy NE. We use the payoff matrices A = [0.5
0.2; 0.1 0.3], B = [0.3 0.5; 0.7 0.4]. From Figure 2, we can see that although the posterior
means converge, the probability of action 1 of both players may oscillate. This is because it
converges to a point in the probability space that is not Lipschitz continuous. It is unclear
whether the empirical distribution of the actions converge to the mixed-strategy NE.

(a) Posterior mean of each action converges. (b) Probability of each action oscillates.

Figure 2: Game with no pure-strategy NE and one mixed-strategy NE.

A.2 PROOF OF LEMMA 1

Proof of Lemma 1. Without loss of generality, we show limn→∞N1,n = ∞ almost surely. The
arguments for proving limn→∞N2,n =∞ and limn→∞Mj,n =∞ almost surely for j = 1, 2 are
similar.

Let E1,n denote the event that action 1 is played by player one in round n. Then we have

{ lim
n→∞

N1,n =∞} = {E1,n i.o.}, (21)

where i.o. stands for infinitely often. It is clear that E1,n ∈ Fn, where Fn is the information set up
to time n. From the second Borel-Cantelli Lemma (Theorem 5.3.2 in Durrett (2019)), we know that

{E1,n i.o.} =

{ ∞∑
n=1

P(E1,n|Fn−1) =∞

}
=

{
+∞∑
n=1

ϕ1,n =∞

}
, (22)

where the second equality holds because P(E1,n|Fn−1) is exactly ϕ1,n, the probability that action 1
will be chosen by player one at time n.

Our goal is to show that P(limn→∞N1,n = ∞) = 1, or equivalently, P(limn→∞N1,n <

∞) = 0. Consider any sample path ω ∈ {limn→∞N1,n < ∞}, and denote by N1(ω) :=
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limn→∞N1,n(ω) < ∞. We analyze below the sum
∑+∞
n=1 ϕ1,n on such a path ω, and show that

such a path is in a probability zero set.

From Equation (5), we know that

ϕ1,n = P(in = 1|Fn−1) = 1− Φ

(
x2,n−1 − x1,n−1√
w1,n−1 + w2,n−1

)
,

where ϕ1,n depends on the path ω. If x2,n−1 < x1,n−1 on such a path, then we have ϕ1,n ≥ 1/2.
On the other hand, if x2,n−1 ≥ x1,n−1, then we can use the following tail probability estimate for
normal distributions (Formula 7.1.13 in Abramowitz & Stegun (1948)) to bound ϕ1,n:√

2

π
e−x

2/2 1

x+
√
x2 + 4

≤ 1− Φ(x) ≤
√

2

π
e−x

2/2 1

x+
√
x2 + 8/π

, x ≥ 0.

Specifically, we have

ϕ1,n ≥
√

2

π
e−C

2
n/2

1

Cn +
√
C2
n + 4

, (23)

where Cn :=
x2,n−1−x1,n−1√
w1,n−1+w2,n−1

≥ 0.

We next upper bound Cn on the path ω with x2,n−1 ≥ x1,n−1 to obtain a more tractable bound
(uniform in n) for ϕ1,n. Note that ais,s is the random reward, which follows a normal distribution
N (Ais,js , 1) given is and js. We can write ais,s = Ais,js + ξs, where (ξs : s ≥ 1) is a sequence of
i.i.d. standard normal random variables. Let Ā = maxi,j Ai,j and A = mini,j Ai,j . Then we can
infer from (1) that

x2,n−1 =

∑n−1
s=1 ais,s · 1{is=2}

N2,n−1 + 1
≤ Ā+

∑n−1
s=1 |ξs| · 1{is=2}

N2,n−1 + 1
,

x1,n−1 =

∑n−1
s=1 ais,s · 1{is=1}

N1,n−1 + 1
≥ A−

∑n−1
s=1 |ξs| · 1{is=1}

N1,n−1 + 1
.

It follows that

x2,n−1 − x1,n−1 ≤ Ā−A+

∑n−1
s=1 |ξs| · 1{is=2}

N2,n−1 + 1
+

∑n−1
s=1 |ξs| · 1{is=1}

N1,n−1 + 1
.

