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Abstract

We present APR-CNN, a novel class of convolutional neural networks designed for efficient
and scalable three-dimensional microscopy image analysis. APR-CNNs operate natively on
a sparse, multi-resolution image representation known as the Adaptive Particle Represen-
tation (APR). This significantly reduces memory and compute requirements compared to
traditional pixel-based CNNs. We introduce APR-native layers for convolution, pooling, and
upsampling, along with hybrid architectures that combine APR and pixel layers to balance
accuracy and computational efficiency. We show in benchmarks that APR-CNNs achieve
comparable segmentation accuracy to pixel-based CNNs while drastically reducing memory
usage and inference time. We further showcase the potential of APR-CNNs in large-scale
volumetric image analysis, reducing inference times from weeks to days. This opens up new
avenues for applying deep learning to large, high-resolution, three-dimensional biomedical
datasets with constrained computational resources.

1 Introduction

Deep learning has revolutionized biomedical microscopy image analysis, enabling unprecedented accuracy
in tasks such as cell segmentation and classification (Ronneberger et al.l 2015} [Stringer et al. 2021). How-
ever, the increasing size and complexity of microscopy datasets pose significant challenges for traditional
convolutional neural networks (CNNs) in terms of memory usage and computational requirements (Beghin
et al., 2022; Heinrich et al., |2018]). This compute bottleneck is particularly acute in three-dimensional (3D)
volumetric imaging, where multi-Terabyte volumes are becoming common (Buhmann et al., 2021} Scholler,
et al.l |2023a} (Glaser et al.| 2022]).

Current approaches to mitigating the compute bottleneck include downsampling input data (Beghin et al.,
2022), reducing network size (Lin et al., 2019)), and parallelizing computation across multiple GPUs (Buh-
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mann et al., |2021)). However, these methods often compromise either accuracy or scalability. Outside of
bio-imaging, alternative network architectures, such as sparse (Graham & Van der Maaten| [2017)) or multi-
resolution (Riegler et al [2017) CNNs, have shown promise in reducing computational requirements but are
limited to specific data structures that do not readily cover general image data.

Here, we propose a sparse multi-resolution CNN architecture for general microscopy images. Specifically,
we introduce APR-CNNs as a novel approach that leverages the Adaptive Particle Representation (APR) of
large microscopy volumes (Cheeseman et al., [2018b)) to enable efficient and content-adaptive deep learning
on multi-resolution image representations. The APR is a content-adaptive image representation originally
developed for large fluorescent 3D microscopy images. It dynamically adjusts its resolution to match local
image content, as illustrated in Figure [} reducing the number of points needed to represent an image while
preserving signal sampling quality. Importantly, the APR can enable data-efficient end-to-end workflows
(Scholler et al., 2023a)), in which large 3D images are converted to APRs immediately upon acquisition and
all subsequent storage, visualization, and analysis are performed natively on the APR, leveraging its memory
and computational savings throughout the entire workflow.
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Figure 1: The APR dynamically adjusts the sampling resolution of the signal to the local content of the
pixel image I(x) around pixel location x. This allows sparse images typical of fluorescence microscopy to be
represented using orders of magnitude fewer sample points, called “particles” in the APR. The information
content in the image is preserved in that the signal I (x) can be reconstructed at every location x, also between
particles, up to a mathematically guaranteed point-wise error bound E set by the user. The example image
used is a crop of a synthetic HL60 cell (Svoboda et al.| [2009), available as image BBBC024v1 from the Broad
Bioimage Benchmark Collection (Ljosa et al., 2012).

APR-CNNSs operate directly on the sparse, multi-resolution APR data structure, enabling significant reduc-
tions in memory usage and computational requirements compared to traditional pixel-based CNNs. Our
approach uniquely combines elements from multi-resolution and sparse (Graham & Van der|
[Maaten| 2017} |Jayaraman et al [2018)) deep learning, offering a mathematically rooted framework for efficient
deep learning on large-scale microscopy data.

We demonstrate the effectiveness of APR-CNNs on the task of 3D cell nuclei segmentation, showing that they
achieve comparable accuracy to state-of-the-art pixel-level methods while offering substantial reductions in
memory usage and inference times. Furthermore, we introduce hybrid APR-pixel architectures that provide
control over the trade-off between memory efficiency and computational speed.
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2 The Adaptive Particle Representation of Images

Given a uniformly sampled signal in space, here a 3D fluorescence microscopy image, the Adaptive Particle
Representation (APR) optimally adapts the local sampling resolution to the information content. Concretely,
the APR represents the image using a set of particles, whose sizes and locations depend on the signal gradient.
In regions of significant gradients (i.e., high information content), small particles sample the signal densely.
Regions of flat or slowly varying signal are sampled more coarsely, using fewer but larger particles, as
illustrated in Figure [T}

Intuitively, APR particles can be thought of as pixels of different sizes: the finest particles align with the
original pixels, while coarser particles represent groups of 2¢ particles, where d is the dimensionality of the
image. In 3D, this structure amounts to an octree decomposition of the image (Meagher} [1982)), with each
location represented at the coarsest resolution that satisfies the point-wise error bound
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Here, I is the original pixel intensity value, I is the signal value reconstructed from the APR at the location
of the original pixel, o is a spatially varying local intensity scale that enables optimal adaptation to regions
of varying brightness and contrast, and E is a user-defined error threshold. The maximum norm is taken
over all pixels in the original image (Cheeseman et al., |2018b)).

The reconstructed pixel values I can be computed from the APR particles using any of a wide family of
non-negative interpolation methods from coarse to fine resolutions. It is a defining feature of the APR that
the above bound is guaranteed for all of them, and that the APR uses the fewest particles possible to do
so [Cheeseman et al.| (2018b). In this work, however, we only consider the computationally fastest method
of nearest-neighbor (i.e., piecewise constant) interpolation, in which coarse particles are subdivided into
multiple finer particles with the same value.

In practice, the pixel reconstruction Iis usually never computed. The bound in Eq. [l| is guaranteed by
construction (Cheeseman et al.| (2018b)). Indeed, |Jonsson et al.| (2022]) demonstrated that discrete convolution
operations can be performed directly on the APR, in a manner that is equivalent to applying convolutions
to the (latent) reconstructed pixel image and subsequently resampling the result back to the particles.
This effectively avoids the full pixel reconstruction by instead adapting the convolution to operate only
at the particle locations. To handle varying resolutions, neighboring particles are interpolated to match
the resolution of the “center” particle, forming locally uniform neighborhoods, called patches, to which
convolution filters can be applied in the traditional way. This allows exploiting the sparsity of the APR to
reduce the number of filter applications, leading to reduced memory requirements and runtimes for sparse
images (Jonsson et al.l [2022; [Scholler et al., [2023a)).

To ensure consistency of APR convolutions with traditional pixel-based method, the weights of the convolu-
tion kernel or filter are adapted to coarser-resolution neighborhoods through operator restriction as known
from numerical multi-grid solvers (Trottenberg et al., |2000). Specifically, coarsened filters are constructed
such that their effect on coarser-resolution neighborhoods matches that of applying the finer-level filter to the
corresponding higher-resolution reconstruction and subsequently downsampling the result to the coarser res-
olution (Jonsson et al.,2022)). This guarantees mathematical consistency with convolving the reconstructed
pixel image, while allowing native operation at coarser resolutions for better computational efficiency.

