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ABSTRACT

Deep learning interpretation tools, such as (Bau et al., 2017; Ribeiro et al., 2016;
Smilkov et al., 2017), have been proposed to explain and visualize the ways that
deep neural network (DNN) classifiers make predictions. However, the success of
these methods highly relies on human subjective interpretations, i.e., the ground
truth of interpretations, such as feature importance ranking or locations of visual
objects, when evaluating the interpretability of the DNN classifiers on a specific
task. For tasks that the ground truth of interpretations is not available, we propose
a novel framework Consensus incorporating an ensemble of deep models as the
committee for interpretability evaluation. Given any task/dataset, Consensus first
obtains the interpretation results using existing tools, e.g., LIME (Ribeiro et al.,
2016), for every model in the committee, then aggregates the results from the
entire committee and approximates the “ground truth” of interpretations through
voting. With such quasi-ground-truth, Consensus evaluates the interpretability of
a model through matching its interpretation result and the approximated one, and
ranks the matching scores together with committee members, so as to pursue the
absolute and relative interpretability evaluation results. We carry out extensive ex-
periments to validate Consensus on various datasets. The results show that Con-
sensus can precisely identify the interpretability for a wide range of models on
ubiquitous datasets that the ground truth is not available. Robustness analyses
further demonstrate the advantage of the proposed framework to reach the con-
sensus of interpretations through simple voting and evaluate the interpretability
of deep models. Through the proposed Consensus framework, the interpretability
evaluation has been democratized without the need of ground truth as criterion.

1 INTRODUCTION

Due to the over-parameterization nature (Allen-Zhu et al., 2019), deep neural networks (DNNs) (Le-
Cun et al., 2015) have been widely used to handle machine learning and artificial intelligence tasks,
however it is often difficult to understand the prediction results of DNNs despite the very good per-
formance. To interpret the DNN classifiers’ behaviors, a number of interpretation tools (Bau et al.,
2017; Ribeiro et al., 2016; Smilkov et al., 2017; Sundararajan et al., 2017; Zhang et al., 2019; Ahern
et al., 2019) have been proposed to recover or visualize the ways that DNNs make decisions.

Preliminaries. For example, Network Dissection (Bau et al., 2017) uses a large computer vision
dataset with a number of visual concepts identified/localized in every image. Given a convolutional
neural network (CNN) model for interpretability evaluation, it recovers the visual features used by
the model for the classification of every image via intermediate-layer feature maps, then matches
the visual features with the labeled visual concepts to estimate the interpretability of the model as
the intersection-over-union (IoU) between the activated feature maps and labeled locations of visual
objects. Related tools that interpret CNNs through locating importation subregions of visual features
in the feature maps have been proposed in (Zhou et al., 2016; Selvaraju et al., 2020; Chattopadhay
et al., 2018; Wang et al., 2020a).

Apart from investigating the inside of complex deep networks, (Ribeiro et al., 2016; van der Linden
et al., 2019; Ahern et al., 2019) proposed to use simple linear or tree-based models to surrogate the
predictions made by the DNN model over the dataset through local or global approximations, so as
to capture the variation of model outputs with the interpolation of inputs in feature spaces. Then,
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For each model, the interpretability is the average
similarity to the consensus (over all data examples).
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Interpretations
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Compute similarity between the interpretation and the consensus

Figure 1: Using Consensus to evaluate the interpretability of DNN classifiers with a dataset. For
every image in the dataset, Consensus (1) prepares set of trained models as committees, (2) aggre-
gates interpretation results from every model to approximate the ground truth of interpretation, and
(3) compares the interpretation of every model to the aggregated one to evaluate the interpretability.

with the surrogate model, these methods interpret the DNN model as ways the model uses features
for predictions, e.g., ranking of feature importance, and compare the results with the ground truth
labeled by human experts to evaluate interpretability. Besides the use of linear interpolation for sur-
rogates, many algorithms, like SmoothGrad (Smilkov et al., 2017), Integrated Gradients (Sundarara-
jan et al., 2017), DeepLIFT (Shrikumar et al., 2017), and PatternNet (Kindermans et al., 2018) have
been proposed to estimate the input feature importance as the way to interpret the models, so as to
interpret the model predictions by highlighting the importation subregions in the input. In addition
to the above methods, (Zhang et al., 2018a; 2019) proposed to learn a graphical model to clarify the
process of making decision at a semantic level. Note that obtaining the interpretation of a model is
an algorithmic procedure to explain the model (Samek et al., 2017). On the other hand, through the
comparing the interpretation results with the human labeled ground truth, the interpretability evalu-
ation aims at estimating the degree to which a human (expert) can consistently predict the model’s
result (Kim et al., 2016; Doshi-Velez & Kim, 2017).

In summary, the ground truth of interpretation results (usually labeled by human experts) is indis-
pensable to all above methods for interpretability evaluations and comparisons, no matter ways they
interpret the models, e.g., visual concepts detecting (Bau et al., 2017), and feature importance rank-
ing for either local (Ribeiro et al., 2016) or global (Ahern et al., 2019) interpretations. While the
datasets with visual objects labeled/localized and/or the importance features ranked have offered in
some specific areas, the unavailability of ground truths also limits the generalization of these meth-
ods to interpret brand new models on the new tasks/datasets ubiquitously. There is thus the need of
a method being able to evaluate the interpretability of models on the datasets where the ground truth
of interpretation results is not available.

Our contributions. In this paper, we study the problem of evaluating the interpretability of DNN
classifiers on the datasets without ground truth of interpretation results. The basic idea of Consensus
is to leverage the interpretability of known models as reference to predict the interpretability of new
models on new tasks/datasets. Especially, in terms of general purpose perception tasks, we have al-
ready obtained a number of reliable models with decent interpretability, such as ResNets, DenseNets
and so on. With a new dataset, one could use interpretation tools (Ribeiro et al., 2016; Smilkov et al.,
2017) to obtain the interpretation results of these models, then aggregate interpretation results as the
reference. Then for any model, one could evaluate interpretability of the model through comparing
its interpretation results with the reference.

Specifically, as illustrated in Figure 1, we propose a novel framework named Consensus that
uses a large number of known models as a committee for interpretability evaluation. Given any
task/dataset, Consensus first obtains the interpretation results for every model in the committee us-
ing existing interpretation tools, e.g., LIME (Ribeiro et al., 2016), then aggregates the results from
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the entire committee and reaches the consensus of interpretations through voting. With the quasi-
ground-truth, Consensus evaluates the interpretability of each model through matching its interpre-
tation result and the approximated one, and ranks the matching scores of committee members, so
as to pursue the absolute and relative interpretability evaluation results without the ground truth of
interpretations labeled by human experts. More specifically, we make contributions as follows.
• We study the problem of interpretability evaluation on the datasets without human labeled

ground truth of interpretations. To the best of our knowledge, this work is the first to study
the problem of evaluating the interpretability of DNNs while the ground truths of interpretation
results are not available, by addressing the technical issues of voting and committees.