Recall that we assume on the path ω we have N1(ω) := limn→∞N1,n(ω) < ∞. Because player
one can choose only two actions, this implies that limn→∞N2,n(ω) = ∞. By the strong law of
large numbers we obtain that for path ω, limn→∞

∑n
s=1 |ξs|·1{is=2}
N2,n+1 = E[|ξ1|] <∞, which implies

that on the path ω the sequence {
∑n
s=1 |ξs|·1{is=2}
N2,n+1 : n ≥ 1} is bounded. In addition, the sequence

{
∑n
s=1 |ξs|·1{is=1}
N1,n+1 : n ≥ 1} is also bounded on the path ω because N1(ω) := limn→∞N1,n(ω) <

∞, which implies that there are only finite number of different terms in this sequence. Therefore we
can infer that there exists some positive constant C (which depends on ω but is independent of n)
such that

x2,n−1 − x1,n−1 ≤ Ā−A+ C.

In addition, using the fact that N1(ω) := limn→∞N1,n(ω) < ∞, we can obtain on the path ω,
w1,n−1 = 1

N1,n−1+1 ≥
1

N1(ω)+1
> 0, which further implies that w1,n−1 + w2,n−1 ≥ w1,n−1 ≥

1
N1(ω)+1

> 0. Therefore we can upper bound Cn by

Cn :=
x2,n−1 − x1,n−1√
w1,n−1 + w2,n−1

≤ [Ā−A+ C] ·
√
N1(ω) + 1 := C̄ <∞.

By (23) we then infer that when x2,n−1 − x1,n−1 ≥ 0,

ϕ1,n ≥
√

2

π
e−C̄

2/2 1

C̄ +
√
C̄2 + 4

> 0.
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At any time n− 1, we know that either x2,n−1 < x1,n−1 or x2,n−1 ≥ x1,n−1 holds for the path ω.

Therefore, if let ϕ̄ := min

{
1
2 ,
√

2
π e
−C̄2/2 1

C̄+
√
C̄2+4

}
> 0, we then have ϕ1,n ≥ ϕ̄ for all n on the

path ω. As a consequence, we obtain that for any sample path ω ∈ {limn→∞N1,n <∞},
∞∑
n=1

ϕ1,n ≥
∞∑
n=1

ϕ̄ =∞.

This suggests that

{ lim
n→∞

N1,n <∞} ⊂

{
+∞∑
n=1

ϕ1,n =∞

}
.

However, from (21) and (22) we have{
+∞∑
n=1

ϕ1,n =∞

}
= { lim

n→∞
N1,n =∞}.

Thus the set {limn→∞N1,n < ∞} has probability zero. We then conclude that the event
{limn→∞N1,n =∞} holds with probability one. The proof is therefore complete.

A.3 PROOF OF LEMMA 2

Proof of Lemma 2. We show that for i = 1, 2,
∑+∞
n=1 αi,n =∞ and

∑+∞
n=1 α

2
i,n <∞ almost surely.

The arguments for (βj,n)j=1,2 are completely analogous. Recall from Section 2.2 that αi,n are
binary-valued random variables with αi,n = 1

Ni,n+1 if action i is selected by player one in round n
and αi,n = 0 otherwise. Fix any one sample path in the probability one set where Lemma 1 holds.
Suppose at time s, action i is chosen and Ni,s−1 = a for some a ∈ N, then we have Ni,s = a + 1
and αi,s = 1

Ni,s+1 = 1
a+2 on this path. Lemma 1 shows that action i is chosen infinitely often, so

there exists some time τ > s that action i is chosen again, and αi,τ = 1
Ni,τ+1 = 1

(a+2)+1 = 1
a+3 .

Repeating this argument, we can infer that { 1
n}

+∞
n=1 is a subsequence of {αi,n}∞n=1 on such a

sample path, where other elements in the sequence {αi,n}∞n=1 are all zero. Therefore, we obtain∑+∞
n=1 αi,n =

∑+∞
n=1 1/n = ∞ and

∑+∞
n=1 α

2
i,n =

∑+∞
n=1 1/n2 < ∞ on such a sample path. This

completes the proof of Lemma 2.

A.4 PROOF OF LEMMA 3

Proof of Lemma 3. It is straightforward to obtain from (8) and (7) that for i = 1, 2, E[āi,n+1|Fn] = 0
for all n. Similarly, we can infer from (12) and (5) that E[b̄j,n+1|Fn] = 0 for all n and j = 1, 2.
Hence we obtain that E[ξ̄n+1|Fn] = 0 for all n.

