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Abstract
Vision-language navigation (VLN) is a chal-001
lenging task due to its large searching space002
in the environment. To address this prob-003
lem, previous works have proposed some004
methods of fine-tuning a large model that005
pretrained on large-scale datasets. How-006
ever, the conventional fine-tuning methods007
require extra human-labeled navigation data008
and lack self-exploration capabilities in en-009
vironments, which hinders their generaliza-010
tion of unseen scenes. To improve the ability011
of fast cross-domain adaptation, we propose012
Prompt-based Environmental Self-exploration013
(ProbES), which can self-explore the envi-014
ronments by sampling trajectories and auto-015
matically generates structured instructions via016
a large-scale cross-modal pretrained model017
(CLIP). Our method fully utilizes the knowl-018
edge learned from CLIP to build an in-domain019
dataset by self-exploration without human la-020
beling. Unlike the conventional approach021
of fine-tuning, we introduce prompt tuning022
to achieve fast adaptation for language em-023
beddings, which substantially improves the024
learning efficiency by leveraging prior knowl-025
edge. By automatically synthesizing trajectory-026
instruction pairs in any environment without027
human supervision and instruction prompt tun-028
ing, our model can adapt to diverse vision-029
language navigation tasks, including VLN and030
REVERIE. Both qualitative and quantitative031
results show that our ProbES significantly im-032
proves the generalization ability of the naviga-033
tion model.034

1 Introduction035

Teaching a robot to navigate following a natural036

language instruction has a broad impact in the field037

of human-robotic interaction. Many related tasks038

have been proposed to delve into this problem. The039

vision-language navigation (VLN) task (Anderson040

et al., 2018) is proposed where an agent is required041

to navigate in a photo-realistic environment step-042

by-step following a natural language instruction.043

To solve a more practical problem, the REVERIE 044

task (Qi et al., 2020) focuses on target objects lo- 045

calization that asks an agent to identify an object 046

in an unseen room. 047

Solving these tasks requires an agent to obtain 048

a vision-text alignment ability that locates related 049

objects and executes corrective actions according 050

to the instruction. However, collecting a large-scale 051

VLN dataset is difficult and laborious since anno- 052

tating the semantic of a trajectory within a sentence 053

costs times of labor than annotating an image. Ex- 054

isting navigation datasets are relatively small-scale, 055

and learning on such datasets hinders the agent to 056

obtain a good generalization ability. To solve this 057

problem, EnvDrop (Tan et al., 2019) uses a speaker 058

model to generate instructions for sampled trajecto- 059

ries in unseen environments, but the generalization 060

ability is not strong with limited vision-language 061

understanding ability. Recently, VLN-BERT (Ma- 062

jumdar et al., 2020) introduces a visio-linguistic 063

model pretrained on Conceptual Captions (Sharma 064

et al., 2018) dataset to learn from image-caption 065

pairs, which are quite different from trajectory- 066

instruction pairs from VLN. To address this, Air- 067

bert (Guhur et al., 2021) constructs a large-scale 068

in-domain pretraining dataset with image-caption 069

pairs collected from online marketplaces such as 070

Airbnb to finetune ViLBERT. However, Airbert 071

collects image captioning data on websites, which 072

are still far from the scenario of vision-language 073

navigation. Different from previous methods that 074

collect human-labeled data to train a navigation 075

model, we suggest that automatically generating 076

instruction-trajectory pairs by self-exploration for 077

pretraining not only helps the model obtain better 078

generalization ability but also achieves fast adapta- 079

tion to downstream tasks. 080

In this paper, we propose a method named 081

prompt-based environmental self-exploration 082

(ProbES) that generates navigation data with prior 083

knowledge automatically and adapts pretrained 084
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Figure 1: A demonstration of our prompt-based environmental self-exploration. In the left blue box, we sample
trajectories from the environment and generate candidate phrases by a pretrained CLIP model. Then we fill templates
by movements and the generated phrases during self-exploration. At last, we use the generated instruction-trajectory
samples for pretraining.