• We design and implement Consensus, a novel interpretability evaluation framework that incor-
porates a wide range of alternating interpretation tools, such as LIME (Ribeiro et al., 2016),
SmoothGrad (Smilkov et al., 2017), to interpret the model as the variation of outputs over the
interpolations of inputs (in feature spaces), from massive perspectives (e.g., local or global inter-
pretation, tree-based or linear surrogate and so on), and carries out the interpretability evaluation
through the voting based on interpretation results of models in the committee.

• We carry out extensive experiments to validate Consensus on a wide range of models on new
ubiquitous tasks/datasets that the ground truth is not available, and exploit the quantifiable metric
of model interpretability to report the overall interpretability evaluation results (Section 3). Case
studies (Section 4) confirm the effectiveness of Consensus and show the closeness of Consen-
sus based results to the ground truth of interpretations. Robustness analyses (Section 5) further
demonstrate the advantage of the committee that the factors including the use of basic interpre-
tation algorithms, the types of networks in the committee, and the size of committee would have
few affects on the Consensus based interpretability evaluation results.

2 CONSENSUS: A FRAMEWORK OF INTERPRETABILITY EVALUATION

In this section, we introduce our proposed framework, namely Consensus, which incorporates ex-
isting interpretations, such as LIME (Ribeiro et al., 2016) and SmoothGrad (Smilkov et al., 2017),
to enable DNN interpretability evaluation without the use of human labeled interpretation results as
reference/ground truth. Specifically, Consensus generalizes a simple electoral system, and consists
of three steps: (1) Committee Formation with Deep Models, (2) Committee Voting for Consensus
Achievement1, and (3) Consensus-based Interpretability Evaluation, as follow.

Committee Formation with Deep Models. Given a number of deep neural networks (which are
well-known with decent performance on common perception tasks) and a target task with a dataset
(potentially without ground truth of interpretation results), Consensus first trains the given neural
networks (from scratch or fine-tuned) using the dataset. Then, Consensus forms the post-trained
networks as a committee of models, noted as M, and considers the variety of interpretability of
models in the committee that would establish the references for interpretability comparisons and
evaluation. Note that while our research assumes the human labeled ground truth of interpretation
results is not available in the given task/dataset for interpretability evaluation, the labels of samples
are requested when handling classifications and regression tasks.

Committee Voting for Consensus Achievement. With the committee of trained models and the
target task/dataset for interpretation, Consensus first leverages an existing interpretation tool A,
e.g., A can be LIME (Ribeiro et al., 2016) or SmoothGrad (Smilkov et al., 2017) alternatively, to
obtain the interpretation results of every model in the committee on every sample in the dataset.
Given some sample di, we note the obtained interpretation results of all models as L. Then, Con-
sensus proposes a voting procedure that aggregates L to achieve the consensus c as the quasi-
ground-truth of the interpretation for the sample di. Specifically, ck = 1

m

∑m
i=1 L2

ik

‖Li‖ for LIME and

ck = 1
m

∑m
i=1

Lik−min(Li)
max(Li)−min(Li)

for SmoothGrad. In summary, Consensus adopts a normalization-
averaging procedure to obtain the quasi-ground-truth of interpretations for the sample. To the end,
the consensus has been achieved through obtaining the collections of quasi-ground-truth for every
sample in the target dataset based on committee voting.

Consensus-based Interpretability Evaluation. Given the quasi-ground-truths as the consensus of
the whole committee, the proposed algorithm evaluates the interpretability of every model in the

1We are not intending to connect our work with the multi-agent research though we use the term “consensus
achievement”.
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committee by considering the similarity between the interpretation result of each individual model
and the consensus of the whole committee. Specifically, for the interpretations and consensus based
on LIME, Consensus uses cosine similarity between the flattened vectors of interpretation of each
model and the consensus. Then Consensus quantifies the interpretability of the model through the
mean of similarity measures over all samples. For the results based on SmoothGrad (visual feature
importance in pixel levels), Consensus follows a similar procedure, where the proposed algorithm
uses Radial Basis Function (exp(− 1

2 (||a− b||/σ)2)) for the similarity measurement. We rank all
models in the committee using their similarities to the consensus and consider the top/bottom models
with good/bad interpretability in the committee.

Algorithm 1: Consensus Framework Pseudocode. The functions interpret(), aggregate() and
sim() are described in the main text and detained in Algorithm 2 in Appendix E.
1 function Consensus(D, A)

Input : A dataset D containing n examples {di}i=1,··· ,n and an interpretation algorithm A.
Output: s ∈ Rm, where each element sj indicates the interpretability of each modelMj inM.
/* Step 1: Committee Formation with Deep Models M */

2 PrepareM containing m models {Mj}j=1,··· ,m, i.e., the committee of deep models.
3 S = zeros(n,m) // Initialize an empty n×m matrix for storing the

interpretability scores of m models on n data sample.
4 for i in 1, · · · , n do
5 L = zeros(m, pi)
6 for j in 1, · · · ,m do
7 Lj = interpret(A,Mj , di)
8 end

/* Step 2: Committee Voting for Consensus Achievement at di */
9 c = aggregate(L) // c ∈ Rpi, consensus as quasi-ground-truth

/* Step 3: Consensus-based Interpretability Evaluation at di */
10 for j in 1, · · · ,m do
11 Sij = sim(Lj , c) // the score of Mj at di
12 end
13 end
14 for j in 1, · · · ,m do
15 sj = average(S·j) // average score for each model over n samples
16 end
17 return s

These three steps of Consensus are illustrated in Figure 1 and formalized in Algorithm 1. Note
that for any new models for interpretability evaluation, Consensus includes them as members of
committee together with a number of known models, and performs above procedures to obtain
their interpretability evaluation results (absolute evaluation results) as well as the ranking in the
committee (relative evaluation results). In this way, one can clearly position the interpretability and
potentials (in terms of performance) of the new models on the new tasks among the known models,
even when the ground truth of interpretation results are not available.

3 OVERALL EVALUATION AND RESULTS

In this section, we use the image classification as the target task for interpretation and interpretability
evaluation of deep models. We first introduce the settings of image classification tasks in details, as
the setups of our experiments. Then, we present the overall results of Consensus, where we could
observe its capacity of evaluating the interpretability of models, with connections to the model
performance, while the ground truth of interpretations is not used. Through the comparisons with
interpretability evaluation based on LIME and SmoothGrad algorithms using human labeled ground
truth, the effectiveness of Consensus has been evaluated.

3.1 EVALUATION SETUPS

Here we present the setups of our experiments from following perspectives.