In addition, we can directly compute from (8) that

E[ā2
i,n+1|Fn] = 1 + E

(

2∑
j=1

Ai,j1{jn+1=j} −
2∑
j=1

Ai,jψj,n+1)2
∣∣Fn


= 1 + [Ai,1 −Ai,2]2 · ψ1,n+1(1− ψ1,n+1)

≤ 1 + [Ai,1 −Ai,2]2/4,

where the second equality follows from the fact that given Fn, 1{jn+1=j} is a Bernoulli random
variable. Similarly, we have

E[b̄2j,n+1|Fn] = 1 + E

[
(

2∑
i=1

Bi,j1{in+1=i} −
2∑
i=1

Bi,jϕi,n+1)2
∣∣Fn]

≤ 1 + [B1,j −B2,j ]
2/4.
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Therefore we obtain from (16) that for all n,

E[ξ̄2
n+1|Fn] =

∑
i

E[ā2
i,n+1|Fn] +

∑
j

E[b̄2j,n+1|Fn] ≤ 4 + [Ai,1 −Ai,2]2/2 + [B1,j −B2,j ]
2/2.

The proof is then complete.

A.5 PROOF OF LEMMA 4

Proof of Lemma 4. Recall from (3) that Sn := (x1,n, x2,n, y1,n, y2,n, w1,n, w2,n, v1,n, v2,n) ∈ R4×
R4

+. From the definitions in (1) and (2), we obtain that and |wi,n| and |vj,n| are bounded by 1 for
i, j ∈ {1, 2}. Then we have

sup
n
‖Sn‖ ≤

2∑
i=1

sup
n
|xi,n|+

2∑
j=1

sup
n
|yj,n|+ 4.

We first prove that supn |xi,n| <∞ almost surely for i = 1, 2. Recall from (1) that

xi,n :=

∑n
s=1 ais,s · 1{is=i}
Ni,n + 1

,

where ais,s is the random reward following a normal distribution N (Ais,js , 1), and Ni,n =∑n
s=1 1{is=i} denotes the number of plays of action i by Player 1 up to round n. We can write

ais,s = Ais,js + ξs, where (ξs : s ≥ 1) is a sequence of i.i.d. standard normal random variables.
Hence, we have

|xi,n| ≤
∑n
s=1 |ais,s| · 1{is=i}

Ni,n + 1
≤ max
i,j∈{1,2}

|Ai,j |+
∑n
s=1 |ξs| · 1{is=i}
Ni,n + 1

.

It follows that

sup
n
|xi,n| ≤ max

i,j∈{1,2}
|Ai,j |+ sup

n

∑n
s=1 |ξs| · 1{is=i}
Ni,n + 1

. (24)

For each sample path, {Ni,n : n ≥ 1} is a non-decreasing sequence of integers and hence we can set
Ni,∞ = limn→∞Ni,n. In view of (24), to show supn |xi,n| <∞ almost surely, it suffices to consider
those sample paths withNi,∞ =∞. For each of such sample paths (except a possible zero-probability
set), we can infer from the strong law of large numbers that limn→∞

∑n
s=1 |ξs|·1{is=i}
Ni,n+1 = E[|ξ1|] <∞.

This implies that supn

∑n
s=1 |ξs|·1{is=i}
Ni,n+1 <∞ on such paths. Therefore, we can infer from (24) that

supn |xi,n| <∞ almost surely.

Similarly, we can prove that supn |yj,n| < ∞ almost surely for j = 1, 2. Thus, we obtain
supn ‖Sn‖ <∞ almost surely. The proof is hence complete.

A.6 PROOF OF THEOREM 1

Proof of Theorem 1. The proof is based on a sample-path-wise argument. For n ≥ 1, we first rewrite
the dynamics (15) to the following recursion form

Sn − S∗ = (1− γn) ◦ (Sn−1 − S∗) + γn ◦
(
F (Sn−1)− S∗ + ξ̄n

)
, (25)

where S∗ is defined in (17). Denote Sk,n as the k-th entry of Sn (γk,n is the k-th entry of γn). We
state three preliminary lemmas, the proofs of which are given in Appendix A.7, A.8 and A.9.

