
Under review as submission to TMLR

APR-CNN: Convolutional Neural Networks for the Adaptive
Particle Representation of Large Microscopy Images

Anonymous authors
Paper under double-blind review

Abstract

We present APR-CNN, a novel class of convolutional neural networks designed for efficient
and scalable three-dimensional microscopy image analysis. APR-CNNs operate natively on
a sparse, multi-resolution image representation known as the Adaptive Particle Represen-
tation (APR). This significantly reduces memory and compute requirements compared to
traditional pixel-based CNNs. We introduce APR-native layers for convolution, pooling, and
upsampling, along with hybrid architectures that combine APR and pixel layers to balance
accuracy and computational efficiency. We show in benchmarks that APR-CNNs achieve
comparable segmentation accuracy to pixel-based CNNs while drastically reducing memory
usage and inference time. We further showcase the potential of APR-CNNs in large-scale
volumetric image analysis, reducing inference times from weeks to days. This opens up new
avenues for applying deep learning to large, high-resolution three-dimensional biomedical
datasets with constrained computational resources.

1 Introduction

Deep learning has revolutionized biomedical microscopy image analysis, enabling unprecedented accuracy
in tasks such as cell segmentation and classification (Ronneberger et al., 2015; Stringer et al., 2021). How-
ever, the increasing size and complexity of microscopy datasets pose significant challenges for traditional
convolutional neural networks (CNNs) in terms of memory usage and computational requirements (Beghin
et al., 2022; Heinrich et al., 2018). This compute bottleneck is particularly acute in three-dimensional (3D)
volumetric imaging, where multi-Terabyte volumes are becoming common (Buhmann et al., 2021; Scholler
et al., 2023a; Glaser et al., 2022).

Current approaches to mitigating the compute bottleneck include downsampling input data (Beghin et al.,
2022), reducing network size (Lin et al., 2019), and parallelizing computation across multiple GPUs (Buh-
mann et al., 2021). However, these methods often compromise either accuracy or scalability. Outside of
bio-imaging, alternative network architectures, such as sparse (Graham & Van der Maaten, 2017) or multi-
resolution (Riegler et al., 2017) CNNs, have shown promise in reducing computational requirements but are
limited to specific data structures that do not readily cover general image data.

Here, we propose a sparse multi-resolution CNN architecture for general microscopy images. Specifically,
we introduce APR-CNNs as a novel approach that leverages the Adaptive Particle Representation (APR) of
large microscopy volumes (Cheeseman et al., 2018b) to enable efficient and content-adaptive deep learning
on multi-resolution image representations. The APR is a content-adaptive image representation originally
developed for large fluorescent 3D microscopy images. It dynamically adjusts its resolution to match local
image content, as illustrated in Figure 1, reducing the number of points needed to represent an image while
preserving signal sampling quality. Importantly, the APR can enable data-efficient end-to-end workflows
(Scholler et al., 2023a), in which large 3D images are converted to APRs immediately upon acquisition and
all subsequent storage, visualization, and analysis are performed natively on the APR, leveraging its memory
and computational savings throughout the entire workflow.

APR-CNNs operate directly on the sparse, multi-resolution APR data structure, enabling significant reduc-
tions in memory usage and computational requirements compared to traditional pixel-based CNNs. Our

1



Under review as submission to TMLR

Figure 1: The APR dynamically adjusts the sampling resolution of the signal to the local content of the
pixel image I(x) around pixel location x. This allows sparse images typical of fluorescence microscopy to be
represented using orders of magnitude fewer sample points, called “particles” in the APR. The information
content in the image is preserved in that the signal Î(x) can be reconstructed at every location x, also between
particles, up to a mathematically guaranteed point-wise error bound E set by the user. The example image
used is a crop of a synthetic HL60 cell (Svoboda et al., 2009), available as image BBBC024v1 from the Broad
Bioimage Benchmark Collection (Ljosa et al., 2012).

approach uniquely combines elements from multi-resolution (Ke et al., 2017) and sparse (Graham & Van der
Maaten, 2017; Jayaraman et al., 2018) deep learning, offering a mathematically rooted framework for efficient
deep learning on large-scale microscopy data.

We demonstrate the effectiveness of APR-CNNs on the task of 3D cell nuclei segmentation, showing that they
achieve comparable accuracy to state-of-the-art pixel-level methods while offering substantial reductions in
memory usage and inference times. Furthermore, we introduce hybrid APR-pixel architectures that provide
control over the trade-off between memory efficiency and computational speed.

2 APR-CNN

We illustrate the concept of APR-CNNs on the example of a classic U-Net (Ronneberger et al., 2015)
architecture. APR-CNNs have been designed to follow the structure and modular nature of classic pixel
networks, as shown in Figure 2. By providing APR-native counterparts to classic pixel CNN layers, popular
architectures, such as U-Nets (Ronneberger et al., 2015) and ResNets (He et al., 2016) can readily be derived
by block substitution.

APR layers operate natively over the sparse, multi-resolution APR data structure. This enables those layers
to exploit the sparsity and multi-resolution properties for computational and memory savings by processing
and storing fewer data points (i.e. particles) than dense pixel layers. It also enables APR layers to implement
adaptive multi-resolution convolutions, which are not possible in regular pixel layers (Jonsson et al., 2022).

In the following, we describe the individual APR-native layers that can be used when composing an APR-
CNN architecture. These layers are schematically illustrated in two dimensions (2D) in Figure 3, using

2



Under review as submission to TMLR

Co
nv

Bl
oc

k
Co

nv
Bl

oc
k

M
ax

Po
ol

Co
nv

Bl
oc

k

Co
nv

Bl
oc

k

M
ax

Po
ol

Co
nv

Bl
oc

k

Co
nv

Bl
oc

k

U
ps

am
pl

e

Co
nv

Bl
oc

k

Co
nv

Bl
oc

k

U
ps

am
pl

e

Co
nv

Bl
oc

k
Co

nv
Bl

oc
k

Co
nv

Co
nc

at
en

at
e Co

nc
at

en
at

e

Copy

Copy

Pixel
predictions

Input pixels

A
PR

Co
nv

Bl
oc

k
A

PR
Co

nv
Bl

oc
k

A
PR

M
ax

Po
ol

A
PR

Co
nv

Bl
oc

k

A
PR

Co
nv

Bl
oc

k

A
PR

M
ax

Po
ol

A
PR

-
Co

nv
Bl

oc
k

A
PR

-
Co

nv
Bl

oc
k

A
PR

-
U

ps
am

pl
e

A
PR

Co
nv

Bl
oc

k

A
PR

Co
nv

Bl
oc

k

A
PR

U
ps

am
pl

e

A
PR

Co
nv

Bl
oc

k
A

PR
Co

nv
Bl

oc
k

A
PR

Co
nv

Co
nc

at
en

at
e Co

nc
at

en
at

e

Copy

Copy

Input APR Particle
predictions

Figure 2: Block structure of a pixel-based U-Net architecture (top) and its APR-CNN version (bottom).
The APR-CNN layer modules are consistent with existing frameworks, allowing APR-CNNs to be designed
analogously to traditional CNNs. APR layer modules provide drop-in replacements for their pixel counter-
parts and can also be mixed with them in hybrid pixel-APR architectures.

the inset from Figure 1 as an example input. Our implementation builds upon the works of Jonsson et al.
(2022); Cheeseman et al. (2018b), and we refer the reader there for further APR algorithm details and for
the mathematical proofs of convolution kernel consistency (Jonsson et al., 2022) and the guaranteed APR
error bound (Cheeseman et al., 2018b).