Datasets and Models. For overall evaluation and comparisons, we use two image classification
datasets ImageNet (Deng et al., 2009) for ubiquitous visual objects and CUB-200-2011 (Welinder
et al., 2010) for birds respectively. Note that ImageNet provides the class label for every image;
CUB-200-2011 dataset includes the class label and pixel-level segmentation for the bird in every
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image, where the pixel annotations of visual objects have been considered as the ground truth of in-
terpretations (Bau et al., 2017). In this way, we evaluate interpretability of models using Consensus,
and compare the results with the existing algorithms based on the ground truth.

For the fair comparisons, we use more than 80 models publicly available from PaddlePaddle2, which
have been trained using ImageNet dataset. We also derive models based on CUB-200-2011 dataset
through standard fine-tuning procedures. In our experiments, we include these models in two com-
mittees based on ImageNet and CUB-200-2011 respectively for the interpretability evaluation.

Baselines. We consider two interpretation algorithms, LIME (Ribeiro et al., 2016) and Smooth-
Grad (Smilkov et al., 2017). Specifically, LIME surrogates the interpretation as the assignment
of visual feature importance to superpixels (Vedaldi & Soatto, 2008), SmoothGrad outputs the in-
terpretation results as the visual feature importance over pixels. In this way, we can evaluate the
flexibility of the proposed Consensus framework over interpretation results from diverse sources
(i.e., linear surrogates vs. input gradients) and in multiple granularity (i.e., feature importance in
superpixel/pixel-levels). Note that both algorithms use mean Average Precision (mAP) between
their interpretation results and the ground truth (i.e., pixel level segmentation, if available) as the
measure of interpretability evaluation.
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Figure 2: Correlation between the Model Performance
(Testing Accuracy) and the Ground Truth based Inter-
pretability Evaluation using (a) LIME and (b) Smooth-
Grad with CUB-200-2011 over 85 models. Pearson
correlation coefficients are 0.927 (with p-value 4e-37)
for LIME and 0.916 (with p-value 9e-35) for Smooth-
Grad. The points “Consensus” here refer to the testing
accuracy of the ensemble of networks in the commit-
tee by probabilities averaging and voting (in y-axis), as
well as the mAP between the Consensus results and the
ground truth (in x-axis).

Metrics. Given the similarity measures
between the model’s interpretation results
and consensus of the committee, the pro-
posed algorithm is used to rank the inter-
pretability of every model in the commit-
tee. In this way, we compare the rank-
ing list of model interpretability based
on Consensus evaluation results with the
ranking list based on the ground truth,
so as to understand how well the pro-
posed Consensus framework can approx-
imate the evaluation results of model in-
terpretability without the use of ground
truth. More specifically, visual com-
parisons, Pearson correlation coefficients
(which characterize the linearity between
two variables, e.g., model performance
vs. interpretability evaluation) and signif-
icance tests have been used as the metrics
for overall evaluation and comparisons.

Note that we do not have the ground truth
of interpretations for ImageNet. However, it is still possible for us to access the interpretability eval-
uation through connecting Consensus outputs with the generalization performance of the models.
Figure 2 illustrates an example of correlations between interpretability evaluation results based on
ground truth and the testing accuracy of 85 models over CUB-200-2011 dataset, where we can see
strong, significant, and consistent correlations between model performance and the interpretability.

3.2 OVERALL COMPARISONS

In Figure 3, we present the interpretability evaluation results using CUB-200-2011, and the overall
comparisons between Consensus and the ground truth based, where we plot the scatter points (i.e.,
Consensus results in x-axis vs. ground truth based results in y-axis) of the two comparisons using
LIME and SmoothGrad respectively. In both comparisons, Consensus performs almost-identically
as the one based on ground truth with strong Spearman’s correlation (which characterizes the con-
sistency between two ranking lists) with significance tests passed.

To enable the similar comparisons using ImageNet dataset (where the ground truth of interpretations
is not available), we connect the Consensus results with the model performance (testing accuracy)
of models, as the model performance and the ground truth based interpretability evaluation results
are usually correlated (please see also in Figure 2 and section 3.1). In Figure 3, we present the

2https://github.com/PaddlePaddle/models/blob/release/1.8/PaddleCV/
image_classification/README_en.md#supported-models-and-performances

5

https://github.com/PaddlePaddle/models/blob/release/1.8/PaddleCV/image_classification/README_en.md#supported-models-and-performances
https://github.com/PaddlePaddle/models/blob/release/1.8/PaddleCV/image_classification/README_en.md#supported-models-and-performances


Under review as a conference paper at ICLR 2021

0.60 0.65 0.70 0.75 0.80 0.85

Similarity to the consensus

0.50

0.55

0.60

0.65

0.70

0.75

0.80

M
o
d

el
p

er
fo

rm
an

ce

AlexNet

AutoDL

DPN

DenseNet

EfficientNet

GoogleNet

HRNet

MobileNet

Res2Net

ResNeXt

ResNet

SENet

ShuffleNet

SqueezeNet1

VGG

(a) LIME on ImageNet

0.0225 0.0250 0.0275 0.0300 0.0325 0.0350 0.0375 0.0400

Similarity to the consensus

0.50

0.55

0.60

0.65

0.70

0.75

0.80

M
o
d

el
p

er
fo

rm
a
n

ce

AlexNet

AutoDL

DPN

DenseNet

EfficientNet

GoogleNet

HRNet

MobileNet

Res2Net

ResNeXt

ResNet

SENet

ShuffleNet

SqueezeNet1

VGG

(b) SmoothGrad on ImageNet

0.60 0.65 0.70 0.75 0.80 0.85

Similarity to the consensus (LIME)

0.0225

0.0250

0.0275

0.0300

0.0325

0.0350

0.0375

0.0400

S
im

il
a
ri

ty
to

th
e

co
n

se
n

su
s

(S
m

o
o
th

G
ra

d
)

AlexNet

AutoDL

DPN

DenseNet

EfficientNet

GoogleNet

HRNet

MobileNet

Res2Net

ResNeXt

ResNet

SENet

ShuffleNet

SqueezeNet1

VGG

(c) LIME vs. SmoothGrad on ImageNet

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

Similarity to the consensus

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
o
d

el
p

er
fo

rm
an

ce

AlexNet

AutoDL

DPN

DarkNet53

DenseNet

EfficientNet

HRNet

Inception

MobileNet

Res2Net

ResNeXt

ResNet

ShuffleNet

(d) LIME on CUB

0.025 0.030 0.035 0.040 0.045 0.050 0.055

Similarity to the consensus

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
o
d

el
p

er
fo

rm
a
n

ce

AlexNet

AutoDL

DPN

DarkNet53

DenseNet

EfficientNet

HRNet

Inception

MobileNet

Res2Net

ResNeXt

ResNet

ShuffleNet

(e) SmoothGrad on CUB

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

Similarity to the consensus (LIME)