3 Adaptive Particle Representation Convolutional Neural Networks

We develop Adaptive Particle Representation Convolutional Neural Networks (APR-CNNs) by adapting the
main layer modules of traditional CNNs to the APR representation of images. This includes convolution,
pooling, and upsampling layers that operate natively on the APR. The APR layers shall translate the
sparsity and multi-resolution properties of the APR into computational and memory savings by processing
and storing fewer data points (i.e. particles) than dense pixel layers. This design also enables extending APR
convolutions (Jonsson et al.| 2022)) to independently learned, rather than restricted, filters for the different
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Figure 2: Block structure of a pixel-based U-Net architecture (top) and its APR-CNN version (bottom).
The APR-~-CNN layer modules are consistent with existing frameworks, allowing APR-CNNs to be designed
analogously to traditional CNNs. APR layer modules provide drop-in replacements for their pixel counter-
parts and can also be mixed with them in hybrid pixel-APR architectures.

resolution levels, leading to content-adaptive convolutions that are impossible, or at least highly non-trivial,
to implement using pixel convolution layers.

We illustrate the concept of APR-CNNs on the example of a classic U-Net (Ronneberger et al., [2015)
architecture. APR-CNNs follow the structure and modular nature of classic pixel networks, as shown in
Figure 2] By providing APR-native counterparts to classic pixel CNN layers, popular architectures, such as
U-Nets (Ronneberger et al., [2015)) and ResNets can readily be derived by block substitution.

The feature maps of APR layers correspond to the APR particles, which are inherently multi-resolution. In
order to avoid confusion with the feature maps at different resolutions in a classic pixel CNN, generated by
pooling and upsampling, we use the term resolution level to refer to the resolution of APR particles, and
we use the term pooling/resolution stages to refer to parts of the network architecture that have undergone
different degrees of pooling.

In the following, we describe the individual APR-native layers that can be used when composing an APR-
CNN architecture. These layers are schematically illustrated in two dimensions (2D) in Figure (3| using
the inset from Figure [I] as an example input. Our implementation builds upon the works of
(2022); |Cheeseman et al.| (2018b)), and we refer the reader there for further APR algorithm details and for
the mathematical proofs of convolution kernel consistency (Jonsson et al., [2022)) and the guaranteed APR
error bound (Cheeseman et al., 2018b)).

All of these novel APR layer types are implemented as GPU-accelerated custom PyTorch modules. Using
these modules enables implementing APR-native CNNs using the usual PyTorch notation and interface. The
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interfaces of the APR modules are kept compatible with those of pixel CNN modules, with any APR-specific
additional parameters as optional arguments. A key difference, however, is that APR layers operate on a
duplet of an APR data structure (defining the locations and resolutions of particles) and a feature tensor of
corresponding particle feature maps. In addition, we introduce special reconstruction and resampling layers
that enable mixing APR and pixel layers in the same architecture.

In such hybrid APR-pixel architectures, higher-resolution network stages can be processed using APR-native
layers, while lower-resolution stages use pixel layers. An example of such a hybrid architecture is shown
in Supplementary Figure [0} Hybrid networks are motivated by the observation that, with each pooling
operation, the sparsity of the data is reduced. This leads to increasingly dense feature maps across pooling
layers, as shown in Supplementary Figure [I0] Since layer implementations optimized for uniform pixel grids
are more efficient on a per-point basis, it can be beneficial to revert to pixel layers after a certain number
of pooling stepsﬂ This can benefit the runtime of the network at the expense of increased memory usage,
as the pixel feature maps are explicitly reconstructed. Hence, hybrid APR-CNNs allow tuning the trade-off
between computational and memory cost.

With the APR-native convolution, activation, and normalization layers described below, we can extend the
notion of convolutional and residual blocks to the APR by substituting the corresponding pixel operations
with their APR counterparts. Together with APR-native pooling and upsampling layers, this enables imple-
menting fully APR-native or hybrid APR-pixel encoder and encoder-decoder architectures, such as ResNets
or U-Nets.

3.1 Pooling and upsampling layers

A 2 x 2 APRMaxPool layer and a constant upsampling layer are illustrated in Figure [BJA-B, respectively.
These operations are restricted to align with the APR tree data structure, which follows a power-of-two
resolution level decomposition. This is similar to previous works implementing pooling operations for tree-
structured data (Riegler et al. 2017; Jayaraman et al., |2018). The main difference between APRMaxPool
and classic MaxPool layers is that APRMaxPool selectively operates only on the finest resolution, leaving
coarser resolution levels untouched. This effectively reduces the maximum resolution level of the input APR
by one. The APRUpsample layer reverses a pooling operation by upsampling only those particles that had
a higher resolution in the input APR structure.

Since the APR data structure encodes the entire tree of particle resolutions levels, which already includes
both the downsampled and original particles, it does not need to be modified by these layers. Therefore,
APRMaxPool and APRUpsample layers take as input an APR data structure and a tensor of particle-wise
features, and they only produce a new feature tensor as output. The resolution stage of the feature tensors
is tracked using a single scalar, which controls how the APR data structure is interpreted in the layer
operations. This similarly holds for all APR layers described below, and it enables further memory savings
by requiring only a single copy of the APR data structure throughout an entire network.

3.2 Reconstruction and resampling layers

It might be necessary somewhere in a network architecture to reconstruct the feature map at a uniform
resolution. This is in particular the case in hybrid APR-pixel networks before a pixel layer. Therefore, we
provide reconstruction and resampling layers (Figure ), which use piecewise constant upsampling and av-
erage downsampling, respectively, to transfer feature maps between particles and pixels. The reconstruction
layer thus consumes an APR data structure and a particle feature tensor and produces a pixel feature tensor,
corresponding to pixel features at the equivalent pooling stage of a traditional CNN. In this, the pixel-wise
error bound in Eq. [I] is guaranteed. The resampling layer performs the inverse operation: It consumes an
APR data structure and a pixel feature tensor and produces a particle feature tensor for the given APR data
structure.

1We denote by Hybridk a hybrid architecture that uses APR layers in the k highest-resolution stages of the network. For
example, Hybridl uses dense pixel features after the first pooling layer and up to the last upsampling layer.
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Figure 3: Illustration of APR-CNN layer operations on the sparse, multi-resolution APR data structure.
The example here is shown for the input given by the inset APR patch from the center panel of Figure
Pooling (A), upsampling (B), and reconstruction (C) follow the power-of-two tree decomposition of the
APR. APRConv layers (D) apply resolution-adapted filters to the particles at each resolution level, with
neighboring information interpolated across resolution levels to form locally uniform patches, as described
by Jonsson et al|(2022). The label and box colors correspond to the colors of the corresponding blocks in
Figure

3.3 Convolution layers

APRConv layers extend the concept of APR-native convolutions from [Jonsson et al| (2022) to the context
of neural networks. As previously described, APR convolutions apply filters at each particle location. Com-
pared to pixel convolutions, there are two additional requirements for APR convolutions: First, the local
neighborhood in an APR must accommodate for resolution changes. Second, the APR filter must depend
on the particle resolution level.