All of these novel APR layer types are implemented as GPU-accelerated PyTorch modules. Using these
modules enables implementing APR-native CNNs using the usual PyTorch notation and interface. The
interfaces of the APR modules are kept compatible with those of pixel CNN modules, with any APR-
specific additional parameters as optional arguments. This also allows mixing APR and pixel layers in an
architecture.

In such hybrid APR-pixel architectures, higher-resolution features can be processed using APR-native layers,
while lower resolutions directly use pixels. An example of such a hybrid architecture is shown in Supple-
mentary Figure 9. Hybrid networks are motivated by the observation that, with each pooling operation, the
sparsity of the data is reduced. This leads to increasingly dense feature maps across pooling layers, as shown
in Supplementary Figure 10. Since layer implementations optimized for uniform pixel grids are more efficient
on a per-point basis, it can be beneficial to revert to pixel layers after a certain number of pooling steps
at the expense of increased memory usage1. Hence, hybrid APR-CNNs allow tuning the trade-off between
computational and memory cost.

1We denote by Hybridk a hybrid architecture that uses APR layers in the k highest-resolution stages of the network. For
example, Hybrid1 uses dense pixel features after the first pooling layer and up to the last upsampling layer.

3



Under review as submission to TMLR

With the APR-native convolution, activation, and normalization layers described below, we can extend the
notion of convolutional and residual blocks to the APR by substituting the corresponding pixel operations
with their APR counterparts. Together with APR-native pooling and upsampling layers, this enables imple-
menting fully APR-native or hybrid APR-pixel encoder and encoder-decoder architectures, such as ResNets
or U-Nets.

Figure 3: Illustration of APR-CNN layer operations on the sparse, multi-resolution APR data structure.
The example here is shown for the input given by the inset APR patch from the center panel of Figure 1.
Pooling (A), upsampling (B), and reconstruction (C) follow the power-of-two tree decomposition of the
APR. APRConv layers (D) apply resolution-adapted filters to each tree level, with neighboring information
transparently interpolated across resolution levels as described by Jonsson et al. (2022). The label and box
colors correspond to the colors of the corresponding blocks in Figure 2.

2.1 APR pooling and upsampling layers

A 2 × 2 APRMaxPool layer and a constant upsampling layer are illustrated in Figure 3A–B, respectively.
These operations are restricted to align with the APR tree data structure, which follows a power-of-two
resolution level decomposition. This is similar to previous works implementing pooling operations for tree-
structured data (Riegler et al., 2017; Jayaraman et al., 2018). The main difference between APRMaxPool
and classic MaxPool layers is that APRMaxPool selectively operates only on the finest resolution, leaving
coarser resolution levels untouched. The APRUpsample layer reverses a pooling operation by up-sampling
only those particles that had a higher resolution in the original APR structure. Since the APR data structure
encodes the locations of both down-sampled and original particles, this requires only a single copy of the
APR to be passed through the network.

4



Under review as submission to TMLR

2.2 Reconstruction / Resampling layers

It might be necessary somewhere in a network architecture to reconstruct the feature map at a uniform
resolution. This is in particular the case in hybrid APR-pixel networks before a pixel layer. Therefore,
we provide reconstruction / resampling layers (Figure 3C), which use piece-wise constant sampling or re-
construction to represent the data at a uniform resolution, which may be higher or lower than the average
resolution of the input. The APR guarantees that the user-defined reconstruction error threshold is satisfied
for all strictly positive interpolation schemes. This includes piece-wise constant reconstruction, which thus
fulfills the error bound at the lowest computational cost.

2.3 APR convolution layers

An example for a convolution filter of size 3 × 3 is illustrated in Figure 3D. There are two key differences
between APRConv layers and standard convolution layers: First, the local neighborhood must accommodate
for resolution changes. Second, the filter becomes resolution-dependent.

To address the first point, we use “on-the-fly” local patch reconstruction with piece-wise constant upsampling
or average downsampling. This ensures that all particles within the support of the convolution kernel
are on the same resolution level before the filter is applied analogously to classic convolution. This local
reconstruction is done transparently by the layer module upon evaluating the convolution kernel. Since the
resampling operations are linear, gradients can efficiently be propagated through the patch reconstruction
procedure.

The second point opens up an additional degree of freedom not present in pixel CNNs: Convolution stencils
can be restricted across resolution levels or learned separately for each level. Both modes of operation are
supported by APRConv layers, as depicted in Figure 4. The first mode transparently restricts stencil weights
between adjacent resolution levels (Figure 4A) using concepts from multi-grid solvers for partial differential
equations to ensure the restriction is mathematically consistent (Jonsson et al., 2022). This ensures that
restrictions are equivalent to downsampling a fine-scale filter result. The second mode allows for stencils
to be learned independently on each resolution level (Figure 4B). This can be restricted by specifying a
hyperparameter nstencils, denoted as ns. In a given layer, only the first ns − 1 resolution levels are then
trained independently. To accommodate input APRs with varying numbers of resolution levels, we design
the layer as follows: The first filter bank W0,· is applied to the finest resolution level lmax. The second filter
bank W1,· is applied to level lmax − 1, and so on. If the input APR has more resolution levels than the layer
has filter banks (lmax > ns), the last set of filters Wns−1,· is automatically restricted to to all remaining
resolution levels l < lmax −ns. If lmax < ns, only the first lmax filter banks are used. Learning different filters
on different resolution levels enables content-adaptive layers, leveraging the multi-scale nature of the APR.

Restriction and prolongation of CNN filters between spatial scales has been previously explored by Haber
et al. (2018), where it was used to classify high-resolution images using CNNs trained on low-resolution images
and vice versa. Different from those previous works, however, APRConv layers apply filter restriction within
each invocation of the network, and they backpropagate gradients through the restriction operation during
training. Therefore, APRConv layers with stencil restriction can rather be viewed as a sparse version of
multi-grid convolution layers (Ke et al., 2017) in which features from different resolution levels are spatially
disjoint. This makes APRConv layers drop-in compatible with traditional pixel convolution layers, merging
features from different levels. While treating features from different resolution levels as separate channels,
as in Ke et al. (2017), enables the network to be explicitly scale-aware, it would result in up to three times
more parameters and multiplications for each convolution, with two thirds of the features being zero due to
the disjoint APR sampling. We therefore merge features from adjacent resolutions into the same channel
and leave further exploration of scale-aware APRConv layers to future work.

In contrast, learning separate stencils for different resolution levels gives the network full freedom to adapt
local filters to resolution-specific image features. This does, however, increase the number of parameters in
the network by a multiplicative factor. It does not affect the computational complexity or the total number
of features computed, though.

5



Under review as submission to TMLR

Figure 4: Illustration of the two convolution modes supported by APRConv layers to exploit the multi-
resolution character of the APR. A: Using linear filter restriction, fine-scale filters can be mapped to mathe-
matically consistent coarser-resolution filters. This guarantees that applying the coarse filter is equivalent to
hypothetically upsampling the input data to the fine scale, applying the fine-scale filter, and downsampling
the result. B: Independent filters are learned for each resolution level. This allows for different convolutions
on different levels, enabling content-adaptive filters not possible in pixel CNNs.

2.4 Activation and normalization layers

Activation functions are element-wise operations and are therefore trivially extended to APR layers. Most
normalization layers aggregate values over all spatial dimensions. Thus, existing implementations of such
layers for 1D data can be used on APR features.

An issue with applying existing implementations of normalization layers to APR inputs arises when the
batch size is greater than one (N > 1). Due to the significant variation in the number of particles across
different images, we aggregate the features into a zero-padded 3D tensor. To ensure accurate statistics, the
zero-padded values must be masked or excluded from the normalization process.