0.025

0.030

0.035

0.040

0.045

0.050

0.055

S
im

il
ar

it
y

to
th

e
co

n
se

n
su

s
(S

m
o
ot

h
G

ra
d

)

AlexNet

AutoDL

DPN

DarkNet53

DenseNet

EfficientNet

HRNet

Inception

MobileNet

Res2Net

ResNeXt

ResNet

ShuffleNet

(f) LIME vs. SmoothGrad on CUB

Figure 4: Model performance v.s. similarity to the consensus using LIME (a,d) and SmoothGrad
(b,e) over 81 models on ImageNet (a,b) and 85 models on CUB-200-2011 (d,e). The third column
shows the similarity to the consensus of SmoothGrad interpretations v.s. similarity to the consensus
of LIME interpretations on ImageNet committee (c) and CUB-200-2011 committee (f). Pearson
correlation coefficients are (a) 0.8087, (b) 0.783, (c) 0.825, (d) 0.908, (e) 0.880 and (f) 0.854.

correlations between the Consensus results (without the use of ground truth) and the model perfor-
mance for both LIME and SmoothGrad using ImageNet and CUB-200-2011 datasets. Specifically,
in Figure 4 (a-b) and (d-e), we present the comparisons between model performance (in y-axis) and
the Consensus results (in x-axis) using LIME (a,d) and SmoothGrad (b,e) on ImageNet (a,b) and
CUB-200-2011 (d,e) respectively.
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(b) Using SmoothGrad
Figure 3: Ground-Truth-based v.s. Consensus-based
Interpretability Evaluation using (a) LIME and (b)
SmoothGrad with CUB-200-2011 Datasets over 85
models (the Committee). Spearman’s correlation co-
efficients are 0.885 (with p-value 3e-29) for LIME and
0.906 (with p-value 8e-33) for SmoothGrad.

All correlations here are strong with sig-
nificance tests passed, though in some lo-
cal areas of the correlation plots between
model performance and interpretability
evaluation the trends are not always con-
sistent. It has been observed that some
extremely large networks work well with
the datasets, while they are lack of in-
terpretability (Bau et al., 2017). In this
way, we could conclude that, in an overall
manner, interpretability evaluation results
based on Consensus using both LIME and
SmoothGrad over the two datasets are cor-
related to model performance with signifi-
cance.

3.3 COMPARISON RESULTS WITH
NETWORK DISSECTION (BAU ET AL., 2017)

Here we compare the results of Consensus with ground truth based interpretability evaluation so-
lution – Network Dissection (Bau et al., 2017). With ImageNet dataset, Network Dissection gave
a ranking list of models (w.r.t the model interpretability) as follows: ResNet152 > DenseNet161
> VGG16 > GoogLeNet > AlexNet. We report two ranking lists based on Consensus with de-
tailed numbers for every architecture above, which has been demonstrated in Figure 4 (a, LIME):
DenseNet161 (0.849) ≈ ResNet152 (0.846) > VGG16 (0.821) > GoogLeNet (0.734) > AlexNet
(0.594); and (b, SmoothGrad): DenseNet161 (0.038) ≈ ResNet152 (0.037) > VGG16 (0.030) >
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Figure 5: Visual comparisons between consensus and the interpretation results of CNNs using LIME
(in the upper line) and SmoothGrad (in the lower line) based on an image from ImageNet, where the
ground truth of interpretation results is not available.

GoogLeNet (0.026)>AlexNet (0.021). The three ranking lists are almost identical, except the com-
parisons between DenseNet161 and ResNet152, where in the both lists of Consensus, DenseNet161
is similar to ResNet152 with marginally elevated interpretability, while Network Dissection consid-
ers ResNet152 is more interpretable than DenseNet161.

We believe the results from Consensus and Network Dissection are close enough from the perspec-
tives of ranking lists, and the difference may be caused by the different ways that Consensus and
Network Dissection evaluate the interpretability. Consensus matches the interpretations with the
visual objects on images (due to the results of LIME and SmoothGrad), while Network Dissection
counts the number of neurons activated by the visual objects and patterns (color, materials, textures,
scenes, and parts). Furthermore, Network Dissection evaluates the interpretability of deep models
using the Broden dataset with densely labeled visual objects and patterns (Bau et al., 2017), while
Consensus does not need additional dataset or ground truths of interpretations. In this way, the
results by Consensus and Network Dissection might be slightly different.

4 CASE STUDIES

In this section, we discuss several technical issues on Consensus for ground-truth-free evaluation of
DNN interpretability, using a set of case studies.

Qualification and Effectiveness of Committee-based Voting In our research, Consensus pro-
poses to replace the ground truth with a committee of networks, and it trusts the voting results as
the interpretations of ground truth. Thus, we have to verify (1) whether the (consensus achieved by
the) committee would approximate to the ground truth, and (2) whether voting is an effective way
to express the interpretation results of the whole committee.

To achieve the goal, we consider the committee as an ensemble of networks, and it classifies data
via committee-based voting through averaging the probability outputs of the member networks. In
Figure 2, we compare the committee (as an ensemble of networks, entitled with “Consensus”) with
other architectures for the evaluation of model performance (testing accuracy) and the interpretabil-
ity evaluation with the ground truth (i.e., mAP between consensus achieved by the committee and
the ground truth), using both LIME and SmoothGrad over CUB-200-2011 dataset. The comparison
results show that the committee is of the best testing accuracy with significant advantages compared
to other models, while the committee is also with the highest mAP between its consensus interpre-
tations and the ground truth compared to other models. In this way, we can confirm the qualification
of the committee, as well as the effectiveness of the committee-based voting.

Closeness of Consensus to the Ground Truth In addition to the mAP measurement (illustrated in
Figure 2) between consensus and the ground truth on CUB-200-2011 dataset, we also visualize the
examples to compare the consensus achieved by the committee, interpretation results of individual
networks using both LIME and SmoothGrad, and (optionally) the ground truth labeled for both
ImageNet and CUB-200-2011 datasets in Figures 5 and 6 respectively. The comparison shows that
the consensus can clearly segment the visual objects related to the classification from the background
of images, and it would be closer to the ground truth (if available) than the individual networks. Both
quantitative results in Figure 2 and the visual comparisons in Figures 5 and 6 validate the closeness
of consensus to the ground truth of interpretations.
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Figure 6: Visual comparisons between consensus and the interpretation results of CNNs using LIME
(in the upper line) and SmoothGrad (in the lower line) based on an image from CUB-200-2011,
where the ground truth of interpretation results is available as pixel-wise annotations and the mean
Average Precision (mAP) are measured for interpretability evaluation.