model quickly to VLN tasks. An overview of our085

proposed framework is shown in Figure 1. By086

using this method, a pretrained visio-linguistic087

model is able to adapt to the VLN task automat-088

ically and efficiently. Specifically, we build an089

in-domain dataset by self-exploration without090

labeling or crawler. To build such a dataset. we091

first generate templates by masking visual and092

action words in labeled instructions. Then, we093

sample trajectories in the training environment.094

A pretrained CLIP (Radford et al., 2021) model095

is used to recognize rooms and objects in the096

sampled trajectories and match described phrases097

with them. We construct instructions by filling098

the matched phrases into sampled templates. By099

leveraging the prior knowledge learned by CLIP,100

we are able to build a dataset automatically with101

rich semantic information. Meanwhile, finetuning102

the whole pretrained model is time-consuming,103

we adopt prompt tuning (Li and Liang, 2021;104

Liu et al., 2021c,b), a lightweight alternative105

to finetuning. Our prompt-based method can106

distill task-relevant knowledge from pretrained107

model and achieve fast adaption to downstream108

tasks. We evaluate ProbES on R2R (Anderson109

et al., 2018) and REVERIE (Qi et al., 2020)110

datasets by discriminative and generative settings.111

Results show that ProbES can match or surpass the112

performance of finetuning with substantially less113

training time.114

To sum up, our main contributions are as follows:115

(1) We propose ProbES, a novel self-exploration116

method to automatically build an in-domain dataset117

that reduces the domain gap between the pretrain-118

ing dataset and VLN tasks without human label- 119

ing; (2) Compared with finetuning large pretrained 120

model, our proposed prompt tuning can achieve 121

fast adaptation; (3) Experiments are conducted on 122

R2R and REVERIE datasets with generative and 123

discriminative settings, and results indicate that our 124

proposed ProbES can achieve better or comparable 125

performance. Besides, our generated data can be 126

used as augmented data which improves the gener- 127

alization ability of the model. 128

2 Related Work 129

Vision-and-Language Navigation. Anderson et 130

al. (Anderson et al., 2018) proposed the first Vision- 131

Language Navigation (VLN) benchmark combin- 132

ing real imagery (Chang et al., 2017) and natural 133

language navigation instructions. To solve this task, 134

Wang et al. (Wang et al., 2020) proposed a novel 135

SERL model to learn reward functions from the 136

expert distribution. And combining imitation learn- 137

ing and reinforcement learning (Wang et al., 2019) 138

has been proved to be beneficial for VLN. Since 139

the VLN dataset is relatively small-scale, some 140

works propose augmentation approaches (Fried 141

et al., 2018; Tan et al., 2019; Liu et al., 2021a) 142

to improve robustness. Auxiliary losses (Majum- 143

dar et al., 2020; Zhu et al., 2020) is used to take 144

advantage of the additional training signals derived 145

from the semantic information. Some pretraining 146

methods (Huang et al., 2019; Hao et al., 2020) have 147

been proposed to learn generic cross-modal repre- 148

sentations. This is further extended to a recurrent 149

model that significantly improves sequential ac- 150
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tion prediction (Hong et al., 2021). However, the151