3 Related Work

After having introduced the concepts of APR-CNNs, we place them into the context of previous approaches
and ideas. This includes approaches to reducing the computational and memory cost of CNNs and approaches
to using sparse or multi-resolution data with CNNs.

Perhaps the simplest way to mitigate memory requirements is to make the input data smaller. For 3D image
data, this includes applying 2D networks to slices (Roth et al., 2015) or projections (Cen et al., 2023) of
the data, as well as applying 3D networks to downsampled input volumes (Beghin et al., 2022). Although
effective in reducing computational demands, 2D approaches do not exploit the 3D context in the data,
and downsampling the input can result in significant loss of information, compromising the accuracy of the
result (Singh et al., 2020). In contrast, APR-CNNs operate natively on the APR, which follows a smarter,
content-adaptive data reduction strategy, retaining high resolution where it is required, as well as retaining
the full 3D context.

The memory and compute footprint of a CNN can also be controlled by the network architecture. For
example, Heinrich et al. (2018); Buhmann et al. (2021) applied U-Nets to 50 Teravoxels of data using an
optimized architecture, where the number of channels was kept small in high-resolution layers, and pooling
layers used a stride of 3 to aggressively downsample the feature maps. Still, these works further exemplify
the scale of compute resources required, as inference required 80 GPUs in parallel for three days, despite all
efforts to reduce network footprint. By inherently reducing the memory and compute required for processing,

6



Under review as submission to TMLR

APR-CNNs can provide additional flexibility in network design, allowing larger or more complex models to
be applied to a large dataset without requiring additional compute resources.

Besides modifying the input size or the network architecture, there are algorithmic approaches to reducing
the memory load on the GPU. For example, layer activations can be offloaded from GPU memory to the
CPU during periods of time when they are not used, and then transferred back as needed (Rhu et al., 2016;
Shriram et al., 2019). Driven by applications on resource-constrained devices, such as mobile phones and
embedded systems, there have also been efforts to compress trained networks. This can be achieved by
network sparsification (Li et al., 2017; Ashouri et al., 2018) or pruning (Lin et al., 2019), where “low-impact”
weights or filters are removed in order to reduce both memory and compute requirements while limiting the
loss in network performance. Such approaches can also be applied to APR-CNNs, but the inherently sparse
footprint of APR-CNNs increases the threshold for when they are beneficial.

Sparsity and adaptive resolution have also been exploited in other network architectures. In 3D shape
recognition using meshes and point clouds, for example, CNN architectures like OctNet (Riegler et al., 2017)
and O-CNN (Wang et al., 2017) leverage octree data structures to partition 3D space. OctNet partitions
space into shallow octrees, averaging data in each leaf node. Regular voxel convolutions are used, but
reimplemented to reduce computations in coarse nodes, which are treated as multiple voxels with the same
value. In contrast, the O-CNN restricts operations to surface-representing leaf nodes. Both methods reduce
computational costs by adaptively focusing computation to non-empty leaf nodes, reducing the work done
in empty space and background regions. APR-CNNs extend this concept to image volumes and extend it
further by processing coarser leaf nodes with resolution-adapted filters.

Sparse convolutional neural networks (Graham, 2014; Jayaraman et al., 2018) have also been proposed for
3D data, where computations are restricted to non-zero elements in the input (Graham & Van der Maaten,
2017). This reduces the computational burden, but also limits the network’s ability to propagate features
between disjoint regions. APR-CNNs are similar in the sense that they operate only on the particle locations,
which for individual resolution levels form a sparse image. But APR-CNNs also differ in that they process
each point in space, with neighboring information from adjacent resolution levels ensuring that features can
propagate across different scales even in sparse regions. This is more akin to multi-resolution pyramids in
image processing.

Several methods have been proposed to leverage multi-resolution image processing by applying CNNs to
different levels of an image pyramid and combining the feature maps to form the final prediction (Farabet
et al., 2012; Yoo et al., 2015). Alternatively, CNNs have been applied to a single resolution to extract
multi-resolution features at different pooling stages (Yang & Ramanan, 2015; Morris, 2018; Yu et al., 2018).
Finally, multi-grid CNNs (Ke et al., 2017) operate on multi-resolution pyramid representations of the input
but extend the convolution layer to integrate features from adjacent resolution levels by interpolating them
to the target level via max pooling or nearest-neighbor upsampling. This is reminiscent of the isotropic
patch reconstruction used in APRConv layers, except that APR features are disjoint across levels, allowing
them to be combined without introducing additional channels.

4 Segmentation Performance

APR-CNNs are applicable across image processing tasks, including image classification, restoration, and seg-
mentation. While general APR-based image restoration faces limitations due to the invariance of the adaptive
APR sampling, it has been shown viable for image deblurring and denoising (Jonsson et al., 2022). Image
classification is simpler than restoration or segmentation, in the sense that it only requires an encoder-type
network, whereas pixel-level predictions additionally require a decoder. We therefore focus our evaluation of
APR-CNNs on the task of instance segmentation using a set of real microscopy image volumes. In this, we
compare with two state-of-the-art pixel-based CNN approaches, namely U-Net segmentation (Ronneberger
et al., 2015) and StarDist (Weigert et al., 2018).

7



Under review as submission to TMLR

4.1 3D cell nuclei segmentation benchmark

First published by Long et al. (2009), the benchmark dataset we use comprises 28 3D microscopy volumes
of DAPI-stained C. elegans nuclei at the first larval stage. The dataset is publicly available for download
(Long et al., 2022), divided into 18 images for training, three for validation, and seven for testing, as also
used by Weigert et al. (2020). The average volume size is 1100 × 140 × 140 voxels of near-isotropic resolution
0.116×0.116×0.122 µm. Figure 5 shows an example image from the dataset. These images are representative
of a large class of image-segmentation problems in microscopy, sharing several challenging traits, such as
densely packed and touching objects, here particularly in the head and tail regions of the worms, as well
as varying contrast and brightness across the sample. Converting the 18 training images to APRs using
the automatic parameter tuning provided by the libAPR implementation (Cheeseman et al., 2018a) results
in APRs with on average 11.3 (standard deviation 3.2) times fewer particles than the original images have
pixels.

Figure 5: 3D rendering of an example image volume from the benchmark dataset, showing fluorescently
labeled cell nuclei in a C. elegans roundworm in the top panel. An example result from instance segmentation
is shown in the bottom panel with different objects, here cell nucei, distinguished in different colors.

The ground-truth labels in the benchmark dataset were produced in a semi-automated process (Long et al.,
2009), resulting in occasional inaccuracies and regions that do not align well with the APR sampling. Sup-
plementary Figure 11 shows two examples of this, where imprecise ground-truth labels result in errors when
sampling the labels onto the APR particles. Across the three validation volumes, this results in 4024 erro-
neously labeled voxels per volume on average, corresponding to 0.73% of all labeled voxels. While we do
not explicitly sample the masks onto the APR particles (see below), these discrepancies set a lower bound
for the sensitivity of the benchmark. Regardless of whether or not the APR is used, erroneous ground-truth
labels should ideally be corrected before training. In order compare with previously published results on this
benchmark, however, we do not modify the ground truth masks here.

4.2 Three-class U-Net segmentation

Claim: APR-CNNs have only marginally reduced result accuracy compared to pixel CNNs.

We first consider the common approach of three-class segmentation, where each pixel or particle is classified
as either background, nucleus, or nucleus boundary. Explicitly segmenting the object boundaries allows for
touching nuclei to be separated by thresholding the (interior) nucleus probabilities and finding the connected
components of the resulting binary mask. To offset potential losses in accuracy, the resulting object instances
are subsequently dilated to recapture lost pixels at boundaries.