5 ROBUSTNESS ANALYSES

In this section, we discuss several factors, including the use of basic interpretation algorithms (e.g.,
LIME and SmoothGrad), the size of committee, and the candidate pool for models in the committee,
that would affect the proposed Consensus framework.

Consistency of LIME and SmoothGrad While Consensus adopts LIME and SmoothGrad as the
basic interpretation algorithms, the interpretation results from these two algorithms are not exactly
the same. Even though the granularity of interpretation results are different, which causes mismatch-
ing in mAP estimation with ground truth, the interpretability evaluation results of Consensus based
on the two algorithms are generally consistent. The consistency has been confirmed by Figure 4 (c,
f), where the overall results of Consensus based on LIME is strongly correlated to SmoothGrad over
all models. This shows that the proposed Consensus framework can work well with a wide spectrum
of basic interpretation algorithms.

Consistency of Cross-Committee Interpretability Evaluation In real-word applications, the
committee-based evaluation makes the results inconsistent in a committee-by-committee manner.
In this work, we are interested in whether the interpretability evaluation is consistent against the
change of committee (e.g., using different sets of models). Given 16 ResNet models as the targets,
we form 20 independent committees through combining the 16 models with 10–20 models randomly
drawn from the networks presented in Figure 4. In each of these 20 independent committees, we use
Consensus to evaluate the interpretability of 16 ResNet models and rank them accordingly. We then
estimate the Pearson correlation coefficients between any of these 20 ranking lists and the list in Fig-
ure 4 (a), where the mean correlation coefficient is 0.96 with the standard deviation 0.04. Thus, we
can say the interpretability evaluation based on randomly picked committees would be consistent.
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Figure 7: Convergence of mAP between the ground truth and
the consensus results based on committees of increasing sizes,
using LIME on CUB-200-2011. The green lines are the mean
values and the orange triangles are the median value. The red
dashed line is the mAP of the consensus based on the complete
committee of the original 85 models.

Convergence over Committee
Sizes To understand effects of
committee sizes to interpretabil-
ity evaluation, we run Consen-
sus using committees of various
sizes formed with networks ran-
domly picked up from the pools.
In Figure 7, we plot and com-
pare the performance of the con-
sensus with increasing commit-
tee sizes, where we estimate the
mAP between the ground truth
and the consensus based on the
random committees of different
sizes and 20 random trials have
been done for every single size
independently. It shows that the curve of mAP would quickly converge to the complete the commit-
tee, while the consensus based on a small proportion of committee (e.g., 15 networks) works good
enough even compared to the complete committee with 85 networks.

Applicability with Random Committees over Other Datasets To demonstrate the applicability
of Consensus with varying committees over other datasets, we continue our experiments using net-
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works randomly picked up from the pool on other datasets, including Stanford Cars 196 (Krause
et al., 2013), Oxford Flowers 102 (Nilsback & Zisserman, 2008) and Foods 101 (Bossard et al.,
2014) in Figure 8, where we consider the connections between the interpretability and model per-
formance (e.g., the testing accuracy, inspired by Figure 2). The results confirm that, when the ground
truth of interpretations is not available, our framework is still capable of identifying the interpretabil-
ity for a wide range of models on ubiquitous datasets/tasks.
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Figure 8: Model performance versus Results of Consensus using LIME on Stanford Cars 196
(Krause et al., 2013), Oxford Flowers 102 (Nilsback & Zisserman, 2008) and Foods 101 (Bossard
et al., 2014). Pearson correlation coefficients are 0.9522, 0.8785 and 0.9134 respectively.

6 CONCLUSION AND FUTURE WORK

We have proposed a novel framework Consensus for evaluating the interpretability of deep models
while avoiding the use of ground truth for interpretations. Specifically, Consensus forms a com-
mittee of deep models and generalizes an electoral system to reach the consensus of interpretation
results using some basic interpretation algorithms via committee-based voting. Then, for every
model in the committee, Consensus computes the similarity between its interpretation results and
the aggregated consensus, then it ranks the models in the committee accordingly, so as to pursue the
absolute score (i.e., similarities to the consensus) and relative results (the rank in the committee) for
interpretability evaluation. To validate Consensus, we carry out extensive experimental studies using
85 deep models including ResNets, DenseNets, and so on, on top of 5 datasets, including ImageNet,
CUB-200-2011 and so on, in comparison with interpretation algorithms of three categories, includ-
ing LIME (Ribeiro et al., 2016), SmoothGrad (Smilkov et al., 2017), and Network Dissection (Bau
et al., 2017). The results show that (1) Consensus can evaluate the interpretability of models on
the datasets even when the ground truth of interpretation results are not available, (2) the consensus
of interpretation results aggregated from the committee could well approximate the ground truth of
interpretations, (3) the interpretability evaluation results delivered by Consensus correlates to the
model performance (testing accuracy) strongly and significantly, (4) the factors including the use of
basic interpretation algorithms, the types of networks in the committee, and the size of committee
would not affect the results of interpretability evaluation with Consensus.

Discussion. For the interpretability evaluation of any models on any dataset, the ground truth based
evaluation approaches rely on human subjective interpretations, while Consensus can automate this
process by just training a few more models and approximating the ground truth of interpretations.
We thus conclude that the interpretability evaluation can be democratized through an electoral sys-
tem constructed by the DNN models themselves, rather than the use of human labeled ground truth
as criterion. We discuss the future work in three different directions. (1) In terms of methodologies,
the proposed Consensus framework considers the segmentation of visual features as interpretations
for vision tasks and adopts simple voting mechanism to aggregate results from the committee of
models. We believe that the contributions made in this work are complementary with visual objects
segmentation and voting. The use of advanced segmentation (Chen et al., 2017a; He et al., 2017)
and ensemble learning methods (Dietterich, 2000; Hinton et al., 2015) would further improve the
proposed framework. (2) In terms of applications, following the steps of Consensus, on medical or
financial domains where interpretations for black-box models are urged, the quasi-ground-truth of
interpretations and the interpretability evaluation of models could be easily obtained. (3) Instead
of using trained models of different architectures as committee members, models of common or
even the same architectures trained using various training strategies would also form an interesting
committee for analyzing the interpretability of models based on different training strategies.
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A MORE VISUALIZATION RESULTS

We present more visualization results of Consensus, where the samples are from ImageNet and
CUB-200-2011.
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Figure 9: More visual comparisons between the consensus interpretation and the interpretation re-
sults of CNNs with LIME on samples from ImageNet, where the ground truth of interpretation
results is not available. Note that consensus is the Consensus aggregated interpretation.
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Figure 10: More visual comparisons between the consensus interpretation and the interpretation
results of CNNs with SmoothGrad on samples from ImageNet, where the ground truth of interpre-
tation results is not available. Note that consensus is the Consensus aggregated interpretation.
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Figure 11: More visual comparisons between the consensus interpretation and the interpretation
results of CNNs with LIME on samples from CUB-200-2011, where the ground truth of interpre-
tation results is available as pixel-wise annotations and the mAPs are measured for interpretability
evaluation. Note that consensus is the Consensus aggregated interpretation.
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Figure 12: More visual comparisons between the consensus interpretation and the interpretation
results of CNNs with SmoothGrad on samples from CUB-200-2011, where the ground truth of
interpretation results is available as pixel-wise annotations and the mAPs are measured for inter-
pretability evaluation. Note that consensus is the Consensus aggregated interpretation.
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B EXPERIMENTAL DETAILS

We present the technique details for the experiments in the main text.