To address the first point, ensuring that the neighborhood of each particle can be consolidated to a uni-
form resolution before applying convolutions, APRConv layers perform on-the-fly local patch reconstruction.
Thereby, neighboring particle values are interpolated across resolution levels, either by piecewise-constant
upsampling or average downsampling, to form a uniform-resolution patch at the resolution level of the center
particle. Figure illustrates this for a filter of size 3 x 3. This approach ensures that all values within the
support of the convolution kernel are on the same resolution level before the filter is applied as in classic
convolution. Importantly, patch reconstruction is a linear operation, allowing gradients to efficiently be
propagated through during training.

The second difference between APR and pixel convolutions requires adapting the filters to the different
resolution levels of an APR (not to be confused with the resolution stages of the network architecture).
This provides an additional degree of freedom not present in pixel CNNs, and we propose two different
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modes of operation: First, similar to the APR convolutions defined by |Jonsson et al.| (2022), we can define a
filter bank analogously to traditional pixel CNNs and use operator restriction to adapt each filter to coarser
resolution levels. Second, since the filters in a CNN are learned, we can allow different filters to be learned
independently at different resolution levels. These two modes are illustrated in Figure [4l Learning different
filters at different resolution levels enables content-adaptive layers by leveraging the multi-scale nature of the
APR. While this approach increases the number of learnable parameters, it does not affect the computational
complexity or the total number of features computed by the layer.

In order to control the mode of filter adaptation, we introduce a new hyperparameter 7, which sets the
number of independently learned filter banks in a given APRConv layer. Each APR convolution layer thus
defines 7 filter banks, in the traditional sense, which are used as follows: The first filter bank Wy . is applied
to the finest APR resolution level [;,x. The second filter bank W . is applied to particles at resolution level
Imax — 1, and so on. If the input APR data structure has more resolution levels than the layer has filter
banks (i.e., if lmax > 1), the last set of filters W, _; . is automatically adapted to all remaining resolution
levels | < lax — 1 by operator restriction. Conversely, if there are more filter banks than levels (Inax < 1),
then only the first [, filter banks are actually used.

Restricted across resolutions Independent across resolutions
A level j =i-1 B level j = i-1
level i level i
WOJ WLj W2,j WO,J' W1.J W2,j
Wo, | Wis W, » Wo, | Wy, Wy,
v v 3| W, | W [ A £ Wy [ w, [ w,
Wei| Wil W, <— Wei | Wai| We,
W 6i| W7;| We; W. 6| Wrj| We;
i i
W =RWP w
Adj?cent resolut.ion levels jointly learned, equivelent to applying Adjacent resolution levels are independently learned.
higher resolution filter to upsampled values (through P) and
downsampling the result (through R).

Figure 4: Illustration of the two convolution modes supported by APRConv layers to exploit the multi-
resolution properties of the APR. A: Using linear filter restriction, fine-scale filters can be mapped to mathe-
matically consistent coarser-resolution filters. This guarantees that applying the coarse filter is equivalent to
hypothetically upsampling the input data to the fine scale, applying the fine-scale filter, and downsampling
the result. B: Independent filters are learned for each resolution level. This allows for different convolutions
on different levels, enabling content-adaptive filters not possible in pixel CNNs.

Regardless of the mode of operation, though, an APRConv layer always uses different filter weights at
different particle resolution levels of the input APR data structure. The only difference is whether those
are automatically computed by operator restriction or independently learned. We emphasize that this
occurs within a single convolution layer, which is orthogonal to the additional multi-resolution behavior
achieved in CNNs through pooling stages with interleaved (distinct) convolution layers. Multi-resolution
APR convolutions can be applied at any pooling stage in an APR-CNN. The pooling resolution stage
only affects individual APRConv layers by modifying the maximum resolution level of the APR to lpax =
[logo(M)] — Ay, where M is the largest image edge length in pixels and A; is the number of pooling layers
(stride 2) preceding the APRConv layer.

The concept of restricting CNN filters across spatial scales has been previously explored by [Haber et al.
(2018), where it was used to classify high-resolution images using CNNs trained on low-resolution images,
and vice versa. However, the operator restriction in APRConv layers differs in three significant ways: First,
APR restriction is applied within each layer invocation, such that a single filter bank can be adapted to
multiple resolution levels of the same input APR. Second, gradients are backpropagated through the APR
restriction operation, enabling end-to-end training. Third, by setting n > 1, APRConv layers can learn
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independent sets of filters at different resolution levels, endowing the network with additional power to
adapt to content-specific image features.

3.4 Activation and normalization layers

Activation functions are element-wise operations and are therefore trivially extended to APR layers. Most
normalization layers aggregate values over all spatial dimensions. Thus, existing implementations of such
layers for 1D data can be used on APR features.

An issue with applying existing implementations of normalization layers to APR inputs arises when the
batch size is greater than one (N > 1). Due to the significant variation in the number of particles across
different images, we aggregate the features into a zero-padded 3D tensor. To ensure accurate statistics, the
zero-padded values must be masked or excluded from the normalization process.

4 Related Work

After having introduced the concepts of APR-CNNs, we place them into the context of previous approaches
and ideas. This includes approaches to reducing the computational and memory cost of CNNs and approaches
to using sparse or multi-resolution data with CNNs.

Perhaps the simplest way to mitigate memory requirements is to make the input data smaller. For 3D image
data, this includes applying 2D networks to slices (Roth et al., 2015) or projections (Cen et al.| 2023)) of
the data, as well as applying 3D networks to downsampled input volumes (Beghin et al., [2022). Although
effective in reducing computational demands, 2D approaches do not exploit the 3D context in the data,
and downsampling the input can result in significant loss of information, compromising the accuracy of the
result (Singh et al [2020). In contrast, APR-CNNs operate natively on the APR, which follows a smarter,
content-adaptive data reduction strategy, retaining high resolution where it is required, as well as retaining
the full 3D context.

The memory and compute footprint of a CNN can also be controlled by the network architecture. For
example, [Heinrich et al| (2018]); |Buhmann et al| (2021)) applied U-Nets to 50 Teravoxels of data using an
optimized architecture, where the number of channels was kept small in high-resolution layers, and pooling
layers used a stride of 3 to aggressively downsample the feature maps. Still, these works further exemplify
the scale of compute resources required, as inference required 80 GPUs in parallel for three days, despite all
efforts to reduce network footprint. By inherently reducing the memory and compute required for processing,
APR-CNNSs can provide additional flexibility in network design, allowing larger or more complex models to
be applied to a large dataset without requiring additional compute resources.