We train both APR and pixel U-Nets using the cross-entropy loss function. To enable one-to-one comparison
of training characteristics, we apply a reconstruction layer to the APR predictions and compute the loss over
the resulting reconstructed pixels. Training is performed using a batch size of 1, with input volumes cropped
in the x-dimension to size 256 × 140 × 140. Data augmentation is applied in the form of random 90-
degree rotations and flips along each dimension, random rescaling, gamma correction, elastic transforms,
and addition of Gaussian noise. At validation and test time, the networks are applied to whole image
volumes, without cropping or tiling. We consider three network sizes by varying the number of channels in
the initial layers C ∈ {8, 16, 32}. The number of channels is doubled after each pooling layer and halved after

8



Under review as submission to TMLR

each up-sampling layer. In addition, we consider ns ∈ {1, 3} for the APR U-Nets. All networks have three
max-pooling and three up-sampling layers, with two convolution blocks at each stage. For each of the nine
network configurations, we train three independent networks. The training convergence is largely consistent
across network configurations, as shown in Supplementary Figure 12.

Following Weigert et al. (2020), we evaluate the test-time performance of the models in terms of their object
detection capabilities using the metric

Accuracy(τ) = TP

TP + FP + FN
(1)

for a range of Intersection over Union (IoU) thresholds τ . Thus, a predicted nucleus instance is counted as
a true positive (TP ) if its IoU with a ground truth instance is greater than τ . False positives (FP ) refer
to unmatched predicted instances, while false negatives (FN) refer to unmatched ground-truth instances.
Each predicted nucleus can be assigned to at most one ground-truth instance.

Table 1 shows the accuracy of the APR and pixel U-Nets over the test set for τ ∈ {0.3, 0.4, . . . , 0.9}. The
results show that increasing network size by adding more feature maps C consistently enhances accuracy,
underscoring the importance of network capacity. The APR U-Nets exhibit only slightly decreased average
detection accuracy from their pixel counterparts across all configurations. For some configurations, especially
at high IoU thresholds, they even slightly outperform the pixel baseline.

Table 1: Test accuracy computed as defined in Eq. 1 for APR and pixel U-Nets for different IoU thresholds τ
on the nuclei instance segmentation dataset. Each number is an average over three independent trials. The
parameter C refers to the network size in terms of the base number of feature maps, while ns is the number
of level-specific filter banks (nstencils) of an APR U-Net. Bold indicates the best performance for each IoU
threshold and network size.

C ns τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9
APR 8 1 0.7838 0.7009 0.5694 0.4385 0.2588 0.0802 0.0004
APR 8 3 0.8230 0.7404 0.6002 0.4462 0.2543 0.0719 0.0002
Pixels 8 - 0.8385 0.7539 0.6333 0.4737 0.2692 0.0750 0.0001

C ns τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9
APR 16 1 0.8335 0.7607 0.6407 0.4954 0.2976 0.0915 0.0004
APR 16 3 0.8474 0.7746 0.6523 0.5058 0.2947 0.0856 0.0003
Pixels 16 - 0.8574 0.7849 0.6631 0.5115 0.2972 0.0848 0.0001

C ns τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9
APR 32 1 0.8529 0.7779 0.6591 0.5175 0.3023 0.0872 0.0000
APR 32 3 0.8570 0.7791 0.6687 0.5282 0.3095 0.0876 0.0000
Pixels 32 - 0.8653 0.7928 0.6736 0.5283 0.3130 0.0897 0.0001

4.3 Effect of ns on segmentation performance

Claim: The performance of APR-CNNs is as consistent as that of pixel CNNs when using sufficient inde-
pendent filter banks for the highest resolution levels.

Using separate filter banks for the highest resolution levels (ns = 3) in an APR U-Net results in slightly
higher average detection accuracy for most τ values (see Table 1). This effect is most pronounced in the
smallest network configuration (C = 8), where the APR networks with ns = 1 under-perform significantly.

However, the APR networks with ns = 1 show relatively high variance across independent trials. This is
shown in Table 2, where we see that the networks with ns = 1 exhibit standard deviations of up to 4% in
test accuracy across trials and network sizes (C ∈ {8, 16, 32}). Thus, while using separate filter banks for
the highest resolution levels (ns = 3) only appears to yield slightly higher accuracy on average, it leads to

9



Under review as submission to TMLR

significantly higher consistency in performance. This is possibly an indication of ill-posedness of the learning
problem when a single set of filters are restricted across all resolution levels, which appears to improve for
ns > 1. Then, the performance of the APR U-Nets is as consistent as the performance of the pixel U-Nets.

Table 2: Standard deviation of the test accuracy for the three-class U-Nets across three different network
sizes C and three independent trials for each network size, showing that multiple resolution-specific filter
banks (ns = 3) yields more consistent results across IoU thresholds τ . Bold indicates the most consistent
performance for each IoU threshold.

ns τ = 0.3 τ = 0.3 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9
APR 1 0.00668 0.01304 0.02161 0.03948 0.03477 0.01171 0.00008
APR 3 0.00618 0.00574 0.00993 0.01395 0.00934 0.00400 0.00019
Pixel - 0.00571 0.00652 0.00821 0.01746 0.01637 0.00701 0.00005

4.4 StarDist segmentation

Claim: There is little to no loss in accuracy when using APR-CNNs in a more complex state-of-the-art
segmentation approach.

The StarDist approach (Weigert et al., 2020) achieves better accuracy than three-class U-Nets for instance
segmentation of blob-like objects, such as cell nuclei. It leverages a shape prior of star-convex polyheda and
predicts for each pixel: 1) the probability of it belonging to an object and 2) the distances to the object
boundary along a set of n predefined radial rays. The ground-truth object probabilities are taken to be the
normalized Euclidean distances to the nearest background pixel, in order to favor pixels close to the center
of each object. Thresholding the predicted object probabilities, a set of shape candidates is obtained from
which redundant object predictions are removed by non-maximum suppression, where the candidates with
the highest object probability suppresses all other candidates that overlap more than a fixed IoU threshold.

We extend the StarDist method to natively work on the APR by predicting the object probabilities and
radial distances for each particle. Pixel-wise object probabilities are computed via the Euclidean distance
transform and sampled onto the particles by averaging. Similarly, radial distances are obtained as the
distances between each particle location and the object boundary along the corresponding direction. For the
non-maximum suppression step, we use the original implementation of Weigert et al. (2020), which directly
accepts a list of center coordinates with corresponding radial distance vectors.

We train APR StarDist networks similar to the APR U-Nets in the previous experiment, but with fixed
C = 32 and ns = 3. Furthermore, we train a Hybrid2 architecture with ns = 2, which uses APR layers
for the two highest-resolution network stages and switches to pixel layers after the second max-pooling
layer and up to the second-to-last up-sampling layer (cf. Supplementary Figure 9). Following Weigert et al.
(2020), we use n = 96 radial directions and omit the final upsampling layer to obtain predictions on a
coarsened grid. After the U-Net we add an additional convolution block with 128 channels, followed by
disjoint convolution layers for the probability and distance predictions. The training procedure and data
augmentations are unchanged from the three-class U-Net approach in the previous section. At test time, the
probability and IoU thresholds for non-maximum suppression are found by maximizing the average accuracy
for τ ∈ {0.3, 0.5, 0.7} over the validation set.