limited number of environments in pretraining con-152

strain the generalization ability to unseen scenarios.153

Most related to this work, VLN-BERT (Majum-154

dar et al., 2020) transfers knowledge from abun-155

dant, but out-of-domain image-text data to improve156

path-instruction matching. In contrast, we not only157

propose an effective method to build an in-domain158

dataset by sampling trajectory and generating in-159

structions with templates, but also present a prompt-160

based pretraining strategy to improve VLN.161

Vision-and-Language Pretraining. Vision-and-162

language pretraining has made great progress in163

recent years. Inspired by BERT (Devlin et al.,164

2018), much work has extended it to process vi-165

sual tokens and pretrain on large-scale image-text166

pairs for learning generic visio-linguistic represen-167

tations. Previous research introduces one-stream168

BERT models and two-stream BERT models. The169

former directly perform inter-modal grounding (Li170

et al., 2019; Su et al., 2019; Alberti et al., 2019; Li171

et al., 2020a; Chen et al., 2020; Zhou et al., 2020;172

Li et al., 2020b), while two-stream models process173

both visual and textual inputs in separate streams,174

and then fuse the two modalities in a later stage (Lu175

et al., 2019; Tan and Bansal, 2019). These models176

are often pretrained with self-supervised objectives177

akin to those in BERT: masked language modeling,178

masked object classification, and sentence-image179

alignment. In this work, the architecture of the180

ProbES model is structural similar to ViLBERT (Lu181

et al., 2019). We make several VLN-specific adap-182

tations to ViLBERT so that pretrained weights can183

be transferred to initialize large portions of the184

model. Different from VLN-BERT which fine-185

tunes a ViLBERT on instruction-trajectory pairs to186

measure their compatibility in beam search setting,187

we introduce prompt tuning, which only tunes the188

continuous prompts.189

Prompting. Natural language prompting freezes190

pretrained models and reformats the natural lan-191

guage input with example prompts. GPT-3 (Brown192

et al., 2020) introduces in-context learning, using193

manually designed and discrete text prompts. Sun194

et al. (Sun and Lai, 2020) also leverage prompts195

as keywords to control the sentiment or topic of196

the generated sentence. AutoPrompt (Shin et al.,197

2020) searches for a sequence of discrete trigger198

words and concatenates it with each input to elicit199

sentiment or factual knowledge from a masked200

LM. Different from the discrete text prompt, some201

methods examine continuous prompts (a.k.a. soft 202

prompts) that perform prompting directly in the 203

embedding space of the model. Prefix-Tuning (Li 204

and Liang, 2021) prepends a sequence of contin- 205

uous task-specific vectors as virtual tokens to the 206

input. (Zhong et al., 2021; Qin and Eisner, 2021; 207

Hambardzumyan et al., 2021) introduce continuous 208

templates following manual prompt templates. P- 209

tuning (Liu et al., 2021c) uses continuous prompts 210

which are learned by inserting trainable variables 211

into the embedded input. Ptr (Han et al., 2021) 212

adopts manually crafted sub-templates and gener- 213

ates complete templates by logic rules. In ProbES, 214

we prepend continuous task-specific vectors to the 215

embedding of the input instruction and directly tune 216

the embeddings of these vectors. After prompt 217

tuning, the model can be adapted to VLN and 218

REVERIE tasks. 219

3 Prompt-based Environmental 220

Self-Exploration (ProbES) 221

3.1 Vision-Language Navigation 222

The Vision-and-Language Navigation (VLN) task 223

gives a global natural sentence I = {w0, ..., wl} 224

as an instruction, where wi is a word token while 225

the l is the length of the sentence. The instruc- 226

tion consists of step-by-step guidance toward the 227

goal. At step t, the agent observes a panoramic 228

view Ot = {ot,i}36i=1 as the vision input, which 229

is composed of 36 RGB image views. Each of 230

these views consists of image feature vi and an 231

orientation description (sin θt,i, cos θt,i, sin ϕt,i, 232

cos ϕt,i). Candidates in the panoramic action space 233

consist of k neighbours of the current node in the 234

navigation graph and a stop action. 235

3.2 Instruction Generation with Templates 236

We first generate templates from instructions in the 237

R2R dataset. Then we sample trajectories in the 238

training environment. We generate the candidate 239

noun phrases and actionable verbs for the sampled 240

trajectories and full-fill the templates by the above 241

words. A detailed demonstration of our instruction 242

generation module is shown in Fig. 2. 243

Generating Templates We collect phrases and re- 244

place these phrases in human-annotated navigation 245

instruction with blank masks to generate templates. 246

Different from the Airbert (Guhur et al., 2021) that 247

only extracts noun phrases, we also mask action 248

words like ‘left’, ‘right’, ’forward’, and ‘around’. 249

We denote the Omask as the mask for an object 250
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Figure 2: A detailed demonstration of the prompt-based full-filling process. We first sample trajectories from the
environment, and generate templates by masking objects and actions. For each step of a trajectory, we generate
candidate tokens for objects by CLIP and actions by the environment. Then we full-fill the template with candidate
tokens by the rules as introduced in Sec. 3.2