Lemma 5. For k = 1, . . . , 8, let
∏n
s=n+1(1 − γk,s) = 1 by convention, then for any 0 ≤ m ≤ n,

Sk,n − S∗k has the following recursive form almost surely

Sk,n − S∗
k = (Sk,m − S∗

k) ·
n∏

τ=m+1

(1 − γk,τ ) +

n∑
τ=m+1

[
n∏

s=τ+1

(1 − γk,s)

]
γk,τ

(
Fk(Sτ−1) − S∗

k + ξ̄k,τ
)
.
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Lemma 6. For k = 1, . . . , 8, let
∏n
s=n+1(1 − γk,s) = 1 by convention, then for any 1 ≤ m ≤ n,

we have
n∏

τ=m

(1− γk,τ ) +

n∑
τ=m

[
n∏

s=τ+1

(1− γk,s)

]
γk,τ = 1, almost surely.

Lemma 7. For k = 1, . . . , 8, we have
∏∞
τ=1(1− γk,τ ) = 0 almost surely.

Now we present the proof of Theorem 1, which builds on the proof of Theorem 3 in (Tsitsiklis, 1994).
Fix any sample path ω (that does not lie in the null sets in the three lemmas above) throughout the
proof. For notational simplicity, we omit the specification of the path ω below.

We first show that Sn will avoid the region where F is not Lipschitz continuous for a sufficiently
large n. Consider the recursion of Sn(n ≥ 1) starting from period 0, from Lemma 5, for any entry k,
we have

Sk,n − S∗k = (Sk,0 − S∗k) ·
n∏
τ=1

(1− γk,τ ) +

n∑
τ=1

[
n∏

s=τ+1

(1− γk,s)

]
γk,τ

(
Fk(Sτ−1)− S∗k + ξ̄k,τ

)
.

(26)
For n ≥ 1, let

Ck,n := (Sk,0 − S∗k) ·
n∏
τ=1

(1− γk,τ ),

Dk,n :=

n∑
τ=1

[
n∏

s=τ+1

(1− γk,s)

]
γk,τ (Fk(Sτ−1)− S∗k),

Ek,n :=

n∑
τ=1

[
n∏

s=τ+1

(1− γk,s)

]
γk,τ ξ̄k,τ ,

Then (26) implies that
Sk,n − S∗k = Ck,n +Dk,n + Ek,n, k = 1, . . . , 8. (27)

For the first term Ck,n, we can apply Lemma 7, and obtain
lim
n→∞

Ck,n = 0, ∀k. (28)

Next, let us consider the third termEk,n. Recall the definition of ξ̄n in (16), we know ξ̄k,n = 0 for any
n ≥ 1, k = 5, 6, 7, 8, which implies Ek,n = 0 for k = 5, 6, 7, 8. Moreover, for any 1 ≤ m ≤ n− 1,
Ek,n has the following recursion for 0 ≤ m ≤ n

Ek,n =

n∏
τ=m+1

(1− γk,τ ) · Ek,m +

n∑
τ=m+1

[
n∏

s=τ+1

(1− γk,s)

]
γk,τ ξ̄k,τ .

From the proof of Lemma 2 in Tsitsiklis (1994), we immediately have
lim
n→∞

Ek,n = 0, k = 1, 2, 3, 4. (29)

Finally, we discuss the remaining second term Dk,n. For k = 5, 6, 7, 8, by the definition of F (S) in
(13), we know Fk(Sn) = 0 for any n ≥ 1. Moreover, we know S∗k = 0 from (17), so Dk,n = 0 for
k = 5, 6, 7, 8. Therefore, we only need to consider Dk,n for k = 1, 2, 3, 4.

Note that

D1,n =

n∑
τ=1

[
n∏

s=τ+1

(1− γ1,s)

]
γ1,τ (F1(Sτ−1)− S∗1 )

=

n∑
τ=1

[
n∏

s=τ+1

(1− γ1,s)

]
γ1,τ (A1,1ψ1,τ +A1,2ψ2,τ −A1,1)

=

n∑
τ=1

[
n∏

s=τ+1

(1− γ1,s)

]
γ1,τ (A1,2 −A1,1)ψ2,τ .
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It follows that

|D1,n| ≤ |A1,2 −A1,1| ·
n∑
τ=1

n∏
s=τ+1

(1− γ1,s)γ1,τ

= |A1,2 −A1,1| ·

[
1−

n∏
τ=1

(1− γk,τ )