Table 3 shows the average performance of APR StarDist over eight independent trials in comparison with
a Hybrid2 U-Net (6 independent trials) and the results published by Weigert et al. (2020) (ResNet, 5
independent trials). The APR and Hybrid2 networks achieve object detection accuracies comparable to the
published result on pixels, with superior performance for τ ≥ 0.8. The performance between the APR and
Hybrid2 models are consistent. This indicates that there is little to no inherent loss in accuracy due to the
APR sampling and APR-native processing in this more complex segmentation approach.

10



Under review as submission to TMLR

Table 3: Test accuracy of APR-native StarDist models for several IoU thresholds τ , compared to a hybrid
APR-pixel model and the published pixel results (Weigert et al., 2020). The hybrid network results are
averages over 6 independent trials, APR results are averages over 8 independent trials, while pixel results
are averages over 5 trials. Bold indicates best over-all performance, and underlined within APR models.

IoU threshold τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
APR StarDist 0.926 0.917 0.896 0.851 0.750 0.629 0.438 0.165 0.010
Hybrid2 U-Net 0.930 0.920 0.899 0.853 0.748 0.625 0.419 0.146 0.007

Weigert et al. (2020) 0.936 0.926 0.905 0.855 0.765 0.647 0.460 0.154 0.004

5 Computational Performance

After having demonstrated that APR and hybrid APR-pixel networks achieve segmentation performance
comparable to corresponding pixel networks, we benchmark the computational performance of APR-CNNs.
For this, we use a set of ten synthetic images with different content densities. All benchmarks are done on
Nvidia A100 40 GB GPUs.

The memory usage and compute load of APR-CNNs depend on the number of particles used to represent
the input image. We quantify this using the pixel reduction ratio, PRR, defined as

PRR = Number of pixels or voxels in the original image
Number of particles in the APR . (2)

Thus, an APR with PRR=1 is equivalent to the pixel/voxel image, while an APR with a PRR of 2 uses half
the number of points to represent the image. Typical values for fluorescence microscopy images are in the
range of 10–100. For example, Cheeseman et al. (2018b) found a median value of 22.7 across a diverse set
of medium-sized images, while Scholler et al. (2023a) found an average PRR of 79 in large-scale imaging of
an entire mouse brain and 66 for a large section of human brain tissue.

We use the same set of ten synthetic 3D benchmark images as previously used by Cheeseman et al. (2018b).
The images contain different numbers of randomly placed spherical objects, as shown in Supplementary Fig-
ure 13 as maximum-intensity z-projections, resulting in a wide range of PRR values. The synthetic images
are either 643, 1283, or 2563 voxels in size. From these fixed-PRR images we generate APRs of larger images
by concatenating copies of the data. The benchmark images and their APR files are publicly available with
the libAPR software (Cheeseman et al., 2018a).

5.1 Inference performance with fixed input size

Claim: APR-CNNs enable processing of larger input images without tiling and lead to substantial memory
and inference time savings.

We benchmark the memory usage and runtime of voxel, APR, and hybrid U-Net architectures with four
resolution stages (three pooling and upsampling layers), two convolution blocks at each stage with spatial
kernel size 33, 16 base feature maps, doubled after each pooling layer, and three output channels. The
inference runtime and peak memory usage of each network are benchmarked for an input volume of size 2563

voxels.

Figure 6A shows the memory usage of the APR and hybrid networks compared with the voxel CNN (blue
dashed line) as a function of the PRR of the input image. The APR-CNNs need substantially less memory,
with the pure APR and Hybrid3 (i.e., 3 APR stages, 1 voxel stage) networks using 20 times less memory than
the voxel network at PRR≈20. The APR network also almost perfectly scales past PRR>124. The hybrid
networks, in particular Hybrid1 (1 APR stage, 3 voxel stages) and Hybrid2 (2 APR stages, 2 voxel stages),
approach asymptotes of 1.9 GB and 0.46 GB of memory usage, respectively, as their memory footprints are
bounded from below by the fixed size of the voxel feature maps. The benefit of reducing memory usage is
two-fold: it can allow both larger networks and larger inputs compared to pixel/voxel networks with the
same memory budget.

11



Under review as submission to TMLR

The inference speedups for the same networks are shown in Figure 6B. As expected, voxel networks are
the fastest at very low PRR (speedups less than one). The pure APR-CNN breaks even with the speed of
the voxel network at PRR≈20 and achieves over 3× speedup at PRR=124. Hybrid networks show more
favorable scaling in the lower-PRR range, with the Hybrid1 network breaking even between at a PRR between
5 and 10, reaching close to 2× speedup at PRR=20. Thus, the degree of hybridization provides a tunable
hyperparameter that allows trading off memory usage for computational speed, which can be optimized
according to the expected PRR of the input in the application at hand.

A B

C D

Figure 6: Peak memory usage in Gigabytes (left) and runtime speedup (right) for inference (single forward
pass) of APR and hybrid U-Net architectures (symbols and colors according to inset legends), compared
to the baseline voxel U-Net, for input volumes of size 2563 (top) and 5123 (bottom) voxels. The x-axes
show the Pixel Reduction Ratio (PRR) of the input image, indicating by how much the APR reduces the
number of points needed to represent the input. All pixel/voxel operations use the cuDNN (Chetlur et al.,
2014) backend of PyTorch (Ansel et al., 2024), while APR operations use custom modules implemented in
PyTorch. All benchmarks were done on a Nvidia A100 GPU with 40 GB VRAM.

Although these results are significant, input volumes of the relatively small size of 2563 voxels disfavor APR-
CNN layer operations at higher PRR levels, as the reduced amount of work is not sufficient to saturate
the GPU. The reduced memory usage of APR-CNNs enables significantly larger volumes to be processed.
Increasing the input size to 5123 voxels, the voxel CNN would require an estimated 69 GB of memory. This
exceeds the 40 GB of the A100 GPU used here, and therefore requires the input to be processed in several
subvolumes, or tiles. An overlap of 44 voxels between tiles, corresponding to the receptive field radius of the
network, is required to guarantee consistent results across tile boundaries. In contrast, APR-CNNs are able
to process the 5123 voxel volume without tiling already at PRR≥3.

12



Under review as submission to TMLR

Figure 6C shows the memory used by the APR and hybrid U-Nets for inference on a 5123 voxel input. The
inference time speedup in Figure 6D is computed with respect to the voxel U-Net with the input subdivided
into 8 tiles of size 3003 with 44 voxels overlap between them. For this larger input size, we observe a uniform
benefit to the relative inference runtime of APR and hybrid networks. All APR-based networks achieve
faster inference than the tiled voxel approach at PRR≥10, and over 2× speedup at PRR≥20. Notably,
the Hybrid1 network reaches this speedup already at PRR≈7, and the Hybrid2 network shows over 6×
accelerated processing at PRR≈54. Ten-fold speedups can be achieved for PRR>100. Moreover, all but the
Hybrid1 networks require less than 5 GB of GPU memory for PRR≥20.

These results show that the computational benefits of APR-CNNs increase with input size, as the reduced
memory usage alleviates the need for additional I/O operations to subdivide the input volume into tiles. This
enables inference on large images, where all other methods require tiling, but APR-CNNs enable optimized
processing based on the image information content.

5.2 Large volume inference

Claim: When used on tiled input images, APR-CNNs significantly reduce inference times and improve
parallel scalability, scaling to very large input volumes.

We simulate APR-CNN inference on a very large 2048 × 65536 × 65536 voxel volume (8.8 Teravoxels).
Assuming a limit of 24 GB of GPU memory, we first find the maximum input tile size that can be processed
by a voxel U-Net and by an all-APR U-Net for different PRR values. We then benchmark the networks’
inference runtimes for a single maximally sized input, including data transfers to and from the GPU, as well
as writing the result to disk. These values are then used to estimate the total inference time on the large
volume, through multiplication by the total number of tiles (44 pixels overlap, corresponding to the receptive
field radius of the network) required to cover the entire volume.