and Amask is the mask for an action. The gener-251

ated templates are like ‘Turn Amask and walk past252

Omask. Once out, walk Amask Omask. Stop once253

you reach Omask’. More examples are shown in254

Table 1.255

Sampling Trajectories and Actions We first sam-256

ple the trajectories in the Matterport (Chang et al.,257

2017) Environment. We randomly sample the start-258

ing and ending positions, and collect tracks with259

lengths of less than 8 hops. Then we obtain the260

corresponding actions of each trajectory by first-261

person movement. If the agent chooses the front262

navigable position to move, we generate a ‘forward’263

action. If the agent chooses the back navigable posi-264

tion to move, we generate an ‘around’ action. Oth-265

erwise, if the agent selects the right front navigable266

position to move for the next step, we generate an267

action sequence like {‘right’, ‘forward’}, which268

is used to fill actionable verbs during instruction269

generation.270

Full-filling Template with Prior Knowledge Prior271

knowledge is the key to generating high-quality272

data without human labeling. ProbES introduces273

CLIP, a powerful vision-language alignment model274

learned from a large-scale image-caption dataset.275

To generate structured augmentation data, we full-276

fill the templates with phrases that describe the sam-277

pled trajectory and actions. A trajectory is denoted278

as {v1, v2, ..., vn}, where vi represents an observa-279

tion viewpoint. We introduce CLIP (Radford et al.,280

2021) to select candidate phrases c and match them281

to each view vi. We first embed the sentence ‘a 282

photo of [cnoun]’ by CLIP, where the cnoun repre- 283

sents the noun-phrase candidates (room or object 284

classes labeled in Matterport dataset). Then we 285

embed the view image by the vision encoder of 286

CLIP and calculate the similarity of the language 287

embedding and vision embedding. We select the 288

candidate with the highest matching score for the 289

view vi. Each view has two matched candidates, 290

one for the detected room and another for an object. 291

Then the description ci of this view is written in 3 292

formats randomly: ‘[room]’, ‘[object]’ or ‘[room] 293

with [object]’. Since trajectories are sampled in 294

the environment, we can obtain actionable verbs ai 295

between two viewpoints via comparing headings 296

and elevations. 297

We randomly select a template with the same 298

or a close number of Omask as the num- 299

ber of viewpoints in the sampled trajectory. 300

The template has a sequence of object masks 301

{Omask,1, Omask,2, ..., Omask,i} and a sequence 302

of action masks {Amask,1, Amask,2, ..., Amask,j}. 303

Lengths of object masks and action masks are de- 304

noted as l and n respectively. The number of ob- 305

ject masks and action masks is roughly balanced. 306

Let nv be the number of viewpoints in a sam- 307

pled trajectory. Then the generated captions of 308

this trajectory is written as {c1, c2, ..., cnv}. We 309

full-fill the templates by the following rules: 1) 310

if nv ≥ l, we randomly sample l captions and 311

fill the Omask in the template sequentially; 2) if 312
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Table 1: Examples of generated templates.

Templates

1 Walk Amask Omask and stop on Omask.
2 Head Amask until you pass Omask with Omask the turn Amask and wait by Omask.
3 Walk past Omask and to Omask. Walk in Omask and stop.
4 Turn Amask and walk through Omask. Exit Omask, turn Amask and walk Amask Omask. Stop in Omask.
5 Go Amask Omask, and go Amask. Take Amask into Omask. Stop behind Omask.
6 Leave Omask and go through Omask. Walk towards Omask to Omask. Stand in Omask.

nv < l, we randomly sample the Omask and use313

all the caption phrases to fill them. After filling314

phrases, we can identify which viewpoint Amask,i315

may appear since viewpoints of Omask,j near it are316

already known. For example, if the template is317

like ‘Omask,1Amask,1Omask,2’ and captions of v1318

and v2 are used to fill Omask,1 and Omask,2 respec-319

tively, then Amask,1 is the sampled action between320

v1 and v2. In this way, we use generated action-321

able verbs to full-fill the templates and get final322

instructions. By the above method, we can gener-323

ate diverse instructions without human labeling.324

3.3 Prompt-based Architecture325

Prompt tuning has been found effective on many326

natural language understanding (NLU) tasks. Mo-327

tivated by this, we introduce a prompt-based ar-328

chitecture to achieve fast adaptation on the self-329

exploration dataset (e.g., Conceptual Captions) and330

downstream tasks. The architecture is ViLBERT-331

like and equipped with a prompt encoder for332

prompt tuning.333

Given an instruction-trajectory pair, the visual334

and textual features can be extracted by the vi-335

sual encoder Ev and textual encoder Ex in ViL-336

BERT respectively. Especially, the textual input337

has two parts: prompt sequence {p1, ..., pn} and338

word sequence {x1, ..., xm}, where p and x indi-339

cate a pseudo prompt token and a word token of340

a generated instruction respectively. n and m rep-341

resent lengths of the prompt sequence and word342

sequence respectively.343

We embed prompt sequence by the prompt en-344

coder Ep and embed word sequence by the textual345

encoder Ex as follows:346

ep,1, ..., ep,n = Ep(p1, ..., pn)