]
≤ |A1,2 −A1,1|, (30)

where the equation holds due to Lemma 6. Similarly, we have

|D2,n| =

∣∣∣∣∣
n∑
τ=1

[
n∏

s=τ+1

(1− γ2,s)

]
γ2,τ (A2,2 −A2,1)ψ2,τ

∣∣∣∣∣ ≤ |A2,2 −A2,1|,

|D3,n| =

∣∣∣∣∣
n∑
τ=1

[
n∏

s=τ+1

(1− γ3,s)

]
γ3,τ (B2,1 −B1,1)ϕ2,τ

∣∣∣∣∣ ≤ |B2,1 −B1,1|,

|D4,n| =

∣∣∣∣∣
n∑
τ=1

[
n∏

s=τ+1

(1− γ4,s)

]
γ4,τ (B2,2 −B1,2)ϕ2,τ

∣∣∣∣∣ ≤ |B2,2 −B1,2|. (31)

From Assumption 2, we can obtain there exists ε1 ∈ (0, 1) and ε2 ∈ (0, 1) such that

|A1,2 −A1,1|+ |A2,2 −A2,1| ≤ (1− ε1)(A1,1 −A2,1),

|B2,1 −B1,1|+ |B2,2 −B1,2| ≤ (1− ε2)(B1,1 −B1,2). (32)

Recall limn→∞ Ck,n = 0 for all k in (28). Given 0 < ε3 <
min{ε1,ε2}

2 , we can obtain that there
exists n0 such that for n > n0,

|Ck,n| ≤
ε3
4

(A1,1 −A2,1), for k = 1, 2.

|Ck,n| ≤
ε3
4

(B1,1 −B1,2), for k = 3, 4.

|Ck,n| ≤
ε3
4

(A1,1 −A2,1), for k = 5, 6.

|Ck,n| ≤
ε3
4

(B1,1 −B1,2), for k = 7, 8. (33)

By (29), we have limn→∞Ek,n = 0 for k = 1, 2, 3, 4. Therefore, there exists τ0 such that for n > τ0,
there holds

|Ek,n| ≤
ε3
4

(A1,1 −A2,1), for k = 1, 2.

|Ek,n| ≤
ε3
4

(B1,1 −B1,2), for k = 3, 4. (34)

Therefore, for n > max{n0, τ0}. we can infer from (27), (33) and (34) that

|x1,n −A1,1| ≤ |C1,n|+ |D1,n|+ |E1,n|

≤ ε3
4

(A1,1 −A2,1) + |A1,2 −A1,1|+
ε3
4

(A1,1 −A2,1)

=
ε3
2

(A1,1 −A2,1) + |A1,2 −A1,1|.

Similarly,

|x2,n −A2,1| ≤
ε3
2

(A1,1 −A2,1) + |A2,2 −A2,1|,

|y1,n −B1,1| ≤
ε3
2

(B1,1 −B1,2) + |B2,1 −B1,1|,

|y2,n −B1,2| ≤
ε3
2

(B1,1 −B1,2) + |B2,2 −B1,2|.
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Therefore, for n ≥ max{n0, τ0}, we have

x1,n − x2,n

≥ A1,1 −
[ε3

2
(A1,1 −A2,1) + |A1,2 −A1,1|

]
−
[
A2,1 +

ε3
2

(A1,1 −A2,1) + |A2,2 −A2,1|
]

= (1− ε3)(A1,1 −A2,1)− (|A1,2 −A1,1|+ |A2,2 −A2,1|) , (35)

and

y1,n − y2,n

≥ B1,1 −
[ε3

2
(B1,1 −B1,2) + |B2,1 −B1,1|

]
−
[
B1,2 +

ε3
2

(B1,1 −B1,2) + |B2,2 −B1,2|
]

= (1− ε3)(B1,1 −B1,2)− (|B2,1 −B1,1|+ |B2,2 −B1,2|) (36)

Note that 0 < ε3 <
min{ε1,ε2}

2 , from Assumption 2 and formulas (32), for n ≥ max{n0, τ0}, (35)
and (36) can be lower bounded by

x1,n − x2,n ≥ (ε1 − ε3)(A1,1 −A2,1) >
ε1
2

(A1,1 −A2,1) > 0,

y1,n − y2,n ≥ (ε2 − ε3)(B1,1 −B1,2) >
ε2
2

(B1,1 −B1,2) > 0.