The voxel U-Net requires 468,512 blocks of size 3593 voxels to be processed, taking an estimated 268.5 hours
for inference, as shown in Figure 7A by the horizontal blue line. Similarly processing fixed-size tiles (3793

voxels) using the APR-CNN results in decreased inference times with increasing PRR (dashed orange line),
consistent with the results presented in the previous section. However, by maximizing for each PRR the
input volume size to saturate the 24 GB memory limit, the runtime is further decreased significantly (solid
orange line). For example, at a PRR of 4.65, the APR-CNN processes 64,516 tiles in 130.7 hours, less than
half the time required by the voxel CNN. The speedup further increases at higher PRR, achieving a 10-fold
reduction beyond PRR≈46 (25.4 hours with 6,498 blocks).

The benefit of increasing the input tile size is two-fold: First, it enables better utilization of GPU resources
in APR-CNNs. Second, due to the fixed overlap of 44 voxels between adjacent tiles, the proportion of
computations spent on duplicated boundary values is reduced with increasing tile size. This is illustrated
in Figure 7B, showing that 57% of the input points to the voxel CNN are duplicated boundary voxels (blue
dotted line), whereas this percentage is significantly reduced for the APR-CNN (solid orange line), as higher
PRR values enable larger input tiles.

These results highlight the potential for APR-CNNs to significantly reduce inference times from over a
week to under a day for large image volumes. Furthermore, optimizing input tile sizes based on the APR’s
reduced memory footprint better utilizes GPU capacity and minimizes duplicated boundary computations. In
practice, tasks of this magnitude would be carried out on distributed computing architectures, where the APR
could provide even larger benefits by reducing network load of data transfers to and from compute nodes, as
well as parallel communication overhead during distributed processing. However, the distribution of particles
in such large volumes would be highly non-uniform in space, requiring adaptive domain-decomposition
strategies (Incardona et al., 2019) which, for example, expand tiles until they encompass a predefined average
number of particles.

5.3 Training performance

Claim: APR-CNNs significantly reduce the memory requirements during model training and lead to reduced
training times.

13



Under review as submission to TMLR

A B

Figure 7: A: Estimated tiled inference times for pixel/voxel and APR U-Nets (inset legend) for a very large
input volume of size 2048 × 65536 × 65536 voxels. The APR curves show two cases: one where the tile
size is fixed according to the lowest tested PRR≈1.05 to 3793 voxels (dashed line), and one where the input
size is optimized for each PRR level such that the 24 GB limit is saturated (solid line). B: Percentage of
computations spent on processing duplicated boundary overlap voxels between adjacent tiles for the different
U-Net architectures (inset legend). Adjacent tiles have 44 voxels overlap, corresponding to the receptive field
radius of the networks. Optimizing the tile size in the APR U-Net enables leveraging higher PRR values to
reduce boundary computations significantly.

We benchmark the training speed and memory usage of APR, voxel, and hybrid U-Nets for a fixed input
size of 2563 voxels. The results are shown in Figure 8. They show that also during training, APR and
hybrid networks require substantially less memory. The runtime speedups are, however, smaller than during
inference, requiring higher PRR to break even with voxel networks. This is likely due to our PyTorch APR
implementation being preliminary, with a backward convolution operation that relies heavily on atomic GPU
operations to avoid race conditions. This results in the backward pass through an APR U-Net requiring
roughly 4× longer than the forward pass, compared to 1.7× for the voxel U-Net using cuDNN.

The substantial reduction in memory requirements during training even for modest PRR enables larger and
more complex models to be trained for equivalent tile sizes on the same hardware. While slower training
speed only requires running the network longer, increasing the memory budget requires additional or more
expensive hardware purchase.

6 Conclusions

We have presented APR-CNNs, a novel class of deep convolutional neural networks for computer vision tasks
on microscopy images. APR-CNNs leverage the Adaptive Particle Representation (APR) of the input image
to achieve significant reductions in both memory requirements and computational times. The savings are
proportional to the sparsity of the input image, reflected in how many particles are required to represent
it. Typical fluorescence microscopy images have sparsity ratios around 100, for which we have shown APR-
CNNs to outperform their pixel- or voxel-based counterparts. Therefore, APR-CNNs offer a compelling
alternative to traditional compute reduction methods, such as input downsampling, network size reduction,
or brute-force parallelization.

We have shown that APR-CNNs exhibit only marginally reduced result accuracy compared to pixel CNNs,
while enabling substantial reductions in memory requirements and significant speedups. APR-CNNs are also
favorable when processing very large image volumes in a tiled approach. There, APR-CNNs not only reduce
the memory and compute requirements per-tile, but also lead to better tiling efficiency and parallel scalability
as the fraction of duplicated boundary operations is also reduced. Further, we described a strategy for
learning filters across spatial scales via operator restriction. Importantly, we demonstrated that APR-CNNs

14



Under review as submission to TMLR

Figure 8: Peak memory usage in Gigabytes (left) and runtime speedup (right) for training (single forward
pass and backward pass) of all-APR and hybrid APR-pixel U-Net architectures (symbols and colors, inset
legend), compared to the corresponding voxel U-Net (dashed blue line), for an input volume of size 2563

voxels. The training speedups are relative to the voxel U-Net.

are compatible with advanced approaches like StarDist, achieving comparable segmentation performance to
published state-of-the-art results.

Since APR-CNN layers provide drop-in replacements for their pixel counterparts, hybrid APR-pixel networks
can be constructed in many ways. This enables tuning the trade-off between memory usage and computation
speed, flexibly adapting to different dataset characteristics and compute constraints. This architectural
compatibility and flexibility is particularly valuable when considering large-scale inference tasks, where APR-
CNNs can reduce inference times from over a week to less than a day for Teravoxel-sized 3D image volumes
typical of large biomedical imaging studies (Scholler et al., 2023a;b).

Our current PyTorch implementation provides APR-native CNN layers as PyTorch modules with an interface
that is compatible with the familiar pixel PyTorch CNN modules. However, our current implementation is
still preliminary, showing certain limitations in training speed. Nevertheless, the substantial reduction in
memory requirements during both training and inference opens up new possibilities for working with larger,
more complex models and/or datasets.

Taken together, APR-CNNs represent a significant advancement in efficient and optimal content-adaptive
deep learning for bioimage analysis, offering a promising approach to tackling the increasing challenges of
processing large-scale microscopy datasets with limited computational resources.

7 Discussion

APR-CNNs combine concepts from multi-resolution and sparse networks to address the challenges of pro-
cessing large-scale, high-resolution microscopy data. By operating directly on the Adaptive Particle Repre-
sentation (APR) of the input image, APR-CNNs effectively exploit the inherent sparsity and multi-resolution
nature of the APR, leading to significant reductions in computational and memory requirements. This ap-
proach aligns with previous research on multi-scale and sparse convolutional neural networks (Ke et al., 2017;
Graham & Van der Maaten, 2017), but uniquely leverages the APR data structure for efficient computation
and the mathematical guarantees (Cheeseman et al., 2018b) of the APR for reliability and trustworthiness
of the results.

While we focused here on convolutional neural networks, the APR’s native patch-based description (Jonsson
et al., 2022) suggests that other architectures could also benefit from an input or internal APR representa-
tion. In particular, vision transformers, which have shown great promise in various computer vision tasks
(Dosovitskiy et al., 2021; Liu et al., 2021), could be compatible with the APR structure. By directly feeding

15



Under review as submission to TMLR

multi-resolution APR particles or sparse patches as tokens into transformer models, one could potentially
gain significant computational and memory benefits without requiring custom APR layers or modules within
the network itself. This approach would only necessitate APR-specific input or output layers, while the core
transformer architecture could remain unchanged.