Besides modifying the input size or the network architecture, there are algorithmic approaches to reducing
the memory load on the GPU. For example, layer activations can be offloaded from GPU memory to the
CPU during periods of time when they are not used, and then transferred back as needed (Rhu et al., 2016}
Shriram et al., [2019). Driven by applications on resource-constrained devices, such as mobile phones and
embedded systems, there have also been efforts to compress trained networks. This can be achieved by
network sparsification (Li et al., [2017; |Ashouri et al., 2018) or pruning (Lin et al.,[2019), where “low-impact”
weights or filters are removed in order to reduce both memory and compute requirements while limiting the
loss in network performance. Such approaches can also be applied to APR-CNNs, but the inherently sparse
footprint of APR-CNNSs increases the threshold for when they are beneficial.

Sparsity and adaptive resolution have also been exploited in other network architectures. In 3D shape
recognition using meshes and point clouds, for example, CNN architectures like OctNet (Riegler et al.,[2017)
and O-CNN (Wang et al., 2017) leverage octree data structures to partition 3D space. OctNet partitions
space into shallow octrees, averaging data in each leaf node. Regular voxel convolutions are used, but
reimplemented to reduce computations in coarse nodes, which are treated as multiple voxels with the same
value. In contrast, the O-CNN restricts operations to surface-representing leaf nodes. Both methods reduce
computational costs by adaptively focusing computation to non-empty leaf nodes, reducing the work done
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in empty space and background regions. APR-CNNs extend this concept to image volumes and extend it
further by processing coarser leaf nodes with resolution-adapted filters.

Sparse convolutional neural networks (Graham) 2014; [Jayaraman et al.; [2018|) have also been proposed for
3D data, where computations are restricted to non-zero elements in the input (Graham & Van der Maaten)
2017). This reduces the computational burden, but also limits the network’s ability to propagate features
between disjoint regions. APR-CNNs are similar in the sense that they operate only on the particle locations,
which for individual resolution levels form a sparse image. But APR-CNNs also differ in that they process
each point in space, with neighboring information from adjacent resolution levels ensuring that features can
propagate across different scales even in sparse regions. This is more akin to multi-resolution pyramids in
image processing.

Several methods have been proposed to leverage multi-resolution image processing by applying CNNs to
different levels of an image pyramid and combining the feature maps to form the final prediction (Farabet
et al., 2012; Yoo et all [2015). Alternatively, CNNs have been applied to a single resolution to extract
multi-resolution features at different pooling stages (Yang & Ramanan) [2015; Morris, [2018; [Yu et al., 2018).
Finally, multi-grid CNNs (Ke et al [2017)) operate on multi-resolution pyramid representations of the input
but extend the convolution layer to integrate features from adjacent resolution levels by interpolating them
to the target level via max pooling or nearest-neighbor upsampling. This is reminiscent of the isotropic
patch reconstruction used in APRConv layers, except that APR features are disjoint across levels, allowing
them to be combined without introducing additional channels.

As such, the multi-grid convolution approach of Ke et al.| (2017)), in which different weights are used for
neighboring values depending on their source resolution level, could be applied in APRConv layers. This
would enable scale-aware APRConv layers. However, it would also result in up to three times more parameters
and multiplications for each convolution, with two thirds of the features being zero due to the disjoint nature
of the APR sampling. The APRConv layers presented here therefore merge features from adjacent resolutions
into the same channel and leave further exploration of scale-aware APRConv layers to future work.

5 Segmentation Performance

APR-CNNSs are applicable across image processing tasks, including image classification, restoration, and seg-
mentation. While general APR-based image restoration faces limitations due to the invariance of the adaptive
APR sampling, it has been shown viable for image deblurring and denoising (Jonsson et al.l 2022). Image
classification is simpler than restoration or segmentation, in the sense that it only requires an encoder-type
network, whereas pixel-level predictions additionally require a decoder. We therefore focus our evaluation of
APR-CNNSs on the task of instance segmentation using a set of real microscopy image volumes. In this, we
compare with two state-of-the-art pixel-based CNN approaches, namely U-Net segmentation (Ronneberger,
et al.l |2015)) and StarDist (Weigert et al., 2018)).

5.1 3D cell nuclei segmentation benchmark

First published by |Long et al.| (2009), the benchmark dataset we use comprises 28 3D microscopy volumes
of DAPI-stained C. elegans nuclei at the first larval stage. The dataset is publicly available for download
(Long et all |2022)), divided into 18 images for training, three for validation, and seven for testing, as also
used by Weigert et al.| (2020]). The average volume size is 1100 x 140 x 140 voxels of near-isotropic resolution
0.116x0.116 x 0.122 pum. Figure[5|shows an example image from the dataset. These images are representative
of a large class of image-segmentation problems in microscopy, sharing several challenging traits, such as
densely packed and touching objects, here particularly in the head and tail regions of the worms, as well
as varying contrast and brightness across the sample. Converting the 18 training images to APRs using
the automatic parameter tuning provided by the 1ibAPR implementation (Cheeseman et al., |2018a)) results
in APRs with on average 11.3 (standard deviation 3.2) times fewer particles than the original images have
pixels.

The ground-truth labels in the benchmark dataset were produced in a semi-automated process (Long et al.,
2009)), resulting in occasional inaccuracies and regions that do not align well with the APR sampling. Sup-



Published in Transactions on Machine Learning Research (02/2025)

Figure 5: 3D rendering of an example image volume from the benchmark dataset, showing fluorescently
labeled cell nuclei in a C. elegans roundworm in the top panel. An example result from instance segmentation
is shown in the bottom panel with different objects, here cell nucei, distinguished in different colors.

plementary Figure [11| shows two examples of this, where imprecise ground-truth labels result in errors when
sampling the labels onto the APR particles. Across the three validation volumes, this results in 4024 erro-
neously labeled voxels per volume on average, corresponding to 0.73% of all labeled voxels. While we do
not explicitly sample the masks onto the APR particles (see below), these discrepancies set a lower bound
for the sensitivity of the benchmark. Regardless of whether or not the APR is used, erroneous ground-truth
labels should ideally be corrected before training. In order compare with previously published results on this
benchmark, however, we do not modify the ground truth masks here.

5.2 Three-class U-Net segmentation

Claim: APR-CNNs have only marginally reduced result accuracy compared to pixel CNNs.

We first consider the common approach of three-class segmentation, which effectively turns the instance
segmentation task into a semantic segmentation problem. Here, each point (pixel or particle) is classified
as either background, nucleus, or nucleus boundary. Explicitly segmenting the object boundaries allows for
touching nuclei to be separated by thresholding the (interior) nucleus probabilities and finding the connected
components of the resulting binary mask. To offset potential losses in accuracy, the resulting object instance
masks are subsequently dilated to recapture lost pixels at boundaries.