ex,1, ..., ex,m = Ex(x1), ..., Ex(xm),
(1)347

where Ep is composed of a LSTM head followed348

by a MLP head. Then the textual embedding349

is mapped to et = {ep,1, ..., ep,n, ex,1, ..., ex,m},350

where ep,1, ..., ep,n are trainable embedding tensors351

and enable us to find better continous prompts. Let 352

ev be denoted as visual embedding produced by 353

visual encoder Ev. et and ev are then passed to the 354

co-attention transformer similar to ViLBERT. Then 355

in the prompt tuning process, we only train Ep and 356

fix the parameters of Ex. 357

Similar to VLN-Bert (Devlin et al., 2018), we 358

sample 3 hard negative paths using beam search 359

for an instruction-trajectory pair, and the model is 360

trained to choose the best path among them. 361

3.4 Downstream Tasks Adaptation 362

Our model can adapt to diverse downstream navi- 363

gation tasks, including VLN, a step-by-step navi- 364

gation task, and REVERIE, an object-oriented nav- 365

igation task. In the step-by-step navigation task, 366

our model receives an instruction sentence and nav- 367

igates following the commands in the instruction 368

sequentially. In the object navigation task, our 369

model receives an object description and explores 370

the house to find an object. 371

Also, our model can be adapted to both discrim- 372

inative and generative navigation settings. In the 373

discriminative setting, our model receives both an 374

instruction and the observation sequence to rep- 375

resent a navigation trajectory and then output a 376

score. In the generative setting, our model receives 377

instruction and predicts actions sequentially. 378

4 Experiments 379

4.1 Experimental Setup 380

We experiment with our proposed ProbES on 381

two downstream tasks: goal-oriented navigation 382

task (R2R (Anderson et al., 2018)), and object- 383

oriented navigation task (REVERIE (Qi et al., 384

2020)). ProbES can be easily applied to discrimi- 385

native and generative models for these two tasks. 386

Evaluation Metrics A large number of metrics 387

are used to evaluate models in VLN, such as Tra- 388

jectory Length (TL), the trajectory length in me- 389

ters, Navigation Error (NE), the navigation error 390

in meters, Oracle Success Rate (OR), the rate if 391
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Table 2: Comparison with generative settings on the R2R dataset.

Val Seen Val Unseen Test Unseen
TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑

Seq2Seq-SF 11.33 6.01 39 - 8.39 7.81 22 - 8.13 7.85 20 18
Speaker-Follower - 3.36 66 - - 6.62 35 - 14.82 6.62 35 28
PRESS 10.57 4.39 58 55 10.36 5.28 49 45 10.77 5.49 49 45
EnvDrop 11.00 3.99 62 59 10.70 5.22 52 48 11.66 5.23 51 47
PREVALENT 10.32 3.67 69 65 10.19 4.71 58 53 10.51 5.30 54 51
Rec (no init. OSCAR) 9.78 3.92 62 59 10.31 5.10 50 46 11.15 5.45 51 47
Rec (OSCAR) 10.79 3.11 71 67 11.86 4.29 59 53 12.34 4.59 57 53
Rec (PREVALENT) 11.13 2.90 72 68 12.01 3.93 63 57 12.35 4.09 63 57

Rec (ViLBERT) 11.16 2.54 75 71 12.44 4.20 60 54 - - - -
Rec (VLN-BERT) 10.95 3.37 68 64 11.33 4.19 60 55 - - - -
Rec (ProbES) 10.75 2.95 73 69 11.58 4.03 61 55 12.43 4.20 62 56

Table 3: Comparison with previous methods on navigation and object localization on the REVERIE dataset.

Val Seen Val Unseen Test Unseen
Navigation RGS RGSPL Navigation RGS RGSPL Navigation RGS RGSPLSR OSR SPL TL SR OSR SPL TL SR OSR SPL TL

Seq2Seq-SF 29.59 35.70 24.01 12.88 18.97 14.96 4.20 8.07 2.84 11.07 2.16 1.63 3.99 6.88 3.09 10.89 2.00 1.58
RCM 23.33 29.44 21.82 10.70 16.23 15.36 9.29 14.23 6.97 11.98 4.89 3.89 7.84 11.68 6.67 10.60 3.67 3.14
SMNA 41.25 43.29 39.61 7.54 30.07 28.98 8.15 11.28 6.44 9.07 4.54 3.61 5.80 8.39 4.53 9.23 3.10 2.39
FAST-MATTN 50.53 55.17 45.50 16.35 31.97 29.66 14.40 28.20 7.19 45.28 7.84 4.67 19.88 30.63 11.61 39.05 11.28 6.08
Rec (OSCAR) 39.85 41.32 35.86 12.85 24.46 22.28 25.53 27.66 21.06 14.35 14.20 12.00 24.62 26.67 19.48 14.88 12.65 10.00
Rec (ViLBERT) 43.64 45.61 37.86 15.75 31.69 27.58 24.57 29.91 19.81 17.83 15.14 12.15 22.17 25.51 17.28 18.22 12.87 10.00
Rec (VLN-BERT) 41.11 42.87 35.55 15.62 28.39 24.99 25.53 29.42 20.51 16.94 16.42 13.29 23.57 26.83 18.73 17.63 14.24 11.63
Rec (ProbES) 46.52 48.49 42.44 13.59 33.66 30.86 27.63 33.23 22.75 18.00 16.84 13.94 24.97 28.23 20.12 17.43 15.11 12.32

Table 4: Results by comparing ProbES with VLN-BERT
in discriminative setting.