Recall ϕ1,n+1 = Φ

(
x1,n−x2,n√
w1,n+w2,n

)
and ψ1,n+1 = Φ

(
y1,n−y2,n√
v1,n+v2,n

)
. What we have shown is that

Sn will avoid the region where F is not Lipschitz continuous for a sufficiently large n.

Next, to apply the convergence result (Theorem 3) in (Tsitsiklis, 1994), we need to guarantee the
Lipschitz constant of F is smaller than 1, i.e., to prove there exist δ ∈ [0, 1) such that for n large
enough,

‖F (Sn)− F (S∗)‖∞ ≤ δ‖Sn − S∗‖∞.

To prove the results, we apply the mean value theorem. We have for i = 1, . . . , 4,

Fi(Sn)− Fi(S∗) = ∇Fi(S̃n) · (Sn − S∗), (37)

where S̃n = (x̃1,n, x̃2,n, ỹ1,n, ỹ2,n, w̃1,n, w̃2,n, ṽ1,n, ṽ2,n) is a point on the line segment between Sn
and S∗. Hence it suffices to bound the gradient∇Fi(S̃n). Write the Jacobian matrix

L =


Ln1,1 Ln1,2 · · · Ln1,8
Ln2,1 Ln2,2 · · · Ln2,8
Ln3,1 Ln3,2 · · · Ln3,8
Ln4,1 Ln4,2 · · · Ln4,8

 ∈ R4×8,

where Li,j = ∂Fi(S)
∂Sj

|S=S̃ , i = 1, . . . , 4, j = 1, . . . , 8. By the definition of F in (13), it is easy to see
that

Ln1,1 = Ln1,2 = Ln1,5 = Ln1,6 = 0,

Ln2,1 = Ln2,2 = Ln2,5 = Ln2,6 = 0,

Ln3,3 = Ln3,4 = Ln3,7 = Ln3,8 = 0,

Ln4,3 = Ln4,4 = Ln4,7 = Ln4,8 = 0.

To bound other Lnij terms, we recall the definition of S∗ in (17), and note that there exists ρ ∈ [0, 1],
such that S̃n = ρSn + (1− ρ)S∗. Then for n > max{n0, τ0}, we have

x̃1,n − x̃2,n = ρ(x1,n − x2,n) + (1− ρ)(A1,1 −A2,1) >
ε1
2

(A1,1 −A2,1),

ỹ1,n − ỹ2,n = ρ(y1,n − y2,n) + (1− ρ)(B1,1 −B1,2) >
ε2
2

(B1,1 −B1,2),

w̃1,n + w̃2,n = ρ(w1,n + w2,n) + (1− ρ) · 0 ≤ w1,n + w2,n,

ṽ1,n + ṽ2,n = ρ(v1,n + v2,n) + (1− ρ) · 0 ≤ v1,n + v2,n.
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Let z1,n :=
ỹ1,n−ỹ2,n√
ṽ1,n+ṽ2,n

, z2,n :=
x̃1,n−x̃2,n√
w̃1,n+w̃2,n

, then we can directly compute

|Ln1,3| = |Ln1,4| =
|A1,1 −A1,2|√

2π
· exp

−1

2

(
ỹ1,n − ỹ2,n√
ṽ1,n + ṽ2,n

)2
 1√

ṽ1,n + ṽ2,n

=
|A1,1 −A1,2|√

2π
· e− 1

2 z
2
1,n · z1,n ·

1

ỹ1,n − ỹ2,n

≤ |A1,1 −A1,2|√
2π

· e− 1
2 z

2
1,n · z1,n ·

2

ε2(B1,1 −B1,2)
,

where the last inequality is due to ỹ1,n − ỹ2,n >
ε2
2 (B1,1 −B1,2). In addition,

|Ln1,7| = |Ln1,8|

=
|A1,1 −A1,2|

2
√

2π
· exp

−1

2

(
ỹ1,n − ỹ2,n√
ṽ1,n + ṽ2,n

)2
 ỹ1,n − ỹ2,n

(ṽ1,n + ṽ2,n)3/2

=
|A1,1 −A1,2|

2
√

2π
· e− 1

2 z
2
1,n · z3

1,n ·
1

(ỹ1,n − ỹ2,n)2

≤ |A1,1 −A1,2|
2
√

2π
· e− 1

2 z
2
1,n · z3

1,n ·
4

ε22(B1,1 −B1,2)2
.