B.1 COMMITTEE FORMATIONS

There are around 100 publicly available deep models trained on ImageNet from PaddlePaddle3.
We first exclude some very large models that take much more computation resources. Then for the
consistency of computing superpixels, we include only the models that take images of size 224×224
as input, resulting 81 models for the committee based on ImageNet. Since there are already a large
number of available models, we choose to not include more models by aligning the superpixels in
different sizes of images.

As for CUB-200-2011 (Welinder et al., 2010), similarly we first exclude the very large models. Then
we follow the standard procedures (Sermanet et al., 2014; Simonyan & Zisserman, 2015) for fine-
tuning ImageNet-pretrained models on CUB-200-2011. For simplicity, we use the same training
setup for all pre-trained models (learning rate 0.01, batch size 64, SGD optimizer with momentum
0.9, resize to 256 being the short edge, randomly cropping images to the size of 224×224), and
obtain 85 models that are well trained. Different hyper-parameters may help to improve the perfor-
mance of some specific networks, but for the same reason of the large number of available models,
we choose to not search for better hyper-parameter settings.

Given the convergence over committee sizes (Figure 7), which shows that a committee of more than
15 models works good enough, thus we randomly choose around 20 models for Stanford Cars 196
(Krause et al., 2013), Oxford Flowers 102 (Nilsback & Zisserman, 2008) and Foods 101 (Bossard
et al., 2014), following the same training procedure as CUB-200-2011.

B.2 INTERPRETATION ALGORITHMS

To interpret a model, LIME (Ribeiro et al., 2016) on vision tasks first performs a superpixel segmen-
tation (Vedaldi & Soatto, 2008) for an image, then generates samples by randomly masking some
superpixels and computing the outputs through the model, and finally fits the model outputs with the
set of superpixels as input by a linear regression model. The linear weights then presents the feature
importance in the superpixel level as the interpretation result.

The gradients of model output w.r.t. input can partly identify influential pixels, but due to the satura-
tion of activation functions in the deep networks, the vanilla gradient is usually noisy. SmoothGrad
(Smilkov et al., 2017) reduces the visual noise by repeatedly adding small random noises to the input
so as to get a list of corresponding gradients, which are averaged for the final interpretation result.

C RESNET FAMILY

We show the zoomed plot of ResNet family (whose name contains “ResNet” key word) in the
ImageNet-LIME committee of 81 models in Figure 13 (a). Meanwhile, we also present the results
using ResNet family as committee in Figure 13 (b). These two subfigures have no large difference,
which further confirms the consistency of ranking models in different committees.

D REFERENCES OF NETWORK STRUCTURES

Many structures of deep neural networks have been evaluated in this paper, including AlexNet
(Krizhevsky et al., 2012), ResNet (He et al., 2016), ResNeXt (Xie et al., 2017), SEResNet (Hu et al.,
2018), ShuffleNet (Zhang et al., 2018b; Ma et al., 2018), MobileNet (Howard et al., 2017; Sandler
et al., 2018; Howard et al., 2019), VGG (Simonyan & Zisserman, 2015), GoogleNet (Szegedy et al.,
2015), Inception (Szegedy et al., 2015), Xception (Chollet, 2017), DarkNet (Redmon et al., 2016;
Redmon & Farhadi, 2018), DenseNet (Huang et al., 2017), DPN (Chen et al., 2017b), SqueezeNet

3https://github.com/PaddlePaddle/models/blob/release/1.8/PaddleCV/
image_classification/README_en.md#supported-models-and-performances
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Figure 13: Model performance v.s. similarity to the consensus of LIME on ResNet family. The
consensus of (a) is voted by the complete committee on ImageNet (81 models), while the consensus
of (b) is voted by ResNet family (16 models).

(Iandola et al., 2016), EfficientNet (Tan & Le, 2019), Res2Net (Gao et al., 2019), HRNet (Wang
et al., 2020b), Darts (Liu et al., 2018), AcNet (Ding et al., 2019) and so on.

E COMPLETE PSEUDOCODE OF Consensus

Figure 1 shows an illustrative pipeline of our framework Consensus of evaluating the interpretability
of models without the need of the ground truth of interpretation, and Algorithm 2 gives a complete
process of Consensus in pseudocode.

F NUMERICAL REPORT OF MAIN PLOTS

Due to the large number of deep models evaluated, Figure 2, 3 and 4 grouped those that are of the
same architecture. Here, we report all of the corresponding numerical results in Table 1.

G VISUALIZATION OF COCO IMAGES

For further showing the effectiveness of Consensus, we visualize several random images from MS-
COCO (Lin et al., 2014), shown in Figure 14.
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Algorithm 2: Consensus Framework Pseudocode
1 function sim(a, b)

Input : Two vectors or tensors.
Output: a scalar as the similarity between a and b with appropriate normalization approaches.
/* This function uses cosine similarity for LIME interpretations and

Radial Basis Function, exp(− 1
2
(||a− b||/σ)2). */

2

3 function aggregate(L)
Input : L, a collection of interpretations of m models for one given data sample.
Output: c, the consensus among m model for the interpretation of the given data sample.
/* This function returns the quasi-ground-truth of the

interpretation for the given sample, basically it is equivalent
to a normalization-averaging procedure in this paper.