Val Unseen
TL NE↓ OSR↑ SR↑ SPL↑

VLN-BERT 9.60 4.10 69.22 59.26 55
ProbES 9.50 4.05 68.24 60.28 56

the agent successfully stops at the closest point,392

Success Rate (SR), the success rate of reaching the393

goal, and Success rate weighted by (normalized394

inverse) Path Length (SPL) (Anderson et al., 2018).395

VLN task regard SR and SPL as the primary metric,396

and the REVERIE task regard RGS and RGSPL as397

the primary metric.398

Implementation Details Our training process is399

divided into two steps: Firstly, we pretrain our400

model on our generated self-exploration training401

set with prompt tuning for only 10 epochs. After402

that, we adapt our model to the downstream dis-403

criminative VLN task with only ranking loss for 20404

epochs. The batch size is set as 64 and the learn-405

ing rate is 4 × 10−5. The generative navigation406

settings are the same as Recurrent VLN-BERT on407

both R2R and REVERIE. During pretraining, we408

use ProbES to 50k instruction-trajectory pairs. We409

use 32 NVIDIA V100 GPUs for pretraining and 8410

GPUs for adaptation. Experiments with generative411

settings are conducted on a V100 GPU.412

4.2 Comparison to state-of-the-art Methods 413

In this section, we compare our model with pre- 414

vious state-of-the-art methods. We compare the 415

ProbES with two baselines (ViLBERT and VLN- 416

BERT built on Recurrent VLN-Bert) and five 417

other methods. A brief description of previous 418

models is as followed: 1) Seq2Seq: A sequence 419

to sequence model reported in (Anderson et al., 420

2018); 2) Speaker-Follower (Fried et al., 2018): a 421

method introduces a data augmentation approach 422

and panoramic action space; 3) PRESS (Li et al., 423

2019): a conventional fine-tuning method with 424

stochastic instruction sampling; 4) EnvDrop (Tan 425

et al., 2019): a method augment data with envi- 426

ronmental dropout; 5) Recurrent VLN-Bert (Hong 427

et al., 2021) on three different settings: OSCAR 428

and ViLBERT pretrained on out-of-domain data, 429

VLN-BERT pretrained on R2R. We compare the 430

models on three splits in the R2R dataset: vali- 431

dation seen house, validation unseen house, and 432

testing (where the houses are also unseen). We also 433

compare ProbES with Seq2Seq, RCM (Wang et al., 434

2019), SMNA (Ma et al., 2019), FAST-MATTN (Qi 435

et al., 2020), Recurrent VLN-Bert (Hong et al., 436

2021) on OSCAR on REVERIE dataset. 437

Results on R2R We compare ProbES with previ- 438

ous state-of-the-art methods on the R2R dataset 439

in the generative setting, as shown in Table 2. In 440
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Table 5: Ablation of different modules during pretrain-
ing and finetuning.

Our data R2R SR on Val
PT FT Mask Mask Rank Seen Unseen

1 - - - - ✓ 55.4 39.5
2 - - - ✓ ✓ 70.2 59.3
3 - - ✓ - ✓ 69.1 57.9
3 - ✓ - - ✓ 68.7 59.0
4 ✓ - - - ✓ 68.4 60.3

the validation seen split, compared to VLN-BERT441

under the same setting, our ProbES achieves 5% im-442

provement on SR and 5% improvement on SPL. In443

the validation unseen split, we achieve 1% improve-444

ment on SR compared to VLN-BERT. In the test-445

ing split, ProbES shows competitive results. Note446

that the PREVALENT backbone is pretrained on447

an in-domain R2R dataset with scene features and448

fine-tuned with an additional action prediction task449

in a generative setting while ProbES does not use450

labeled R2R data or augmented data generated by451

speaker (Fried et al., 2018).452

Results in Discriminative Setting We compare453

ProbES with VLN-BERT in the discriminative set-454

ting as in Table 4. In the validation unseen split,455

our method outperforms VLN-BERT, which indi-456

cates ProbES is able to improve the generalization457

ability for unseen scenes.458

Results on REVERIE We compare ProbES with459

previous state-of-the-art methods on the REVERIE460

dataset, as shown in Table 3. In the validation461

unseen split, we achieve 0.42% improvement on462

RGS and 0.65% improvement on RGSPL. In the463

testing split, ProbES achieves 0.87% improvement464

on RGS and 0.69% improvement on RGSPL. We465

can see that ProbES benefits from prompt tuning466

with our generated instruction-trajectory pairs.467

4.3 Ablation Study468

Ablation of Learning Strategies. In Table 5, we469

ablate the performance gains from different learn-470

ing strategies. PT and FT represent prompt tun-471

ing and fine-tuning respectively. Mask and Rank472

stand for masked multi-modal modeling loss and473

the ranking loss for path-selection task. We regard474

the model finetuned by ranking loss as our baseline.475

The masked multi-modal modeling loss on our476

data and R2R data are able to improve the perfor-477

mance. And finetuning on our data is able to im-478

prove generalization ability since the success rate in479

the validation unseen split gets 1.1% improvement480

and achieves 59.0%. At last, we discover that pre-481

Table 6: Comparison of different strategies during gen-
erating instructions.