Similarly,

|Ln2,3| = |Ln2,4| ≤
|A2,1 −A2,2|√

2π
· e− 1

2 z
2
1,n · z1,n ·

2

ε2(B1,1 −B1,2)
.

|Ln2,7| = |Ln2,8| ≤
|A2,1 −A2,2|

2
√

2π
· e− 1

2 z
2
1,n · z3

1,n ·
4

ε22(B1,1 −B1,2)2
.

|Ln3,1| = |Ln3,2| ≤
|B1,1 −B2,1|√

2π
· e− 1

2 z
2
2,n · z2,n ·

2

ε1(A1,1 −A2,1)
.

|Ln3,5| = |Ln3,6| ≤
|B1,1 −B2,1|

2
√

2π
· e− 1

2 z
2
2,n · z3

2,n ·
4

ε21(A1,1 −A2,1)2
.

|Ln4,1| = |Ln4,2| ≤
|B1,2 −B2,2|√

2π
· e− 1

2 z
2
2,n · z2,n ·

2

ε1(A1,1 −A2,1)
.

|Ln4,5| = |Ln4,6| ≤
|B1,2 −B2,2|

2
√

2π
· e− 1

2 z
2
2,n · z3

2,n ·
4

ε21(A1,1 −A2,1)2
.

Let h1(z) = e−
1
2 z

2 · z, which is a decreasing function when z ∈ [1,∞) and z ∈ (−∞,−1]. Let
h2(z) = e−

1
2 z

2 · z3, which is also a decreasing function when z ∈ [
√

3,∞) and z ∈ (−∞,−
√

3].
And we have

z1,n =
ỹ1,n − ỹ2,n√
ṽ1,n + ṽ2,n

≥ ε2(B1,1 −B1,2)

2
√
v1,n + v2,n

=
ε2(B1,1 −B1,2)

2
√

1
M1,n+1 + 1

M2,n+1

,

z2,n =
x̃1,n − x̃2,n√
w̃1,n + w̃2,n

≥ ε1(A1,1 −A2,1)

2
√
w1,n + w2,n

=
ε1(A1,1 −A2,1)

2
√

1
N1,n+1 + 1

N2,n+1

.

Denote by L̄ni := maxj=1,...,8 L
n
i,j , i = 1, 2, 3, 4. From Lemma 1, we have limn→∞Ni,n = ∞

(i = 1, 2) and limn→∞Mj,n =∞ (j = 1, 2) almost surely. So there also exists η0 > max{n0, τ0}
such that for n > η0,

L̄ni ≤
1

16
.
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By the mean value theorem, from (37), we have

|Fi(Sn)− Fi(S∗)| ≤ L̄ni
8∑
j=1

|Sj,n − S∗j | ≤ 8L̄ni ‖Sn − S∗‖∞ ≤
1

2
‖Sn − S∗‖∞.

Therefore, we obtain for n > η0,

‖F (Sn)− F (S∗)‖∞ ≤
1

2
‖Sn − S∗‖∞.

Thus, Assumption 5 in Tsitsiklis (1994) can be satisfied. Then applying Theorem 3 in Tsitsiklis
(1994), we can get that Sn converges to S∗.

A.7 PROOF OF LEMMA 5

Proof of Lemma 5. We prove this lemma by induction. Firstly, when n = m, this recursion obviously
holds. Suppose it holds for time n = N , which means that

Sk,N − S∗
k = (Sk,m − S∗

k) ·
N∏

τ=m+1

(1 − γk,τ ) +

N∑
τ=m+1

(
N∏

s=τ+1

(1 − γk,s)

)
γk,τ

(
Fk(Sτ−1) − S∗

k + ξ̄k,τ
)
.

(38)

Next consider time n = N + 1. From (25), we first have

Sk,N+1 − S∗k = (1− γk,N+1)(Sk,N − S∗k) + γk,N+1

(
Fk(SN )− S∗k + ξ̄k,N+1

)
.