Specifically, ck = 1
m

∑m
i=1 L2

ik
‖Li‖

for LIME, and ck = 1
m

∑m
i=1

Lik−min(Li)
max(Li)−min(Li)

for SmoothGrad. */
4

5 function interpret(A,M , d)
Input : An interpretation algorithm A, a trained modelM and a data sample d ∈ Rp, where Rp is the

feature domain and the dimension p may vary with the sample d.
Output: α ∈ Rp, where the elements indicate the importances of input features.
/* This function is an implementation of a typical interpretation

algorithm like LIME (number of superpixels as p), SmoothGrad
(number of pixels as p) or others. */

6

7 function Consensus(D, A)
Input : A dataset D containing n examples {di}i=1,··· ,n and an interpretation algorithm A.
Output: s ∈ Rm, where each element sj indicates the interpretability of each modelMj inM.
/* Step 1: Committee Formation with Deep Models M */

8 PrepareM containing m models {Mj}j=1,··· ,m, i.e., the committee of deep models.
9 S = zeros(n,m) // Initialize an empty n×m matrix for storing the

interpretability scores of m models on n data sample.
10 for i in 1, · · · , n do
11 L = zeros(m, pi)
12 for j in 1, · · · ,m do
13 Lj = interpret(A,Mj , di)
14 end

/* Step 2: Committee Voting for Consensus Achievement at di */
15 c = aggregate(L) // c ∈ Rpi, consensus as quasi-ground-truth

/* Step 3: Consensus-based Interpretability Evaluation at di */
16 for j in 1, · · · ,m do
17 Sij = sim(Lj , c) // the score of Mj at di
18 end
19 end
20 for j in 1, · · · ,m do
21 sj = average(S·j) // average score for each model over n samples
22 end
23 return s
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Table 1: Numerical report of model performance and similarity to the consensus using LIME and
SmoothGrad over 81 models on ImageNet in sub-table(a) corresponding to Figure 4 (a, b, c), and
over 85 models on CUB-200-2011 in sub-table(b) corresponding to Figure 2, 3 and 4 (d, e, f).

(a) on ImageNet

perf.

interpret-
ability
scores of
Consensus
(LIME)

interpret-
ability
scores of
Consensus
(Smooth-
Grad)

AlexNet 0.575 0.594 0.0214
AutoDL 4M 0.752 0.756 0.0312
AutoDL 6M 0.776 0.741 0.0291
DPN107 0.798 0.828 0.0331
DPN131 0.802 0.833 0.0334
DPN68 0.766 0.849 0.0297
DPN92 0.775 0.845 0.0357
DPN98 0.798 0.837 0.0354
DenseNet121 0.755 0.859 0.0376
DenseNet161 0.781 0.849 0.0383
DenseNet169 0.765 0.855 0.0376
DenseNet201 0.779 0.843 0.0385
DenseNet264 0.761 0.841 0.0378
EfficientNetB0 0.754 0.727 0.0355
EfficientNetB0 Small 0.708 0.729 0.0362
GoogleNet 0.726 0.734 0.0260
HRNet W18 C 0.766 0.854 0.0388
HRNet W30 C 0.776 0.832 0.0378
HRNet W32 C 0.781 0.845 0.0376
HRNet W40 C 0.773 0.822 0.0366
HRNet W44 C 0.782 0.817 0.0368
HRNet W48 C 0.794 0.807 0.0369
HRNet W64 C 0.784 0.799 0.0344
MobileNetV1 0.711 0.825 0.0322
MobileNetV1 x0 25 0.513 0.653 0.0222
MobileNetV1 x0 5 0.640 0.751 0.0257
MobileNetV1 x0 75 0.697 0.788 0.0297
MobileNetV2 0.742 0.812 0.0342
MobileNetV2 x0 25 0.534 0.650 0.0221
MobileNetV2 x0 5 0.642 0.768 0.0270
MobileNetV2 x0 75 0.709 0.795 0.0302
MobileNetV2 x1 5 0.737 0.841 0.0336
MobileNetV2 x2 0 0.744 0.840 0.0352
Res2Net101 vd 26w 4s 0.780 0.752 0.0285
Res2Net50 14w 8s 0.781 0.823 0.0324
Res2Net50 26w 4s 0.780 0.835 0.0343
Res2Net50 vd 26w 4s 0.790 0.828 0.0332
ResNeXt101 32x4d 0.784 0.843 0.0371
ResNeXt101 vd 32x4d 0.795 0.830 0.0347
ResNeXt101 vd 64x4d 0.784 0.821 0.0336
ResNeXt152 32x4d 0.782 0.842 0.0377
ResNeXt152 64x4d 0.787 0.828 0.0383
ResNeXt152 vd 32x4d 0.792 0.807 0.0325
ResNeXt152 vd 64x4d 0.790 0.814 0.0325
ResNeXt50 32x4d 0.765 0.849 0.0385
ResNeXt50 64x4d 0.784 0.836 0.0389
ResNeXt50 vd 32x4d 0.790 0.844 0.0346
ResNeXt50 vd 64x4d 0.792 0.829 0.0360
ResNet101 0.769 0.847 0.0377
ResNet101 vd 0.788 0.810 0.0323
ResNet152 0.776 0.846 0.0374
ResNet152 vd 0.801 0.793 0.0308
ResNet18 0.715 0.816 0.0342
ResNet18 vd 0.730 0.807 0.0334
ResNet200 vd 0.793 0.790 0.0300
ResNet34 0.739 0.826 0.0363
ResNet34 vd 0.757 0.802 0.0329
ResNet50 0.763 0.858 0.0394
ResNet50 ACNet 0.780 0.868 0.0386
ResNet50 vc 0.778 0.817 0.0370
ResNet50 vd 0.778 0.831 0.0341
SENet154 vd 0.803 0.807 0.0315
SE ResNeXt101 32x4d 0.781 0.818 0.0325
SE ResNeXt50 32x4d 0.775 0.810 0.0321
SE ResNeXt50 vd 32x4d 0.797 0.819 0.0342
SE ResNet18 vd 0.743 0.810 0.0342
SE ResNet34 vd 0.766 0.789 0.0330
SE ResNet50 vd 0.787 0.792 0.0332
ShuffleNetV2 0.706 0.795 0.0325
ShuffleNetV2 x0 25 0.507 0.636 0.0231
ShuffleNetV2 x0 33 0.547 0.651 0.0238
ShuffleNetV2 x0 5 0.611 0.710 0.0250
ShuffleNetV2 x1 0 0.689 0.778 0.0295
ShuffleNetV2 x1 5 0.712 0.807 0.0306
ShuffleNetV2 x2 0 0.738 0.816 0.0317
SqueezeNet1 0 0.602 0.732 0.0253
SqueezeNet1 1 0.613 0.762 0.0242
VGG11 0.694 0.801 0.0291
VGG13 0.697 0.804 0.0297
VGG16 0.714 0.821 0.0305
VGG19 0.722 0.821 0.0309