Despite its advantages as demonstrated here, our current software implementation faces challenges in training
speed, particularly in the backward pass. Future work will involve improving the implementation to optimize
training time, potentially by restructuring the APR convolution algorithm and its backward operation from
the current patch-based to a GEMM-like formulation (Chetlur et al., 2014). Additionally, the resolution-
awareness of APR-CNNs could be made more explicit by allowing separate filter weights for information
interpolated from different resolution levels, similar to Ke et al. (2017), and the training procedure could be
adapted to promote robust learning across levels through APR-specific data augmentation techniques.

Another limitation of our current APR-CNN implementation is that the output APR is restricted to the
particle locations of the input APR. This may become limiting for tasks that substantially increase the
resolution anywhere in the image, such as certain image sharpening or enhancement tasks. In such cases,
the network would ideally be able to adaptively refine the APR sampling, which our implementation can-
not. However, the issue can be circumvented by using a hybrid APR-pixel network, such that the output
predictions are sampled on a uniform grid. The pixel output can later be converted to a (different) APR
again. Requiring the output APR sampling to be identical to the input APR does, in general, not limit tasks
of image classification, detection, or segmentation. Although image segmentation requires pixel-accurate
boundary predictions, it can be assumed that the segmentation mask aligns with the input image contents.

In conclusion, APR-CNNs present a promising direction for efficient deep learning on large-scale microscopy
images and 3D image volumes. By relaxing the limitations of traditional CNNs in terms of memory and
computational demands, APR-CNNs enable scalable analysis of Teravoxel-sized datasets, paving the way for
new discoveries in the biomedical sciences and enabling the more widespread use of state-of-the-art CNNs
in budget- or energy-constrained environments.

References
Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky, Bin Bao,

Peter Bell, David Berard, Evgeni Burovski, et al. Pytorch 2: Faster machine learning through dynamic
python bytecode transformation and graph compilation. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2, pp.
929–947, 2024.

Amir H Ashouri, Tarek S Abdelrahman, and Alwyn Dos Remedios. Fast on-the-fly retraining-free sparsifi-
cation of convolutional neural networks. arXiv preprint arXiv:1811.04199, 2018.

Anne Beghin, Gianluca Grenci, Geetika Sahni, Su Guo, Harini Rajendiran, Tom Delaire, Saburnisha Binte
Mohamad Raffi, Damien Blanc, Richard de Mets, Hui Ting Ong, et al. Automated high-speed 3D imaging
of organoid cultures with multi-scale phenotypic quantification. Nature Methods, 19(7):881–892, 2022.

Julia Buhmann, Arlo Sheridan, Caroline Malin-Mayor, Philipp Schlegel, Stephan Gerhard, Tom Kazimiers,
Renate Krause, Tri M Nguyen, Larissa Heinrich, Wei-Chung Allen Lee, et al. Automatic detection of
synaptic partners in a whole-brain drosophila electron microscopy data set. Nature methods, 18(7):771–
774, 2021.

Jiazhong Cen, Zanwei Zhou, Jiemin Fang, Wei Shen, Lingxi Xie, Dongsheng Jiang, Xiaopeng Zhang, Qi Tian,
et al. Segment anything in 3d with nerfs. Advances in Neural Information Processing Systems, 36:25971–
25990, 2023.

Bevan Cheeseman, Krzysztof Gonciarz, Ulrik Günther, Joel Jonsson, Mario Emmenlauer, and Mateusz
Susik. cheesema/LibAPR: Initial Release v1.1, September 2018a. URL https://doi.org/10.5281/
zenodo.1423158.

16

https://doi.org/10.5281/zenodo.1423158
https://doi.org/10.5281/zenodo.1423158


Under review as submission to TMLR

Bevan L Cheeseman, Ulrik Günther, Krzysztof Gonciarz, Mateusz Susik, and Ivo F Sbalzarini. Adaptive
particle representation of fluorescence microscopy images. Nature communications, 9(1):5160, 2018b.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, and
Evan Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations, 2021.

Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learning hierarchical features for
scene labeling. IEEE transactions on pattern analysis and machine intelligence, 35(8):1915–1929, 2012.

Adam K Glaser, Kevin W Bishop, Lindsey A Barner, Etsuo A Susaki, Shimpei I Kubota, Gan Gao, Robert B
Serafin, Pooja Balaram, Emily Turschak, Philip R Nicovich, et al. A hybrid open-top light-sheet microscope
for versatile multi-scale imaging of cleared tissues. Nature methods, 19(5):613–619, 2022.

Benjamin Graham. Spatially-sparse convolutional neural networks. arXiv preprint arXiv:1409.6070, 2014.

Benjamin Graham and Laurens Van der Maaten. Submanifold sparse convolutional networks. arXiv preprint
arXiv:1706.01307, 2017.

Eldad Haber, Lars Ruthotto, Elliot Holtham, and Seong-Hwan Jun. Learning Across Scales—Multiscale
Methods for Convolution Neural Networks. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Larissa Heinrich, Jan Funke, Constantin Pape, Juan Nunez-Iglesias, and Stephan Saalfeld. Synaptic cleft
segmentation in non-isotropic volume electron microscopy of the complete drosophila brain. In Medical
Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference,
Granada, Spain, September 16-20, 2018, Proceedings, Part II 11, pp. 317–325. Springer, 2018.

Pietro Incardona, Antonio Leo, Yaroslav Zaluzhnyi, Rajesh Ramaswamy, and Ivo F Sbalzarini. OpenFPM:
A scalable open framework for particle and particle-mesh codes on parallel computers. Computer Physics
Communications, 241:155–177, 2019.

Pradeep Kumar Jayaraman, Jianhan Mei, Jianfei Cai, and Jianmin Zheng. Quadtree convolutional neural
networks. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 546–561, 2018.

Joel Jonsson, Bevan L Cheeseman, Suryanarayana Maddu, Krzysztof Gonciarz, and Ivo F Sbalzarini. Par-
allel discrete convolutions on adaptive particle representations of images. IEEE Transactions on Image
Processing, 31:4197–4212, 2022. doi: 10.1109/TIP.2022.3181487.

Tsung-Wei Ke, Michael Maire, and Stella X Yu. Multigrid neural architectures. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 6665–6673, 2017.

Sicheng Li, Wei Wen, Yu Wang, Song Han, Yiran Chen, and Hai Li. An fpga design framework for cnn spar-
sification and acceleration. In 2017 IEEE 25th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pp. 28–28. IEEE, 2017.

Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang Ye, Feiyue Huang, and
David Doermann. Towards optimal structured cnn pruning via generative adversarial learning. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2790–2799, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 10012–10022, 2021.

17



Under review as submission to TMLR

Vebjorn Ljosa, Katherine L Sokolnicki, and Anne E Carpenter. Annotated high-throughput microscopy
image sets for validation. Nature methods, 9(7):637–637, 2012.

Fuhui Long, Hanchuan Peng, Xiao Liu, Stuart K Kim, and Eugene Myers. A 3D digital atlas of c. elegans
and its application to single-cell analyses. Nature methods, 6(9):667–672, 2009.

Fuhui Long, Hanchuan Peng, Xiao Liu, Stuart K Kim, Eugene Myers, Dagmar Kainmüller, and Martin
Weigert. 3D nuclei instance segmentation dataset of fluorescence microscopy volumes of C. elegans, Febru-
ary 2022. URL https://doi.org/10.5281/zenodo.5942575.