Based on the assumption for n = N , we then replace term Sk,N − S∗k by right hand side of (38):

Sk,N+1 − S∗
k

= (1 − γk,N+1)(Sk,N − S∗
k) + γk,N+1

(
Fk(SN ) − S∗

k + ξ̄k,N+1

)
= (1 − γk,N+1) ·

[
(Sk,m − S∗

k) ·
N∏

τ=m+1

(1 − γk,τ ) +

N∑
τ=m+1

(
N∏

s=τ+1

(1 − γk,s)

)
γk,τ

(
Fk(Sτ−1) − S∗

k + ξ̄k,τ
)]

+ γk,N+1

(
Fk(SN ) − S∗

k + ξ̄k,N+1

)
= (Sk,m − S∗

k) ·
N+1∏

τ=m+1

(1 − γk,τ ) +

N∑
τ=m+1

[
N+1∏
s=τ+1

(1 − γk,s)

]
γk,τ

(
Fk(Sτ−1) − S∗

k + ξ̄k,τ
)

+ γk,N+1

(
Fk(SN ) − S∗

k + ξ̄k,N+1

)
. (39)

Note that
N+1∏
s=N+2

(1− γk,s) = 1, which implies the last term of (39) can be rewritten

γk,N+1

(
Fk(SN )− S∗k + ξ̄k,N+1

)
=

N+1∏
s=N+2

(1− γk,s) · γk,N+1

(
Fk(SN )− S∗k + ξ̄k,N+1

)
.

So we can further rewrite the right hand side of (39) to

Sk,N+1 − S∗k

= (Sk,m − S∗k) ·
N+1∏

τ=m+1

(1− γk,τ ) +

N∑
τ=m+1

[
N+1∏
s=τ+1

(1− γk,s)

]
γk,τ

(
Fk(Sτ−1)− S∗k + ξ̄k,τ

)
+

N+1∏
s=N+2

(1− γk,s) · γk,N+1

(
Fk(SN )− S∗k + ξ̄k,N+1

)
= (Sk,m − S∗k) ·

N+1∏
τ=m+1

(1− γk,τ ) +

N+1∑
τ=m+1

[
N+1∏
s=τ+1

(1− γk,s)

]
γk,τ

(
Fk(Sτ−1)− S∗k + ξ̄k,τ

)
.

Therefore, the statement holds for time n = N + 1, which completes the proof.
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A.8 PROOF OF LEMMA 6

Proof of Lemma 6. We prove this lemma by induction. When n = m, the statement is obviously
true. Suppose it is true for time n = N , i.e.,

N∏
τ=m

(1− γk,τ ) +

N∑
τ=m

[
N∏

s=τ+1

(1− γk,s)

]
γk,τ = 1.

Then consider n = N + 1,

N+1∏
τ=m

(1− γk,τ ) +

N+1∑
τ=m

[
N+1∏
s=τ+1

(1− γk,s)

]
γk,τ

= (1− γk,N+1) ·
N∏

τ=m

(1− γk,τ ) +

N∑
τ=m

[
N+1∏
s=τ+1

(1− γk,s)

]
γk,τ + γk,N+1

= (1− γk,N+1) ·
N∏

τ=m

(1− γk,τ ) + (1− γk,N+1) ·
N∑

τ=m

[
N∏

s=τ+1

(1− γk,s)

]
γk,τ + γk,N+1

= (1− γk,N+1)

[
N∏

τ=m

(1− γk,τ ) +

N∑
τ=m

(
N∏

s=τ+1

(1− γk,s)

)
γk,τ

]
+ γk,N+1

= 1,

where the first equation is from
[
N+1∏
s=τ+1

(1− γk,s)
]
γk,τ = γk,N+1 when τ = N + 1, and the last

equality is obtained from the induction assumption for n = N . Therefore, the statement holds for
time n = N + 1, which completes the proof.

A.9 PROOF OF LEMMA 7

Proof of Lemma 7. Consider

log

[
n∏
τ=1

(1− γk,τ )

]
=

n∑
τ=1

log (1− γk,τ ) ≤ −
n∑
τ=1

γk,τ ,

where the inequality is due to log x ≤ x− 1 for all x > 0. We know that
∑+∞
n=1 γk,n =∞ almost

surely for all k = 1, · · · , 8 from Lemma 2. Therefore,

lim
n→∞

log

[
n∏
τ=1

(1− γk,τ )

]
= −∞, a.s.

which implies
∞∏
τ=1

(1− γk,τ ) = 0 almost surely.
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