Class GTemplate SInstruction SR on Val
M P/O ours random match Seen Unseen

1 - - - - - 55.3 46.5
2 ✓ - ✓ ✓ - 59.8 49.4
3 ✓ - ✓ - ✓ 60.5 50.7
4 - ✓ ✓ ✓ - 59.8 48.9

training on our data with prompt tuning improves 482

the baseline performance by 20.8% in the valida- 483

tion unseen split, achieving the best performance. 484

Our model outperforms the model fine-tuned on 485

R2R dataset by 1.1% in unseen split, indicating 486

that ProbES improves the generalization ability of 487

the navigation model. 488

Ablation of Instruction Generation. Table 6 intro- 489

duces comprehensive ablation experiments show- 490

ing the impact of key steps in the strategy of gen- 491

erating instructions, and the experiments are per- 492

formed in the baseline model: IL+RL from En- 493

vDrop (Tan et al., 2019). Class indicates classes 494

we use to feed into CLIP. M and P/O represent 495

classes from Matterport and Place365/Objects365 496

datasets respectively. GTemplate denotes the strat- 497

egy used to generate templates. ‘ours’ denote the 498

strategy shown in Sec 3.2. For STemplate, ‘random’ 499

and ‘match’ indicate sampling a template randomly 500

and choosing a template with the same number of 501

masks as the number of viewpoints. 502

As shown in Table 6, randomly selecting tem- 503

plate without considering the number of masked 504

tokens degrades the performance and introduces 505

more noise in the data. Results show that equipped 506

with our generated data (Row 3) improves the per- 507

formance by a large margin. The model of us- 508

ing the rooms and objects from Places365 (Zhou 509

et al., 2017) and Objects365 (Shao et al., 2019) 510

(Row 4) performs worse than which uses the rooms 511

and objects from Matterport. We infer from that 512

Places365 and Objects365 contain many outdoor 513

scenes and objects which are not suitable for VLN. 514

4.4 Qualititiva Analysis 515

Visualization of Data Distribution Figure 3 516

presents a statistical analysis of our generated in- 517

structions. We can see from the left figure that 518

the number of object masks are larger than that 519

of action masks, indicating that instructions con- 520

tain more rich information generated by CLIP from 521

sampled observations. The right figure shows the 522

distribution of the instruction lengths. The lengths 523

of most of the instructions range from 10 to 30, 524
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Figure 3: Statistical analysis of generated instructions.

Caption: bedroom, bedroom with bed, lounge, 
bedroom with blinds
Template:  Turn aaaa and walk aaaa  aaaa alongside 
aaaa . You were beside to aaaa . Stop in aaaa .
Instruciton generation: Turn around and walk 
bedroom right alongside bedroom with bed. You 
were beside to lounge. Stop in bedroom with blinds.

Caption: fireplace, dining room, bedroom with toilet, 
bathroom
Template:  Walk past aaaa and aaaa  aaaa .  Walk 
aaaa at aaaa and stop in aaaa  .
Instruciton generation: Walk past fireplace and 
forward dining room.  Walk forward at bedroom with 
toilet and stop in bathroom.

Caption: bed, bedroom, family room with blinds, 
blinds, entry way with mirror, bathtub
Template: Exit aaaa on aaaa and pass  aaaa . Take  
aaaa and then stop on  aaaa .
Instruciton generation: Exit column on window and 
pass lounge with bathtub. Take left and then stop on 
entry way with furniture.

Caption: shelving, bathroom, shower, bedroom with 
door
Template: Go aaaa through aaaa and turn aaaa 
through aaaa . Then go aaaa towards aaaa and 
passed aaaa . Stop.
Instruciton generation: Go forward through 
shelving and turn left through bathroom. Then go 
forward towards shower and passed bedroom with 
door. Stop.