We train both APR and pixel U-Nets using the cross-entropy loss function. To enable one-to-one comparison
of training characteristics, we apply a reconstruction layer to the APR predictions and compute the loss over
the resulting reconstructed pixels. Training is performed using a batch size of 1, with input volumes cropped
in the z-dimension to size 256 x 140 x 140. Data augmentation is applied in the form of random 90-
degree rotations and flips along each dimension, random rescaling, gamma correction, elastic transforms,
and addition of Gaussian noise. At validation and test time, the networks are applied to whole image
volumes, without cropping or tiling. We consider three network sizes by varying the number of channels in
the initial layers C' € {8, 16,32}. The number of channels is doubled after each pooling layer and halved after
each upsampling layer. In addition, we consider n € {1,3} for the APR U-Nets. All networks have three
max-pooling and three upsampling layers, with two convolution blocks at each stage. For each of the nine
network configurations, we train three independent networks. The training convergence is largely consistent
across network configurations, as shown in Supplementary Figure

Following |Weigert et al.| (2020)), we evaluate the test-time performance of the models in terms of their object
detection capabilities using the metric

B TP
" TP+ FP+FN

Accuracy(T) (2)
for a range of Intersection over Union (IoU) thresholds 7. Thus, a predicted nucleus instance is counted as
a true positive (TP) if its ToU with a ground truth instance is greater than 7. False positives (F'P) refer
to unmatched predicted instances, while false negatives (FN) refer to unmatched ground-truth instances.
Each predicted nucleus can be assigned to at most one ground-truth instance. The IoU is computed over
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the original pixels, while the Accuracy metric is at the object level. This ensures that the APR and pixel
results are standardized and directly comparable.

Table [1] shows the accuracy of the APR and pixel U-Nets over the test set for 7 € {0.3,0.4,...,0.9}. The
results show that increasing network size by adding more feature maps C consistently enhances accuracy,
underscoring the importance of network capacity. The APR U-Nets exhibit only slightly decreased average
detection accuracy from their pixel counterparts across all configurations. For some configurations, especially
at high IoU thresholds, they even slightly outperform the pixel baseline.

Table 1: Test accuracy computed as defined in Eq. [2]for APR and pixel U-Nets for different IoU thresholds 7
on the nuclei instance segmentation dataset. Each number is an average over three independent trials. The
parameter C refers to the network size in terms of the base number of feature maps, while 7 is the number
of level-specific filter banks of an APR U-Net. Bold indicates the best performance for each IoU threshold
and network size.

Cin|7=03|7=04]|7=05|7=06|7=07]7=08|7=09
APR 8 | 1| 0.7838 | 0.7009 | 0.5694 | 0.4385 | 0.2588 | 0.0802 | 0.0004
APR 8 | 3| 08230 | 0.7404 | 0.6002 | 0.4462 | 0.2543 | 0.0719 | 0.0002
Pixels 8 |- 108385 | 0.7539 | 0.6333 | 0.4737 | 0.2692 | 0.0750 | 0.0001

Cln|7=03|7=04|7=05|7=06|7=07|7=08|7=0.9
APR 16 | 1| 0.8335 | 0.7607 | 0.6407 | 0.4954 | 0.2976 | 0.0915 | 0.0004
APR 16 | 3 | 0.8474 | 0.7746 | 0.6523 | 0.5058 | 0.2947 | 0.0856 | 0.0003
Pixels 16 | - | 0.8574 | 0.7849 | 0.6631 | 0.5115 | 0.2972 | 0.0848 | 0.0001

Cln|7=03|7=04|7=05|7=06|7=07|7=08|7=0.9
APR 32 | 1| 0.8529 | 0.7779 | 0.6591 | 0.5175 | 0.3023 | 0.0872 | 0.0000
APR 32 | 3| 0.8570 | 0.7791 | 0.6687 | 0.5282 | 0.3095 | 0.0876 | 0.0000
Pixels 32 | - | 0.8653 | 0.7928 | 0.6736 | 0.5283 | 0.3130 | 0.0897 | 0.0001

5.3 Effect of the number of independent filter banks on segmentation performance

Claim: The performance of APR-CNNs is as consistent as that of pixel CNNs when using sufficient inde-
pendent filter banks for the highest resolution levels.

Using separate filter banks for the highest resolution levels (n = 3) in an APR U-Net results in slightly higher
average detection accuracy for most 7 values (see Table . This effect is most pronounced in the smallest
network configuration (C = 8), where the APR networks with 7 = 1 under-perform significantly.

However, the APR networks with n = 1 show relatively high variance across independent trials. This is
shown in Table 2| where we see that the networks with 7 = 1 exhibit standard deviations of up to 4% in
test accuracy across trials and network sizes (C € {8,16,32}). Thus, while using separate filter banks for
the highest resolution levels (n = 3) only appears to yield slightly higher accuracy on average, it leads to
significantly higher consistency in performance. This is possibly an indication of ill-posedness of the learning
problem when a single set of filters are restricted across all resolution levels, which appears to improve for
7 > 1. Then, the performance of the APR U-Nets is as consistent as the performance of the pixel U-Nets.

5.4 StarDist segmentation

Claim: There is little to no loss in accuracy when using APR-CNNs in a more complex state-of-the-art
segmentation approach.

The StarDist approach (Weigert et al.| 2020]) achieves better accuracy than three-class U-Nets for instance
segmentation of blob-like objects, such as cell nuclei. It leverages a shape prior of star-convex polyheda and
predicts for each pixel: 1) the probability of it belonging to an object and 2) the distances to the object
boundary along a set of n predefined radial rays. The ground-truth object probabilities are taken to be the
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Table 2: Standard deviation of the test accuracy for the three-class U-Nets across three different network
sizes C and three independent trials for each network size, showing that multiple resolution-specific filter
banks (1 = 3) yields more consistent results across IoU thresholds 7. Bold indicates the most consistent
performance for each IoU threshold.

n| =03 T=03 T=0.5 T=20.6 T=0.7 T=08 T=09
APR | 1 | 0.00668 | 0.01304 | 0.02161 | 0.03948 | 0.03477 | 0.01171 | 0.00008
APR | 3 | 0.00618 | 0.00574 | 0.00993 | 0.01395 | 0.00934 | 0.00400 | 0.00019
Pixel | - | 0.00571 | 0.00652 | 0.00821 | 0.01746 | 0.01637 | 0.00701 | 0.00005

normalized Euclidean distances to the nearest background pixel, in order to favor pixels close to the center
of each object. Thresholding the predicted object probabilities, a set of shape candidates is obtained from
which redundant object predictions are removed by non-maximum suppression, where the candidates with
the highest object probability suppresses all other candidates that overlap more than a fixed IoU threshold.

We extend the StarDist method to natively work on the APR by predicting the object probabilities and
radial distances for each particle. Pixel-wise object probabilities are computed via the Euclidean distance
transform and sampled onto the particles by averaging. Similarly, radial distances are obtained as the
distances between each particle location and the object boundary along the corresponding direction. For the
non-maximum suppression step, we use the original implementation of [Weigert et al.| (2020)), which directly
accepts a list of center coordinates with corresponding radial distance vectors.