(b) on CUB-200-2011

perf

interpret-
ability
scores of
Consensus
(LIME)

interpret-
ability
scores of
Consensus
(Smooth-
Grad)

mAP between
g.t. of
segmentation
and LIME
interpretation

mAP between
g.t. of
segmentation
and
SmoothGrad
interpretation

AlexNet 0.507 0.536 0.0275 0.343 0.571
AutoDL 4M 0.728 0.781 0.0371 0.594 0.693
AutoDL 6M 0.754 0.811 0.0402 0.605 0.740
DPN107 0.830 0.867 0.0525 0.630 0.780
DPN131 0.800 0.868 0.0498 0.643 0.795
DPN68 0.795 0.849 0.0415 0.630 0.710
DPN92 0.806 0.872 0.0510 0.626 0.784
DPN98 0.815 0.877 0.0526 0.628 0.793
DarkNet53 ImageNet1k 0.782 0.850 0.0485 0.604 0.743
DenseNet121 0.771 0.848 0.0503 0.585 0.771
DenseNet161 0.813 0.873 0.0542 0.640 0.797
DenseNet169 0.792 0.858 0.0513 0.609 0.776
DenseNet201 0.805 0.858 0.0544 0.616 0.795
DenseNet264 0.789 0.868 0.0540 0.628 0.798
EfficientNetB0 0.765 0.805 0.0450 0.594 0.769
EfficientNetB0 Small 0.737 0.805 0.0426 0.589 0.738
EfficientNetB1 0.775 0.805 0.0456 0.593 0.755
EfficientNetB2 0.787 0.819 0.0461 0.595 0.764
EfficientNetB3 0.791 0.812 0.0421 0.582 0.771
EfficientNetB4 0.792 0.829 0.0423 0.612 0.766
EfficientNetB5 0.774 0.808 0.0431 0.591 0.768
HRNet W18 C 0.754 0.831 0.0461 0.592 0.736
HRNet W30 C 0.770 0.832 0.0475 0.595 0.752
HRNet W32 C 0.785 0.836 0.0471 0.586 0.750
HRNet W40 C 0.750 0.844 0.0476 0.594 0.763
HRNet W44 C 0.788 0.830 0.0449 0.592 0.752
HRNet W48 C 0.796 0.838 0.0482 0.581 0.757
HRNet W64 C 0.791 0.838 0.0485 0.609 0.766
InceptionV4 0.745 0.797 0.0435 0.592 0.728
MobileNetV1 0.741 0.824 0.0415 0.588 0.716
MobileNetV1 x0 25 0.557 0.676 0.0288 0.448 0.634
MobileNetV1 x0 5 0.655 0.753 0.0325 0.527 0.672
MobileNetV1 x0 75 0.688 0.808 0.0388 0.569 0.701
MobileNetV2 0.737 0.810 0.0438 0.582 0.732
MobileNetV2 x0 25 0.511 0.670 0.0287 0.457 0.597
MobileNetV2 x0 5 0.665 0.753 0.0337 0.543 0.661
MobileNetV2 x0 75 0.715 0.814 0.0369 0.577 0.686
MobileNetV2 x1 5 0.756 0.835 0.0421 0.611 0.719
MobileNetV2 x2 0 0.781 0.851 0.0425 0.605 0.705
Res2Net101 vd 26w 4s 0.799 0.853 0.0470 0.613 0.756
Res2Net50 14w 8s 0.789 0.826 0.0491 0.587 0.765
Res2Net50 26w 4s 0.768 0.840 0.0515 0.601 0.782
Res2Net50 vd 26w 4s 0.783 0.821 0.0467 0.604 0.749
ResNeXt101 32x4d 0.818 0.877 0.0578 0.629 0.798
ResNeXt101 32x8d wsl 0.768 0.831 0.0479 0.563 0.755
ResNeXt101 vd 32x4d 0.816 0.867 0.0494 0.614 0.771
ResNeXt101 vd 64x4d 0.824 0.871 0.0520 0.642 0.778
ResNeXt152 32x4d 0.815 0.872 0.0543 0.619 0.792
ResNeXt152 64x4d 0.834 0.875 0.0576 0.613 0.779
ResNeXt152 vd 32x4d 0.820 0.872 0.0520 0.640 0.788
ResNeXt152 vd 64x4d 0.822 0.852 0.0479 0.618 0.764
ResNeXt50 32x4d 0.809 0.856 0.0567 0.619 0.785
ResNeXt50 64x4d 0.814 0.885 0.0562 0.621 0.788
ResNeXt50 vd 32x4d 0.806 0.874 0.0508 0.627 0.762
ResNeXt50 vd 64x4d 0.820 0.890 0.0544 0.631 0.785
ResNet101 0.784 0.878 0.0511 0.620 0.761
ResNet101 vd 0.813 0.864 0.0499 0.606 0.766
ResNet152 0.799 0.859 0.0506 0.601 0.773
ResNet152 vd 0.797 0.851 0.0507 0.613 0.774
ResNet18 0.726 0.794 0.0449 0.546 0.735
ResNet18 vd 0.754 0.846 0.0428 0.598 0.710
ResNet200 vd 0.813 0.861 0.0502 0.618 0.773
ResNet34 0.758 0.812 0.0461 0.569 0.756
ResNet34 vd 0.771 0.833 0.0435 0.570 0.731
ResNet50 0.776 0.878 0.0531 0.609 0.774
ResNet50 ACNet 0.782 0.870 0.0481 0.619 0.737
ResNet50 vd 0.795 0.876 0.0461 0.634 0.741
SE ResNeXt101 32x4d 0.793 0.838 0.0452 0.605 0.750
SE ResNeXt50 32x4d 0.798 0.821 0.0438 0.578 0.727
SE ResNeXt50 vd 32x4d 0.799 0.863 0.0479 0.617 0.729
SE ResNet18 vd 0.727 0.802 0.0396 0.550 0.673
SE ResNet34 vd 0.754 0.803 0.0450 0.574 0.731
SE ResNet50 vd 0.771 0.870 0.0446 0.616 0.732
ShuffleNetV2 0.696 0.817 0.0375 0.571 0.668
ShuffleNetV2 x0 25 0.519 0.687 0.0263 0.448 0.563
ShuffleNetV2 x0 33 0.530 0.686 0.0294 0.465 0.622
ShuffleNetV2 x0 5 0.605 0.753 0.0307 0.500 0.624
ShuffleNetV2 x1 0 0.695 0.788 0.0354 0.564 0.667
ShuffleNetV2 x1 5 0.728 0.815 0.0371 0.564 0.670
ShuffleNetV2 x2 0 0.731 0.806 0.0402 0.574 0.683
Xception41 0.801 0.833 0.0501 0.605 0.761
Xception41 deeplab 0.775 0.753 0.0412 0.559 0.734
Xception65 0.801 0.837 0.0479 0.609 0.740
Xception65 deeplab 0.747 0.800 0.0415 0.586 0.728
Xception71 0.775 0.846 0.0479 0.613 0.760
Consensus 0.859 N/A N/A 0.704 0.818
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Figure 14: Visualization of images from the MS-COCO dataset (Lin et al., 2014) for showing the
effectiveness of our framework Consensus, where the predicted label with probability is noted. Note
that consensus is the Consensus aggregated interpretation.
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