Daniel Morris. A pyramid cnn for dense-leaves segmentation. In 2018 15th conference on computer and robot
vision (CRV), pp. 238–245. IEEE, 2018.

Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W Keckler. vdnn: Virtu-
alized deep neural networks for scalable, memory-efficient neural network design. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1–13. IEEE, 2016.

Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning deep 3d representations at
high resolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
3577–3586, 2017.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241.
Springer, 2015.

Holger R Roth, Le Lu, Jiamin Liu, Jianhua Yao, Ari Seff, Kevin Cherry, Lauren Kim, and Ronald M
Summers. Improving computer-aided detection using convolutional neural networks and random view
aggregation. IEEE transactions on medical imaging, 35(5):1170–1181, 2015.

Jules Scholler, Joel Jonsson, Tomás Jordá-Siquier, Ivana Gantar, Laura Batti, Bevan L Cheeseman, Stéphane
Pagès, Ivo F Sbalzarini, and Christophe M Lamy. Efficient image analysis for large-scale next generation
histopathology using pAPRica. bioRxiv, 2023a. doi: 10.1101/2023.01.27.525687.

Jules Scholler, Joel Jonsson, Tomas Jorda-Siquier, Ivana Gantar, Laura Batti, Stephane Pages, Christophe M
Lamy, and Ivo F Sbalzarini. Open-source image analysis pipeline with 100+ fold speed-up and real-time
compression (conference presentation). In Three-Dimensional and Multidimensional Microscopy: Image
Acquisition and Processing XXX, pp. PC1238509. SPIE, 2023b.

SB Shriram, Anshuj Garg, and Purushottam Kulkarni. Dynamic memory management for gpu-based training
of deep neural networks. In 2019 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 200–209. IEEE, 2019.

Satya P. Singh, Lipo Wang, Sukrit Gupta, Haveesh Goli, Parasuraman Padmanabhan, and Balázs Gulyás. 3D
deep learning on medical images: a review. Sensors, 20(18), 2020. ISSN 1424-8220. doi: 10.3390/s20185097.
URL https://www.mdpi.com/1424-8220/20/18/5097.

Carsen Stringer, Tim Wang, Michalis Michaelos, and Marius Pachitariu. Cellpose: a generalist algorithm
for cellular segmentation. Nature methods, 18(1):100–106, 2021.

David Svoboda, Michal Kozubek, and Stanislav Stejskal. Generation of digital phantoms of cell nuclei and
simulation of image formation in 3d image cytometry. Cytometry Part A: The Journal of the International
Society for Advancement of Cytometry, 75(6):494–509, 2009.

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-cnn: Octree-based convolutional
neural networks for 3d shape analysis. ACM Transactions On Graphics (TOG), 36(4):1–11, 2017.

Martin Weigert, Uwe Schmidt, Tobias Boothe, Andreas Müller, Alexandr Dibrov, Akanksha Jain, Benjamin
Wilhelm, Deborah Schmidt, Coleman Broaddus, Siân Culley, et al. Content-aware image restoration:
pushing the limits of fluorescence microscopy. Nature methods, 15(12):1090–1097, 2018.

18

https://doi.org/10.5281/zenodo.5942575
https://www.mdpi.com/1424-8220/20/18/5097


Under review as submission to TMLR

Martin Weigert, Uwe Schmidt, Robert Haase, Ko Sugawara, and Gene Myers. Star-convex polyhedra for 3D
object detection and segmentation in microscopy. In Proceedings of the IEEE/CVF winter conference on
applications of computer vision, pp. 3666–3673, 2020.

Songfan Yang and Deva Ramanan. Multi-scale recognition with dag-cnns. In Proceedings of the IEEE
international conference on computer vision, pp. 1215–1223, 2015.

Donggeun Yoo, Sunggyun Park, Joon-Young Lee, and In So Kweon. Multi-scale pyramid pooling for deep
convolutional representation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 71–80, 2015.

Wei Yu, Xiaoshuai Sun, Kuiyuan Yang, Yong Rui, and Hongxun Yao. Hierarchical semantic image matching
using cnn feature pyramid. Computer Vision and Image Understanding, 169:40–51, 2018.

8 Supplementary Material

A
PR

Co
nv

Bl
oc

k
A

PR
Co

nv
Bl

oc
k

A
PR

M
ax

Po
ol

Re
co

ns
tr

uc
t

Co
nv

Bl
oc

k

M
ax

Po
ol

Co
nv

Bl
oc

k

Co
nv

Bl
oc

k

U
ps

am
pl

e

Co
nv

Bl
oc

k

Co
nv

Bl
oc

k

A
PR

U
ps

am
pl

e

A
PR

Co
nv

Bl
oc

k
A

PR
Co

nv
Bl

oc
k

A
PR

Co
nv

Co
nc

at
en

at
e Co

nc
at

en
at

e

Copy

Copy

Co
nv

Bl
oc

k

Sa
m

pl
e 

Pa
rt

ic
le

s

Particle
predictions

Input APR

APR APRPixels

Figure 9: Illustration of a Hybrid1 U-Net architecture with APR layers only for the highest-resolution feature
maps. Pixel features are reconstructed after the first pooling layer, and resampled back to particles before
the last upsampling layer.

19



Under review as submission to TMLR

Figure 10: Pixel reduction ratios (PRR) after successive 23 APR pooling operations applied to APRs of
varying initial PRRs (colors, inset legend). Each pooling step selectively down-samples only the finest-
resolution particles, rendering the feature maps increasingly dense. As a result, the PRR approaches 1,
corresponding to uniform sampling.

Signal Ground truth APR levels Sampling errors

Figure 11: Examples of inaccurate ground-truth labels in the C. elegans dataset, and their effect on the APR
representation accuracy. From left to right, the columns show: 1) the raw image signal, 2) ground-truth
labels overlaid on the signal, 3) ground-truth labels overlaid on the corresponding APR levels (the brightest
gray level indicates pixel resolution and each darker shade indicates a drop in resolution by one level, i.e., a
factor of two), 4) Label sampling errors on the APR due to wrongly coarsening the label edge. The sampling
errors are shown in random colors for visual clarity with red arrows pointing to the erroneous APR particles.

20



Under review as submission to TMLR

Figure 12: Convergence of the validation loss (cross-entropy) during the first 100 epochs of training (15,000
training steps) for the different APR and pixel U-Net configurations (line color, inset legends) for the three-
class U-Net segmentation of the C. elegans dataset. Lines show the mean loss over three independently
trained networks for each configuration, while shaded regions indicate the minimum and maximum values.
The networks in each panel differ only in the hyperparameter C, i.e., the number of feature maps used in
the initial layers.

21



Under review as submission to TMLR

PRR 1.04 (643) PRR 3.14 (643) PRR 4.95 (643) PRR 10.77 (1283) PRR 14.72 (1283)

PRR 20.80 (1283) PRR 30.27 (1283) PRR 54.37 (2563) PRR 124.05 (1283) PRR 1019.83 (2563)

Figure 13: Maximum-intensity z-projections of example 3D benchmark imagess. Titles show images for
different Pixel Reduction Ratios (PRR) and different image sizes in voxels (in parentheses).

22


	Introduction
	APR-CNN
	APR pooling and upsampling layers
	Reconstruction / Resampling layers
	APR convolution layers
	Activation and normalization layers

	Related Work
	Segmentation Performance
	3D cell nuclei segmentation benchmark
	Three-class U-Net segmentation
	Effect of ns on segmentation performance
	StarDist segmentation

	Computational Performance
	Inference performance with fixed input size
	Large volume inference
	Training performance

	Conclusions
	Discussion
	Supplementary Material