We train APR StarDist networks similar to the APR U-Nets in the previous experiment, but with fixed
C = 32 and n = 3. Furthermore, we train a Hybrid2 architecture with 1 = 2, which uses APR layers for the
two highest-resolution network stages and switches to pixel layers after the second max-pooling layer and up
to the second-to-last upsampling layer (cf. Supplementary Figure @ Following |Weigert et al.| (2020)), we use
n = 96 radial directions and omit the final upsampling layer to obtain predictions on a coarsened grid. After
the U-Net we add an additional convolution block with 128 channels, followed by disjoint convolution layers
for the probability and distance predictions. The training procedure and data augmentations are unchanged
from the three-class U-Net approach in the previous section. At test time, the probability and IoU thresholds
for non-maximum suppression are found by maximizing the average accuracy for 7 € {0.3,0.5,0.7} over the
validation set.

Table [3] shows the average performance of APR StarDist over eight independent trials in comparison with
a Hybrid2 U-Net (6 independent trials) and the results published by [Weigert et al. (2020) (ResNet, 5
independent trials). The APR and Hybrid2 networks achieve object detection accuracies comparable to the
published result on pixels, with superior performance for 7 > 0.8. The performance between the APR and
Hybrid2 models are consistent. This indicates that there is little to no inherent loss in accuracy due to the
APR sampling and APR-native processing in this more complex segmentation approach.

Table 3: Test accuracy of APR-native StarDist models for several IoU thresholds 7, compared to a hybrid
APR-pixel model and the published pixel results (Weigert et al., |2020). The hybrid network results are
averages over 6 independent trials, APR results are averages over 8 independent trials, while pixel results
are averages over 5 trials. Bold indicates best over-all performance, and underlined best performance among
APR models.

IoU threshold 7 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

APR StarDist 0.926 | 0917 | 0.896 | 0.851 | 0.750 | 0.629 | 0.438 | 0.165 | 0.010

Hybrid2 U-Net 0.930 | 0.920 | 0.899 | 0.853 | 0.748 | 0.625 | 0.419 | 0.146 | 0.007
| [Weigert et al[(2020) | 0.936 | 0.926 | 0.905 | 0.855 | 0.765 | 0.647 | 0.460 | 0.154 | 0.004
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6 Computational Performance

After having demonstrated that APR and hybrid APR-pixel networks achieve segmentation performance
comparable to corresponding pixel networks, we benchmark the computational performance of APR-CNNs.
For this, we use a set of ten synthetic images with different content densities. All benchmarks are done on
Nvidia A100 40 GB GPUs.

The memory usage and compute load of APR-CNNs depend on the number of particles used to represent
the input image. We quantify this using the pixel reduction ratio, PRR, defined as

Number of pixels or voxels in the original image

PRR —
RR Number of particles in the APR

(3)

Thus, an APR with PRR=1 is equivalent to the pixel/voxel image, while an APR with a PRR of 2 uses half
the number of points to represent the image. Typical values for fluorescence microscopy images are in the
range of 10-100. For example, [Cheeseman et al.| (2018b)) found a median value of 22.7 across a diverse set
of medium-sized images, while |Scholler et al.| (2023al) found an average PRR of 79 in large-scale imaging of
an entire mouse brain and 66 for a large section of human brain tissue.

We use the same set of ten synthetic 3D benchmark images as previously used by |Cheeseman et al.| (2018b)).
The images contain different numbers of randomly placed spherical objects, as shown in Supplementary Fig-
ure [I3] as maximum-intensity z-projections, resulting in a wide range of PRR values. The synthetic images
are either 643, 1283, or 2562 voxels in size. From these fixed-PRR images we generate APRs of larger images
by concatenating copies of the data. The benchmark images and their APR files are publicly available with
the 1ibAPR software (Cheeseman et al.l [2018al).

6.1 Inference performance with fixed input size

Claim: APR-CNNSs enable processing of larger input images without tiling and lead to substantial memory
and inference time savings.

We benchmark the memory usage and runtime of voxel, APR, and hybrid U-Net architectures with four
resolution stages (three pooling and upsampling layers), two convolution blocks at each stage with spatial
kernel size 32, 16 base feature maps, doubled after each pooling layer, and three output channels. The
inference runtime and peak memory usage of each network are benchmarked for an input volume of size 2563
voxels.

Figure @A shows the memory usage of the APR and hybrid networks compared with the voxel CNN (blue
dashed line) as a function of the PRR of the input image. The APR-CNNs need substantially less memory,
with the pure APR and Hybrid3 (i.e., 3 APR stages, 1 voxel stage) networks using 20 times less memory than
the voxel network at PRR~20. The APR network also almost perfectly scalesﬂ past PRR>124. The hybrid
networks, in particular Hybrid1l (1 APR stage, 3 voxel stages) and Hybrid2 (2 APR stages, 2 voxel stages),
approach asymptotes of 1.9 GB and 0.46 GB of memory usage, respectively, as their memory footprints are
bounded from below by the fixed size of the voxel feature maps in the low-resolution pooling stages of the
networks. The benefit of reducing memory usage is two-fold: it can allow both larger networks and larger
inputs compared to pixel/voxel networks with the same memory budget.

The inference speedups for the same networks are shown in Figure [(B. As expected, voxel networks are
the fastest at very low PRR (speedups less than one). The pure APR-CNN breaks even with the speed of
the voxel network at PRRA20 and achieves over 3x speedup at PRR=124. Hybrid networks show more
favorable scaling in the lower-PRR range, with the Hybrid1 network breaking even between at a PRR between
5 and 10, reaching close to 2x speedup at PRR=20. Thus, the degree of hybridization provides a tunable
hyperparameter that allows trading off memory usage for computational speed, which can be optimized
according to the expected PRR of the input in the application at hand.

2Perfect memory scaling of an APR-CNN is achieved when the memory usage of the network is inversely proportional to
the PRR. In practice, this is not exactly the case due to storage overheads in the APR data structure.
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Figure 6: Peak memory usage in Gigabytes (left) and runtime speedup (right) for inference (single forward
pass) of APR and hybrid U-Net architectures (symbols and colors according to inset legends), compared
to the baseline voxel U-Net, for input volumes of size 256% (top) and 5123 (bottom) voxels. The runtime
speedups are defined as the voxel network processing times divided by the APR/hybrid network processing
times. The z-axes show the Pixel Reduction Ratio (PRR) of the input image, indicating by how much
the APR reduces the number of points needed to represent the input. All pixel/voxel operations use the
cuDNN (Chetlur et al.l 2014) backend of PyTorch (Ansel et al., |2024)), while APR operations use custom
modules implemented in PyTorch. All benchmarks were done on a Nvidia A100 GPU with 40 GB VRAM.

Although these results are significant, input volumes of the relatively small size of 2563 voxels disfavor APR-
CNN layer operations at higher PRR levels, as the reduced amount of work is not sufficient to saturate
the GPU. The reduced memory usage of APR-CNNs enables significantly larger volumes to be processed.
Increasing the input size to 5123 voxels, the voxel CNN would require an estimated 69 GB of memory. This
exceeds the 40 GB of the A100 GPU used here, and therefore requires the input to be processed in several
subvolumes, or tiles. An overlap of 44 voxels between tiles, corresponding to the receptive field radius of the
network, is required to guarantee consistent results across tile boundaries. In contrast, APR-CNNs are able
to process the 5123 voxel volume without tiling already at PRR>3.