Figure 4: Visualization of instructions generated with templates.

which matches the R2R dataset. The easy samples525

and hard samples in our generated instructions are526

balanced.527

Visualization of Trajectory-instruction pairs528

Here we provide visualization of the data gener-529

ated by ProbES. Figure 4 shows the instruction-530

trajectory samples generated with our strategy. For531

each sample, we visualize observations of the532

trajectory, captions generated with CLIP, the se-533

lected template, and the final instruction generated534

by ProbES. Generated object classes fit observed535

scenes well, thus we can infer that CLIP is able536

to extract key information from the observation.537

Also, our method can select a suitable template and538

generate diverse instructions that describe obser-539

vations of trajectories correctly. The length of our540

generated instruction ranges from 1 to 3 sentences,541

which matches the data distribution of the R2R 542

dataset. 543

5 Conclusion 544

In this work, we first introduce an effective way to 545

generate in-domain data for pretraining the VLN 546

model: leveraging a large pretrained CLIP model to 547

generate captions for each viewpoint and sampling 548

actions in the environment. Experiments show that 549

the domain gap between pretraining data and VLN 550

tasks can be mitigated. We also propose a prompt- 551

based architecture, which introduces prompt tuning 552

to adapt the pretrained model fastly. Our proposed 553

ProbES achieves better results compared to base- 554

line on both R2R and REVERIE datasets, and ab- 555

lations show the contribution of each module and 556

the effectiveness of the generated data. 557
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Figure 5: Statistical analysis of generated instructions.

Figure 6: Statistical analysis of generated instructions.

A Appendix742

In the Appendix, we present additional statistics743

and examples of our generated data. Then we dis-744

cuss implementation details of prompt-based archi-745

tecture.746

A.1 Dataset Details747

Additional Statistics As shown in Figure 5 and748

Figure 6, we summarise rooms and objects de-749

tected by CLIP in viewpoints of sampled trajecto-750

ries. These rooms and objects appear in the indoor751

environment commonly, indicating the accuracy of752

the CLIP model.753

Visualization of Captions We visualize generated754

captions for sampled viewpoints in Figure 7. We in-755

fer from the figure that the CLIP can identify scenes756

and prominent objects accurately. Our generated757

captions contain rich visual information, which758

improves the image-text alignment ability of the759

model.760

Visualization of More Examples More examples761

of sampled trajectories and the corresponding gen-762

erated instructions are shown in Figure 10 and Fig- 763

ure 11, which implies that our method can generate 764

scenario-specific instructions automatically. 765

A.2 Architecture Details 766

We present implementation details of our proposed 767

prompt-based architecture for both prompt tuning 768

in the discriminative setting and finetuning in the 769

generative setting, respectively. 770

A.2.1 Prompt-based Pretraining 771

As shown in Figure 8, the model is composed of a 772

prompt encoder and a ViLBERT-like architecture. 773

The prompt encoder consists of a bidirectional long- 774

short term memory network (LSTM) and a ReLU 775

activated two-layer multilayer perceptron (MLP). 776

The output of the prompt encoder is prepended to 777

the textual embedding. The ViLBERT-like archi- 778

tecture is similar to that of VLN-BERT. We choose 779

ranking loss for the prompt tuning. 780

A.2.2 Finetuning in Generative Setting 781

As shown in Figure 9, the generative setting is 782

similar to Recurrent VLN-BERT. Unlike Recur- 783

rent VLN-BERT, we introduce the prompt encoder, 784

whose architecture is the same as the pretraining 785

phase. During finetuning, the whole model is un- 786

fixed to achieve better results. 787
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lounge with seating lounge with furniture

lounge with blinds

bedroom with bed

bedroom with bed family room with window entry way with lighting bedroom with bed

entry way with curtain

entry way with stairs entry way with railing entry way with counter

family room with ceiling

bedroom with curtain

entry way with bathtub

Figure 7: Visualization of Captions.

𝐼𝐼𝐼𝐼𝐼𝐼 , 𝑟𝑟!, 𝑟𝑟", … , 𝑟𝑟#

𝐶𝐶𝐶𝐶𝐶𝐶 , 𝑥𝑥!, 𝑥𝑥", … , 𝑥𝑥$

𝑝𝑝! , 𝑝𝑝" , … , [𝑝𝑝%]

Figure 8: Prompt tuning in discriminative setting.

𝐼𝐼𝐼𝐼𝐼𝐼 , 𝑟𝑟!, 𝑟𝑟", … , 𝑟𝑟#

𝐶𝐶𝐶𝐶𝐶𝐶 , 𝑥𝑥!, 𝑥𝑥", … , 𝑥𝑥$ Lang Enc

Vis Enc

𝑝𝑝! , 𝑝𝑝" , … , [𝑝𝑝%] Prompt Enc

Lang TRM

Vis Co-TRM Vis TRM action

Figure 9: Finetuning in generative setting.
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Walk past family room with 
mirror on your left, walk to 
dining room with mirror, wait 
at dining room. 

Figure 10: Visualization of a trajectory-instruction sample generated by ProbES.
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Walk right, then turn right 
and exit entry way. Walk 
toward family room. Stop 
and wait by entry way. 

Figure 11: Visualization of a trajectory-instruction sample generated by ProbES.
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