Figure Ep shows the memory used by the APR and hybrid U-Nets for inference on a 5123 voxel input. The
inference time speedup in Figure [6D is computed with respect to the voxel U-Net with the input subdivided
into 8 tiles of size 300 with 44 voxels overlap between them. For this larger input size, we observe a uniform
benefit to the relative inference runtime of APR and hybrid networks. All APR-based networks achieve
faster inference than the tiled voxel approach at PRR>10, and over 2x speedup at PRR>20. Notably,
the Hybridl network reaches this speedup already at PRR~7, and the Hybrid2 network shows over 6x
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accelerated processing at PRR~54. Ten-fold speedups can be achieved for PRR>100. Moreover, all but the
Hybridl networks require less than 5 GB of GPU memory for PRR>20.

These results show that the computational benefits of APR-CNNs increase with input size, as the reduced
memory usage alleviates the need for additional I/O operations to subdivide the input volume into tiles. This
enables inference on large images, where all other methods require tiling, but APR-CNNs enable optimized
processing based on the image information content.

6.2 Large volume inference

Claim: When used on tiled input images, APR-CNNs significantly reduce inference times and improve
parallel scalability, scaling to Teravoxel-sized input volumes.

We simulate APR-CNN inference on a very large 2048 x 65536 x 65536 voxel volume (8.8 Teravoxels).
Assuming a limit of 24 GB of GPU memory, we first find the maximum input tile size that can be processed
by a voxel U-Net and by an all-APR U-Net for different PRR values. We then benchmark the networks’
inference runtimes for a single maximally sized input, including data transfers to and from the GPU, as well
as writing the result to disk. These values are then used to estimate the total inference time on the large
volume, through multiplication by the total number of tiles (44 pixels overlap, corresponding to the receptive
field radius of the network) required to cover the entire volume.

The voxel U-Net requires 468,512 blocks of size 359 voxels to be processed, taking an estimated 268.5 hours
for inference, as shown in Figure by the horizontal blue line. Similarly processing fixed-size tiles (3793
voxels) using the APR-CNN results in decreased inference times with increasing PRR (dashed orange line),
consistent with the results presented in the previous section. However, by maximizing for each PRR the
input volume size to saturate the 24 GB memory limit, the runtime is further decreased significantly (solid
orange line). For example, at a PRR of 4.65, the APR-CNN processes 64,516 tiles in 130.7 hours, less than
half the time required by the voxel CNN. The speedup further increases at higher PRR, achieving a 10-fold
reduction beyond PRR~46 (25.4 hours with 6,498 blocks).

The benefit of increasing the input tile size is two-fold: First, it enables better utilization of GPU resources
in APR-CNNs. Second, due to the fixed overlap of 44 voxels between adjacent tiles, the proportion of
computations spent on duplicated boundary values is reduced with increasing tile size. This is illustrated
in Figure , showing that 57% of the input points to the voxel CNN are duplicated boundary voxels (blue
dotted line), whereas this percentage is significantly reduced for the APR-CNN (solid orange line), as higher
PRR values enable larger input tiles.

These results highlight the potential for APR-CNNs to significantly reduce inference times from over a
week to under a day for large image volumes. Furthermore, optimizing input tile sizes based on the APR’s
reduced memory footprint better utilizes GPU capacity and minimizes duplicated boundary computations. In
practice, tasks of this magnitude would be carried out on distributed computing architectures, where the APR
could provide even larger benefits by reducing network load of data transfers to and from compute nodes, as
well as parallel communication overhead during distributed processing. However, the distribution of particles
in such large volumes would be highly non-uniform in space, requiring adaptive domain-decomposition
strategies (Incardona et al.|2019)) which, for example, expand tiles until they encompass a predefined average
number of particles.

6.3 Training performance

Claim: APR-CNNs significantly reduce the memory requirements during model training and lead to reduced
training times.

We benchmark the training speed and memory usage of APR, voxel, and hybrid U-Nets for a fixed input
size of 2562 voxels. The results are shown in Figure They show that also during training, APR and
hybrid networks require substantially less memory. The runtime speedups are, however, smaller than during
inference, requiring higher PRR to break even with voxel networks. This is likely due to our PyTorch APR
implementation being preliminary, with a backward convolution operation that relies heavily on atomic GPU
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Figure 7: A: Estimated tiled inference times for pixel/voxel and APR U-Nets (inset legend) for a very large
input volume of size 2048 x 65536 x 65536 voxels. The APR curves show two cases: one where the tile
size is fixed according to the lowest tested PRR~1.05 to 3792 voxels (dashed line), and one where the input
size is optimized for each PRR level such that the 24 GB limit is saturated (solid line). B: Percentage of
computations spent on processing duplicated boundary overlap voxels between adjacent tiles for the different
U-Net architectures (inset legend). Adjacent tiles have 44 voxels overlap, corresponding to the receptive field
radius of the networks. Optimizing the tile size in the APR U-Net enables leveraging higher PRR values to
reduce boundary computations significantly.

operations to avoid race conditions. This results in the backward pass through an APR U-Net requiring
roughly 4x longer than the forward pass, compared to 1.7x for the voxel U-Net using cuDNN.

The substantial reduction in memory requirements during training even for modest PRR enables larger and
more complex models to be trained for equivalent tile sizes on the same hardware. While slower training
speed only requires running the network longer, increasing the memory budget requires additional or more
expensive hardware purchase.
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Figure 8: Peak memory usage in Gigabytes (left) and runtime speedup (right) for training (single forward
pass and backward pass) of all-APR and hybrid APR-pixel U-Net architectures (symbols and colors, inset
legend), compared to the corresponding voxel U-Net (dashed blue line), for an input volume of size 2563
voxels. The training speedups are relative to the voxel U-Net.
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7 Conclusions

We have presented APR-CNNSs, a novel class of deep convolutional neural networks for computer vision tasks
on microscopy images. APR-CNNs leverage the Adaptive Particle Representation (APR) of the input image
to achieve significant reductions in both memory requirements and computational times. The savings are
proportional to the sparsity of the input image, reflected in how many particles are required to represent
it. Typical fluorescence microscopy images have sparsity ratios around 100, for which we have shown APR-
CNNs to outperform their pixel- or voxel-based counterparts. Therefore, APR-CNNs offer a compelling
alternative to traditional compute reduction methods, such as input downsampling, network size reduction,
or brute-force parallelization.

We have shown that APR-CNNs exhibit only marginally reduced result accuracy compared to pixel CNNs,
while enabling substantial reductions in memory requirements and significant speedups. APR-CNNs are
also favorable when processing very large image volumes in a tiled approach. There, APR-CNNs not only
reduce the memory and compute requirements per-tile, but also lead to better tiling efficiency and parallel
scalability as the fraction of duplicated boundary operations is reduced. Further, we described a strategy for
learning filters across spatial scales via operator restriction. Importantly, we demonstrated that APR-CNNs
are compatible with advanced approaches like StarDist, achieving comparable segmentation performance to
published state-of-the-art results.

Since APR-CNN layers provide drop-in replacements for their pixel counterparts, hybrid APR-pixel networks
can be constructed in many ways. This enables tuning the trade-off between memory usage and computation
speed, flexibly adapting to different dataset characteristics and compute constraints. This architectural
compatibility and flexibility is particularly valuable when considering large-scale inference tasks, where APR-
CNNs can reduce inference times from over a week to less than a day for Teravoxel-sized 3D image volumes
typical of large biomedical imaging studies (Scholler et al., [2023ajb).

Our current PyTorch implementation provides APR-native CNN layers as PyTorch modules with an interface
that is compatible with the familiar pixel PyTorch CNN modules. However, our current implementation is
still preliminary, showing certain limitations in training speed. Nevertheless, the substantial reduction in
memory requirements during both training and inference opens up new possibilities for working with larger,
more complex models and/or datasets.

Taken together, APR-CNNs represent a significant advancement in efficient and optimal content-adaptive
deep learning for bioimage analysis, offering a promising approach to tackling the increasing challenges of
processing large-scale microscopy datasets with limited computational resources.

8 Discussion

APR-CNNs combine concepts from multi-resolution and sparse networks to address the challenges of pro-
cessing large-scale, high-resolution microscopy data. By operating directly on the Adaptive Particle Repre-
sentation (APR) of the input image, APR-CNNs effectively exploit the inherent sparsity and multi-resolution
nature of the APR, leading to significant reductions in computational and memory requirements. This ap-
proach aligns with previous research on multi-scale and sparse convolutional neural networks (Ke et al., [2017}
Graham & Van der Maaten| |2017)), but uniquely leverages the APR data structure for efficient computation
and the mathematical guarantees (Cheeseman et al., [2018b) of the APR for reliability and trustworthiness
of the results.

Computational efficiency is crucial for handling large-scale data, particularly in resource-constrained envi-
ronments. Sometimes, however, accuracy is prioritized over computational efficiency, for example in clinical
applications. Since the APR is a lossy (albeit with guaranteed error bound) image representation, APR-
CNNs have access to less information than a corresponding pixel CNN. Therefore, under comparable con-
ditions (network size, training data size, etc.), the benchmarks presented here suggest that the accuracy of
APR-CNNSs can be slightly below that of pixel CNNs. The reduced compute requirements of APR-CNNs,
however, can allow for larger or more complex networks, as well as for training on larger datasets and batch
sizes. Those factors might positively affect result accuracy. When optimizing a CNN architecture for a given
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application, these trade-offs have to be considered jointly to match the needs of the application. Future work
should characterize these trade-offs in benchmarks using applications-specific datasets and requirements.

Future work could also extend the concept of APR-native neural networks to architectures other than
CNNs. For example, the APR’s native patch-based description (Jonsson et al., 2022) suggests that vision
transformers, which have shown great promise in various computer vision tasks (Dosovitskiy et al., 2021; [Liu
et al.| 2021)), could be compatible with the APR structure. By directly feeding multi-resolution APR particles
or sparse patches as tokens into transformer models, one could potentially gain significant computational and
memory benefits without requiring custom APR layers or modules within the network itself. This approach
would only necessitate APR-specific input or output layers, while the core transformer architecture could
remain unchanged.

Despite its advantages as demonstrated here, our current software implementation faces challenges in training
speed, particularly in the backward pass. Future work will involve improving the implementation to optimize
training time, potentially by restructuring the APR convolution algorithm and its backward operation from
the current patch-based to a GEMM-like formulation (Chetlur et al., |2014). Additionally, the resolution-
awareness of APR-CNNs could be made more explicit by allowing separate filter weights for information
interpolated from different resolution levels, similar to |Ke et al.| (2017)), and the training procedure could be
adapted to promote robust learning across levels through APR-specific data augmentation techniques.

Another limitation of our current APR-CNN implementation is that the output APR is restricted to the
particle locations of the input APR. This may become limiting for tasks that substantially increase the
resolution anywhere in the image, such as certain image sharpening or enhancement tasks. In such cases,
the network would ideally be able to adaptively refine the APR sampling, which our implementation can-
not. However, the issue can be circumvented by using a hybrid APR-pixel network, such that the output
predictions are sampled on a uniform grid. The pixel output can later be converted to a (different) APR
again. Requiring the output APR sampling to be identical to the input APR does, in general, not limit tasks
of image classification, detection, or segmentation. Although image segmentation requires pixel-accurate
boundary predictions, it can be assumed that the segmentation mask aligns with the input image contents.

In conclusion, APR-CNNs present a promising direction for efficient deep learning on large-scale microscopy
images and 3D image volumes. By relaxing the limitations of traditional CNNs in terms of memory and
computational demands, APR-CNNs enable scalable analysis of Teravoxel-sized datasets, paving the way for
new discoveries in the biomedical sciences and enabling the more widespread use of state-of-the-art CNNs
in budget- or energy-constrained environments.

Software Availability

The 1ibAPR C++ library for APR handling, conversion, and processing is available from https://github.
com/AdaptiveParticles/LibAPR. The PyTorch modules for the APR-native CNN layers presented here
are available from https://github.com/AdaptiveParticles/APR-CNN. Additional APR-related software
and tools, including the Python bindings pyapr, an APR plug-in for Fiji/ImageJ, and a 3D APR viewer for
napari, are available from https://github.com/AdaptiveParticles.
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9 Supplementary Material
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Figure 9: Illustration of a Hybrid1l U-Net architecture with APR layers only for the highest-resolution feature
maps. Pixel features are reconstructed after the first pooling layer, and resampled back to particles before
the last upsampling layer.
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Figure 10: Pixel reduction ratios (PRR) after successive 22 APR pooling operations applied to APRs of
varying initial PRRs (colors, inset legend). Each pooling step selectively downsamples only the finest-
resolution particles, rendering the feature maps increasingly dense. As a result, the PRR approaches 1,
corresponding to uniform sampling.
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Ground truth APR levels Sampling errors

Figure 11: Examples of inaccurate ground-truth labels in the C. elegans dataset, and their effect on the APR
representation accuracy. From left to right, the columns show: 1) the raw image signal, 2) ground-truth
labels overlaid on the signal, 3) ground-truth labels overlaid on the corresponding APR levels (the brightest
gray level indicates pixel resolution and each darker shade indicates a drop in resolution by one level, i.e., a
factor of two), 4) Label sampling errors on the APR due to wrongly coarsening the label edge. The sampling
errors are shown in random colors for visual clarity with red arrows pointing to the erroneous APR particles.
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Figure 12: Convergence of the validation loss (cross-entropy) during the first 100 epochs of training (15,000
training steps) for the different APR and pixel U-Net configurations (line color, inset legends) for the three-
class U-Net segmentation of the C. elegans dataset. Lines show the mean loss over three independently
trained networks for each configuration, while shaded regions indicate the minimum and maximum spans.
The networks in each panel differ only in the hyperparameter C, i.e., the number of feature maps used in

the initial layers.
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Figure 13: Maximum-intensity z-projections of example 3D benchmark images. The panel titles list the
different Pixel Reduction Ratios (PRR) and image sizes in voxels (in parentheses).
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